EP3265607B1 - Rope and method for producing a rope - Google Patents

Rope and method for producing a rope Download PDF

Info

Publication number
EP3265607B1
EP3265607B1 EP16711968.4A EP16711968A EP3265607B1 EP 3265607 B1 EP3265607 B1 EP 3265607B1 EP 16711968 A EP16711968 A EP 16711968A EP 3265607 B1 EP3265607 B1 EP 3265607B1
Authority
EP
European Patent Office
Prior art keywords
rope
strands
fibre
fiber
matrix material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16711968.4A
Other languages
German (de)
French (fr)
Other versions
EP3265607A1 (en
Inventor
Bruno LAUER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wireco Germany GmbH
Original Assignee
Wireco Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wireco Germany GmbH filed Critical Wireco Germany GmbH
Publication of EP3265607A1 publication Critical patent/EP3265607A1/en
Application granted granted Critical
Publication of EP3265607B1 publication Critical patent/EP3265607B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0673Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration
    • D07B1/0686Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core having a rope configuration characterised by the core design
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B7/00Details of, or auxiliary devices incorporated in, rope- or cable-making machines; Auxiliary apparatus associated with such machines
    • D07B7/02Machine details; Auxiliary devices
    • D07B7/14Machine details; Auxiliary devices for coating or wrapping ropes, cables, or component strands thereof
    • D07B7/145Coating or filling-up interstices
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/005Composite ropes, i.e. ropes built-up from fibrous or filamentary material and metal wires
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1028Rope or cable structures characterised by the number of strands
    • D07B2201/1036Rope or cable structures characterised by the number of strands nine or more strands respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2019Strands pressed to shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2021Strands characterised by their longitudinal shape
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2057Cores characterised by their structure comprising filaments or fibers resulting in a twisted structure
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2055Cores characterised by their structure comprising filaments or fibers
    • D07B2201/2058Cores characterised by their structure comprising filaments or fibers comprising fillers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2047Cores
    • D07B2201/2052Cores characterised by their structure
    • D07B2201/2065Cores characterised by their structure comprising a coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/10Natural organic materials
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/201Polyolefins
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2039Polyesters
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/20Organic high polymers
    • D07B2205/2046Polyamides, e.g. nylons
    • D07B2205/205Aramides
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3003Glass
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3007Carbon
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/4018Rope twisting devices
    • D07B2207/4022Rope twisting devices characterised by twisting die specifics
    • D07B2207/4027Rope twisting devices characterised by twisting die specifics including a coating die
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2207/00Rope or cable making machines
    • D07B2207/40Machine components
    • D07B2207/404Heat treating devices; Corresponding methods
    • D07B2207/4059Heat treating devices; Corresponding methods to soften the filler material
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2015Killing or avoiding twist
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2085Adjusting or controlling final twist
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/007Making ropes or cables from special materials or of particular form comprising postformed and thereby radially plastically deformed elements

