EP3265607B1 - Câble et procédé de fabrication d'un câble - Google Patents

Câble et procédé de fabrication d'un câble Download PDF

Info

Publication number
EP3265607B1
EP3265607B1 EP16711968.4A EP16711968A EP3265607B1 EP 3265607 B1 EP3265607 B1 EP 3265607B1 EP 16711968 A EP16711968 A EP 16711968A EP 3265607 B1 EP3265607 B1 EP 3265607B1
Authority
EP
European Patent Office
Prior art keywords
rope
strands
fibre
fiber
matrix material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16711968.4A
Other languages
German (de)
English (en)
Other versions
EP3265607A1 (fr
Inventor
Bruno LAUER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wireco Germany GmbH
Original Assignee
Wireco Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wireco Germany GmbH filed Critical Wireco Germany GmbH
Publication of EP3265607A1 publication Critical patent/EP3265607A1/fr
Application granted granted Critical
Publication of EP3265607B1 publication Critical patent/EP3265607B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • D07B1/0686Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration characterised by the core design
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/005Composite ropes, i.e. ropes built-up from fibrous or filamentary material and metal wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1028Rope or cable structures characterised by the number of strands
    • D07B2201/1036Rope or cable structures characterised by the number of strands nine or more strands respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2019Strands pressed to shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2021Strands characterised by their longitudinal shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2057Cores characterised by their structure comprising filaments or fibers resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2058Cores characterised by their structure comprising filaments or fibers comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2065Cores characterised by their structure comprising a coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/10Natural organic materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/201Polyolefins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2039Polyesters
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3003Glass
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/4018Rope twisting devices
    • D07B2207/4022Rope twisting devices characterised by twisting die specifics
    • D07B2207/4027Rope twisting devices characterised by twisting die specifics including a coating die
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/404Heat treating devices; Corresponding methods
    • D07B2207/4059Heat treating devices; Corresponding methods to soften the filler material
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2015Killing or avoiding twist
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2085Adjusting or controlling final twist
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/007Making ropes or cables from special materials or of particular form comprising postformed and thereby radially plastically deformed elements