Definitions

  • the invention relates to a method for producing a rope.
  • EP 2 441 723 A1 describes such a procedure. Fiber strands formed from fiber bundles are coated with a resin, the fiber strands are then twisted together so that the resin is arranged on the fiber strands that have been twisted together, and wire strands are stranded on the resin.
  • the invention is based on the object of further developing the method of the type mentioned in such a way that ropes of relatively low weight with improved mechanical properties can be produced.
  • this object is achieved in that fiber bundles to form fiber strands are covered with a liquefied matrix material in front of and/or at a stranding point and are embedded in the liquefied matrix material during stranding, by means of the fiber strands a fiber core of the rope is formed, the matrix material of the fiber strands after the stranding and before stranding the fiber strands, and after the matrix material has solidified to form the fiber core, the fiber strands are immediately stranded together without further occupancy.
  • a fiber core can be produced in a simple manner, the fiber bundles of which are embedded, preferably completely, in the matrix material and are therefore protected against breakage.
  • the process is simplified considerably.
  • the fiber bundles are simply embedded in the matrix material during the production of the fiber strands.
  • the fiber strands can be wound after the matrix material has solidified using the conventional stranding processes and the conventional equipment provided for this purpose.
  • the method allows the fiber core to be produced with a relatively large diameter and with a relatively more complicated structure, which cannot be formed or can only be formed with great effort when stranded within the container.
  • the method according to the invention has the advantage that the handling of the fiber strands is significantly easier and that the fiber core produced has improved mechanical properties due to the embedding of the fiber bundles. Since the matrix material protects the fibers or wires, connects them to one another and transfers the forces that occur to them, higher numbers of bending cycles can be achieved.
  • the matrix material is expediently formed by a thermoplastic, which is heated to liquefy and cooled to solidify.
  • thermoplastic is expediently used as the matrix material.
  • polypropylene polycarbonate, polyamide, polyethylene or PEEK are possible.
  • the fiber bundles are expediently sprayed with the matrix material or, as in a particularly preferred embodiment of the invention provided, immersed in the liquefied matrix material before and/or at the stranding point.
  • the fiber bundles are used, for example as in WO 2012/107042 described, moved through a, preferably heatable, container for receiving the liquefied matrix material, which encloses the fiber bundles before and, if necessary, at the stranding point.
  • the container or the spray device is expediently connected to an extruder, by means of which the matrix material is liquefied and moved to the spray device or into the container.
  • the fiber strands are heated during and/or after they have been stranded to form the fiber core in such a way that the matrix material of at least some of the fiber strands, preferably all of the fiber strands, softens, connects to the matrix material of the other fiber strands and the fiber strands are then cooled to form a material bond with one another, preferably in air or in a cooling liquid.
  • a homogeneous composite fiber core is formed, which has improved mechanical properties compared to loosely twisted fiber strands.
  • the process makes it possible to produce such composite fiber cores with large numbers of fiber strands that are cohesively connected to one another.
  • the fiber strands are expediently stranded in parallel or layered.
  • the fiber strands When stranding in layers, the fiber strands can be stranded in different lay directions to influence the torque that occurs when the rope is loaded. This makes it possible to create a fiber core that itself has little or no rotation. However, it is also conceivable to specifically provide the fiber core with a specific torque in order to adapt this to a torque caused by the outer wires or outer strands, e.g. in order to create a rope that is generally low-torsion or rotation-free.
  • the rotation property of the rope is less than or equal to a rotation of the rope of 36 ° per rope length of 1000 d when lifting a load corresponding to 20% of F min , particularly preferably less than or equal to a rotation of the rope of 3.6 ° per rope length of 1000 d when lifting a load corresponding to 20% F min .
  • the fiber core can be constructed in all conceivable rope arrangements.
  • Particularly suitable rope arrangements are Standard Seale, Filler, Warrington, Warrington - Seale, Seale - Seale, Seale - Filler, Seale - Warrington, Seale - Warrington - Seale.
  • the method according to the invention makes it possible to strand the fiber strands to produce the fiber core in the same direction, in which the fibers in the fiber strands and the fiber strands in the fiber core are twisted in the same direction.
  • the inventor has recognized that such a stranding, which was previously not possible because the fiber strands would have wound up in parallel when stranded and accordingly the fiber strands would have lost their structure during stranding, can be achieved by means of the present method, in which the fiber bundles are passed through the matrix material in held by the fiber strand structure.
  • Stranded with equal beat Fiber strands generate a greater torque when the rope is loaded than fiber strands stranded in a cross lay.
  • each fiber strand depending on the required torque generated by the respective fiber strands, it can be selected whether the fiber strands are stranded in a straight lay or a cross lay.
  • the fiber strands from the fiber bundles can be twisted clockwise (Z-lay) or counterclockwise (S-lay) and, as required, the respective fiber strand layer made of fiber strands can be stranded in a Z-lay or S-lay can.
  • a sheath is provided on the fiber core.
  • the casing is preferably formed from the matrix material, but can also be formed by another substance that connects to the matrix material or adheres to it in such a way that such large forces are transmitted between the fiber core and the casing through the connection or adhesion formed in each case can be ensured that the connection or adhesion holds when the rope is under load.
  • the material expediently has material properties similar to those of the matrix material; it is preferably made from the same class of plastics. If the sheathing is formed from the matrix material, such an amount of matrix material can be arranged in the fiber strands during the production of the fiber strands that a layer of the matrix material forms on the fiber core when heated during the stranding of the fiber core. Alternatively, the coating can also be applied in an additional operation.
  • the sheathing is preferably provided with sufficient thickness to embed the wires or the wire strands at least in sections.
  • the sheathing can be provided with such a thickness that at least the wires or wire strands of inner layers of the rope are completely embedded in the sheathing.
  • the sheathing can also be provided with such a thickness that outer layers of the wires or wire strands lie completely within the sheathing, so that the sheathing closes off the rope from the outside.
  • the embedding also creates a positive connection between an outer layer of the strand or rope formed by the wires or the wire strands and the fiber core.
  • the wires or wire strands are directly after stranding Fiber core stranded on the fiber core during a period in which the matrix material is still soft.
  • the wires or the wire strands are preformed on the fiber core before stranding, preferably in or approximately into a healing shape, which they assume in the finished rope.
  • the ropes made with the preformed wires or wire strands have lower or no internal stresses. They are cut-resistant, i.e. the wires or wire strands do not spread when the rope is cut.
  • the pre-shaping proves to be particularly advantageous if the rope only has a single layer of wire strands, since the wire strands in this structure exert a particularly large force on the fiber core and this can be significantly reduced by the pre-shaping.
  • the preforming of the wire strands can also be advantageous if the wire rope has two or more of the wire strand layers.
  • twisted bundles 2 of fibers made of, for example, aramid or polyethylene are first twisted using the method in Fig. 1
  • Stranding device 9 shown is stranded into a fiber strand 3.
  • the fiber bundles 2 are guided by means of a rotatable stranding basket 10 to a stranding point 4, where they are wound into the fiber strand 3.
  • Coils (not shown here) on which the fiber bundles 2 are wound are arranged on the Verlitzkorb 10 in a manner known per se are.
  • the fiber bundles 2 are continuously unrolled from the spools while the strand basket 10 rotates.
  • the fiber strand 3 is pulled away from the strand point 4 by means of rollers 16 and rolled up onto a drum 17 for further use.
  • the fiber bundles 2 are surrounded at the twisting point 4 by a container 11, to which thermoplastic material, for example polypropylene, can be fed via a heatable line 14 from an extruder 13.
  • the container 11 is provided on its side facing the Verlitzkorb 10 with a rotatable side wall 18 which has a plurality of openings 19 through which the fiber bundles 2 can be guided into the container 11.
  • a web 12 which is rigidly connected to the Verlitz basket 10
  • the rotatable side wall 18 is taken along by the Verlitz basket 10 when the Verlitz basket 10 rotates.
  • a fiber bundle 2 which forms a strand core in the fiber strand 3, can also be guided into the container 11 through the web 12.
  • a further opening is provided through which the fiber strand 3 formed from the fiber bundles 2 can be moved out of the container 11.
  • the opening has a diameter and a shape that corresponds to the diameter and shape of the fiber strand 3 to be formed.
  • the fiber bundles 2 are continuously twisted together at the strand point 4 in the required number, arrangement and size or in the required structure as the strand basket 10 and the movable side wall 18 rotate.
  • the polypropylene is continuously supplied to the container 11 in liquefied form. This covers the fiber bundles 2 before and during the stranding, so that the fiber bundles 2 are embedded in the fiber strand 3 in the thermoplastic.
  • the fiber strand 3 After the fiber strand 3 emerges from the opening of the container 11, it is cooled in a water bath 15 or simply in air in order to cool and thereby solidify the thermoplastic, and then rolled up onto the drum 17.
  • fiber cores 6 of any structure can be produced using the conventional stranding devices by parallel stranding or layer stranding of the fiber strands 3, for example in accordance with the general formation law for spiral ropes mentioned above or in the rope arrangements mentioned such as Seale, Filler, Warrington, etc.
  • Fig. 3 shows schematically a conventional stranding device 20, on which a heating device 22 is provided.
  • the fiber strands 3 are heated in front of, at and/or behind the stranding point 21 in such a way that the thermoplastic in the fiber strands 3 becomes so soft that it fuses with the respective other fiber strands 3 and, after cooling, forms a one-piece fiber core 6 forms.
  • the fiber strands 3 can be heated either when individual or each of the fiber strand layers 31, 32 are stranded or only when the last fiber strand layer 32 is stranded (cf. in Fig. 4 rope shown in cross section).
  • wire strands 7 are stranded and a rope 1 according to the invention is formed.
  • the wire strands 7 are preferably stranded on the fiber core 6 as long as the thermoplastic 5 is still soft.
  • the wire strands 7 then press into the thermoplastic 5, are embedded in it and a positive connection is formed between a wire strand layer 71 lying directly on the fiber core 6 and the fiber core 6.
  • the wire strands 7 can be stranded when the thermoplastic 5 of the fiber core 6 has already solidified. The wire strands 7 then only rest on the fiber core 6.
  • the wire strands 7 can be preformed before they are stranded, preferably in or approximately into the helical shape that they assume in the rope 1 when it is finished. This allows the rope 1 to be produced with lower, if necessary even without, internal stresses.
  • thermoplastic 5 When producing the fiber strands 3, so much thermoplastic 5 can be provided in the fiber strands 3 that when the stranded fiber core 6 is heated, a sheath 8 made of the thermoplastic 5 is formed on the fiber core 6, in which wire strands 7 can be embedded.
  • thermoplastic 5 can be provided on the fiber core 6 to accommodate the wire strands 7.
  • Fig. 4 shows in cross section a rope 1 produced using the method described above, which has a fiber core 6 made of fiber strands 3 of the same diameter and has the same structure.
  • the fiber core 6 has been stranded in layers in a 1 + 6 + 12 structure, with a first layer 31 made of six fiber strands 3 clockwise (Z-lay) and a second layer 32 made of twelve fiber strands 3 counterclockwise (S-lay ) has been stranded. Since the fiber strands 3 have been stranded in a Z-lay, layer 32 is stranded in a cross-lay and layer 31 is stranded in a cross-lay.
  • the fiber strands 3 are completely embedded in the thermoplastic 5.
  • the layer of wire strands 7 resting on the fiber core 6 is embedded in a sheath 8, which is formed from the thermoplastic 5 and which surrounds the fiber bundles 3 of the fiber core 6.
  • the wire strands 7 are twisted on the fiber core 6 at such a lay angle that the torques caused by the fiber strands 3 of the fiber core 6 and by the wire strands 7 cancel each other out when the rope 1 is loaded.
  • lay lengths of the fiber core 6 and the wire strands 8 can be coordinated with one another in such a way that the rope 1 has low rotation, for example with a rotation property of a rotation of the rope of less than 3.6 ° / 1000 d rope length when lifting a load that is 20% of F min corresponds, or is rotation-free.
  • FIG. 8 Rope 1d shown differs from the one shown Fig. 4 in that only a single layer of wire strands 7d has been provided, the wire strands 7d of one layer have been twisted on the fiber core 6d at such a lay angle that torques caused by fiber strands 3d of the fiber core 6d and by the wire strands 7d are caused when the fiber core is loaded Rope 1d cancel each other out, and the wire strands 7d have been preformed into a helical shape as described above. Due to the pre-shaping, the wire strands 7d exert a comparatively low force on the fiber core 6d. On the other hand, the rope 1d is cut-resistant, ie it does not spread out under its own stresses when it is cut. The rope 1d is also low-rotation and can have the rotation properties mentioned above for the rope 1.
  • Rope 1a shown differs from rope 1 according to Fig. 4 in that a fiber core 6a has been stranded in parallel and has a 1+6+(6+6) structure (Warrington). Fiber strands 3a, 3b of an outer layer 32a of fiber strands 3a have different diameters. Also with the rope 1a are the lay lengths of the fiber core 6a and the wire strands 8a are coordinated with one another in such a way that the rope 1a has little rotation, for example with a rotation property of less than a rotation of 3.6 ° / 1000 d rope length when lifting a load corresponding to 20% F min , or is rotation-free.
  • FIG. 6 Another rope 1b according to the invention is shown, the fiber strands of which are marked by hatching in the drawing. It has a core rope 6b with a 1 +6 + 12 structure.
  • the individual layers of the core rope 6b made of fiber strands 60 have been stranded in opposite lay directions.
  • a strand layer of five strands 40 is arranged on the core strand 6b, which have a 1+5+(5+5)+10 structure, with only the outer layer of the strands 40 made of steel wires 42 and the inner 1+5+(5+ 5) structure is formed by fiber strands 41.
  • the strands 40 are compacted as a whole, for example by hammering.
  • outer layer of outer strands 50 and 70 is wound around the strands 40.
  • the outer strands 50 with fiber strands 51 and steel wires 52 have the same structure as the strands 40 and have also been compacted, but have a smaller diameter.
  • the outer strands 70 have a 1+6+(6+6)+12 structure.
  • the outer strands 70 also have an outer layer of strands formed by steel wires 72 and the interior of the strands, i.e. the 1+6+(6+6) structure, is formed by fiber strands 71.
  • the outer strands 70 have also been compacted.
  • All of the fiber strands 60, 41, 51, 71 required to form the rope 1b have been produced using the method described above and heated during their stranding to form a one-piece fiber core.
  • such an amount of thermoplastic for example PEEK
  • PEEK thermoplastic
  • the core strand 6b and the strands 40, 50, 70 were embedded in a matrix material 80 made of thermoplastic.
  • the matrix material 80 can be made of the same plastic in which the fiber bundles of the fiber strands 60, 41, 51, 71 have been embedded (eg PEEK) or another plastic, eg polycarbonate, which adheres to the thermoplastic, if necessary chemically connected to him, being educated.
  • rope 1b Fig. 6 The fiber strands 60b, the strands 40 and the outer strands 70 can be laid in such a way that the rope 1b has little rotation and, for example, a rotation property of a rotation of the rope of less than 36 ° / 1000 d rope length when lifting a load that is 20% of F min corresponds, has.
  • the rope 1c shown has a core rope 6c with a 1+6+(6+6)+12 structure.
  • An outer layer of the core rope 6c is formed by steel wires 62c.
  • the inner 1 + 6 + 6 (6 + 6) structure of the core rope 6c is formed by a fiber core, the fiber strands 60c of which, produced according to the method described above, have been stranded in parallel and connected to one another during stranding under heating as described above.
  • Strands 40c wound around the core rope 6c have a fiber core formed from a single fiber strand 41c and steel wire wires 42c stranded thereon (1+6 structure).
  • An outer layer of the rope 1c is formed by steel wire strands 70c.
  • the core strand 6c, the strands 40c and the outer strands 70c have been embedded in a matrix material 80c made of thermoplastic.
  • the matrix material 80c preferably consists of the same thermoplastic (e.g. polyamide) that was used to produce the fiber strands 60c, 41c.
  • the rope c has been compacted overall, for example by hammering.
  • the steel wires 62c, fiber strands 60c, the strands 40c and the steel wire strands 70c can be laid in such a way that the rope 1b has little rotation and, for example, a rotation property of a rotation of the rope of less than 18 ° / 1000 d of rope length when lifting a load , which corresponds to 20% of F min .
  • wire-containing strands of the ropes 1a, 1b, 1c, 1d, 1e can also be preformed, as explained above for the wire rope 1.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung eines Seils.The invention relates to a method for producing a rope.

EP 2 441 723 A1 beschreibt ein solches Verfahren. Aus Faserbündeln gebildete Faserlitzen werden mit einem Harz beschichtet, die Faserlitzen anschließend miteinander verwunden, sodass sich der Harz auf den miteinander verwundenen Faserlitzen anordnet, und auf dem Harz Drahtlitzen verseilt. EP 2 441 723 A1 describes such a procedure. Fiber strands formed from fiber bundles are coated with a resin, the fiber strands are then twisted together so that the resin is arranged on the fiber strands that have been twisted together, and wire strands are stranded on the resin.

Aus der WO 2012/107042 ist ein Verfahren zur Seilherstellung bekannt, bei dem Faserbündel oder aus Faserbündeln gebildete Faserlitzen innerhalb eines Behältnisses, das mit dem verflüssigten Matrixmaterial gefüllt ist, zu einem Faserkern gewunden werden. Entweder unmittelbar auf dem auf diese Weise hergestellten Faserkern oder auf einer auf dem Faserkern vorgesehenen Ummantelung werden anschließend Stahldrahtlitzen verseilt.From the WO 2012/107042 a method for rope production is known in which fiber bundles or fiber strands formed from fiber bundles are wound into a fiber core within a container that is filled with the liquefied matrix material. Steel wire strands are then stranded either directly on the fiber core produced in this way or on a sheath provided on the fiber core.

Der Erfindung liegt die Aufgabe zugrunde, das Verfahren der eingangs genannten Art derart weiterzuentwickeln, dass sich Seile verhältnismäßig geringen Gewichts mit verbesserten mechanischen Eigenschaften herstellen lassen.The invention is based on the object of further developing the method of the type mentioned in such a way that ropes of relatively low weight with improved mechanical properties can be produced.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, dass Faserbündel zur Bildung von Faserlitzen vor und/oder an einem Verlitzpunkt mit einem verflüssigten Matrixmaterial belegt und beim Verlitzen in das verflüssigte Matrixmaterial eingebettet werden, mittels der Faserlitzen ein Faserkern des Seils gebildet wird, wobei das Matrixmaterial der Faserlitzen nach der Verlitzung und vor einer Verseilung der Faserlitzen verfestigt wird, und die Faserlitzen nach Verfestigung des Matrixmaterials zur Bildung des Faserkerns ohne weitere Belegung unmittelbar miteinander verseilt werden.According to the invention, this object is achieved in that fiber bundles to form fiber strands are covered with a liquefied matrix material in front of and/or at a stranding point and are embedded in the liquefied matrix material during stranding, by means of the fiber strands a fiber core of the rope is formed, the matrix material of the fiber strands after the stranding and before stranding the fiber strands, and after the matrix material has solidified to form the fiber core, the fiber strands are immediately stranded together without further occupancy.

Mittels des Verfahrens lässt sich in einfacher Weise ein Faserkern herstellen, dessen Faserbündel, vorzugsweise vollständig, in das Matrixmaterial eingebettet und damit gegen Bruch geschützt sind. Insbesondere im Vergleich zu dem Verfahren nach der WO 2012/107042 , bei dem die Verseilung innerhalb des Behältnisses erfolgt und das dementsprechend aufwendig ist, vereinfacht sich das Verfahren erheblich. Anstatt die Faserlitzen bei der Bildung des Faserkerns mit dem Matrixmaterial zu belegen, werden die Faserbündel lediglich bei der Herstellung der Faserlitzen in das Matrixmaterial eingebettet. Zur Bildung des Faserkerns, der den Kern einer Litze des Seils oder einen Kern des Seils bilden kann, können die Faserlitzen nach der Verfestigung des Matrixmaterials mit den herkömmlichen Verseilverfahren und den dafür vorgesehenen herkömmlichen Gerätschaften gewunden werden.Using the method, a fiber core can be produced in a simple manner, the fiber bundles of which are embedded, preferably completely, in the matrix material and are therefore protected against breakage. Especially in comparison to the procedure according to WO 2012/107042 , in which the stranding takes place within the container and which is correspondingly complex, the process is simplified considerably. Instead of covering the fiber strands with the matrix material when forming the fiber core, the fiber bundles are simply embedded in the matrix material during the production of the fiber strands. To form the fiber core, which can form the core of a strand of the rope or a core of the rope, the fiber strands can be wound after the matrix material has solidified using the conventional stranding processes and the conventional equipment provided for this purpose.

Wie nachfolgend erläutert erlaubt das Verfahren eine Herstellung des Faserkerns mit einem verhältnismäßig großen Durchmesser und mit einem verhältnismäßig komplizierteren Aufbau, die sich bei der Verseilung innerhalb des Behältnisses nicht oder nur unter großem Aufwand bilden lassen.As explained below, the method allows the fiber core to be produced with a relatively large diameter and with a relatively more complicated structure, which cannot be formed or can only be formed with great effort when stranded within the container.

Gegenüber der Herstellung des Faserkerns aus Faserlitzen, die keine eingebetteten Faserbündel aufweisen, hat das erfindungsgemäße Verfahren den Vorteil, dass die Handhabung der Faserlitzen wesentlich einfacher ist und dass der erzeugte Faserkern aufgrund der Einbettung der Faserbündel verbesserte mechanische Eigenschaften aufweist. Da das Matrixmaterial die Fasern bzw. die Drähte schützt, diese miteinander verbindet und auftretende Kräfte auf sie überträgt, lassen sich insbesondere höhere Biegewechselzahlen erreichen.Compared to the production of the fiber core from fiber strands that do not have embedded fiber bundles, the method according to the invention has the advantage that the handling of the fiber strands is significantly easier and that the fiber core produced has improved mechanical properties due to the embedding of the fiber bundles. Since the matrix material protects the fibers or wires, connects them to one another and transfers the forces that occur to them, higher numbers of bending cycles can be achieved.

Zweckmäßigerweise ist das Matrixmaterial durch einen thermoplastischen Kunststoff gebildet, der zu seiner Verflüssigung erhitzt und zu seiner Verfestigung abgekühlt wird.The matrix material is expediently formed by a thermoplastic, which is heated to liquefy and cooled to solidify.

Während es vorstellbar wäre, zur Herstellung der Faserlitzen Naturfasern, Mineralfasern, Glasfasern und/oder Kohlenstofffasern zu verwenden, werden in der bevorzugten Ausführungsform der Erfindung synthetische Fasern wie Aramid- oder Polyethylenfasern verwendet.While it would be conceivable to use natural fibers, mineral fibers, glass fibers and/or carbon fibers to produce the fiber strands, synthetic fibers such as aramid or polyethylene fibers are used in the preferred embodiment of the invention.

Zweckmäßigerweise wird als das Matrixmaterial ein Thermoplast verwendet. Neben dem bevorzugt verwendeten Polypropylen kommen Polycarbonat, Polyamid, Polyethylen oder PEEK in Frage.A thermoplastic is expediently used as the matrix material. In addition to the preferred polypropylene, polycarbonate, polyamide, polyethylene or PEEK are possible.

Die Faserbündel werden zweckmäßigerweise mit dem Matrixmaterial besprüht oder, wie in einer besonders bevorzugten Ausführungsform der Erfindung vorgesehen, vor und/ oder am Verseilpunkt in das verflüssigte Matrixmaterial eingetaucht.The fiber bundles are expediently sprayed with the matrix material or, as in a particularly preferred embodiment of the invention provided, immersed in the liquefied matrix material before and/or at the stranding point.

In einer Ausgestaltung der Erfindung werden die Faserbündel dazu, beispielsweise wie in der WO 2012/107042 beschrieben, durch ein, vorzugsweise beheizbares, Behältnis zur Aufnahme des verflüssigten Matrixmaterials bewegt, das die Faserbündel vor und ggf. am Verseilpunkt umschließt. Zweckmäßigerweise wird das Behältnis oder die Sprüheinrichtung mit einem Extruder verbunden, mittels dessen das Matrixmaterial verflüssigt und zur Sprüheinrichtung oder in das Behältnis bewegt wird.In one embodiment of the invention, the fiber bundles are used, for example as in WO 2012/107042 described, moved through a, preferably heatable, container for receiving the liquefied matrix material, which encloses the fiber bundles before and, if necessary, at the stranding point. The container or the spray device is expediently connected to an extruder, by means of which the matrix material is liquefied and moved to the spray device or into the container.

In einer besonders bevorzugten Ausgestaltung der Erfindung werden die Faserlitzen bei oder/und nach ihrer Verseilung zu dem Faserkern erwärmt derart, dass das Matrixmaterial zumindest einzelner der Faserlitzen, vorzugsweise sämtlicher der Faserlitzen, erweicht, sich mit dem Matrixmaterial jeweils anderer der Faserlitzen verbindet und die Faserlitzen anschließend unter Bildung eines Stoffschlusses untereinander, vorzugsweise an Luft oder in einer Kühlflüssigkeit, gekühlt werden.In a particularly preferred embodiment of the invention, the fiber strands are heated during and/or after they have been stranded to form the fiber core in such a way that the matrix material of at least some of the fiber strands, preferably all of the fiber strands, softens, connects to the matrix material of the other fiber strands and the fiber strands are then cooled to form a material bond with one another, preferably in air or in a cooling liquid.

Es wird ein homogener Verbundfaserkern gebildet, der gegenüber lose miteinander verwundenen Faserlitzen verbesserte mechanische Eigenschaften aufweist. Das Verfahren ermöglicht es, solche Verbundfaserkerne mit großen Anzahlen von stoffschlüssig miteinander verbundenen Faserlitzen herzustellen.A homogeneous composite fiber core is formed, which has improved mechanical properties compared to loosely twisted fiber strands. The process makes it possible to produce such composite fiber cores with large numbers of fiber strands that are cohesively connected to one another.

Die Faserlitzen werden zur Bildung des Faserkerns zweckmäßigerweise parallel verseilt oder lagenverseilt.To form the fiber core, the fiber strands are expediently stranded in parallel or layered.

Bei der Lagenverseilung können die Faserlitzen zur Beeinflussung eines bei Belastung des Seils auftretenden Drehmoments in verschiedenen Schlagrichtungen verseilt werden. Dadurch kann ein Faserkern geschaffen werden, der selbst drehungsarm oder drehungsfrei ist. Es ist aber auch vorstellbar, den Faserkern gezielt mit einem bestimmten Drehmoment zu versehen, um dieses an ein Drehmoment, das durch die Außendrähte bzw. Außenlitzen hervorgerufen wird, anzupassen, z.B. um ein Seil zu schaffen, das insgesamt drehungsarm oder drehungsfrei ist.When stranding in layers, the fiber strands can be stranded in different lay directions to influence the torque that occurs when the rope is loaded. This makes it possible to create a fiber core that itself has little or no rotation. However, it is also conceivable to specifically provide the fiber core with a specific torque in order to adapt this to a torque caused by the outer wires or outer strands, e.g. in order to create a rope that is generally low-torsion or rotation-free.

Ein drehungsarmes Seil dreht sich unter Belastung nur geringfügig. Zur Herstellung des drehungsarmen Seils werden die Faserlitzen und ggf. die Außendrähte bzw. Außenlitzen zweckmäßigerweise in derartigen Richtungen und Schlaglängen geschlagen, dass die Dreheigenschaft des Seils kleiner oder gleich einer Drehung des Seils um 360 ° pro Seillänge von 1000 d beim Heben einer Last, die 20 % von Fmin entspricht, ist,
wobei

d
= Seilnenndurchmesser
Fmin
= Mindestbruchkraft des des Seils.
A low-rotation rope rotates only slightly under load. To produce the low-rotation rope, the fiber strands and possibly the outer wires or outer strands are expediently laid in such directions and lay lengths that the rotation property of the rope is less than or equal to one rotation of the rope by 360 ° per rope length of 1000 d when lifting a load corresponding to 20% of F min is,
where
d
= nominal rope diameter
Fmin
= Minimum breaking strength of the rope.