Definitions

  • the invention relates to a method for producing a rope.
  • EP 2 441 723 A1 describes such a procedure. Fiber strands formed from fiber bundles are coated with a resin, the fiber strands are then twisted together so that the resin is arranged on the fiber strands that have been twisted together, and wire strands are stranded on the resin.
  • the invention is based on the object of further developing the method of the type mentioned in such a way that ropes of relatively low weight with improved mechanical properties can be produced.
  • this object is achieved in that fiber bundles to form fiber strands are covered with a liquefied matrix material in front of and/or at a stranding point and are embedded in the liquefied matrix material during stranding, by means of the fiber strands a fiber core of the rope is formed, the matrix material of the fiber strands after the stranding and before stranding the fiber strands, and after the matrix material has solidified to form the fiber core, the fiber strands are immediately stranded together without further occupancy.
  • a fiber core can be produced in a simple manner, the fiber bundles of which are embedded, preferably completely, in the matrix material and are therefore protected against breakage.
  • the process is simplified considerably.
  • the fiber bundles are simply embedded in the matrix material during the production of the fiber strands.
  • the fiber strands can be wound after the matrix material has solidified using the conventional stranding processes and the conventional equipment provided for this purpose.
  • the method allows the fiber core to be produced with a relatively large diameter and with a relatively more complicated structure, which cannot be formed or can only be formed with great effort when stranded within the container.
  • the method according to the invention has the advantage that the handling of the fiber strands is significantly easier and that the fiber core produced has improved mechanical properties due to the embedding of the fiber bundles. Since the matrix material protects the fibers or wires, connects them to one another and transfers the forces that occur to them, higher numbers of bending cycles can be achieved.
  • the matrix material is expediently formed by a thermoplastic, which is heated to liquefy and cooled to solidify.
  • thermoplastic is expediently used as the matrix material.
  • polypropylene polycarbonate, polyamide, polyethylene or PEEK are possible.
  • the fiber bundles are expediently sprayed with the matrix material or, as in a particularly preferred embodiment of the invention provided, immersed in the liquefied matrix material before and/or at the stranding point.
  • the fiber bundles are used, for example as in WO 2012/107042 described, moved through a, preferably heatable, container for receiving the liquefied matrix material, which encloses the fiber bundles before and, if necessary, at the stranding point.
  • the container or the spray device is expediently connected to an extruder, by means of which the matrix material is liquefied and moved to the spray device or into the container.
  • the fiber strands are heated during and/or after they have been stranded to form the fiber core in such a way that the matrix material of at least some of the fiber strands, preferably all of the fiber strands, softens, connects to the matrix material of the other fiber strands and the fiber strands are then cooled to form a material bond with one another, preferably in air or in a cooling liquid.
  • a homogeneous composite fiber core is formed, which has improved mechanical properties compared to loosely twisted fiber strands.
  • the process makes it possible to produce such composite fiber cores with large numbers of fiber strands that are cohesively connected to one another.
  • the fiber strands are expediently stranded in parallel or layered.
  • the fiber strands When stranding in layers, the fiber strands can be stranded in different lay directions to influence the torque that occurs when the rope is loaded. This makes it possible to create a fiber core that itself has little or no rotation. However, it is also conceivable to specifically provide the fiber core with a specific torque in order to adapt this to a torque caused by the outer wires or outer strands, e.g. in order to create a rope that is generally low-torsion or rotation-free.
  • the rotation property of the rope is less than or equal to a rotation of the rope of 36 ° per rope length of 1000 d when lifting a load corresponding to 20% of F min , particularly preferably less than or equal to a rotation of the rope of 3.6 ° per rope length of 1000 d when lifting a load corresponding to 20% F min .
  • the fiber core can be constructed in all conceivable rope arrangements.
  • Particularly suitable rope arrangements are Standard Seale, Filler, Warrington, Warrington - Seale, Seale - Seale, Seale - Filler, Seale - Warrington, Seale - Warrington - Seale.
  • the method according to the invention makes it possible to strand the fiber strands to produce the fiber core in the same direction, in which the fibers in the fiber strands and the fiber strands in the fiber core are twisted in the same direction.
  • the inventor has recognized that such a stranding, which was previously not possible because the fiber strands would have wound up in parallel when stranded and accordingly the fiber strands would have lost their structure during stranding, can be achieved by means of the present method, in which the fiber bundles are passed through the matrix material in held by the fiber strand structure.
  • Stranded with equal beat Fiber strands generate a greater torque when the rope is loaded than fiber strands stranded in a cross lay.
  • each fiber strand depending on the required torque generated by the respective fiber strands, it can be selected whether the fiber strands are stranded in a straight lay or a cross lay.
  • the fiber strands from the fiber bundles can be twisted clockwise (Z-lay) or counterclockwise (S-lay) and, as required, the respective fiber strand layer made of fiber strands can be stranded in a Z-lay or S-lay can.
  • a sheath is provided on the fiber core.
  • the casing is preferably formed from the matrix material, but can also be formed by another substance that connects to the matrix material or adheres to it in such a way that such large forces are transmitted between the fiber core and the casing through the connection or adhesion formed in each case can be ensured that the connection or adhesion holds when the rope is under load.
  • the material expediently has material properties similar to those of the matrix material; it is preferably made from the same class of plastics. If the sheathing is formed from the matrix material, such an amount of matrix material can be arranged in the fiber strands during the production of the fiber strands that a layer of the matrix material forms on the fiber core when heated during the stranding of the fiber core. Alternatively, the coating can also be applied in an additional operation.
  • the sheathing is preferably provided with sufficient thickness to embed the wires or the wire strands at least in sections.
  • the sheathing can be provided with such a thickness that at least the wires or wire strands of inner layers of the rope are completely embedded in the sheathing.
  • the sheathing can also be provided with such a thickness that outer layers of the wires or wire strands lie completely within the sheathing, so that the sheathing closes off the rope from the outside.
  • the embedding also creates a positive connection between an outer layer of the strand or rope formed by the wires or the wire strands and the fiber core.
  • the wires or wire strands are directly after stranding Fiber core stranded on the fiber core during a period in which the matrix material is still soft.
  • the wires or the wire strands are preformed on the fiber core before stranding, preferably in or approximately into a healing shape, which they assume in the finished rope.
  • the ropes made with the preformed wires or wire strands have lower or no internal stresses. They are cut-resistant, i.e. the wires or wire strands do not spread when the rope is cut.
  • the pre-shaping proves to be particularly advantageous if the rope only has a single layer of wire strands, since the wire strands in this structure exert a particularly large force on the fiber core and this can be significantly reduced by the pre-shaping.
  • the preforming of the wire strands can also be advantageous if the wire rope has two or more of the wire strand layers.
  • twisted bundles 2 of fibers made of, for example, aramid or polyethylene are first twisted using the method in Fig. 1
  • Stranding device 9 shown is stranded into a fiber strand 3.
  • the fiber bundles 2 are guided by means of a rotatable stranding basket 10 to a stranding point 4, where they are wound into the fiber strand 3.
  • Coils (not shown here) on which the fiber bundles 2 are wound are arranged on the Verlitzkorb 10 in a manner known per se are.
  • the fiber bundles 2 are continuously unrolled from the spools while the strand basket 10 rotates.
  • the fiber strand 3 is pulled away from the strand point 4 by means of rollers 16 and rolled up onto a drum 17 for further use.
  • the fiber bundles 2 are surrounded at the twisting point 4 by a container 11, to which thermoplastic material, for example polypropylene, can be fed via a heatable line 14 from an extruder 13.
  • the container 11 is provided on its side facing the Verlitzkorb 10 with a rotatable side wall 18 which has a plurality of openings 19 through which the fiber bundles 2 can be guided into the container 11.