Eine solche Definition des drehungsarmen Seils findet sich in der Norm DIN EN 12385-3:2008-06.B.1.5 unter a).Such a definition of the low-rotation rope can be found in the standard DIN EN 12385-3:2008-06.B.1.5 under a).

Als besonders vorteilhaft hat sich allerdings erwiesen, zur Herstellung des drehungsarmen Seils die Faserlitzen und ggf. die Außendrähte bzw. Außenlitzen in derartigen Richtungen und Schlaglängen zu schlagen, dass die Dreheigenschaft des Seils kleiner oder gleich einer Drehung des Seils von 36 ° pro Seillänge von 1000 d beim Heben einer Last, die 20 % von Fmin , enstpricht, besonders bevorzugt kleiner oder gleich einer Drehung des Seils von 3,6 ° pro Seillänge von 1000 d beim Heben einer Last entsprechend 20 % Fmin , sind.However, to produce the low-rotation rope, it has proven to be particularly advantageous to lay the fiber strands and, if necessary, the outer wires or outer strands in such directions and lay lengths that the rotation property of the rope is less than or equal to a rotation of the rope of 36 ° per rope length of 1000 d when lifting a load corresponding to 20% of F min , particularly preferably less than or equal to a rotation of the rope of 3.6 ° per rope length of 1000 d when lifting a load corresponding to 20% F min .

Vorteilhaft lässt sich der Faserkern gemäß dem allgemeinen Bildungsgesetz für Spiralseile aufbauen, das lautet wie folgt: 1 + m + 1 n m + 6 n

Figure imgb0001
wobei

  • n = 1, 2, 3, 4, ...
  • m=2,3,4,5...
The fiber core can advantageously be constructed in accordance with the general formation law for spiral ropes, which reads as follows: 1 + m + 1 n m + 6 n
Figure imgb0001
where
  • n = 1, 2, 3, 4, ...
  • m=2,3,4,5...

Bei paralleler Verseilung kann der Faserkern in allen vorstellbaren Seilanordnungen aufgebaut werden. Infrage kommen insbesondere die Seilanordnungen Standard Seale, Filler, Warrington, Warrington - Seale, Seale - Seale, Seale - Filler, Seale - Warrington, Seale - Warrington - Seale.With parallel stranding, the fiber core can be constructed in all conceivable rope arrangements. Particularly suitable rope arrangements are Standard Seale, Filler, Warrington, Warrington - Seale, Seale - Seale, Seale - Filler, Seale - Warrington, Seale - Warrington - Seale.

Als besonderer Vorteil hat sich erwiesen, dass es mit dem erfindungsgemäßen Verfahren möglich wird, die Faserlitzen zur Herstellung des Faserkerns im Gleichschlag, bei dem die Fasern in den Faserlitzen und die Faserlitzen im Faserkern in derselben Richtung verwunden werden, zu verseilen. Der Erfinder hat erkannt, dass sich eine derartige Verseilung, die zuvor nicht möglich war, weil sich die Faserlitzen bei Verseilung im Gleichschlag aufgewunden und dementsprechend die Faserlitzen ihre Struktur beim Verseilen verloren hätten, mittels des vorliegenden Verfahrens, bei dem die Faserbündel durch das Matrixmaterial in der Faserlitzenstruktur gehalten werden, durchführen lässt. Mit Gleichschlag verseilte Faserlitzen erzeugen ein größeres Drehmoment bei Belastung des Seils als im Kreuzschlag verseilte Faserlitzen. Dies lässt sich vorteilhaft zum Einstellen des bei der Belastung auftretenden Drehmoments nutzen. So kann für jede Faserlitzen abhängig von jeweils benötigten, durch die jeweiligen Faserlitzen erzeugten Drehmoment gewählt werden, ob die Faserlitzen im Gleichschlag oder im Kreuzschlag verseilt werden.It has proven to be a particular advantage that the method according to the invention makes it possible to strand the fiber strands to produce the fiber core in the same direction, in which the fibers in the fiber strands and the fiber strands in the fiber core are twisted in the same direction. The inventor has recognized that such a stranding, which was previously not possible because the fiber strands would have wound up in parallel when stranded and accordingly the fiber strands would have lost their structure during stranding, can be achieved by means of the present method, in which the fiber bundles are passed through the matrix material in held by the fiber strand structure. Stranded with equal beat Fiber strands generate a greater torque when the rope is loaded than fiber strands stranded in a cross lay. This can be used advantageously to adjust the torque that occurs when the load is applied. For each fiber strand, depending on the required torque generated by the respective fiber strands, it can be selected whether the fiber strands are stranded in a straight lay or a cross lay.

Es versteht sich, dass dazu die Faserlitzen aus den Faserbündeln im Uhrzeigersinn (Z-Schlag) oder entgegen dem Uhrzeigersinn (S-Schlag) verlitzt werden können und je nach Bedarf die jeweilige Faserlitzenlage aus Faserlitze im Z-Schlag oder im S-Schlag verseilt werden können.It goes without saying that the fiber strands from the fiber bundles can be twisted clockwise (Z-lay) or counterclockwise (S-lay) and, as required, the respective fiber strand layer made of fiber strands can be stranded in a Z-lay or S-lay can.

In einer Ausführungsform der Erfindung wird auf dem Faserkern eine Ummantelung vorgesehen. Die Ummantelung ist vorzugsweise aus dem Matrixmaterial gebildet, kann aber auch durch einen anderen Stoff gebildet sein, der sich mit dem Matrixmaterial verbindet oder an ihm anhaftet derart, dass zwischen dem Faserkern und der Ummantelung durch die jeweils gebildete Verbindung bzw. Haftung derart große Kräfte übertragen werden können, dass die Verbindung bzw. die Haftung bei Belastung des Seils hält. Zweckmäßigerweise weist der Stoff dazu ähnliche Materialeigenschaften auf wie das Matrixmaterial, vorzugsweise ist er aus derselben Klasse von Kunststoffen gebildet. Wird die Ummantelung aus dem Matrixmaterial gebildet, kann bei der Herstellung der Faserlitzen in den Faserlitzen eine derartige Menge an Matrixmaterial angeordnet werden, dass sich bei der Erwärmung während der Verseilung des Faserkerns auf dem Faserkern eine Schicht aus dem Matrixmaterial bildet. Alternativ kann die Ummantelung auch in einem zusätzlichen Arbeitsgang aufgebracht werden.In one embodiment of the invention, a sheath is provided on the fiber core. The casing is preferably formed from the matrix material, but can also be formed by another substance that connects to the matrix material or adheres to it in such a way that such large forces are transmitted between the fiber core and the casing through the connection or adhesion formed in each case can be ensured that the connection or adhesion holds when the rope is under load. The material expediently has material properties similar to those of the matrix material; it is preferably made from the same class of plastics. If the sheathing is formed from the matrix material, such an amount of matrix material can be arranged in the fiber strands during the production of the fiber strands that a layer of the matrix material forms on the fiber core when heated during the stranding of the fiber core. Alternatively, the coating can also be applied in an additional operation.

Die Ummantelung wird vorzugsweise in ausreichender Dicke vorgesehen, um die Drähte bzw. die Drahtlitzen zumindest abschnittsweise einzubetten. Insbesondere kann die Ummantelung in einer derartigen Dicke vorgesehen werden, dass zumindest die Drähte bzw. Drahtlitzen innerer Lagen des Seils vollständig in die Ummantelung eingebettet werden. Es versteht sich, dass die Ummantelung auch in einer derartigen Dicke vorgesehen werden kann, dass auch äußere Lagen der Drähte bzw. Drahtlitzen vollständig innerhalb der Ummantelung liegen, sodass die Ummantelung das Seil nach außen abschließt. Durch die Einbettung entsteht auch zwischen einer durch die Drähte bzw. die Drahtlitzen gebildeten Außenlage der Litze oder des Seils und dem Faserkern eine formschlüssige Verbindung.The sheathing is preferably provided with sufficient thickness to embed the wires or the wire strands at least in sections. In particular, the sheathing can be provided with such a thickness that at least the wires or wire strands of inner layers of the rope are completely embedded in the sheathing. It goes without saying that the sheathing can also be provided with such a thickness that outer layers of the wires or wire strands lie completely within the sheathing, so that the sheathing closes off the rope from the outside. The embedding also creates a positive connection between an outer layer of the strand or rope formed by the wires or the wire strands and the fiber core.

Während es vorstellbar wäre, die Drähte oder die Drahtlitzen in einem gesonderten Verfahrensschritt, in dem die Ummantelung des Faserkerns zu ihrer Erweichung erhitzt wird, auf dem Faserkern zu verseilen, werden die Drähte bzw. Drahtlitzen in der bevorzugten Ausführungsform der Erfindung direkt nach der Verseilung des Faserkerns auf dem Faserkern verseilt in einem Zeitraum, in dem das Matrixmaterial noch weich ist.While it would be conceivable to strand the wires or wire strands on the fiber core in a separate process step in which the sheathing of the fiber core is heated to soften it, in the preferred embodiment of the invention the wires or wire strands are directly after stranding Fiber core stranded on the fiber core during a period in which the matrix material is still soft.

In einer weiteren Ausgestaltung der Erfindung werden die Drähte oder die Drahtlitzen vor Verseilung auf dem Faserkern vorgeformt, vorzugsweise in oder annähernd in eine Heilxform, die sie im fertiggestellten Seil einnehmen. Die mit den vorgeformten Drähten oder Drahtlitzen hergestellten Seile weisen geringere oder keine Eigenspannungen auf. Sie sind schnittfest, d.h. die Drähte bzw. Drahtlitzen spreizen sich nicht auf, wenn das Seil geschnitten wird.In a further embodiment of the invention, the wires or the wire strands are preformed on the fiber core before stranding, preferably in or approximately into a healing shape, which they assume in the finished rope. The ropes made with the preformed wires or wire strands have lower or no internal stresses. They are cut-resistant, i.e. the wires or wire strands do not spread when the rope is cut.