  • a web 12 which is rigidly connected to the Verlitz basket 10
  • the rotatable side wall 18 is taken along by the Verlitz basket 10 when the Verlitz basket 10 rotates.
  • a fiber bundle 2 which forms a strand core in the fiber strand 3, can also be guided into the container 11 through the web 12.
  • a further opening is provided through which the fiber strand 3 formed from the fiber bundles 2 can be moved out of the container 11.
  • the opening has a diameter and a shape that corresponds to the diameter and shape of the fiber strand 3 to be formed.
  • the fiber bundles 2 are continuously twisted together at the strand point 4 in the required number, arrangement and size or in the required structure as the strand basket 10 and the movable side wall 18 rotate.
  • the polypropylene is continuously supplied to the container 11 in liquefied form. This covers the fiber bundles 2 before and during the stranding, so that the fiber bundles 2 are embedded in the fiber strand 3 in the thermoplastic.
  • the fiber strand 3 After the fiber strand 3 emerges from the opening of the container 11, it is cooled in a water bath 15 or simply in air in order to cool and thereby solidify the thermoplastic, and then rolled up onto the drum 17.
  • fiber cores 6 of any structure can be produced using the conventional stranding devices by parallel stranding or layer stranding of the fiber strands 3, for example in accordance with the general formation law for spiral ropes mentioned above or in the rope arrangements mentioned such as Seale, Filler, Warrington, etc.
  • Fig. 3 shows schematically a conventional stranding device 20, on which a heating device 22 is provided.
  • the fiber strands 3 are heated in front of, at and/or behind the stranding point 21 in such a way that the thermoplastic in the fiber strands 3 becomes so soft that it fuses with the respective other fiber strands 3 and, after cooling, forms a one-piece fiber core 6 forms.
  • the fiber strands 3 can be heated either when individual or each of the fiber strand layers 31, 32 are stranded or only when the last fiber strand layer 32 is stranded (cf. in Fig. 4 rope shown in cross section).
  • wire strands 7 are stranded and a rope 1 according to the invention is formed.
  • the wire strands 7 are preferably stranded on the fiber core 6 as long as the thermoplastic 5 is still soft.
  • the wire strands 7 then press into the thermoplastic 5, are embedded in it and a positive connection is formed between a wire strand layer 71 lying directly on the fiber core 6 and the fiber core 6.
  • the wire strands 7 can be stranded when the thermoplastic 5 of the fiber core 6 has already solidified. The wire strands 7 then only rest on the fiber core 6.
  • the wire strands 7 can be preformed before they are stranded, preferably in or approximately into the helical shape that they assume in the rope 1 when it is finished. This allows the rope 1 to be produced with lower, if necessary even without, internal stresses.
  • thermoplastic 5 When producing the fiber strands 3, so much thermoplastic 5 can be provided in the fiber strands 3 that when the stranded fiber core 6 is heated, a sheath 8 made of the thermoplastic 5 is formed on the fiber core 6, in which wire strands 7 can be embedded.
  • thermoplastic 5 can be provided on the fiber core 6 to accommodate the wire strands 7.
  • Fig. 4 shows in cross section a rope 1 produced using the method described above, which has a fiber core 6 made of fiber strands 3 of the same diameter and has the same structure.
  • the fiber core 6 has been stranded in layers in a 1 + 6 + 12 structure, with a first layer 31 made of six fiber strands 3 clockwise (Z-lay) and a second layer 32 made of twelve fiber strands 3 counterclockwise (S-lay ) has been stranded. Since the fiber strands 3 have been stranded in a Z-lay, layer 32 is stranded in a cross-lay and layer 31 is stranded in a cross-lay.
  • the fiber strands 3 are completely embedded in the thermoplastic 5.
  • the layer of wire strands 7 resting on the fiber core 6 is embedded in a sheath 8, which is formed from the thermoplastic 5 and which surrounds the fiber bundles 3 of the fiber core 6.
  • the wire strands 7 are twisted on the fiber core 6 at such a lay angle that the torques caused by the fiber strands 3 of the fiber core 6 and by the wire strands 7 cancel each other out when the rope 1 is loaded.
  • lay lengths of the fiber core 6 and the wire strands 8 can be coordinated with one another in such a way that the rope 1 has low rotation, for example with a rotation property of a rotation of the rope of less than 3.6 ° / 1000 d rope length when lifting a load that is 20% of F min corresponds, or is rotation-free.