Die Vorformung erweist sich als besonders vorteilhaft, wenn das Seil lediglich eine einzige Lage aus den Drahtlitzen aufweist, da die Drahtlitzen bei diesem Aufbau eine besonders große Kraft auf den Faserkern ausüben und diese sich durch die Vorformung erheblich reduzieren lässt. Es versteht sich aber, dass die Vorformung der Drahtlitzen auch vorteilhaft sein kann, wenn das Drahtseil zwei oder mehrere der Drahtlitzenlagen aufweist.The pre-shaping proves to be particularly advantageous if the rope only has a single layer of wire strands, since the wire strands in this structure exert a particularly large force on the fiber core and this can be significantly reduced by the pre-shaping. However, it goes without saying that the preforming of the wire strands can also be advantageous if the wire rope has two or more of the wire strand layers.

Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen und der beiliegenden, sich auf diese Ausführungsbeispiele beziehenden Zeichnungen näher erläutert. Es zeigen:

Fig. 1
schematisch eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens,
Fig. 2
ein Detail der Vorrichtung nach Fig. 1 in isometrischer Darstellung,
Fig. 3
schematisch eine weitere Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, und
Fig. 4 bis 9
Querschnitte verschiedener erfindungsgemäßer Seile.
The invention is explained in more detail below using exemplary embodiments and the accompanying drawings relating to these exemplary embodiments. Show it:
Fig. 1
schematically a device for carrying out the method according to the invention,
Fig. 2
a detail of the device Fig. 1 in isometric view,
Fig. 3
schematically a further device for carrying out the method according to the invention, and
4 to 9
Cross sections of various ropes according to the invention.

Zur Durchführung des Verfahrens werden zunächst verdrillte Bündel 2 von Fasern aus z.B. Aramid oder Polyethylen mittels der in Fig. 1 gezeigten Verlitzeinrichtung 9 zu einer Faserlitze 3 verlitzt. Die Faserbündel 2 werden dazu mittels eines drehbaren Verlitzkorbs 10 zu einem Verlitzpunkt 4 geführt, an dem sie zu der Faserlitze 3 gewunden werden. An dem Verlitzkorb 10 sind in an sich bekannter Weise hier nicht dargestellte Spulen angeordnet, auf denen die Faserbündel 2 aufgewickelt sind. Bei der Herstellung der Faserlitze 3 werden die Faserbündel 2 kontinuierlich von den Spulen abgerollt, während sich der Verlitzkorb 10 dreht. Mittels Rollen 16 wird die Faserlitze 3 vom Verlitzpunkt 4 weggezogen und zur weiteren Verwendung auf eine Trommel 17 aufgerollt.To carry out the process, twisted bundles 2 of fibers made of, for example, aramid or polyethylene are first twisted using the method in Fig. 1 Stranding device 9 shown is stranded into a fiber strand 3. For this purpose, the fiber bundles 2 are guided by means of a rotatable stranding basket 10 to a stranding point 4, where they are wound into the fiber strand 3. Coils (not shown here) on which the fiber bundles 2 are wound are arranged on the Verlitzkorb 10 in a manner known per se are. When producing the fiber strand 3, the fiber bundles 2 are continuously unrolled from the spools while the strand basket 10 rotates. The fiber strand 3 is pulled away from the strand point 4 by means of rollers 16 and rolled up onto a drum 17 for further use.

Wie Fig. 2 genauer zu entnehmen ist, sind die Faserbündel 2 am Verlitzpunkt 4 von einem Behältnis 11 umgeben, dem über eine beheizbare Leitung 14 aus einem Extruder 13 thermoplastischer Kunststoff, z.B. Polypropylen, zugeführt werden kann. Das Behältnis 11 ist auf seiner dem Verlitzkorb 10 zugewandten Seite mit einer verdrehbaren Seitenwand 18 versehen, die mehrere Öffnungen 19 aufweist, durch die hindurch die Faserbündel 2 in das Behältnis 11 geführt werden können. Mittels eines Stegs 12, der starr mit dem Verlitzkorb 10 verbunden ist, wird die verdrehbare Seitenwand 18 bei Rotationsbewegung des Verlitzkorbs 10 vom Verlitzkorb 10 mitgenommen. Auch durch den Steg 12 hindurch lässt sich ein Faserbündel 2, das in der Faserlitze 3 einen Litzenkern bildet, in das Behältnis 11 führen.How Fig. 2 As can be seen in more detail, the fiber bundles 2 are surrounded at the twisting point 4 by a container 11, to which thermoplastic material, for example polypropylene, can be fed via a heatable line 14 from an extruder 13. The container 11 is provided on its side facing the Verlitzkorb 10 with a rotatable side wall 18 which has a plurality of openings 19 through which the fiber bundles 2 can be guided into the container 11. By means of a web 12, which is rigidly connected to the Verlitz basket 10, the rotatable side wall 18 is taken along by the Verlitz basket 10 when the Verlitz basket 10 rotates. A fiber bundle 2, which forms a strand core in the fiber strand 3, can also be guided into the container 11 through the web 12.

Auf einer der Seitenwand 18 gegenüberliegenden Seite des Behältnisses 11 ist eine weitere Öffnung vorgesehen, durch die sich die aus den Faserbündeln 2 gebildete Faserlitze 3 aus dem Behältnis 11 heraus bewegen lässt. Die Öffnung weist einen Durchmesser und eine Form auf, die dem Durchmesser bzw. der Form der zu bildenden Faserlitze 3 entspricht.On a side of the container 11 opposite the side wall 18, a further opening is provided through which the fiber strand 3 formed from the fiber bundles 2 can be moved out of the container 11. The opening has a diameter and a shape that corresponds to the diameter and shape of the fiber strand 3 to be formed.

Zur Herstellung der Faserlitze 3 werden die Faserbündel 2 in der jeweils benötigten Anzahl, Anordnung und Größe bzw. im benötigten Aufbau bei Rotation des Verlitzkorbs 10 sowie der beweglichen Seitenwand 18 kontinuierlich am Verlitzpunkt 4 miteinander verwunden. Dem Behältnis 11 wird dabei kontinuierlich das Polypropylen verflüssigt zugeführt. Dieses belegt die Faserbündel 2 vor und während der Verlitzung, sodass die Faserbündel 2 in der Faserlitze 3 in den thermoplastischen Kunststoff eingebettet werden.To produce the fiber strand 3, the fiber bundles 2 are continuously twisted together at the strand point 4 in the required number, arrangement and size or in the required structure as the strand basket 10 and the movable side wall 18 rotate. The polypropylene is continuously supplied to the container 11 in liquefied form. This covers the fiber bundles 2 before and during the stranding, so that the fiber bundles 2 are embedded in the fiber strand 3 in the thermoplastic.

Nachdem die Faserlitze 3 aus der Öffnung des Behältnisses 11 heraustritt, wird sie in einem Wasserbad 15 oder lediglich an Luft gekühlt, um den thermoplastischen Kunststoff abzukühlen und dadurch zu verfestigen, und anschließend auf die Trommel 17 aufgerollt.After the fiber strand 3 emerges from the opening of the container 11, it is cooled in a water bath 15 or simply in air in order to cool and thereby solidify the thermoplastic, and then rolled up onto the drum 17.

Mit den auf diese Weise hergestellten Faserlitzen 3 lassen sich mit den herkömmlichen Verseilvorrichtungen durch Parallelverseilung oder Lagenverseilung der Faserlitzen 3 Faserkerne 6 beliebigen Aufbaus herstellen, beispielsweise gemäß dem obengenannten allgemeinen Bildungsgesetz für Spiralseile oder in den genannten Seilanordnungen wie Seale, Filler, Warrington usw.With the fiber strands 3 produced in this way, fiber cores 6 of any structure can be produced using the conventional stranding devices by parallel stranding or layer stranding of the fiber strands 3, for example in accordance with the general formation law for spiral ropes mentioned above or in the rope arrangements mentioned such as Seale, Filler, Warrington, etc.

Fig. 3 zeigt schematisch eine herkömmliche Verseilvorrichtung 20, an der eine Erhitzungseinrichtung 22 vorgesehen ist. Mittels der Erhitzungsvorrichtung 22 werden die Faserlitzen 3 vor, am und/oder hinter dem Verseilpunkt 21 erhitzt derart, dass der thermoplastische Kunststoff in den Faserlitzen 3 so weich wird, dass er mit dem jeweiligen der anderen Faserlitzen 3 verschmilzt und sich nach Abkühlung ein einteiliger Faserkern 6 bildet. Fig. 3 shows schematically a conventional stranding device 20, on which a heating device 22 is provided. By means of the heating device 22, the fiber strands 3 are heated in front of, at and/or behind the stranding point 21 in such a way that the thermoplastic in the fiber strands 3 becomes so soft that it fuses with the respective other fiber strands 3 and, after cooling, forms a one-piece fiber core 6 forms.

Bei der Lagenverseilung kann eine Erhitzung der Faserlitzen 3 entweder bei Verseilung einzelner oder jeder der Faserlitzenlagen 31,32 oder lediglich bei Verseilung der letzten Faserlitzenlage 32 vorgesehen sein (vgl. in Fig. 4 im Querschnitt gezeigtes Seil).When stranding layers, the fiber strands 3 can be heated either when individual or each of the fiber strand layers 31, 32 are stranded or only when the last fiber strand layer 32 is stranded (cf. in Fig. 4 rope shown in cross section).

Anschließend werden auf dem Faserkern 6, ggf. wie in Fig. 3 dargestellt mittels einer Tandemverseilmaschine, Drahtlitzen 7 verseilt und ein erfindungsgemäßes Seil 1 gebildet. Bevorzugt werden die Drahtlitzen 7 auf dem Faserkern 6 verseilt, solange der thermoplastische Kunststoff 5 noch weich ist. Die Drahtlitzen 7 drücken sich dann in den thermoplastischen Kunststoff 5 ein, werden in ihn eingebettet und es bildet sich ein Formschluss zwischen einer unmittelbar auf dem Faserkern 6 aufliegenden Drahtlitzenlage 71 und dem Faserkern 6.Then on the fiber core 6, if necessary as in Fig. 3 shown using a tandem stranding machine, wire strands 7 are stranded and a rope 1 according to the invention is formed. The wire strands 7 are preferably stranded on the fiber core 6 as long as the thermoplastic 5 is still soft. The wire strands 7 then press into the thermoplastic 5, are embedded in it and a positive connection is formed between a wire strand layer 71 lying directly on the fiber core 6 and the fiber core 6.