  • FIG. 8 Rope 1d shown differs from the one shown Fig. 4 in that only a single layer of wire strands 7d has been provided, the wire strands 7d of one layer have been twisted on the fiber core 6d at such a lay angle that torques caused by fiber strands 3d of the fiber core 6d and by the wire strands 7d are caused when the fiber core is loaded Rope 1d cancel each other out, and the wire strands 7d have been preformed into a helical shape as described above. Due to the pre-shaping, the wire strands 7d exert a comparatively low force on the fiber core 6d. On the other hand, the rope 1d is cut-resistant, ie it does not spread out under its own stresses when it is cut. The rope 1d is also low-rotation and can have the rotation properties mentioned above for the rope 1.
  • Rope 1a shown differs from rope 1 according to Fig. 4 in that a fiber core 6a has been stranded in parallel and has a 1+6+(6+6) structure (Warrington). Fiber strands 3a, 3b of an outer layer 32a of fiber strands 3a have different diameters. Also with the rope 1a are the lay lengths of the fiber core 6a and the wire strands 8a are coordinated with one another in such a way that the rope 1a has little rotation, for example with a rotation property of less than a rotation of 3.6 ° / 1000 d rope length when lifting a load corresponding to 20% F min , or is rotation-free.
  • FIG. 6 Another rope 1b according to the invention is shown, the fiber strands of which are marked by hatching in the drawing. It has a core rope 6b with a 1 +6 + 12 structure.
  • the individual layers of the core rope 6b made of fiber strands 60 have been stranded in opposite lay directions.
  • a strand layer of five strands 40 is arranged on the core strand 6b, which have a 1+5+(5+5)+10 structure, with only the outer layer of the strands 40 made of steel wires 42 and the inner 1+5+(5+ 5) structure is formed by fiber strands 41.
  • the strands 40 are compacted as a whole, for example by hammering.
  • outer layer of outer strands 50 and 70 is wound around the strands 40.
  • the outer strands 50 with fiber strands 51 and steel wires 52 have the same structure as the strands 40 and have also been compacted, but have a smaller diameter.
  • the outer strands 70 have a 1+6+(6+6)+12 structure.
  • the outer strands 70 also have an outer layer of strands formed by steel wires 72 and the interior of the strands, i.e. the 1+6+(6+6) structure, is formed by fiber strands 71.
  • the outer strands 70 have also been compacted.
  • All of the fiber strands 60, 41, 51, 71 required to form the rope 1b have been produced using the method described above and heated during their stranding to form a one-piece fiber core.
  • such an amount of thermoplastic for example PEEK
  • PEEK thermoplastic
  • the core strand 6b and the strands 40, 50, 70 were embedded in a matrix material 80 made of thermoplastic.
  • the matrix material 80 can be made of the same plastic in which the fiber bundles of the fiber strands 60, 41, 51, 71 have been embedded (eg PEEK) or another plastic, eg polycarbonate, which adheres to the thermoplastic, if necessary chemically connected to him, being educated.
  • rope 1b Fig. 6 The fiber strands 60b, the strands 40 and the outer strands 70 can be laid in such a way that the rope 1b has little rotation and, for example, a rotation property of a rotation of the rope of less than 36 ° / 1000 d rope length when lifting a load that is 20% of F min corresponds, has.
  • the rope 1c shown has a core rope 6c with a 1+6+(6+6)+12 structure.
  • An outer layer of the core rope 6c is formed by steel wires 62c.
  • the inner 1 + 6 + 6 (6 + 6) structure of the core rope 6c is formed by a fiber core, the fiber strands 60c of which, produced according to the method described above, have been stranded in parallel and connected to one another during stranding under heating as described above.
  • Strands 40c wound around the core rope 6c have a fiber core formed from a single fiber strand 41c and steel wire wires 42c stranded thereon (1+6 structure).
  • An outer layer of the rope 1c is formed by steel wire strands 70c.
  • the core strand 6c, the strands 40c and the outer strands 70c have been embedded in a matrix material 80c made of thermoplastic.
  • the matrix material 80c preferably consists of the same thermoplastic (e.g. polyamide) that was used to produce the fiber strands 60c, 41c.
  • the rope c has been compacted overall, for example by hammering.
  • the steel wires 62c, fiber strands 60c, the strands 40c and the steel wire strands 70c can be laid in such a way that the rope 1b has little rotation and, for example, a rotation property of a rotation of the rope of less than 18 ° / 1000 d of rope length when lifting a load , which corresponds to 20% of F min .
  • wire-containing strands of the ropes 1a, 1b, 1c, 1d, 1e can also be preformed, as explained above for the wire rope 1.

Claims (14)

  1. Procédé de fabrication d'un câble (1), dans lequel, pour former des torons de fibres (3), des faisceaux de fibres (2) sont recouverts d'un matériau matriciel liquéfié (5), devant et/ou en un point de toronnage (4), et sont noyés dans le matériau matriciel liquéfié (5) lors du toronnage, une âme de fibres (6) du câble (1) est formée au moyen des torons de fibres (3), et après le toronnage et avant un câblage des torons de fibres (3), le matériau matriciel des torons de fibres (3) est consolidé, et après la consolidation du matériau matriciel (5), pour former l'âme de fibres (6), les torons de fibres (3) sont câblés ensemble directement, sans autre recouvrement, et des fils métalliques ou torons de fils métalliques (7) sont enroulés autour de l'âme de fibres (6).
  2. Procédé selon la revendication 1,
    caractérisé en ce que
    les torons de fibres (3) sont chauffés pendant ou après leur câblage pour former l'âme de fibres (6), de telle sorte que le matériau matriciel (5) d'au moins certains des torons de fibres (3), de préférence de tous les torons de fibres (3), se ramollit, se lie au matériau matriciel (5) d'autres torons de fibres (3) respectifs et est ensuite consolidé en formant une liaison par coopération de matière entre eux.
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    il est prévu une gaine (8) sur l'âme de fibres (6), qui est de préférence formée du matériau matriciel (5).
  4. Procédé selon la revendication 3,
    caractérisé en ce que
    les fils métalliques ou torons de fils métalliques (7) sont noyés dans le matériau matriciel (5) de la gaine (8).
  5. Procédé selon l'une des revendications 1 à 4,
    caractérisé en ce que
    les torons de fibres (3) sont câblés parallèlement ou câblés en couches, pour former l'âme de fibres (6).
  6. Procédé selon la revendication 5,
    caractérisé en ce que
    lors d'un câblage en couches, les torons de fibres (3) sont câblés dans différents sens de commettage pour influencer un couple de rotation apparaissant lors de la sollicitation du câble (1), de préférence de telle sorte que l'âme de fibres (6) ou l'ensemble du câble (1) soit peu giratoire ou antigiratoire.
  7. Procédé selon l'une des revendications 1 à 6,
    caractérisé en ce que
    les torons de fibres (3) sont câblés en commettage croisé dans lequel les fibres dans les torons de fibres (3) et les torons de fibres (3) dans le câble (1) sont torsadés en sens inverse, ou en commettage long dans lequel les fibres dans les torons de fibres (3) et les torons de fibres (3) dans le câble (1) sont torsadés dans le même sens.
  8. Procédé selon l'une des revendications 1 à 7,
    caractérisé en ce que
    avant le câblage, les fils métalliques ou torons de fils métalliques (7) sont préformés sur l'âme de fibres (6), de préférence en une forme hélicoïdale ou approximativement hélicoïdale qu'ils prendront dans le câble (1) fini.
  9. Procédé selon l'une des revendications 1 à 8,
    caractérisé en ce que
    une seule couche de torons de fils métalliques (7), de préférence préformés, est enroulée autour de l'âme de fibres (6), ou au moins deux couches de torons de fils métalliques (7) sont enroulées autour de l'âme de fibres (6).
  10. Câble (1) comprenant une âme de fibres (6) présentant des torons de fibres (3),
    dans lequel les torons de fibres (4) sont formés de faisceaux de fibres (2) noyés dans un matériau matriciel (5) et toronnés ensemble dans le matériau matriciel (5), et sont câbles ensemble dans l'âme de fibres (6), et des fils métalliques ou torons de fils métalliques (7) sont câblés sur l'âme de fibres (6),
    caractérisé en ce que
    l'âme de fibres est formée des torons de fibres dont le matériau matriciel est consolidé, après le toronnage et avant le câblage, pour former l'âme de fibres (4), et les torons de fibres (4) consolidés dans l'âme de fibres (6) sont câblés ensemble directement, sans autre recouvrement.
  11. Câble selon la revendication 10,
    caractérisé en ce que le matériau matriciel (5) de différents torons de fibres (4) dans l'âme de fibres (6) sont reliés entre eux, de préférence par fusion, en formant une liaison par coopération de matière entre les torons de fibres (4) respectifs.
  12. Câble selon la revendication 10 ou 11,
    caractérisé en ce que
    une gaine (8), de préférence formée du matériau matriciel (5), est prévue sur l'âme de fibres (6), de préférence, les fils métalliques ou torons de fils métalliques (7) étant de préférence noyés dans la gaine (8).
  13. Câble selon l'une des revendications 10 à 12,
    caractérisé en ce que
    lors d'un câblage en couches, les torons de fibres (3) sont câblés dans différents sens de commettage pour influencer un couple de rotation apparaissant lors de la sollicitation du câble (1), de préférence de telle sorte que l'âme de fibres (6) ou l'ensemble du câble (1) soit peu giratoire ou antigiratoire.
  14. Câble selon l'une des revendications 10 à 13,
    caractérisé en ce que
    les torons de fibres (3) sont câblés en commettage croisé dans lequel les fibres dans les torons de fibres (3) et les torons de fibres (3) dans le câble (1) sont torsadés en sens inverse, ou en commettage long dans lequel les fibres dans les torons de fibres (3) et les torons de fibres (3) dans le câble (1) sont torsadés dans le même sens.
EP16711968.4A 2015-03-04 2016-03-03 Câble et procédé de fabrication d'un câble Active EP3265607B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015103115.9A DE102015103115A1 (de) 2015-03-04 2015-03-04 Seil und Verfahren zur Herstellung des Seils
PCT/DE2016/100098 WO2016138893A1 (fr) 2015-03-04 2016-03-03 Câble et procédé de fabrication d'un câble

Publications (2)

Publication Number Publication Date
EP3265607A1 EP3265607A1 (fr) 2018-01-10
EP3265607B1 true EP3265607B1 (fr) 2024-02-21

Family

ID=55637112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16711968.4A Active EP3265607B1 (fr) 2015-03-04 2016-03-03 Câble et procédé de fabrication d'un câble

Country Status (6)

Country Link
US (1) US10760212B2 (fr)
EP (1) EP3265607B1 (fr)
KR (1) KR102333904B1 (fr)
CN (1) CN107429481B (fr)
DE (2) DE102015103115A1 (fr)
WO (1) WO2016138893A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211929A1 (de) * 2014-06-23 2016-01-07 ContiTech Transportsysteme GmbH Verfahren zur Herstellung eines Zugträgers in Seilkonstruktion, insbesondere für Fördergurte
DE102017130743A1 (de) * 2017-12-20 2019-06-27 Gustav Wolf GmbH Aufzugseil und Verfahren zur Herstellung eines Aufzugseils
CN109281211A (zh) * 2018-08-01 2019-01-29 江苏杰力钢缆索具有限公司 一种高稳定性钢丝绳及其制备方法
EP3626880A1 (fr) * 2018-09-19 2020-03-25 Bridon International Limited Corde de fil d'acier
CN109183478A (zh) * 2018-10-31 2019-01-11 贵州钢绳厂附属企业公司 浸油纤维线通过均匀分线器生产含油纤维绳的方法
CN114108339B (zh) * 2021-11-10 2023-11-10 江苏赛福天集团股份有限公司 一种适应拉力而渗油的钢丝绳及其生产方法
CN114134634B (zh) * 2021-12-09 2023-01-10 山东山田新材科研有限公司 金刚石环形线编制设备

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067405A (en) * 1934-07-05 1937-01-12 Goodrich Co B F Rubber impregnated metal cable and method of making same
GB586353A (fr) * 1940-06-19 1900-01-01
US2369876A (en) 1942-09-03 1945-02-20 Jr Richard F Warren Inorganic fiber rope
FR1445157A (fr) 1964-08-20 1966-07-08 British Ropes Ltd Procédé pour appliquer un produit préservatif sur des cordages, torons, âmes de câbles et analogues et câbles ou analogues conformes à ceux ainsi obtenus
US3800522A (en) * 1971-03-30 1974-04-02 Bethlehem Steel Corp Sealed wire rope and strand and method of making
US3778994A (en) * 1971-03-30 1973-12-18 Bethlehem Steel Corp Corrosion resistant wire rope and strand
US3824777A (en) * 1973-10-05 1974-07-23 Amsted Ind Inc Lubricated plastic impregnated wire rope
US3874158A (en) * 1973-10-29 1975-04-01 Amsted Ind Inc Wire rope with plastic impregnated lubricated core
US4197695A (en) * 1977-11-08 1980-04-15 Bethlehem Steel Corporation Method of making sealed wire rope
US4887422A (en) * 1988-09-06 1989-12-19 Amsted Industries Incorporated Rope with fiber core and method of forming same
JPH0686718B2 (ja) * 1988-10-31 1994-11-02 東京製綱株式会社 複合撚合型線条体の製造方法
EP1022377A1 (fr) * 1999-01-22 2000-07-26 Inventio Ag Appareil pour déposer une couche de torons sur un noyau de cable
DE19956736C1 (de) * 1999-11-25 2001-07-26 Kocks Drahtseilerei Verfahren und Verseilvorrichtung zur Herstellung eines Seiles oder Seilelements sowie Seil oder Seilelement
KR100318184B1 (ko) 1999-11-26 2001-12-24 홍영철 플래스틱 코팅된 코어 로프를 갖는 와이어 로프의제조방법 및 그 장치
TWI230230B (en) 2002-12-18 2005-04-01 Hitachi Ltd Coated wire rope
DE10310855A1 (de) * 2003-03-11 2004-09-23 Casar Drahtseilwerk Saar Gmbh Verfahren zum Herstellen eines Drahtseils
FR2854814A1 (fr) * 2003-05-15 2004-11-19 Cousin Composites Corde synthetique pour raquette de tennis
CN1930074B (zh) * 2005-01-14 2010-05-05 三菱电机株式会社 电梯用绳索及其制造方法
FI125355B (fi) * 2007-04-19 2015-09-15 Kone Corp Nostolaitteen köysi ja menetelmä nostolaitteen köyden valmistamiseksi
CN102459052B (zh) 2009-06-08 2014-10-29 三菱电机株式会社 电梯用绳索及其制造方法
KR101157330B1 (ko) 2009-12-30 2012-06-18 주식회사 효성 가공송전선용 섬유 강화 플라스틱 중심 인장선의 제조방법
ES2654791T3 (es) * 2010-05-17 2018-02-15 Kiswire Ltd. Cable híbrido y método para su producción
FR2962455B1 (fr) * 2010-05-20 2012-09-21 Soc Tech Michelin Cable metallique multicouches gomme in situ par un elastomere thermoplastique insature
US9307918B2 (en) 2011-02-09 2016-04-12 Orsan Medical Technologies Ltd. Devices and methods for monitoring cerebral hemodynamic conditions
DE102011011112A1 (de) * 2011-02-12 2012-08-16 Casar Drahtseilwerk Saar Gmbh Verfahren zur Herstellung einer Litze oder eines Seils

Also Published As

Publication number Publication date
DE102015103115A1 (de) 2016-09-08
DE112016000184A5 (de) 2017-08-31
KR20170122190A (ko) 2017-11-03
EP3265607A1 (fr) 2018-01-10
US20180058003A1 (en) 2018-03-01
US10760212B2 (en) 2020-09-01
KR102333904B1 (ko) 2021-12-01
WO2016138893A1 (fr) 2016-09-09
CN107429481A (zh) 2017-12-01
CN107429481B (zh) 2021-01-22

Similar Documents

Publication Publication Date Title
EP3265607B1 (fr) Câble et procédé de fabrication d'un câble
EP2673415B1 (fr) Procédé de réalisation d'un toron ou d'un câble comprenant un revêtement thermoplastique, toron ou câble obtenu avec ce procédé et dispositif de cablage comprenant des moyens de revêtement thermoplastique
DE3318233C2 (de) Optisches Kabelelement bzw. Kabel und Verfahren zu seiner Herstellung
EP0393013A1 (fr) Faisceau d'élément de tension constitué de membres de contrainte comme cordons, barres ou câbles
DE3930496C2 (fr)
DE2607449A1 (de) Seil und verfahren zu dessen herstellung
DE2920513A1 (de) Schnur und verfahren zu deren herstellung
DE2512006B2 (de) Übertragungskabel mit Lichtleitfasern
EP1103653B1 (fr) Procédé et dispositif pour la fabrication d'une corde ou d'un élément d'une corde
DE7936995U1 (de) Verbundstrang aus gummi oder gummiartigem werkstoff oder kunststoff mit zugbewehrung
WO2012142633A1 (fr) Câble de scie destiné à être utilisé dans une machine de sciage au câble
DE1510151A1 (de) Verfahren zur Herstellung eines verseilten Stahldrahtgebildes
DE3537553C2 (de) Optisches Kabel mit mehreren Hauptbündeln
DE3225297A1 (de) Fernsteuerkabel
WO2016150632A1 (fr) Procédé et dispositif pour fabriquer un assemblage de conduits à partir de conduits de câbles
DE2701650C2 (de) Ader für ein optisches Kabel bzw. ein optisches Kabelelement
DE4412374A1 (de) Lichtwellenleiterkabel mit zug- und stauchfesten Bündeladern
WO2022090565A1 (fr) Câble, toron et procédé et dispositif pour produire un câble et un toron
DE3712991C2 (fr)
DE4440507A1 (de) Elektrisches Kabel zur Übertragung von Daten
EP0626701B1 (fr) Toron conducteur électrique pour lignes aériennes à haute tension
EP1132760A2 (fr) Câble à guides d'ondes optiques et son procédé de fabrication
DE112022002578T5 (de) Drahtleiter, isoliertes kabel und kabelstrang
DE3346169A1 (de) Anwendung des verfahrens zum auflegen einer oder mehrerer lagen draehte auf langgestrecktes gut
DE2730106C2 (de) Zugfestes Kabel

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WIRECO GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016383

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240228

Year of fee payment: 9