Alternativ können die Drahtlitzen 7 verseilt werden, wenn der thermoplastische Kunststoff 5 des Faserkerns 6 bereits verfestigt ist. Die Drahtlitzen 7 liegen dann lediglich auf dem Faserkern 6 auf.Alternatively, the wire strands 7 can be stranded when the thermoplastic 5 of the fiber core 6 has already solidified. The wire strands 7 then only rest on the fiber core 6.

Optional können die Drahtlitzen 7 vor ihrer Verseilung vorgeformt werden, bevorzugt in oder annähernd in die Helixform, die sie in dem Seil 1 einnehmen, wenn es fertiggestellt ist. Dadurch lässt sich das Seil 1 mit geringeren, ggf. sogar ohne Eigenspannungen herstellen.Optionally, the wire strands 7 can be preformed before they are stranded, preferably in or approximately into the helical shape that they assume in the rope 1 when it is finished. This allows the rope 1 to be produced with lower, if necessary even without, internal stresses.

Bei der Herstellung der Faserlitzen 3 kann derart viel thermoplastischer Kunststoff 5 in den Faserlitzen 3 vorgesehen werden, dass sich bei Erhitzung des verseilten Faserkerns 6 auf dem Faserkern 6 eine Ummantelung 8 aus dem thermoplastischen Kunststoff 5 bildet, in welche Drahtlitzen 7 eingebettet werden können.When producing the fiber strands 3, so much thermoplastic 5 can be provided in the fiber strands 3 that when the stranded fiber core 6 is heated, a sheath 8 made of the thermoplastic 5 is formed on the fiber core 6, in which wire strands 7 can be embedded.

Alternativ kann auf dem Faserkern 6 eine zusätzliche Schicht aus thermoplastischem Kunststoff 5 zur Aufnahme der Drahtlitzen 7 vorgesehen werden.Alternatively, an additional layer of thermoplastic 5 can be provided on the fiber core 6 to accommodate the wire strands 7.

Fig. 4 zeigt im Querschnitt ein mittels des oben beschriebenen Verfahrens hergestelltes Seil 1, das einen Faserkern 6 aus Faserlitzen 3 gleichen Durchmessers und gleichen Aufbaus aufweist. Der Faserkern 6 ist in Lagenverseilung in einem 1+6+12 - Aufbau verseilt worden, wobei eine erste Lage 31 aus sechs Faserlitzen 3 im Uhrzeigersinn (Z-Schlag) und eine zweite Lage 32 aus zwölf Faserlitzen 3 entgegen des Uhrzeigersinns (S-Schlag) verseilt worden ist. Da die Faserlitzen 3 im Z-Schlag verlitzt worden sind, ist die Lage 32 im Kreuzschlag und die Lage 31 im Gleichschlag verseilt. Fig. 4 shows in cross section a rope 1 produced using the method described above, which has a fiber core 6 made of fiber strands 3 of the same diameter and has the same structure. The fiber core 6 has been stranded in layers in a 1 + 6 + 12 structure, with a first layer 31 made of six fiber strands 3 clockwise (Z-lay) and a second layer 32 made of twelve fiber strands 3 counterclockwise (S-lay ) has been stranded. Since the fiber strands 3 have been stranded in a Z-lay, layer 32 is stranded in a cross-lay and layer 31 is stranded in a cross-lay.

Wie Fig. 4 zeigt, sind die Faserlitzen 3 vollständig in den thermoplastischen Kunststoff 5 eingebettet. Die auf dem Faserkern 6 aufsitzende Lage aus Drahtlitzen 7 ist in einer Ummantelung 8, die sich aus dem thermoplastischen Kunststoff 5 gebildet hat und die die Faserbündel 3 des Faserkerns 6 umgibt, eingebettet. Die Drahtlitzen 7 sind in einem derartigen Schlagwinkel auf dem Faserkern 6 verwunden, dass sich durch die Faserlitzen 3 des Faserkerns 6 und durch die Drahtlitzen 7 hervorgerufene Drehmomente bei Belastung des Seils 1 gegenseitig aufheben. Die Schlaglängen des Faserkerns 6 und der Drahtlitzen 8 können derart aufeinander abgestimmt sein, dass das Seil 1 drehungsarm, z.B. mit einer Dreheigenschaft von einer Drehung des Seils kleiner 3,6 °/ 1000 d Seillänge beim Heben einer Last, die 20 % von Fmin entspricht, oder drehungsfrei ist.How Fig. 4 shows, the fiber strands 3 are completely embedded in the thermoplastic 5. The layer of wire strands 7 resting on the fiber core 6 is embedded in a sheath 8, which is formed from the thermoplastic 5 and which surrounds the fiber bundles 3 of the fiber core 6. The wire strands 7 are twisted on the fiber core 6 at such a lay angle that the torques caused by the fiber strands 3 of the fiber core 6 and by the wire strands 7 cancel each other out when the rope 1 is loaded. The lay lengths of the fiber core 6 and the wire strands 8 can be coordinated with one another in such a way that the rope 1 has low rotation, for example with a rotation property of a rotation of the rope of less than 3.6 ° / 1000 d rope length when lifting a load that is 20% of F min corresponds, or is rotation-free.

Nachfolgend wird auf die Fig. 5 bis 9 Bezug genommen, in denen gleiche oder gleichwirkende Teile mit derselben Bezugszahl wie in den Fig. 1 bis 4 bezeichnet sind und der betreffenden Bezugszahl jeweils ein Buchstabe beigefügt ist.Below we will refer to the Fig. 5 to 9 Referenced, in which the same or equivalent parts have the same reference number as in the Fig. 1 to 4 are designated and each reference number is accompanied by a letter.

Ein in Fig. 8 gezeigtes Seil 1d unterscheidet sich von dem nach Fig. 4 dadurch, dass lediglich eine einzige Lage aus Drahtlitzen 7d vorgesehen worden ist, die Drahtlitzen 7d der einen Lage in einem derartigen Schlagwinkel auf dem Faserkern 6d verwunden worden sind, dass sich durch Faserlitzen 3d des Faserkerns 6d und durch die Drahtlitzen 7d hervorgerufene Drehmomente bei Belastung des Seils 1d gegenseitig aufheben, und die Drahtlitzen 7d wie oben beschrieben in eine Helixform vorgeformt worden sind. Durch die Vorformung üben die Drahtlitzen 7d zum einen eine vergleichsweise geringe Kraft auf den Faserkern 6d aus. Zum anderen ist das Seil 1d schnittfest, d.h. es spreizt sich unter seinen Eigenspannungen nicht auf, wenn es geschnitten wird. Das Seil 1d ist ebenfalls drehungsarm und kann die oben für das Seil 1 genannte Dreheigenschaft aufweisen.An in Fig. 8 Rope 1d shown differs from the one shown Fig. 4 in that only a single layer of wire strands 7d has been provided, the wire strands 7d of one layer have been twisted on the fiber core 6d at such a lay angle that torques caused by fiber strands 3d of the fiber core 6d and by the wire strands 7d are caused when the fiber core is loaded Rope 1d cancel each other out, and the wire strands 7d have been preformed into a helical shape as described above. Due to the pre-shaping, the wire strands 7d exert a comparatively low force on the fiber core 6d. On the other hand, the rope 1d is cut-resistant, ie it does not spread out under its own stresses when it is cut. The rope 1d is also low-rotation and can have the rotation properties mentioned above for the rope 1.

Ein in Fig. 5 gezeigtes Seil 1a unterscheidet sich von dem Seil 1 nach Fig. 4 dadurch, dass ein Faserkern 6a parallel verseilt worden ist und eine 1+6+(6+6) Struktur (Warrington) aufweist. Faserlitzen 3a,3b einer äußeren Lage 32a von Faserlitzen 3a weisen unterschiedliche Durchmesser auf. Auch bei dem Seil 1a sind die Schlaglängen des Faserkerns 6a und der Drahtlitzen 8a derart aufeinander abgestimmt, dass das Seil 1a drehungsarm, z.B. mit einer Dreheigenschaft von kleiner einer Drehung von 3,6 °/ 1000 d Seillänge beim Heben einer Last entsprechend 20 % Fmin , oder drehungsfrei ist.An in Fig. 5 Rope 1a shown differs from rope 1 according to Fig. 4 in that a fiber core 6a has been stranded in parallel and has a 1+6+(6+6) structure (Warrington). Fiber strands 3a, 3b of an outer layer 32a of fiber strands 3a have different diameters. Also with the rope 1a are the lay lengths of the fiber core 6a and the wire strands 8a are coordinated with one another in such a way that the rope 1a has little rotation, for example with a rotation property of less than a rotation of 3.6 ° / 1000 d rope length when lifting a load corresponding to 20% F min , or is rotation-free.

Im Unterschied zu dem Seil 1a nach Fig. 5 ist bei dem in Fig. 9 gezeigten Seil 1e lediglich eine einzige Lage aus Drahtlitzen 7e vorgesehen worden, die Drahtlitzen 7e der einen Lage sind in einem derartigen Schlagwinkel auf dem Faserkern 6e verwunden worden, dass sich durch Faserlitzen 3e,3e' des Faserkerns 6e und durch die Drahtlitzen 7e hervorgerufene Drehmomente bei Belastung des Seils 1d gegenseitig aufheben sodass es drehungsarm ist (und dabei z.B. die oben für das Seil 1a genannte Dreheigenschaft aufweist) oder drehungsfrei ist, und die Drahtlitzen 7e sind wie oben beschrieben in eine Helixform vorgeformt worden.In contrast to the rope 1a Fig. 5 is at the in Fig. 9 In the rope 1e shown, only a single layer of wire strands 7e has been provided, the wire strands 7e of one layer have been twisted on the fiber core 6e at such a lay angle that the torques caused by the fiber strands 3e, 3e 'of the fiber core 6e and by the wire strands 7e are at The load on the rope 1d is mutually canceled out so that it has little rotation (and, for example, has the rotation property mentioned above for the rope 1a) or is rotation-free, and the wire strands 7e have been preformed into a helical shape as described above.

In Fig. 6 ist ein weiteres erfindungsgemäßes Seil 1b gezeigt, dessen Faserlitzen in der Zeichnung durch eine Schraffur gekennzeichnet sind. Es weist ein Kernseil 6b auf, mit 1 +6+ 12 - Aufbau auf. Zur Beeinflussung eines Drehmoments, das durch das Kernseil 6b bei Belastung des Seil 1b hervorgerufen wird, sind die einzelnen Lagen des Kernseils 6b aus Faserlitzen 60 in entgegengesetzten Schlagrichtungen lagenverseilt worden. Auf der Kernlitze 6b ist eine Litzenlage aus fünf Litzen 40 angeordnet, die einen 1+5+(5+5)+10-Aufbau aufweisen, wobei lediglich die Außenlage der Litzen 40 aus Stahldrähten 42 und die innere 1+5+(5+5)-Struktur durch Faserlitzen 41 gebildet ist. Die Litzen 40 sind als Ganzes, beispielsweise durch Hämmern, verdichtet.In Fig. 6 Another rope 1b according to the invention is shown, the fiber strands of which are marked by hatching in the drawing. It has a core rope 6b with a 1 +6 + 12 structure. In order to influence a torque that is caused by the core rope 6b when the rope 1b is loaded, the individual layers of the core rope 6b made of fiber strands 60 have been stranded in opposite lay directions. A strand layer of five strands 40 is arranged on the core strand 6b, which have a 1+5+(5+5)+10 structure, with only the outer layer of the strands 40 made of steel wires 42 and the inner 1+5+(5+ 5) structure is formed by fiber strands 41. The strands 40 are compacted as a whole, for example by hammering.

Um die Litzen 40 ist eine Außenlage aus Außenlitzen 50 und 70 gewunden. Die Außenlitzen 50 mit Faserlitzen 51 und Stahldrähten 52 weisen denselben Aufbau auf wie die Litzen 40 und sind ebenfalls verdichtet worden, haben allerdings einen geringeren Durchmesser. Die Außenlitzen 70 weisen einen 1+6+(6+6)+12-Aufbau auf. Auch bei den Außenlitzen 70 ist eine Litzenaußenlage durch Stahldrähte 72 gebildet und das Litzeninnere, d.h. der 1+6+(6+6)-Aufbau, ist durch Faserlitzen 71 gebildet. Auch die Außenlitzen 70 sind verdichtet worden.An outer layer of outer strands 50 and 70 is wound around the strands 40. The outer strands 50 with fiber strands 51 and steel wires 52 have the same structure as the strands 40 and have also been compacted, but have a smaller diameter. The outer strands 70 have a 1+6+(6+6)+12 structure. The outer strands 70 also have an outer layer of strands formed by steel wires 72 and the interior of the strands, i.e. the 1+6+(6+6) structure, is formed by fiber strands 71. The outer strands 70 have also been compacted.

Sämtliche der für die Bildung des Seils 1b benötigten Faserlitzen 60, 41,51,71 sind mittels des oben beschriebenen Verfahrens hergestellt und bei ihrer Verlitzung erhitzt worden, um einen einteiligen Faserkern zu bilden. Bei der Herstellung der Faserlitzen 41,51,71 ist eine derartige Menge an thermoplastischem Kunststoff, z.B. PEEK, vorgesehen worden, dass sich bei Erhitzung nach ihrer Verlitzung zu dem jeweiligen Faserkern eine Ummantelung aus dem thermoplastischen Kunststoff gebildet hat, in welche die äußeren Stahldrähte 42,52,72 eingebettet worden sind. Bei ihrer Verseilung zu dem Seil 1b sind die Kernlitze 6b und die Litzen 40,50,70 in ein Matrixmaterial 80 aus thermoplastischem Kunststoff eingebettet worden. Das Matrixmaterial 80 kann aus demselben Kunststoff, in den auch die Faserbündel der Faserlitzen 60,41,51,71 eingebettet worden sind (z.B. PEEK) oder durch einen anderen Kunststoff, z.B. Polycarbonat, der an dem thermoplastischen Kunststoff haftet, sich ggf. chemisch mit ihm verbindet, gebildet sein.All of the fiber strands 60, 41, 51, 71 required to form the rope 1b have been produced using the method described above and heated during their stranding to form a one-piece fiber core. When producing the fiber strands 41,51,71, such an amount of thermoplastic, for example PEEK, was provided that when heated after they have been stranded, they become respective fiber core has formed a sheath made of the thermoplastic, in which the outer steel wires 42,52,72 have been embedded. When they were stranded to form the rope 1b, the core strand 6b and the strands 40, 50, 70 were embedded in a matrix material 80 made of thermoplastic. The matrix material 80 can be made of the same plastic in which the fiber bundles of the fiber strands 60, 41, 51, 71 have been embedded (eg PEEK) or another plastic, eg polycarbonate, which adheres to the thermoplastic, if necessary chemically connected to him, being educated.

Auch bei dem Seil 1b nach Fig. 6 können die Faserlitzen 60b, die Litzen 40 und die Außenlitzen 70 derart geschlagen sein, dass das Seil 1b drehungsarm ist und dabei z.B. eine Dreheigenschaft von einer Drehung des Seils kleiner 36 °/ 1000 d Seillänge beim Heben einer Last, die 20 % von Fmin entspricht, aufweist.Also with rope 1b Fig. 6 The fiber strands 60b, the strands 40 and the outer strands 70 can be laid in such a way that the rope 1b has little rotation and, for example, a rotation property of a rotation of the rope of less than 36 ° / 1000 d rope length when lifting a load that is 20% of F min corresponds, has.

Ein in Fig. 7 dargestelltes Seil 1c weist ein Kernseil 6c mit 1+6+(6+6)+12-Aufbau auf. Eine äußere Lage des Kernseils 6c ist durch Stahldrähte 62c gebildet. Der innere 1+6+6(6+6)-Aufbau des Kernseils 6c ist durch einen Faserkern gebildet, dessen nach dem oben beschriebenen Verfahren hergestellte Faserlitzen 60c parallel verseilt und wie oben beschrieben beim Verseilen unter Erhitzung miteinander verbunden worden sind.An in Fig. 7 The rope 1c shown has a core rope 6c with a 1+6+(6+6)+12 structure. An outer layer of the core rope 6c is formed by steel wires 62c. The inner 1 + 6 + 6 (6 + 6) structure of the core rope 6c is formed by a fiber core, the fiber strands 60c of which, produced according to the method described above, have been stranded in parallel and connected to one another during stranding under heating as described above.

Um das Kernseil 6c herum gewundene Litzen 40c weisen einen aus einer einzigen Faserlitze 41c gebildeten Faserkern und darauf verlitzte Stahldrahtdrähten 42c auf (1+6-Aufbau). Eine Außenlage des Seils 1c ist durch Stahldrahtlitzen 70c gebildet.Strands 40c wound around the core rope 6c have a fiber core formed from a single fiber strand 41c and steel wire wires 42c stranded thereon (1+6 structure). An outer layer of the rope 1c is formed by steel wire strands 70c.

Beim Verseilen des Seils 1c sind die Kernlitze 6c, die Litzen 40c und die Außenlitzen 70c in ein Matrixmaterial 80c aus thermoplastischem Kunststoff, eingebettet worden. Das Matrixmaterial 80c besteht vorzugsweise aus demselben thermoplastischen Kunststoff (z.B. Polyamid), der zur Herstellung der Faserlitzen 60c, 41c verwendet worden ist. Das Seil c ist insgesamt, z.B. durch Hämmern, verdichtet worden.When stranding the rope 1c, the core strand 6c, the strands 40c and the outer strands 70c have been embedded in a matrix material 80c made of thermoplastic. The matrix material 80c preferably consists of the same thermoplastic (e.g. polyamide) that was used to produce the fiber strands 60c, 41c. The rope c has been compacted overall, for example by hammering.

Bei dem Seil 1c können die Stahldrähte 62c, Faserlitzen 60c, die Litzen 40c und die Stahldrahtliitzen 70c derart geschlagen sein, dass das Seil 1b drehungsarm ist und dabei z.B. eine Dreheigenschaft von einer Drehung des Seils kleiner 18 °/ 1000 d Seillänge beim Heben einer Last, die 20 % von Fmin entspricht, aufweist.In the case of the rope 1c, the steel wires 62c, fiber strands 60c, the strands 40c and the steel wire strands 70c can be laid in such a way that the rope 1b has little rotation and, for example, a rotation property of a rotation of the rope of less than 18 ° / 1000 d of rope length when lifting a load , which corresponds to 20% of F min .

Es versteht sich, dass die Draht aufweisenden Litzen der Seile 1a, 1b, 1c, 1d, 1e nach den Fig. 5 bis 9 ebenfalls, wie oben für das Drahtseil 1 erläutert, vorgeformt sein können.It is understood that the wire-containing strands of the ropes 1a, 1b, 1c, 1d, 1e according to the Fig. 5 to 9 can also be preformed, as explained above for the wire rope 1.

Claims (14)

  1. Method for the production of a rope (1), in which fibre bundles (2) are coated with a liquefied matrix material (5) before and/or at a stranding point (4) to form fibre strands (3) and are embedded in the liquefied matrix material (5) during stranding, by means of which fibre strands (3) a fibre core (6) of the rope (1) is formed, wherein the matrix material (5) of the fibre strands (3) is solidified after the stranding and before rope-stranding of the fibre strands (3), and the fibre strands (3) after solidification of the matrix material (5) to form the fibre core (6) are rope-stranded with one another directly without further coating and wires or wire strands (7) are wound around the fibre core (6).
  2. Method according to Claim 1,
    characterized
    in that the fibre strands (3), during or after the rope-stranding thereof to form the fibre core (6), are heated such that the matrix material (5) of at least individual fibre strands (3), preferably all of the fibre strands (3), softens and bonds with the matrix material (5) of respective other fibre strands (3), and is then solidified to form an integral bond between them.
  3. Method according to Claim 1 or 2,
    characterized
    in that a sheath (8) that is preferably formed from the matrix material (5) is provided on the fibre core (6).
  4. Method according to Claim 3,
    characterized
    in that the wires or the wire strands (7) are embedded in the matrix material (5) of the sheath (8).
  5. Method according to any of Claims 1 to 4,
    characterized
    in that the fibre strands (3) are parallel-rope-stranded or layer-rope-stranded in order to form the fibre core (6) .
  6. Method according to Claim 5,
    characterized
    in that, in layer rope-stranding, the fibre strands (3) are rope-stranded in different lay directions in order to influence a torque arising on loading of the rope (1), preferably such that the fibre core (6) or the entire rope (1) is low-rotation or rotation-free.
  7. Method according to any of Claims 1 to 6,
    characterized
    in that the fibre strands (3) are rope-stranded in regular lay, in which the fibres in the fibre strands (3) and the fibre strands (3) in the rope (1) are wound in opposite directions, or in lang lay, in which the fibres in the fibre strands (3) and the fibre strands (3) in the rope (1) are wound in the same direction.
  8. Method according to any of Claims 1 to 7,
    characterized
    in that, before rope-stranding on the fibre core (6), the wires or the wire strands (7) are preformed, preferably into a helical or approximately helical form which they assume in the finished rope (1).
  9. Method according to any of Claims 1 to 8,
    characterized
    in that only a single layer of the preferably preformed wire strands (7) is wound around the fibre core (6), or at least two layers of the wire strands (7) are wound around the fibre core (6).
  10. Rope (1), comprising a fibre core (6) having fibre strands (3), wherein the fibre strands (4) are formed from fibre bundles (2) embedded in a matrix material (5) and stranded with one another in the matrix material (5), and are rope-stranded with one another in the fibre core (6) and wires or wire strands (7) are rope-stranded on the fibre core (6),
    characterized
    in that the fibre core is formed of the fibre strands the matrix material of which is solidified after the stranding and before the rope-stranding to form the fibre core (4), and the solidified fibre strands (4) in the fibre core (6) are rope-stranded with one another directly without further coating.
  11. Rope according to Claim 10,
    characterized
    in that the matrix material (5) of various of the fibre strands (4) in the fibre core (6) are bonded with one another, preferably melted with one another, to form an integral bond between the respective fibre strands (7).
  12. Rope according to Claim 10 or 11,
    characterized
    in that a sheath (8), preferably formed of the matrix material (5), is provided on the fibre core (6), wherein preferably the wires or wire strands (7) are preferably embedded in the sheath (8).
  13. Rope according to any of Claims 10 to 12,
    characterized
    in that, in layer rope-stranding, the fibre strands (3) are rope-stranded in different lay directions in order to influence a torque arising on loading of the rope (1), preferably such that the fibre core (6) or the entire rope (1) is low-rotation or rotation-free.
  14. Rope according to any of Claims 10 to 13,
    characterized
    in that the fibre strands (3) are rope-stranded in regular lay, in which the fibres in the fibre strands (3) and the fibre strands (3) in the rope (1) are wound in opposite directions, or in lang lay, in which the fibres in the fibre strands (3) and the fibre strands (3) in the rope (1) are wound in the same direction.
EP16711968.4A 2015-03-04 2016-03-03 Rope and method for producing a rope Active EP3265607B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015103115.9A DE102015103115A1 (en) 2015-03-04 2015-03-04 Rope and method of making the rope
PCT/DE2016/100098 WO2016138893A1 (en) 2015-03-04 2016-03-03 Rope and method for producing a rope

Publications (2)

Publication Number Publication Date
EP3265607A1 EP3265607A1 (en) 2018-01-10
EP3265607B1 true EP3265607B1 (en) 2024-02-21

Family

ID=55637112

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16711968.4A Active EP3265607B1 (en) 2015-03-04 2016-03-03 Rope and method for producing a rope

Country Status (6)

Country Link
US (1) US10760212B2 (en)
EP (1) EP3265607B1 (en)
KR (1) KR102333904B1 (en)
CN (1) CN107429481B (en)
DE (2) DE102015103115A1 (en)
WO (1) WO2016138893A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014211929A1 (en) * 2014-06-23 2016-01-07 ContiTech Transportsysteme GmbH Method for producing a tension member in rope construction, in particular for conveyor belts
DE102017130743A1 (en) * 2017-12-20 2019-06-27 Gustav Wolf GmbH Elevator rope and method of making an elevator rope
CN109281211A (en) * 2018-08-01 2019-01-29 江苏杰力钢缆索具有限公司 A kind of high stability wirerope and preparation method thereof
EP3626880A1 (en) * 2018-09-19 2020-03-25 Bridon International Limited Steel wire rope
CN109183478A (en) * 2018-10-31 2019-01-11 贵州钢绳厂附属企业公司 The method that immersion oil fiber line produces oil-containing cordage by uniform deconcentrator
CN114108339B (en) * 2021-11-10 2023-11-10 江苏赛福天集团股份有限公司 Steel wire rope suitable for tensile force and oil seepage and production method thereof
CN114134634B (en) * 2021-12-09 2023-01-10 山东山田新材科研有限公司 Diamond ring line weaving equipment

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2067405A (en) * 1934-07-05 1937-01-12 Goodrich Co B F Rubber impregnated metal cable and method of making same
GB586353A (en) * 1940-06-19 1900-01-01
US2369876A (en) * 1942-09-03 1945-02-20 Jr Richard F Warren Inorganic fiber rope
FR1445157A (en) 1964-08-20 1966-07-08 British Ropes Ltd Process for applying a preservative to ropes, strands, cable cores and the like and cables or the like conforming to those thus obtained
US3800522A (en) * 1971-03-30 1974-04-02 Bethlehem Steel Corp Sealed wire rope and strand and method of making
US3778994A (en) * 1971-03-30 1973-12-18 Bethlehem Steel Corp Corrosion resistant wire rope and strand
US3824777A (en) * 1973-10-05 1974-07-23 Amsted Ind Inc Lubricated plastic impregnated wire rope
US3874158A (en) * 1973-10-29 1975-04-01 Amsted Ind Inc Wire rope with plastic impregnated lubricated core
US4197695A (en) * 1977-11-08 1980-04-15 Bethlehem Steel Corporation Method of making sealed wire rope
US4887422A (en) * 1988-09-06 1989-12-19 Amsted Industries Incorporated Rope with fiber core and method of forming same
JPH0686718B2 (en) * 1988-10-31 1994-11-02 東京製綱株式会社 Method for manufacturing composite twisted filament
EP1022377A1 (en) * 1999-01-22 2000-07-26 Inventio Ag Apparatus for laying a layer of strands on a rope core
DE19956736C1 (en) 1999-11-25 2001-07-26 Kocks Drahtseilerei Method and stranding device for producing a rope or rope element and rope or rope element
KR100318184B1 (en) 1999-11-26 2001-12-24 홍영철 Method for making a wire rope having a plastic coated independant wire rope core and its apparatus for making the same
TWI230230B (en) 2002-12-18 2005-04-01 Hitachi Ltd Coated wire rope
DE10310855A1 (en) * 2003-03-11 2004-09-23 Casar Drahtseilwerk Saar Gmbh Twisted wire cable, with a core and outer wire layers, has a thermoplastic intermediate layer around the core to prevent wire damage when the outer surfaces are hammered
FR2854814A1 (en) * 2003-05-15 2004-11-19 Cousin Composites Synthetic string for tennis racket has core and outer layer of twisted small-diameter monofilaments held together by elastomer
CN1930074B (en) * 2005-01-14 2010-05-05 三菱电机株式会社 Elevator using cable and method for manufacturing same
FI125355B (en) * 2007-04-19 2015-09-15 Kone Corp Lifting rope and method of manufacturing a rope for a lifting device
CN102459052B (en) 2009-06-08 2014-10-29 三菱电机株式会社 Rope for elevators and process for producing same
KR101157330B1 (en) 2009-12-30 2012-06-18 주식회사 효성 Preparing method of Inner Strength Member of Fiber Reinforced Plastics for Overhead Transmission Line
MY166586A (en) * 2010-05-17 2018-07-17 Tokyo Rope Mfg Co Hybrid Rope and Method for Manufacturing the Same
FR2962455B1 (en) * 2010-05-20 2012-09-21 Soc Tech Michelin MULTILAYER METALLIC CABLE GUM IN SITU BY UNSATURATED THERMOPLASTIC ELASTOMER
US20120203122A1 (en) 2011-02-09 2012-08-09 Opher Kinrot Devices and methods for monitoring cerebral hemodynamic conditions
DE102011011112A1 (en) * 2011-02-12 2012-08-16 Casar Drahtseilwerk Saar Gmbh Method for producing a strand or a rope

Also Published As

Publication number Publication date
US20180058003A1 (en) 2018-03-01
KR102333904B1 (en) 2021-12-01
DE112016000184A5 (en) 2017-08-31
CN107429481A (en) 2017-12-01
EP3265607A1 (en) 2018-01-10
KR20170122190A (en) 2017-11-03
US10760212B2 (en) 2020-09-01
DE102015103115A1 (en) 2016-09-08
CN107429481B (en) 2021-01-22
WO2016138893A1 (en) 2016-09-09

Similar Documents

Publication Publication Date Title
EP3265607B1 (en) Rope and method for producing a rope
EP2673415B1 (en) Method for producing a strand or cable comprising a thermoplastic coating, strand or cable obtained with said method and laying device comprising a coating means
DE3318233C2 (en) Optical cable element or cable and method for its manufacture
EP0393013B1 (en) Tensioning-bundle comprising tensioning members
DE3930496C2 (en)
AT511080B1 (en) SAWING PIECE FOR USE IN A ROPE CUTTING MACHINE
DE2607449A1 (en) ROPE AND METHOD FOR MANUFACTURING IT
DE2920513A1 (en) STRING AND METHOD OF MANUFACTURING IT
DE2512006B2 (en) Transmission cables with optical fibers
WO2001038629A1 (en) Method and stranding device for producing a cable or a cable element
DE1510151A1 (en) Process for the production of a stranded steel wire structure
DE3537553C2 (en) Optical cable with multiple main bundles
DE3225297A1 (en) REMOTE CONTROL CABLE
WO2016150632A1 (en) Method and device for producing a pipe assembly of cable pipes
DE2701650C2 (en) Core for an optical cable or an optical cable element
DE4412374A1 (en) Fiber optic cable with tensile and compression resistant loose tubes
DE3234730A1 (en) Communications cable
EP4097291A1 (en) Cable, strand, and method and device for producing a cable and a strand
DE3712991C2 (en)
DE4440507A1 (en) Electrical cable, useful esp. for high rate data transmission
DE202020104449U1 (en) Press pad, use and laminating press
EP0626701B1 (en) Electrical conductor strand for high voltage overhead lines
EP1132760A2 (en) Lightguide-cable and its manufacturing method
DE112022002578T5 (en) WIRE CONDUCTOR, INSULATED CABLE AND WIRING HARNESS
DE3346169A1 (en) Application of the method for laying one or more layers of wires on elongated material

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170929

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WIRECO GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230913

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016016383

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN