EP3242017B2 - Druckübersetzer als einschraubgerät - Google Patents
Druckübersetzer als einschraubgerät Download PDFInfo
- Publication number
- EP3242017B2 EP3242017B2 EP16168387.5A EP16168387A EP3242017B2 EP 3242017 B2 EP3242017 B2 EP 3242017B2 EP 16168387 A EP16168387 A EP 16168387A EP 3242017 B2 EP3242017 B2 EP 3242017B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- hydraulic
- fluid
- pressure intensifier
- coupling portion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 103
- 230000008878 coupling Effects 0.000 claims description 91
- 238000010168 coupling process Methods 0.000 claims description 91
- 238000005859 coupling reaction Methods 0.000 claims description 91
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 2
- 238000007599 discharging Methods 0.000 claims 2
- 239000007787 solid Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005553 drilling Methods 0.000 description 3
- 239000011343 solid material Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 210000001061 forehead Anatomy 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F15—FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
- F15B—SYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
- F15B3/00—Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B7/00—Piston machines or pumps characterised by having positively-driven valving
- F04B7/04—Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B9/00—Piston machines or pumps characterised by the driving or driven means to or from their working members
- F04B9/08—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04F—PUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
- F04F13/00—Pressure exchangers
Definitions
- the invention relates to a preferably hydraulic pressure amplifier according to the preamble of claim 1.
- a pressure intensifier is referred to here as a device that automatically produces a working fluid that is output at a higher pressure from a drive fluid available under low pressure, without an additional external drive. The details of such a device will be explained in more detail later.
- Such pressure amplifiers are used in many areas. The following areas of application are not exhaustive. For example, such pressure boosters are used to use low-pressure vehicle hydraulics to generate a high-pressure water jet for a cleaning device or to operate rescue scissors at high pressure to rescue passengers from accident vehicles.
- Such pressure amplifiers are also used in a variety of ways in industrial applications, for example to supply clamping tools or rotating chucks with the high pressure required for clamping.
- the clamping tools can be clamping tools used in industrial production or clamping tools used in assembly, and the rotating chucks can be part of a machine tool or, for example, a drill pipe for carrying out earth drilling.
- the pressure amplifiers can be used individually or cascaded in series if a particularly high pressure is to be generated that cannot be achieved using a single pressure amplifier.
- the pressure amplifiers known in the prior art are typically connected via high-pressure hoses or hydraulic pipes to the hydraulic block, which supplies them with low-pressure hydraulic fluid and receives used hydraulic fluid.
- the connection to the high-pressure consumer, which is supplied with the increased pressure hydraulic fluid generated by the pressure booster, is also usually made via hydraulic hoses or pipes.
- a pressure amplifier is known from the literature DE 196 33 258 C1 .
- Another known pressure booster has a coupling section for connection to a hydraulic block. It is held by an outer flange facing away from the coupling section with through holes through which it can be screwed to the hydraulic block using several through-bolts.
- the invention is therefore based on the object of creating a pressure amplifier that can be connected to a hydraulic block without pipes or hoses and at the same time particularly reliably. This task is solved with the features of claim 1.
- a pressure amplifier for fluids in particular for liquids, which is generally ready for operation and only requires connection to a pressure supply, a tank connection and a consumer for the higher pressure it generates.
- the pressure amplifier therefore forms a ready-to-use unit that can be inserted completely or partially into a hydraulic block.
- the pressure booster consists of a cylinder block in which a pressure booster piston and a control piston move cyclically.
- the control piston can assume different positions and thereby determines the working cycles of the pressure booster piston, whereby the control piston is not actuated by a mechanical forced control in the manner of a camshaft, but purely by a pressure difference.
- the pressure amplifier is designed in such a way that whenever it has reached a certain position, it initiates a change in the pressure conditions on the control piston so that it changes position.
- the pressure booster piston is preferably designed as a differential piston with two differently sized, hydraulically effective piston surfaces; in any case, it forms a high-pressure working space and a low-pressure working space in the cylinder block.
- the pressure booster piston is usually solid, ie it preferably has no through holes that, for example, connect the high-pressure work space and the low-pressure work space with each other. Instead, the pressure booster piston usually has a constriction in the area of its circumference, which forms an intermediate space that lies between the high-pressure working space and the low-pressure working space.
- the cylinder block has an external connection for feeding pressurized fluid from the outside, which is also called a low-pressure connection - because the pressure of the fluid here is lower than the pressure of the fluid delivered to the consumer by the pressure booster.
- the fluid under said low pressure is intended to do work in the pressure amplifier and may also serve as a basis for generating and dispensing high-pressure fluid, i.e. a fluid that is under a higher pressure than the low-pressure fluid.
- high-pressure fluid i.e. a fluid that is under a higher pressure than the low-pressure fluid.
- the high-pressure fluid is delivered to the outside to an external consumer via an external high-pressure connection as working fluid under higher pressure.
- the pressure amplifier has a connection for dispensing fluid whose working capacity has been exhausted in the pressure amplifier.
- This connection is also referred to below as the tank connection, even if it does not necessarily have to lead to a tank in the narrower sense. It should also be mentioned that the space in question usually forms part of a channel that leads to the tank connection.
- the cylinder block of the pressure booster is here preferably understood to be a solid metallic body that contains all the cylinder bores and channels that are required for the pressure booster piston and the control piston to work together.
- the solid metallic body has cross-sections everywhere, at least in the area of the control piston and the pressure booster piston, in which the area that the solid material occupies in the cross-section is larger than the area that the cylinder bores and the channels occupy in the cross-section .
- the cylinder block of the pressure booster has a coupling section rigidly connected to it.
- the coupling section is designed to be inserted into a receiving bore of a hydraulic block. It is designed in such a way that the receiving bore encloses the coupling section on its circumference and usually also on the front side.
- the coupling section has at least two fluid transfer areas that are fluidly separated from one another by a seal and are used to exchange fluid between the pressure booster and the hydraulic block in which it is inserted.
- the fluid transfer areas are positioned on the coupling section so that they lie inside the hydraulic block into which the coupling section has been inserted, below the outer surface of the hydraulic block against which the part of the pressure intensifier not inserted into the hydraulic block abuts.
- the fluid transfer areas are at least 20 mm, better at least 30 mm, below the surface of the hydraulic block.
- the pressure amplifier is preferably designed in such a way that a channel opens into a fluid transfer area from the interior of the cylinder block of the pressure amplifier, via which the pressure amplifier releases fluid during operation, the working capacity of which can be used within the pressure amplifier has been exhausted. Another channel opens into a further fluid transfer area, also coming from the interior of the cylinder block. Low-pressure fluid is fed into the pressure amplifier via this channel, i.e. fluid that drives the pressure amplifier and possibly also forms the basis for generating fluid that is under higher pressure and is to be delivered to a consumer.
- the coupling section has a third fluid transfer area for transferring the working fluid under higher pressure to the hydraulic block.
- no pipes or hydraulic hoses are required to connect the pressure intensifier to its surroundings and thus make it ready for use. Instead, there is a direct hydraulic connection between the cylinder block of the pressure intensifier and the hydraulic block.
- At least one of the fluid transfer areas comprises an annular groove running around the circumferential surface of the coupling section.
- the coupling section has an external thread for screwing the coupling section into the hydraulic block. In this way, the coupling section is mechanically securely anchored in the hydraulic block.
- the plurality of fluid transfer areas are preferably arranged between the free end of the coupling section that is to be inserted into the hydraulic block and the external thread of the coupling section.
- the outer diameter of the coupling section usually tapers at the transition between the external thread and the rest of the coupling section.
- the cylinder block of the pressure booster has a molded hexagon for attaching a screwing tool.
- the coupling section is traversed by at least two bores running parallel to the longitudinal axis of the pressure booster, which extend from the free end face of the coupling section into the area of the cylinder block of the pressure booster, which is always positioned outside the hydraulic block receiving the coupling section.
- the required fluidic connection can be easily established between the corresponding channels inside the cylinder block of the pressure amplifier and the fluid transfer areas.
- the holes can be made in one operation from the front side of the coupling section until they intersect with the channels to be connected through them inside the pressure amplifier.
- such bores make it very easy to form one of the fluid transfer areas on the free end face of the coupling section and the other of the fluid transfer areas in the area of the peripheral surface of the coupling section.
- a hydraulic unit with a hydraulic block in which several bores through which hydraulic fluid flows are formed for connecting different hydraulic active elements (controllable or non-controllable valves and / or pumps and / or pressure compensation tank and / or several pressure amplifiers), and at least one Pressure amplifier of the type according to the invention, wherein the pressure amplifier has a coupling section which is inserted into a bore in the hydraulic block and fixed there.
- the hydraulic unit can be designed to be particularly compact because the pressure boosters do not require any piping or hydraulic hoses to connect to the hydraulic block and can therefore be installed very close together on the hydraulic block.
- the Fig. 1 shows the pressure amplifier 1, which is completely formed in a metal, preferably steel, cylinder block 13, which is cut here and is therefore initially only shown schematically as a box-like outline by four solid lines forming a rectangle.
- the cylinder block preferably has the outer contour of a cylinder which is rotationally symmetrical about the longitudinal axis L.
- the cylinder block 13 consists of at least two and ideally three separate, ie separable, cylinder block elements that are not connected to one another in terms of material.
- the cylinder block 13 consists of the three cylinder block elements 13.1, 13.2 and 13.3, as indicated by the dashed dividing lines.
- the several cylinder block elements are fixed to one another in a defined position relative to one another in a form-fitting manner, for example using dowel pins not shown here.
- a pressure booster piston 2 works in this cylinder block.
- This pressure booster piston 2 is typically designed as a differential piston with two differently sized hydraulic active surfaces that act in opposite directions and then consists of a low-pressure piston N with a large diameter and a high-pressure piston H with a small diameter, which are fixed to each other are connected by a piston skirt S.
- the low-pressure piston N forms a low-pressure working space 10 in the cylinder block
- the high-pressure piston H forms a high-pressure working space 11 in the cylinder block.
- a gap 12 is formed between the two pistons in the area of their connection by the piston skirt S, the function of which will be explained later.
- the pressure booster piston preferably has a longitudinal axis which is parallel to the longitudinal axis L of the cylinder block 13.
- the gear ratio i.e. H. the factor by which the fed-in low pressure can be increased depends on the diameter ratio DN/DH of the low-pressure piston N and the high-pressure piston H.
- a control piston 3 works in the cylinder block 13.
- its longitudinal axis is also parallel to the longitudinal axis L of the cylinder block 13.
- the control piston and the differential piston are arranged completely or at least predominantly next to one another, seen perpendicular to the longitudinal axis.
- Fig. 1 shows the pressure booster piston 2, the control piston 3 and all the connecting lines required for operation projected into one plane for better clarity.
- the components mentioned do not all lie in one plane, because such an arrangement would make extremely poor use of the cross section of the cylinder block:
- the pistons and the connecting lines would crowd each other, while in a cutting plane perpendicular to the longitudinal axis, no piston and almost no connecting lines would be found.
- the pressure amplifier communicates to the outside via its external low-pressure connection 5 with an external low-pressure source. From this, the pressure booster draws hydraulic fluid under lower pressure, which drives it. Preferably, part of this hydraulic fluid fed into the pressure booster at lower pressure is put under higher pressure in the pressure booster and output from the pressure booster to an external consumer as hydraulic fluid under higher pressure.
- the pressure booster has an external tank connection 6, via which it releases at least part of the hydraulic fluid drawn at lower pressure to the outside when this hydraulic fluid has completed its work within the pressure booster. Delivery is preferably made to an external tank or an external hydraulic fluid reservoir, but this is not mandatory.
- the pressure intensifier has another connection, the so-called external high-pressure connection 7.
- the pressure intensifier releases hydraulic fluid that has been placed under higher pressure (compared to the lower pressure in the supply) to a hydraulic machine, such as a rescue scissor, a clamping device or a hydraulic collet chuck.
- a hydraulic machine such as a rescue scissor, a clamping device or a hydraulic collet chuck.
- external connection it means that a connection is external because the pressure amplifier can be directly connected to the environment via this connection.
- a low-pressure line 8 connects to the external connection 5 to the low-pressure source within the cylinder block 13.
- the low pressure line 8 soon branches off. It branches into a low-pressure line section 8.1, which primarily serves to supply the high-pressure working space with fresh low-pressure fluid, and also serves to supply the control piston 3 with low pressure via the low-pressure line section 8.4.
- the preferred low-pressure line section 8.2 leads past the high-pressure working space directly into the line that leads to the high-pressure consumer.
- the low-pressure line section 8.2 if present, serves to initially fill a newly connected, still empty high-pressure consumer with low-pressure fluid and to displace the air from the possibly initially empty lines of the high-pressure consumer, so that high-pressure generation can then begin .
- a tank or return flow line 9 is connected to the connection 6 to the external tank.
- the tank or return flow line 9 soon branches off within the cylinder block 13 into a return flow line section 9.1, which comes from the control piston, and a line section 9.2, which, as will be discussed later, at a given time and with the appropriate, i. d. R. externally implemented hydraulic circuit of the pressure amplifier serves as a control line for the controllable check valve 4.3.
- this control piston 3 is also designed as a differential piston.
- Fig. 1 The basic functionality of the pressure intensifier can be explained quite clearly:
- a work cycle is currently taking place, ie the pressure booster piston 2 moves in the direction of the black arrow into the high-pressure working space 11.
- the high-pressure working space 11 is initially filled with low-pressure fluid, ie preferably with fluid that is under the low pressure of the feed pump.
- the pressure booster piston By moving the pressure booster piston into the high-pressure working space 11, the fluid located there is put under increased pressure and delivered to the high-pressure consumer via the check valve 4.2 and the external high-pressure connection 7.
- the low-pressure working space 10 which continuously enlarges over the course of the work cycle, is constantly supplied with low-pressure fluid, i.e. H. refilled with fluid obtained under the low pressure via the external low-pressure connection 5. This refilling takes place via the connecting line 14.
- This is connected to the low-pressure line section 8.4, which carries fluid under low pressure, using the control piston 3 - namely via its slimmed area V1, which is between the connections C and P.
- the control piston 3 remains in the position of Fig. 1 position shown. It is indeed constantly subjected to low pressure on one (here the lower) end face via the low-pressure line section 8.3. At the same time, however, it has also been subjected to low pressure on its opposite (here the upper) end face via the control line 8.5 since the start of the work cycle. The reason for this is that the high-pressure working space was filled with low-pressure fluid at the beginning of the work cycle using the low-pressure line section 8.1. The low pressure in the control line 8.5 is maintained even when the high-pressure piston has passed over the mouth of the control line 8.5 in the high-pressure working space and thereby sealed it. Due to the fact that the low pressure on the upper end face of the control piston 3 acts on a larger area than on the lower end face of the control piston 3, a resulting downward force permanently acts on the control piston.
- the intermediate space 12 is also connected to the external tank connection 6, i.e. it is kept depressurized. This is necessary in order to be able to drain away any leakage that may possibly flow from the high-pressure working space and/or from the low-pressure working space into the intermediate space 12, so that no disruptive back pressure can build up in this intermediate space because hydraulic fluid may be trapped.
- FIG. 2 shows the top dead center, i.e. the moment at which the pressure booster piston 2 stopped in its movement and the direction of movement changes Fig. 3 the charging cycle, during which the pressure booster piston 2 penetrates deeper into the low-pressure working space.
- control piston works without a spring.
- the otherwise necessary application of the closing force of a spring is replaced by the constant application of low pressure to one end face. This contributes to the achievement of the goal of making the pressure amplifier smaller, since the installation space required to accommodate a spring that can be installed in a replaceable manner at a later date is eliminated.
- This line serves to relax the high-pressure consumer at the appropriate time.
- connection 5 which was previously connected to the external low pressure, is now depressurized or connected to the tank via a valve that is preferably external, outside the cylinder block 13, and the connection 6, which was previously connected to the external tank, is now connected to the low-pressure source.
- controllable check valve 4.3 works.
- the pressure amplifier according to the invention is operated with a switching valve 25, which is preferably mounted externally.
- the changeover valve 25 is switched so that it is already based on the Figures 1 to 3
- the operation discussed takes place in which high-pressure fluid is generated, cf. Fig. 4 .
- pilot hole that can be recognized and forms a throttle. While the pilot control bore is symbolized schematically as a bypass throttle 24* in the figures, in reality it is preferred that the pilot bore penetrates the upper part of the control piston 3 which is hatched to the right and can be seen in the figures. It connects the area of the upper free end face of the control piston 3 with the slimming V1. In this way, the control line 8.5 is permanently connected to the slimming V1.
- the purpose of this pilot control hole is to ensure a defined position of the pressure booster piston 2 even if the pressure booster has stood still for a long time.
- the pilot control hole As long as the pilot control hole is missing, it can happen that after the pressure booster piston has been stationary for a long time, the control line 8.5 has lost the pressure initially contained in it due to microleakage and the control piston 3 then assumes an undefined position, which makes it difficult to start up again.
- the purpose of the pilot control hole is to always ensure that the control line 8.5 is still correctly pressurized even after a long time and therefore forces the control piston 3 into a defined position, which enables the pressure intensifier to start up again without any problems.
- the flow flowing through the pilot bore is chosen so that it is so low that it plays no role during ongoing operation. Only during longer downtimes does the flow through the pilot bore add up and thus produce the desired effect, as described above.
- Fig. 6 and 7 show a concrete, physical embodiment of a pressure amplifier according to the invention.
- the Figure 7 shows the coupling section of the pressure amplifier according to. Fig. 6 in an enlarged view.
- the Fig. 6 shows the pressure amplifier 1 according to the invention in its mounted position on an external hydraulic block 100.
- the hydraulic block is not part of the pressure amplifier, but represents, for example, the hydraulic control block of a clamping device.
- the hydraulic control block is actually a solid metal control block (no pipe sleeve or similar) in which a large number of hydraulic channels are formed and which, for example.
- B. also includes the actuator through which the user controls the system hydraulically.
- the cylinder block 13 or its cylinder block element 13.1 merges integrally into a coupling section 101, i.e. H. Part of the peripheral surface of the cylinder block of the pressure booster forms the coupling section 101.
- the coupling section 101 has a circular cylindrical shape. It preferably has a diameter that is reduced compared to the rest of the cylinder block 13, which is also usually circular cylindrical, ideally by at least 30%.
- the diameter of the coupling section 101 preferably corresponds to the core diameter of a metric thread and is reduced compared to this by a tolerance amount which allows the part of the coupling section 101 that does not have an external thread to be pushed through the section of the hydraulic block 100 that has an internal thread.
- the length of the coupling section 101 in the direction of the longitudinal axis L of the pressure booster 1 is preferably at least 25%, better at least 30%, of the total length of the cylinder block 13 of the pressure booster 1. This ensures that the coupling section 101 can penetrate deep enough into the hydraulic block 100 an area that lies in the solid material of the hydraulic block, below the mostly flat surface of the hydraulic block 100 surrounding the bore for inserting the coupling section 101.
- the coupling section 101 when installed in the hydraulic block 100, is surrounded on its circumference by solid material of the hydraulic block (possibly traversed by local channels), which, viewed in the radial direction, has a thickness of at least around is larger by a factor of 1.5 than the largest radius of the circular cylindrical cylinder block 13.
- the "low pressure" or lower pressure feeding the pressure amplifier does not necessarily have to be a low pressure in absolute terms. Because where a very large pressure difference has to be overcome, the pressure amplifiers according to the invention can be used in cascade, i.e. H. a subsequent pressure amplifier is then fed by the high pressure of the previous pressure amplifier.
- the coupling section 101 not only ensures a fluid connection between the pressure booster 1 and the hydraulic block 100, which the pressure booster supplies. Rather, it also holds the pressure amplifier 1 mechanically in its installed position by predominantly or completely absorbing the weight and all forces occurring during operation as a result of the mass of the pressure amplifier 1 and passing it on to the hydraulic block 100, e.g. B. the acceleration forces that occur on the pressure booster when the hydraulic block rotates or moves.
- the coupling section 101 is designed so that it has been inserted into a hole in the hydraulic block 100 that receives it and has been fixed there.
- the coupling section 101 is provided with an external thread 102, which is screwed into a corresponding mating thread of the hole in the hydraulic block 100 that accommodates the coupling section 101.
- the coupling section 101 is designed in such a way that the receiving bore of the hydraulic block 100 can completely enclose it on its circumference and on its free end.
- two fluid transfer areas 104 and 105 are formed on the coupling section 101. They lie one behind the other when viewed in the direction of the longitudinal axis L of the pressure amplifier and, when viewed in the screwing-in direction of the coupling section, they may lie in front of the area of the coupling section provided with an external thread 102.
- the first fluid transfer region 104 is preferably formed on the peripheral surface of the coupling section 101.
- the second fluid transfer area can either also be formed on the peripheral surface of the coupling section 101 or preferably on its free end face.
- the pressure amplifier communicates directly to the outside with the hydraulic block 100 via these fluid transfer areas 104, 105 (and only via these). These two fluid transfer areas are hydraulically separated from one another by a seal 106.
- the seal is preferably designed as a seal inserted with or without a support ring in a circumferential ring groove on the coupling section.
- a further seal 107 is provided, which seals the fluid transfer area 104 located closer to the outside from the outside.
- the coupling section 101 preferably has two bores 108 and 109, which usually run parallel to the longitudinal axis L. These extend from the free end of the coupling section 101 through the coupling section into the area of the cylinder block 13 (or 13.1), which is also connected to the hydraulic block mounted pressure amplifier lies outside the hydraulic block 100.
- One hole 108 goes into that of the Fig. 1 to 5 shown low pressure line 8 above.
- This bore preferably opens into the free end of the coupling section and provides the external low-pressure connection 5 (cf. Fig. 1 ) of the pressure intensifier.
- the fluid transfer area 105 is located in the fluid transfer area 105, via which the pressure amplifier can be connected to the low-pressure feed line, which here opens into the bottom of the bore of the hydraulic block 100, which receives the coupling section 101.
- the fluid transfer area 105 is designed in such a way that a fluid-conducting connection can be established between the pressure booster and the hydraulic block via it, regardless of the absolute screw-in depth or the angle of rotation that the coupling section has covered when screwed into the hydraulic block.
- the other hole 109 goes into that of the Fig. 1 to 5 tank or return line 9 shown above. It is closed by a plug 110 where it actually opens into the free end of the coupling section 101. It is intersected with a transverse bore 111, which opens into an annular groove 112. The annular groove 112 is located in said further fluid transfer area 105. This represents the external tank connection 6.
- the fluid transfer area 104 is also designed in such a way that a fluid-conducting connection between the pressure amplifier and the hydraulic block is established via it, regardless of the absolute screw-in depth or the angle of rotation that the coupling section 101 has covered when screwed into the hydraulic block 100 can be produced.
- fluid transfer area 105 can alternatively be designed accordingly, like the fluid transfer area 104, i.e. can lie on the peripheral surface of the coupling section. However, such a design is not preferred.
- the external high-pressure connection 7 is preferably located on the side of the pressure amplifier 1 facing away from the coupling section 101.
- a fluid-conducting connection to the high-pressure consumer takes place in a conventional manner.
- FIGS. 8 and 9 show a second concrete embodiment of the pressure amplifier according to the invention.
- the previous statements for the first exemplary embodiment also apply here, unless otherwise described below.
- the clutch section is formed by the majority of the peripheral surface of the cylinder block 13.
- the cylinder block 13 of the pressure booster 1 is preferably designed so that it can be inserted into a bore of the hydraulic block 100 over at least 1 ⁇ 2, better 2/3 of the length that the cylinder block 13 has in the direction of its longitudinal axis L.
- the cylinder block is designed such that the first and second cylinder block elements 13.1 and 13.2 can be completely inserted into the hydraulic block 100.
- the highly loaded area of the pressure booster, in which the differential piston moves back and forth, is now completely in the hydraulic block, which therefore has a stiffness-increasing supporting effect.
- the coupling section 101 is also designed here so that the receiving bore of the hydraulic block 100 completely encloses it on its circumference and on its free end can.
- the diameter of the coupling section preferably corresponds to the core diameter of a metric thread and is reduced compared to this by a tolerance amount that allows the part of the coupling section that does not have an external thread to be pushed through the section of the hydraulic block that has an internal thread.
- three fluid transfer areas 104, 105 and 113 are formed on the coupling section 101. They lie one behind the other when viewed in the direction of the longitudinal axis L of the pressure amplifier and, when viewed in the screwing-in direction of the coupling section, they may lie in front of the area of the coupling section provided with an external thread.
- the pressure amplifier 1 communicates directly to the outside via these fluid transfer areas 104, 105 and 113 (and only via these). H. with the hydraulic block. An additional hose or pipe connection for connecting to the high-pressure consumer is not provided here; the high-pressure consumer is fed by the pressure amplifier 1 via the hydraulic block 100.
- the first fluid transfer area 104 is delimited on both sides by seals 114, which are preferably cord seals inserted with or without a support ring in a circumferential ring groove on the coupling section 101.
- the in Fig. 8 Easily recognizable low-pressure line section 8 opens into a transverse bore, which on its other side opens into the outer surface of the cylinder block or (where present) of the second cylinder block element 13.2, within the first fluid transfer area 104.
- the cylinder block 13 preferably does not have an annular groove in this area, but is smooth and therefore unweakened.
- the corresponding annular groove is here instead preferably mounted in the hydraulic block 100.
- the "tank line” shown is preferably extended through a bore running within the cylinder block 13 into the area of the front shoulder 116 of the coupling section 101, where it opens into the second fluid transfer area 105.
- the second fluid transfer area is preferably limited in the direction of the outside of the hydraulic block by a further seal 118 and is therefore kept small, the seal preferably also lying in a circumferential annular groove of the coupling section and can correspond to the seals 114, 115.
- the front shoulder 116 is formed in that the coupling section tapers here.
- the tapered cylinder extension 117 of the coupling section 101 is designed so that it can be inserted into a second, tapered part of the receiving hole, which is designed here as a stepped hole in the hydraulic block 100.
- the tapered cylindrical extension 117 has at least one, preferably two, circumferential annular grooves into which one or two seals 119 are inserted - usually with support rings. These one or two seals seal the third fluid transfer area 113 from the second fluid transfer area 105.
- the third fluid transfer area is therefore formed at the free end of the coupling section 101.
- the high-pressure line opens into the free end, so that the external high-pressure connection 7 is formed here.
- the said tapering of the cylindrical extension 117 takes place taking into account the high pressure there. This preferably makes it necessary to keep the lengths to be sealed small and also to keep the areas exposed to the high pressure effect and thus the forces that arise there small.
- a pressure amplifier cascade consisting of a hydraulic block 100 and several pressure amplifiers 1 connected hydraulically in series, characterized in that the pressure amplifiers 1 attached next to one another on the hydraulic block 100 are those according to one of the preceding claims.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
- Actuator (AREA)
Description
- Die Erfindung betrifft einen vorzugsweise hydraulischen Druckverstärker nach dem Oberbegriff des Anspruchs 1.
- Als Druckverstärker wird hier ein Gerät bezeichnet, das aus einem unter Niederdruck zur Verfügung stehenden Antriebsfluid selbsttätig, ohne zusätzlichen externen Antrieb, ein unter höherem Druck von ihm ausgegebenes Arbeitsfluid herstellt. Die Einzelheiten eines solchen Geräts werden an späterer Stelle noch näher erläutert.
- Solche Druckverstärker kommen in vielen Bereichen zum Einsatz. Die nachfolgend genannten Anwendungsbereiche sind nicht erschöpfend. Beispielsweise werden solche Druckverstärker eingesetzt, um mithilfe der Niederdruck-Fahrzeughydraulik ein Hochdruckwasserstrahl für ein Reinigungsgerät zu erzeugen oder eine Rettungsschere zum Bergen von Insassen aus Unfallfahrzeugen mit hohem Druck zu betreiben. Auch in der industriellen Anwendung kommen solche Druckverstärker in vielfältiger Form zum Einsatz, etwa um Spannwerkzeuge oder rotierende Spannfutter mit dem zum Spannen benötigten hohen Druck zu versorgen. Die Spannwerkzeuge können bei der industriellen Fertigung eingesetzte Spannwerkzeuge sein oder bei der Montage eingesetzte Spannwerkzeuge, und die rotierenden Spannfutter können Bestandteil einer Werkzeugmaschine oder beispielsweise eines Bohrgestänges zur Durchführung von Erd-Bohrungen sein.
- Die Druckverstärker können einzeln zum Einsatz kommen oder kaskadierend in Serie geschaltet, wenn ein besonders hoher Druck erzeugt werden soll, der mithilfe eines einzelnen Druckverstärkers nicht erreicht werden kann.
- Die im Stand der Technik bekannten Druckverstärker werden typischerweise über Hochdruckschläuche oder Hydraulikrohre an den Hydraulikblock angeschlossen, der sie mit unter Niederdruck stehendem Hydraulikfluid versorgt und verbrauchtes Hydraulikfluid entgegennimmt. Auch die Verbindung zum Hochdruckverbraucher, der mit dem vom Druckverstärker erzeugten, unter erhöhtem Druck stehenden Hydraulikfluid versorgt wird, erfolgt im Regelfall über Hydraulikschläuche oder -rohre.
- Der Anschluss eines Druckverstärkers mithilfe von Hochdruckschläuchen oder -rohren an das ihn versorgende Hydrauliksystem und gegebenenfalls auch an den von ihm versorgten Verbraucher ist problematisch. Dies zum einen deswegen, weil Hydraulikschläuche mit der Zeit altern können und dann zur Leckage neigen. Hydraulikrohre können mit der Zeit ermüden, insbesondere, wenn sie schwingender Belastung ausgesetzt sind. Problematisch ist der Anschluss mit Hydraulikschläuchen oder -rohren auch dort, wo mehrere Druckverstärker zum Einsatz kommen, etwa weil sie kaskadierend in Serie geschaltet sind. Hier ergeben sich meist recht schnell Platzprobleme und die Anlage kann am Ende nicht so kompakt gehalten werden, wie das eigentlich wünschenswert wäre. Besonders problematisch ist der Einsatz von Hydraulikschläuchen in rotierenden Systemen, wo sich der Druckverstärker mit dreht.
- Auch der Gedanke eines Direktanflanschens eines Druckverstärkers an einen Hydraulikblock, so dass die Außenoberflächen des Druckverstärkers und des Hydraulikblocks in einer Ebene dicht gegeneinander angepresst werden und schlauchlos Fluid übergeben werden kann, ist kritisch. Solche Flansche erfordern in Querrichtung erheblichen Bauraum, einen hohen Verschraubungsaufwand und werfen bei hohen Drücken auch Abdichtungsprobleme auf.
- Ein Druckverstärker ist bekannt aus der Druckschrift
DE 196 33 258 C1 . Ein anderer bekannter Druckverstärker besitzt einen Kupplungsabschnitt zur Verbindung mit einem Hydraulikblock. Gehalten wird er durch einen dem Kupplungsabschnitt abgewandten Außenflansch mit Durchgangsbohrungen über die er mit mehreren Durchsteckschrauben mit dem Hydraulikblock verschraubt werden kann. - Der Erfindung liegt daher die Aufgabe zugrunde, einen Druckverstärker zu schaffen, der sich rohr- und schlauchlos und dabei besonders zuverlässig an einen Hydraulikblock anschließen lässt. Diese Aufgabe wird mit den Merkmalen des Anspruchs 1 gelöst.
- Beansprucht wird ein - im Regelfall betriebsbereiter, nur noch des Anschlusses an eine Druckversorgung, einen Tankanschluss und einen Verbraucher für den vom ihm erzeugten höheren Druck bedürfender - Druckverstärker für Fluide, insbesondere für Flüssigkeiten. Der Druckverstärker bildet also eine betriebsfertige Einheit zum ganz oder teilweisen Einführen in einen Hydraulikblock.
- Der Druckverstärker besteht aus einem Zylinderblock, in dem sich ein Druckverstärkerkolben und ein Steuerkolben zyklisch bewegen. Der Steuerkolben kann unterschiedliche Positionen einnehmen und gibt dadurch die Arbeitstakte des Druckverstärkerkolbens vor, wobei der Steuerkolben nicht durch eine mechanische Zwangssteuerung nach Art einer Nockenwelle betätigt wird, sondern rein durch Druckdifferenz. Der Druckverstärker ist seinerseits so gestaltet, dass er immer dann, wenn er eine bestimmte Position erreicht hat, eine Änderung der Druckverhältnisse am Steuerkolben initiiert, sodass dieser seine Position wechselt.
- Der Druckverstärkerkolben ist bevorzugt als Differentialkolben mit zwei unterschiedlich großen, hydraulisch wirksamen Kolbenflächen ausgeführt, jedenfalls bildet er in dem Zylinderblock einen Hochdruckarbeitsraum und einen Niederdruckarbeitsraum. Der Druckverstärkerkolben ist im Regelfall massiv, d. h. er besitzt vorzugsweise keine durchgehenden Bohrungen, die beispielsweise den Hochdruckarbeitsraum und den Niederdruckarbeitsraum miteinander verbinden. Stattdessen besitzt der Druckverstärkerkolben im Regelfall im Bereich seines Umfangs eine Einschnürung, die einen Zwischenraum bildet, der zwischen dem Hochdruckarbeitsraum und dem Niederdruckarbeitsraum liegt.
- Der Zylinderblock besitzt einen externen Anschluss zum Einspeisen von unter Druck stehendem Fluid von außen, der auch Niederdruckanschluss genannt wird - weil der Druck des hier anstehenden Fluides niedriger ist als der Druck des vom Druckverstärker an den Verbraucher abgegebenen Fluides.
- Das unter dem besagten Niederdruck stehende Fluid ist dazu bestimmt, in dem Druckverstärker Arbeit zu verrichten und dient ggf. auch als Basis zu Erzeugung und Ausgabe von Hochdruckfluid, also eines Fluides, das unter einem höheren Druck steht als das Niederdruckfluid. In jedem Fall wird das Hochdruckfluid über einen externen Hochdruckanschluss als unter einem höheren Druck stehendes Arbeitsfluid nach außen an einen externen Verbraucher abgegeben.
- Schließlich besitzt der Druckverstärker einen Anschluss zur Abgabe von Fluid, dessen Arbeitsfähigkeit in dem Druckverstärker erschöpft ist. Dieser Anschluss wird im Folgenden auch Tankanschluss genannt, auch wenn er nicht zwangsläufig zu einem Tank im engeren Sinne führen muss. Erwähnt sei noch, dass der besagte Zwischenraum im Regelfall ein Bestandteil eines Kanals bildet, der zum Tankanschluss führt.
- Als Zylinderblock des Druckverstärkers wird hier vorzugsweise ein massiver metallischer Körper verstanden, der alle Zylinderbohrungen und Kanäle enthält, die zur Zusammenarbeit des Druckverstärkerkolbens und des Steuerkolbens erforderlich sind. In der überwiegenden Zahl der Fälle besitzt der massive metallische Körper jedenfalls im Bereich des Steuerkolbens und des Druckverstärkerkolbens überall Querschnitte, bei denen die Fläche, die das Vollmaterial im Querschnitt einnimmt, größer ist als die Fläche, die die Zylinderbohrungen und die Kanäle in dem Querschnitt einnehmen.
- Der Zylinderblock des Druckverstärkers besitzt einen starr mit ihm verbundenen Kupplungsabschnitt. Der Kupplungsabschnitt ist so gestaltet, dass er in eine aufnehmende Bohrung eines Hydraulikblocks eingeführt werden kann. Er ist dabei so gestaltet, dass die aufnehmende Bohrung den Kupplungsabschnitt an seinem Umfang und im Regelfall auch stirnseitig umschließt. Der Kupplungsabschnitt hat dabei mindestens zwei durch eine Dichtung fluidisch voneinander getrennte Fluidübergabebereiche, die zum Austausch von Fluid zwischen dem Druckverstärker und dem Hydraulikblock, in den er eingesetzt ist, dienen.
- Die Fluidübergabebereiche sind an dem Kupplungsabschnitt so positioniert, dass sie im Inneren des Hydraulikblocks, in den der Kupplungsabschnitt eingeführt worden ist, liegen, unterhalb der Außenoberfläche des Hydraulikblocks, gegen die der nicht in den Hydraulikblock eingeführte Teil des Druckverstärkers anliegt. Im Regelfall liegen die Fluidübergabebereiche mindestens 20 mm, besser mindestens 30 mm unter der Oberfläche des Hydraulikblocks.
- Hierdurch wird eine besonders kompakte und zuverlässige fluidische Verbindung zwischen dem Druckverstärker und dem Hydraulikblock der Maschine hergestellt, die der Druckverstärker versorgt. Dadurch, dass die Fluidübergabebereiche weit im Inneren des Hydraulikblocks liegen, und damit in einem ausgesprochen starren Bereich angeordnet sind, lässt sich auch unter hohem Druck leicht eine zuverlässige Abdichtung erreichen - selbst wenn Störfaktoren wie Vibrationen hinzukommen.
- Vorzugsweise ist der Druckverstärker so gestaltet, dass in einen Fluidübergabebereich aus dem Inneren des Zylinderblocks des Druckverstärkers kommend ein Kanal einmündet, über den der Druckverstärker im Betrieb Fluid abgibt, dessen innerhalb des Druckverstärkers nutzbare Arbeitsfähigkeit erschöpft ist. Dabei mündet in einen weiteren Fluidübergabebereich ein weiterer Kanal ein, ebenfalls aus dem Inneren des Zylinderblocks kommend. Über diesen Kanal wird in den Druckverstärker Niederdruckfluid eingespeist, also Fluid, das den Druckverstärker antreibt und gegebenenfalls auch die Grundlage zur Erzeugung von unter höherem Druck stehenden und an einen Verbraucher abzugebenden Fluid bildet.
- Idealerweise besitzt der Kupplungsabschnitt einen dritten Fluidübergabebereich zur Übergabe des unter höherem Druck stehenden Arbeitsfluids an den Hydraulikblock. In diesem Fall bedarf es keinerlei Rohre oder Hydraulikschläuche, um den Druckübersetzer mit seiner Umgebung zu verbinden und dadurch einsatzbereit zu machen. Stattdessen findet eine unmittelbare hydraulische Verbindung zwischen dem Zylinderblock des Druckübersetzers und dem Hydraulikblock statt.
- Idealerweise umfasst mindestens einer der Fluidübergabebereiche eine in der Umfangsmantelfläche des Kupplungsabschnitts umlaufende Ringnut. Auf diese Art und Weise wird sichergestellt, dass der entsprechende Fluidübergabebereich sicher mit der korrespondierenden Bohrung im Hydraulikblock verbunden ist, unabhängig davon, ob der Kupplungsabschnitt des Druckübersetzers etwas mehr oder etwas weniger tief in den Hydraulikblock hineingeschoben worden ist, oder welche Verdreh-Stellung der Kupplungsabschnitt dort einnimmt.
- Es besitzt der Kupplungsabschnitt ein Außengewinde zum Einschrauben des Kupplungabschnitts in den Hydraulikblock. Auf diese Art und Weise wird der Kupplungsabschnitt mechanisch sicher im Hydraulikblock verankert.
- Die mehreren Fluidübergabebereiche sind dabei bevorzugt zwischen dem freien, in den Hydraulikblock einzuführenden Ende des Kupplungsabschnitts und dem Außengewinde des Kupplungsabschnitts angeordnet. Der Außendurchmesser des Kupplungsabschnitts verjüngt sich zumeist am Übergang zwischen dem Außengewinde und dem Rest des Kupplungsabschnitts. Typischerweise besitzt der Zylinderblock des Druckverstärkers einen angeformten Sechskant zum Ansetzen eines SchraubWerkzeugs.
- Vorzugsweise ist der Kupplungsabschnitt von mindestens zwei parallel zur Längsachse des Druckverstärkers verlaufenden Bohrungen durchzogen, die sich von der freien Stirnseite des Kupplungsabschnitts bis in den Bereich des Zylinderblocks des Druckverstärkers erstrecken, der stets außerhalb des den Kupplungsabschnitt aufnehmenden Hydraulikblocks positioniert ist.
- Mit solchen parallel zur Längsachse des Druckverstärkers verlaufenden Bohrungen im Kupplungsabschnitt lässt sich einfach die benötigte fluidische Verbindung zwischen den entsprechenden Kanälen im Inneren des Zylinderblocks des Druckverstärkers und den Fluidübergabebereichen herstellen. Die Bohrungen können von der Stirnseite des Kupplungsabschnitts her in einem Arbeitsgang eingebracht werden, bis sie sich mit den durch sie anzuschließenden Kanälen im Inneren des Druckverstärkers schneiden. Insbesondere machen es solche Bohrungen sehr einfach, einen der Fluidübergabebereiche an der freien Stirnseite des Kupplungsabschnitts auszubilden und den anderen der Fluidübergabebereiche im Bereich der Umfangsmantelfläche des Kupplungsabschnitts.
- Eigenständiger Schutz wird für ein Hydraulikaggregat mit einem Hydraulikblock beansprucht, in dem mehrere von Hydraulikfluid durchflossene Bohrungen zur Verbindung unterschiedlicher hydraulischer Wirkorgane (steuerbare oder nicht steuerbare Ventile und/oder Pumpen und/oder Druckausgleichsbehälter und/oder mehrerer Druckverstärker) ausgebildet sind, und das mindestens einen Druckverstärker der erfindungsgemäßen Art besitzt, wobei der Druckverstärker einen Kupplungsabschnitt aufweist, der in eine Bohrung in dem Hydraulikblock eingeführt und dort festgesetzt ist.
- Besonders günstig ist es, wenn mindestens zwei, besser drei Druckverstärker an dem Hydraulikaggregat hintereinander in Reihe geschaltet sind, so dass der von einem in (Hochdruck-)Strömungsrichtung vorangehenden Druckverstärker gelieferte Hochdruck den Druck darstellt, mit dem eine Strömungsrichtung nachfolgender Druckverstärker eingangsseitig gespeist wird. Auf diese Art und Weise lassen sich kaskadierend besonders hohe Drücke erzeugen. Dabei lässt sich das Hydraulikaggregat besonders kompakt gestalten, da die Druckverstärker keine Verrohrung oder Hydraulikschläuche zur Verbindung mit dem Hydraulikblock benötigen und daher sehr dicht nebeneinander gepackt an den Hydraulikblock angebaut werden können.
- Weitere Vorteile, Wirkungsweisen und Ausgestaltungsmöglichkeiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung der Ausführungsbeispiele anhand der Figuren.
-
- Die
Figur 1 zeigt das in eine einzige Ebene abgewickelte hydraulische Schaltbild und die Verhältnisse während eines Arbeitstakts des Druckverstärkerkolbens. - Die
Figur 2 zeigt das gleiche in eine einzige Ebene abgewickelte hydraulische Schaltbild und die Verhältnisse zu einem Zeitpunkt, an dem der Druckverstärkerkolben nach einem Arbeitstakt seinen oberen Totpunkt erreicht hat. - Die
Figur 3 zeigt das gleiche in eine einzige Ebene abgewickelte hydraulische Schaltbild und die Verhältnisse während eines Ladetakts des Druckverstärkerkolbens. - Die
Figur 4 zeigt aufbauend auf dieFigur 1 die Verhältnisse im normalen Betrieb, in dem unter Einsatz eines entsprechend beschalteten, externen Umschaltventils Fluid erzeugt wird, das unter Hochdruck ausgegeben wird. - Die
Figur 5 zeigt aufbauend auf dieFigur 1 die Verhältnisse im Umschalt-Betrieb, in dem der Hochdruckverbraucher unter Einsatz eines entsprechend beschalteten, externen Umschaltventils zurück über den Druckverstärker drucklos geschaltet bzw. sogar entleert wird. - Die
Figur 6 zeigt ein erstes, körperlich konkretes Ausführungsbeispiel des erfindungsgemäßen Druckverstärkers. - Die
Figur 7 zeigt - als Ausschnitt aus derFigur 6 - den Kupplungsabschnitt des Druckverstärkers. - Die
Figur 8 zeigt ein zweites, körperlich konkretes Ausführungsbeispiel des erfindungsgemäßen Druckverstärkers. - Die
Figur 9 zeigt den Druckverstärker gemäßFigur 8 in vergrößertem Halbschnitt. - Die
Fig. 10 zeigt das Ausführungsbeispiel gem.Fig. 6 und7 in vom Hydraulikblock abgenommenen Zustand, perspektivisch dargestellt. - Die
Fig. 11 zeigt das Ausführungsbeispiel gem.Fig. 6 und7 in vom Hydraulikblock abgenommenen Zustand, in Seitenansicht. - Die
Fig. 12 zeigt das Ausführungsbeispiel gem.Fig. 8 und9 in vom Hydraulikblock abgenommenen Zustand, perspektivisch dargestellt. - Die
Fig. 13 zeigt das Ausführungsbeispiel gem.Fig. 8 und9 in vom Hydraulikblock abgenommenen Zustand, in Seitenansicht. - Zunächst ist das grundsätzliche Prinzip des erfindungsgemäßen Druckverstärkers zu erläutern, das sich durch seinen besonders einfachen Aufbau auszeichnet und daher zur Schaffung eines besonders kompakt bauenden Druckverstärkers prädestiniert ist, so dass gerade die nach diesem Prinzip arbeitenden Druckverstärker dazu prädestiniert sind, um mit dem Anschluss ausgerüstet zu werden, der den Kern der Erfindung bildet.
- Hierzu wird auf die
Fig. 1 verwiesen. - Die
Fig. 1 zeigt den Druckverstärker 1, der vollständig in einem metallenen, vorzugsweise stählernen Zylinderblock 13 ausgebildet ist, der hier geschnitten und daher zunächst lediglich schematisch durch vier ein Rechteck bildende Volllinien als kastenartiger Umriss dargestellt ist. Der Zylinderblock hat vorzugsweise die Außenkontur eines Zylinders, der um die Längsachse L herum rotationssymmetrisch ist. Der Zylinderblock 13 besteht aus mindestens zwei und idealerweise drei separaten, d. h. voneinander trennbaren, materialmäßig nicht miteinander verbundenen Zylinderblockelementen. Bei dem konkret vonFig. 1 gezeigten, bevorzugten Ausführungsbeispiel besteht der Zylinderblock 13 aus den drei Zylinderblockelementen 13.1, 13.2 und 13.3, so, wie das durch die gestrichelten Trennlinien angedeutet wird. Die mehreren Zylinderblockelemente sind untereinander in definierter Lage relativ zueinander formschlüssig festgelegt, beispielsweise mithilfe hier zeichnerisch nicht dargestellter Passstifte. - In diesem Zylinderblock arbeitet ein Druckverstärkerkolben 2. Dieser Druckverstärkerkolben 2 ist typischerweise als Differentialkolben mit zwei unterschiedlich großen, in entgegengesetzter Richtung kraftwirksamen hydraulischen Wirkflächen ausgebildet und besteht dann aus einem Niederdruckkolben N mit einem großen Durchmesser und einem Hochdruckkolben H mit einem kleinen Durchmesser, die miteinander fest durch einen Kolbenschaft S verbunden sind. Der Niederdruckkolben N bildet in dem Zylinderblock einen Niederdruckarbeitsraum 10, während der Hochdruckkolben H in dem Zylinderblock einen Hochdruckarbeitsraum 11 bildet. Zwischen den beiden Kolben im Bereich ihrer Verbindung durch den Kolbenschaft S ist ein Zwischenraum 12 ausgebildet, dessen Funktion später noch erläutert wird. Der Druckverstärkerkolben besitzt vorzugsweise eine Längsachse, die parallel zur Längsachse L des Zylinderblocks 13 liegt.
- Es ist leicht nachvollziehbar, dass das Übersetzungsverhältnis, d. h. der Faktor, um den der eingespeiste Niederdruck erhöht werden kann, vom Durchmesserverhältnis DN/DH des Niederdruckkolbens N und des Hochdruckkolbens H abhängt.
- Zusätzlich arbeitet in dem Zylinderblock 13 ein Steuerkolben 3. Vorzugsweise ist auch dessen Längsachse parallel zur Längsachse L des Zylinderblocks 13. Im Idealfall sind der Steuerkolben und der Differentialkolben vollständig oder zumindest überwiegend nebeneinander angeordnet, senkrecht zur Längsachse gesehen.
- Wie man darüber hinaus sieht, sind in dem Zylinderblock 13 alle Verbindungsleitungen ausgeführt, die benötigt werden, um den Druckverstärker funktionsfähig zu machen. Darauf hinzuweisen ist, dass die
Fig. 1 den Druckverstärkerkolben 2, den Steuerkolben 3 und alle zum Betrieb erforderlichen Verbindungsleitungen der besseren Übersicht halber in eine Ebene projiziert zeigt. Vorzugsweise, d. h. in der Realität, liegen die genannten Komponenten nicht alle in einer Ebene, weil eine solche Anordnung den Querschnitt des Zylinderblocks nur extrem schlecht ausnützen würde: In der vonFig. 1 zeichnerisch dargestellten Ebene würden sich die Kolben und die Verbindungsleitungen drängen, während in einer die Längsachse ebenfalls beinhaltenden Schnittebene senkrecht dazu kein Kolben und fast keine Verbindungsleitungen zu finden wären. - Nach außen kommuniziert der Druckverstärker über seinen externen Niederdruckanschluss 5 mit einer externen Niederdruckquelle. Von dieser bezieht der Druckverstärker unter niedrigerem Druck stehende Hydraulikflüssigkeit, die ihn antreibt. Vorzugsweise wird ein Teil dieser unter niedererem Druck in den Druckverstärker eingespeisten Hydraulikflüssigkeit in dem Druckverstärker unter höheren Druck gesetzt und als unter höherem Druck stehende Hydraulikflüssigkeit vom Druckverstärker an einen externen Verbraucher ausgegeben. Darüber hinaus weist der Druckverstärker einen externen Tankanschluss 6 auf, über den er zumindest einen Teil der unter niedrigerem Druck bezogenen Hydraulikflüssigkeit nach außen abgibt, wenn diese Hydraulikflüssigkeit ihre Arbeit innerhalb des Druckverstärkers verrichtet hat. Die Abgabe erfolgt vorzugsweise an einen externen Tank bzw. ein externes Hydraulikflüssigkeitsreservoir, zwingend ist das aber nicht. Darüber hinaus besitzt der Druckverstärker einen weiteren Anschluss, den sogenannten externen Hochdruckanschluss 7. Über seinen Hochdruckanschluss gibt der Druckverstärker von ihm unter höheren Druck (verglichen mit dem speisenden niedrigeren Druck) gesetzte Hydraulikflüssigkeit an eine hydraulische Arbeitsmaschine ab, etwa an eine Rettungsschere, ein Spannmittel oder ein hydraulisches Spannzangenfutter. Soweit hier der Begriff "externer Anschluss" verwendet wird, bedeutet das, dass ein Anschluss extern ist, weil der Druckverstärker über diesen Anschluss unmittelbar mit der Umgebung verbindbar ist. Im Gegensatz hierzu stehen interne Anschlüsse, etwa Verbindungskanäle, über die im Inneren des Druckverstärkers dessen hydraulische Funktionsbauteile miteinander verbunden sind.
- Wie man relativ gut anhand der
Fig. 1 sieht, schließt sich an den externen Anschluss 5 zur Niederdruckquelle innerhalb des Zylinderblocks 13 eine Niederdruckleitung 8 an. Die Niederdruckleitung 8 verzweigt sich alsbald. Sie verzweigt sich in einen Niederdruckleitungsabschnitt 8.1, der primär dazu dient, den Hochdruckarbeitsraum mit frischem Niederdruckfluid zu speisen, und darüber hinaus auch dazu dient, um über den Niederdruckleitungsabschnitt 8.4 den Steuerkolben 3 mit Niederdruck zu versorgen. Der bevorzugt vorhandene Niederdruckleitungsabschnitt 8.2 führt an dem Hochdruckarbeitsraum vorbei direkt in die Leitung, die zum Hochdruckverbraucher führt. Der Niederdruckleitungsabschnitt 8.2 dient, wenn vorhanden, dazu, einen neu angeschlossenen, noch leeren Hochdruckverbraucher zunächst mit Niederdruckfluid zu füllen und die Luft aus den u. U. zunächst noch leeren Leitungen des Hochdruckverbrauchers zu verdrängen, so dass dann anschließend mit der Hochdruckerzeugung begonnen werden kann. - An den Anschluss 6 zum externen Tank schließt sich eine Tank- oder Rückflussleitung 9 an. Die Tank- oder Rückflussleitung 9 verzweigt sich innerhalb des Zylinderblocks 13 alsbald und zwar in einen Rückflussleitungsabschnitt 9.1, der vom Steuerkolben her kommt, und einen Leitungsabschnitt 9.2, der, wie später noch zu erörtern ist, zu gegebener Zeit und bei entsprechender, i. d. R. extern bewerkstelligter hydraulischer Beschaltung des Druckverstärkers als Steuerleitung für das steuerbare Rückschlagventil 4.3 dient.
- Darüber hinaus ist eine Verbindungsleitung 14 vom Steuerkolben zum Druckverstärkerkolben vorgesehen, deren Funktion später noch näher erläutert wird.
- Zum Steuerkolben 3 ist zu sagen, dass dieser Steuerkolben 3 ebenfalls als Differentialkolben ausgeführt ist.
- Anhand der
Fig. 1 lässt sich die grundsätzliche Funktionsweise des Druckverstärkers recht anschaulich erklären:
In der Phase, die dieFig. 1 zeigt, findet aktuell ein Arbeitstakt statt, d. h. der Druckverstärkerkolben 2 bewegt sich in Richtung des schwarzen Pfeils in den Hochruckarbeitsraums 11 hinein. Zu Beginn des Arbeitstaktes ist der Hochdruckarbeitsraum 11 dabei zunächst mit Niederdruckfluid gefüllt, d. h. vorzugsweise mit Fluid, das unter dem Niederdruck der Speisepumpe steht. Durch das Hineinbewegen des Druckverstärkerkolbens in den Hochdruckarbeitsraum 11 wird das dort befindliche Fluid unter erhöhten Druck gesetzt und über das Rückschlagventil 4.2 und den externen Hochdruckanschluss 7 an den Hochdruckverbraucher abgegeben. - Der sich im Laufe des Arbeitstaktes kontinuierlich vergrößernde Niederdruckarbeitsraum 10 wird fortwährend mit Niederdruckfluid, d. h. mit unter dem Niederdruck über den externen Niederdruckanschluss 5 bezogenen Fluid nachgefüllt. Dieses Nachfüllen geschieht über die Verbindungsleitung 14. Diese wird mithilfe des Steuerkolbens 3 - nämlich über dessen verschlankten Bereich V1, der zwischen den Anschlüssen C und P steht - mit dem Niederdruckleitungsabschnitt 8.4 verbunden, der unter Niederdruck stehendes Fluid führt.
- Der Steuerkolben 3 verharrt dabei in der von
Fig. 1 gezeigten Position. Zwar ist er an seiner einen (hier der unteren) Stirnseite über den Niederdruckleitungsabschnitt 8.3 dauernd mit Niederdruck beaufschlagt. Gleichzeitig ist er allerdings seit dem Beginn des Arbeitstaktes an seiner gegenüberliegenden (hier der oberen) Stirnseite über die Steuerleitung 8.5 ebenfalls mit Niederdruck beaufschlagt. Das hat seinen Grund darin, dass der Hochdruckarbeitsraum zu Beginn des Arbeitstaktes mithilfe des Niederdruckleitungsabschnitts 8.1 mit unter Niederdruck stehendem Fluid gefüllt worden ist. Der Niederdruck in der Steuerleitung 8.5 bleibt auch dann erhalten, wenn der Hochdruckkolben die Mündung der Steuerleitung 8.5 in dem Hochdruckarbeitsraum überfahren und dadurch abgedichtet hat. Aufgrund der Tatsache, dass der Niederdruck an der oberen Stirnseite des Steuerkolbens 3 auf eine größere Fläche einwirkt als an der unteren Stirnseite des Steuerkolbens 3, wirkt auf den Steuerkolben permanent eine resultierende Kraft nach unten. - Wichtig ist noch zu erwähnen, dass der Zwischenraum 12 ebenfalls mit dem externen Tankanschluss 6 verbunden ist, also drucklos gehalten wird. Dies ist erforderlich, um eine eventuelle Leckage, die möglicherweise aus dem Hochdruckarbeitsraum und/oder aus dem Niederdruckarbeitsraum in den Zwischenraum 12 fließt, abführen zu können, so dass sich hier in diesem Zwischenraum kein störender Gegendruck aufbauen kann, weil womöglich Hydraulikfluid eingesperrt ist.
- Der Arbeitstakt setzt sich solange fort, bis der Druckverstärkerkolben 2 die von
Fig. 2 gezeigte Position, d. h. also seinen oberen Totpunkt erreicht hat. Wie man anhand derFig. 2 sieht, ist der Hochdruckkolben des Druckverstärkerkolbens jetzt so tief in den Hochdruckarbeitsraum 11 eingedrungen, dass seine dem Zwischenraum 12 zugewandte Kante inzwischen die Mündung der Steuerleitung 8.5 wieder freigegeben hat, also nicht länger überfährt und dadurch abdichtet. Hierdurch wird die Mündung der Steuerleitung 8.5 mit dem drucklosen Zwischenraum 12 verbunden, d. h. der Druck, der zuvor während des Arbeitstakts in der Steuerleitung 8.5 geherrscht hat, bricht zusammen. Aufgrund dessen ist nun nur noch eine Stirnfläche des Steuerkolbens mit Niederdruck beaufschlagt, nämlich hier im Bild die untere Stirnfläche des Steuerkolbens 3. Daher wird der Steuerkolben 3 in seine andere Position geschoben, d. h. aus der vonFig. 1 gezeigten Position in die vonFig. 2 gezeigte Position befördert. - Infolge des besagten Verschiebens des Steuerkolbens 3 in seine zweite Position ist dessen verschlankter Bereich V1 nicht länger hydraulisch mit der Verbindungsleitung 14 verbunden. Stattdessen wird die Verbindungsleitung 14 über den zweiten verschlankten Bereich V2 des Steuerkolbens 3 mit dem Rückflussleitungsabschnitt 9.1 hydraulisch verbunden. Das führt dazu, dass der Niederdruck im Niederdruckarbeitsraum 10 zusammenbricht, weil der Niederdruckarbeitsraum 10 nunmehr drucklos geschaltet wird. Infolgedessen überwiegen nun die Kräfte, die auf die obere Stirnseite des Hochdruckkolbens wirken, weshalb der Druckverstärkerkolben 2 nunmehr beginnt, sich nach unten zu bewegen und das noch im Niederdruckarbeitsraum 10 befindliche Hydraulikfluid über die Verbindungsleitung 14 und den Rückflussleitungsabschnitt 9.1 zu verdrängen, so dass es über den externen Tankanschluss 6 abgegeben wird.
- Während die
Fig. 2 den oberen Totpunkt zeigt, also den Augenblick, in dem der Druckverstärkerkolben 2 in seiner Bewegung innegehalten hatte und die Bewegungsrichtung wechselt, zeigt dieFig. 3 den Ladetakt, währenddessen der Druckverstärkerkolben 2 wieder tiefer in den Niederdruckarbeitsraum eindringt. Die Momentaufnahme, die dieFig. 3 zeigt, zeigt den Druckverstärkerkolben kurz vor seinem unteren Totpunkt, momentan bewegt er sich aber noch nach unten. - Anhand der
Fig. 3 lässt sich schon erahnen, was in Kürze passieren wird: Man sieht, dass die dem Hochdruckarbeitsraum 11 zugewandte Kante des Hochdruckkolbens im Begriff ist, die Mündung der momentan noch drucklosen Steuerleitung 8.5 mit dem derzeit unter Niederdruck stehenden Hochdruckarbeitsraum 11 zu verbinden. Sobald dies geschehen ist, breitet sich der momentan in dem Hochdruckarbeitsraum 11 herrschende Niederdruck über die Steuerleitung 8.5 aus und erreicht die bisher drucklose (obere) Stirnseite des Steuerkolbens 3. Sobald hier Druck ansteht, wird der Steuerkolben 3 nach unten getrieben, da die bisher drucklose Stirnseite eine größere Fläche aufweist als die permanent unter Niederdruck stehende andere, kleinere Stirnfläche des Druckverstärkerkolbens. - Sobald der Steuerkolben 3 dann wieder in seine andere Position getrieben worden ist, wird sein verschlankter Bereich V1 erneut die Verbindungsleitung 14 mit dem Niederdruck führenden Niederdruckleitungsabschnitt 8.4 verbinden, so dass sich der Druck im Niederdruckarbeitsraum 10 wieder ändert. Der derzeit nicht unter externem Druck stehende Niederdruckarbeitsraum 10 wird dann wieder mit dem Niederdruck der Niederdruckquelle beaufschlagt. In diesem Moment erreicht der Druckverstärkerkolben 2 seinen unteren Totpunkt, hält kurz inne. Der Ladetakt findet sein Ende und ein neuer Arbeitstakt, wie von
Fig. 1 gezeigt, beginnt. - Anzumerken ist noch, dass ein auch für die heutige Erfindung wesentlicher Vorteil der ist, dass der Steuerkolben federlos arbeitet. Die ansonsten notwendige Beaufschlagung mit der Schließkraft einer Feder wird durch die konstante Beaufschlagung einer Stirnseite mit dem Niederdruck ersetzt. Das trägt zur Verwirklichung des Ziels bei, den Druckverstärker kleiner zu bauen, da der für die Unterbringung einer tunlichst nachträglich austauschbar einzubauenden Feder erforderliche Bauraum entfällt.
- Anhand der
Fig. 4 ist gut zu erkennen, welche Bewandtnis es mit dem Rückflussleitungsabschnitt 9.2 auf sich hat, der von der Tank- oder Rückflussleitung 9 aus bis zu dem steuerbaren Rückschlagventil 4.3 führt. - Diese Leitung dient dazu, um zu gegebener Zeit den Hochdruckverbraucher zu entspannen.
- Um dies zu tun, wird mithilfe eines vorzugsweise extern angeordneten Umschaltventils sozusagen umgepolt, d. h. der bisher mit dem externen Niederdruck verbundene Anschluss 5 wird über ein bevorzugt extern, außerhalb des Zylinderblocks 13 liegendes Ventil nun drucklos geschaltet bzw. mit dem Tank verbunden und der bisher mit dem externen Tank verbundene Anschluss 6 wird nunmehr mit der Niederdruckquelle verbunden. Aufgrund dessen kann über den Rückflussleitungsabschnitt 9.2 zum Steuerkolben Niederdruck an den Steuerkolben herangeführt werden, der das steuerbare Rückschlagventil 4.3 öffnet, so dass die bisher durch die Rückschlagventile 4.1 und 4.2 gegenüber der Umgebung abgesperrte Leitung zum Hochdruckverbraucher über den nunmehr drucklosen Niederdruckleitungsabschnitt 8.2 Hydraulikflüssigkeit über die bisherige Niederdruckleitung 8 und den nunmehr drucklosen, bisherigen Niederdruckanschluss 5 abführen kann.
- Nun ist noch näher zu erläutern, wie das steuerbare Rückschlagventil 4.3 funktioniert.
- Der erfindungsgemäße Druckverstärker wird mit einem vorzugsweise extern angebrachten Umschaltventil 25 betrieben. Im Normalbetrieb ist das Umschaltventil 25 so geschaltet, dass der bereits anhand der
Figuren 1 bis 3 erörterte Betrieb stattfindet, in dem Hochdruckfluid erzeugt wird, vgl.Fig. 4 . - Um den Hochdruckverbraucher zu entspannen, was beispielsweise regelmäßig erforderlich ist, wenn es sich dabei um ein Spannmittel handelt, das das von ihm gespannte Werkstück am Ende der Bearbeitung auch wieder freigeben soll, wird das Umschaltventil 25 in die Position umgeschaltet, wie das die
Figur 5 zeigt. Es passiert im Grunde genommen nichts anderes, als dass die externen Anschlüsse 5 und 6 "umgepolt" werden. Der Anschluss 5, über den bisher der extern erzeugte Niederdruck eingespeist wurde, wird nunmehr drucklos geschaltet und entspricht damit dem Tank-bzw. Rücklaufanschluss. Der bisher als Tank- bzw. Rücklaufanschluss betriebene externe Anschluss 6 wird nunmehr, z. B. über die externe Niederdruckspeisepumpe 26, mit Niederdruck beaufschlagt und damit selbst zum Niederdruckanschluss. Dies hat zur Folge, dass der Leitungsabschnitt 9.2 nicht länger drucklos ist, sondern nun Niederdruck führt. Dieser Niederdruck hebt den Ventilkörper des steuerbaren Rückschlagventils 4.3 von seinem Sitz ab, entsperrt also das Rückschlagventil 4.3. Daraufhin fließt das bislang in dem Hochdruckverbraucher noch gespeicherte Hydraulikfluid über das Rückschlagventil 4.3 und die Leitung 8.2 in den Tank ab. Das hat natürlich zur Folge, dass sofort der Druck im Hochdruckverbraucher zusammenbricht und sich anschließend das Hydrauliksystem des Hochdruckverbrauchers in den Tank entleert, woraufhin der Hochdruckverbraucher abgekoppelt werden kann, was zum Beispiel sehr praktisch ist, wenn es sich dabei um eine Rettungsschere handelt und der Einsatz beendet ist. - Bemerkenswert ist noch die in den
Fig. 1 bis 4 zu erkennende, eine Drossel ausbildende Vorsteuerbohrung. Während die Vorsteuerbohrung in den Figuren beispielhaft-schematisch als Bypass-Drossel 24* symbolisiert wird, ist es in der Realität bevorzugt so, dass die Vorsteuerbohrung den in den Figuren zu erkennenden, rechtsgeneigt schraffierten oberen Teil des Steuerkolbens 3 durchdringt. Sie verbindet den Bereich der oberen freien Stirnfläche des Steuerkolbens 3 mit der Verschlankung V1. Auf diese Art und Weise wird die Steuerleitung 8.5 permanent mit der Verschlankung V1 verbunden. Diese Vorsteuerbohrung hat den Zweck, auch dann eine definierte Position des Druckverstärkerkolbens 2 zu gewährleisten, wenn der Druckverstärker lange stillgestanden hat. Solange die Vorsteuerbohrung fehlt, kann es passieren, dass nach längerem Stillstand des Druckverstärkerkolbens die Steuerleitung 8.5 den in ihr zunächst eingeschlossenen Druck durch Mikroleckagen verloren hat und der Steuerkolben 3 daraufhin eine undefinierte Position einnimmt, was das erneute Anlaufen erschwert. Die Vorsteuerbohrung hat den Zweck, immer sicherzustellen, dass die Steuerleitung 8.5 auch nach längerer Zeit noch korrekt mit Druck beaufschlagt ist und daher den Steuerkolben 3 in eine definierte Position zwingt, die ein erneutes Anlaufen des Druckübersetzers problemlos ermöglicht. Die über die Vorsteuerbohrung fließende Strömung ist so gewählt, dass sie so gering ist, dass sie im laufenden Betrieb keine Rolle spielt. Erst in längeren Stillstandszeiten summiert sich die über die Vorsteuerbohrung laufende Strömung auf und zeigt so den gewünschten Effekt, wie oben geschildert. - Die
Fig. 6 und7 zeigen ein konkretes, körperliches Ausführungsbeispiel eines erfindungsgemäßen Druckverstärkers. - Die
Figur 7 zeigt dabei den Kupplungsabschnitt des Druckverstärkers gem.Fig. 6 in vergrößerter Darstellung. - Die
Fig. 6 zeigt den erfindungsgemäßen Druckverstärker 1 in seiner an einen externen Hydraulikblock 100 montierten Position. Der Hydraulikblock ist kein Bestandteil des Druckverstärkers, sondern stellt beispielsweise den hydraulischen Steuerblock eines Spannmittels dar. Der hydraulische Steuerblock ist tatsächlich ein massiver metallener Steuerblock (keine Rohrmuffe o. ä.),in dem eine Vielzahl von hydraulischen Kanälen ausgebildet ist und der z. B. auch den Aktuator umfasst, über den der Benutzer die Anlage hydraulisch steuert. - Wie man sieht, geht der Zylinderblock 13 bzw. sein Zylinderblockelement 13.1 integral in einen Kupplungsabschnitt 101 über, d. h. ein Teil der Umfangsmantelfläche des Zylinderblocks des Druckverstärkers bildet den Kupplungsabschnitt 101.
- Der Kupplungsabschnitt 101 besitzt eine kreiszylindrische Gestalt. Vorzugsweise weist er einen gegenüber dem Rest des meist ebenfalls kreiszylindrischen Zylinderblocks 13 verringerten Durchmesser auf, idealerweise um mindestens 30 %.
- Der Durchmesser des Kupplungsabschnitts 101 entspricht vorzugsweise dem Kerndurchmesser eines metrischen Gewindes und ist diesem gegenüber um ein Toleranzmaß verringert, das es erlaubt, den kein Außengewinde tragenden Teil des Kupplungsabschnitts 101 durch den ein Innengewinde tragenden Abschnitt des Hydraulikblocks 100 hindurchzuschieben.
- Die Länge des Kupplungsabschnitts 101 in Richtung der Längsachse L des Druckverstärkers 1 beträgt vorzugsweise mindestens 25 %, besser mindestens 30 % der Gesamtlänge des Zylinderblocks 13 des Druckverstärkers 1. Dadurch wird sichergestellt, dass der Kupplungsabschnitt 101 tief genug in den Hydraulikblock 100 eindringen kann, in einen Bereich, der im Vollmaterial des Hydraulikblocks liegt, unterhalb der die Bohrung zur Einführung des Kupplungsabschnitts 101 umgebenden, meist planen Oberfläche des Hydraulikblocks 100.
- Im Regelfall ist es dabei so, dass der Kupplungsabschnitt 101 in seinem in den Hydraulikblock 100 eingebauten Zustand an seinem Umfang rundum von (ggf. von örtlichen Kanälen durchzogenem) Vollmaterial des Hydraulikblocks umgeben ist, das in radialer Richtung gesehen eine Dicke aufweist, die mindestens um den Faktor 1,5 größer ist als der größte Radius des kreiszylindrischen Zylinderblocks 13. Dadurch kann die Fluidübergabe dort stattfinden, wo der Hydraulikblock 100 eine hohe Festigkeit bzw. Steifigkeit aufweist. In diesem Zusammenhang ist zu bedenken, dass der den Druckverstärker speisende "Niederdruck" bzw. niedrigere Druck absolut gesehen keineswegs ein geringer Druck sein muss. Denn dort, wo ein sehr großer Druckunterschied überwunden werden muss, können die erfindungsgemäßen Druckverstärker kaskadierend zum Einsatz kommen, d. h. ein nachfolgender Druckverstärker wird dann vom Hochdruck des vorhergehenden Druckverstärkers gespeist.
- Der Kupplungsabschnitt 101 sorgt nicht nur für eine fluidische Verbindung zwischen dem Druckverstärker 1 und dem Hydraulikblock 100, den der Druckverstärker versorgt. Vielmehr hält er den Druckverstärker 1 auch mechanisch in seiner Einbauposition, indem er die Gewichtskraft und alle im Betrieb infolge der Masse des Druckverstärkers 1 auftretenden Kräfte überwiegend oder vollständig aufnimmt und an den Hydraulikblock 100 weitergibt, z. B. die Beschleunigungskräfte, die an dem Druckverstärker auftreten, wenn der Hydraulikblock rotiert oder sich bewegt.
- Der Kupplungsabschnitt 101 ist so gestaltet, dass er in eine ihn aufnehmende Bohrung des Hydraulikblocks 100 eingeführt und dort festgesetzt worden ist. Zu diesem Zweck ist der Kupplungsabschnitt 101 mit einem Außengewinde 102 versehen, welches in ein entsprechendes Gegengewinde der den Kupplungsabschnitt 101 aufnehmenden Bohrung in dem Hydraulikblock 100 eingeschraubt ist.
- Wie man sieht, ist der Kupplungsabschnitt 101 so gestaltet, dass ihn die aufnehmende Bohrung des Hydraulikblocks 100 an seinem Umfang und an seinem freien Stirnende vollständig umschließen kann.
- Wie man am besten anhand der
Fig. 7 sieht, sind an dem Kupplungsabschnitt 101 zwei Fluidübergabebereiche 104 und 105 ausgebildet. Sie liegen in Richtung der Längsachse L des Druckverstärkers gesehen hintereinander und in Einschraubrichtung des Kupplungsabschnitts gesehen ggf. vor dem mit einem Außengewinde 102 versehenen Bereich des Kupplungsabschnitts. - Der erste Fluidübergabebereich 104 ist vorzugsweise an der Umfangsmantelfläche des Kupplungsabschnitts 101 ausgebildet. Der zweite Fluidübergabebereich kann entweder ebenfalls an der Umfangsmantelfläche des Kupplungsabschnitts 101 ausgebildet sein oder bevorzugt an dessen freier Stirnfläche.
- Über diese Fluidübergabebereiche 104, 105 (und nur über diese) kommuniziert der Druckverstärker unmittelbar nach außen mit dem Hydraulikblock 100. Diese beiden Fluidübergabebereiche sind durch eine Dichtung 106 hydraulisch voneinander getrennt. Die Dichtung ist vorzugsweise als eine mit oder ohne Stützring in eine Umfangsringnut am Kupplungsabschnitt eingelegte Dichtung ausgeführt. Zusätzlich ist - bevorzugt in gleicher Art und Weise - eine weitere Dichtung 107 vorgesehen, die den näher an der Außenseite liegenden Fluidübergabebereich 104 nach außen abdichtet.
- Der Kupplungsabschnitt 101 besitzt vorzugsweise zwei meist parallel zur Längsachse L verlaufende Bohrungen 108 und 109. Diese erstrecken sich von dem freien Stirnende des Kupplungsabschnitts 101 durch den Kupplungsabschnitt hindurch bis in den Bereich des Zylinderblocks 13 (bzw. 13.1), der auch bei an den Hydraulikblock anmontiertem Druckverstärker außerhalb des Hydraulikblocks 100 liegt.
- Die eine Bohrung 108 geht in die von den
Fig. 1 bis 5 gezeigte Niederdruckleitung 8 über. Diese Bohrung mündet vorzugsweise in das freie Stirnende des Kupplungsabschnitts aus und stellt hier den externen Niederdruckanschluss 5 (vgl.Fig. 1 ) des Druckverstärkers dar. - Dieser liegt im Fluidübergabebereich 105, über den der Druckverstärker an die Niederdruck führende Speiseleitung angeschlossen werden kann, die hier in den Grund der Bohrung des Hydraulikblocks 100 einmündet, die den Kupplungsabschnitt 101 aufnimmt. Der Fluidübergabebereich 105 ist so gestaltet, dass über ihn unabhängig von der absoluten Einschraubtiefe bzw. dem Drehwinkel, den der Kupplungsabschnitt beim Einschrauben in den Hydraulikblock zurückgelegt hat, eine fluidleitende Verbindung zwischen dem Druckverstärker und dem Hydraulikblock hergestellt werden kann.
- Die andere Bohrung 109 geht in die von den
Fig. 1 bis 5 gezeigte Tank- bzw. Rückflussleitung 9 über. Sie ist dort, wo sie eigentlich in das freie Stirnende des Kupplungsabschnitts 101 ausmündet, durch einen Stopfen 110 verschlossen. Sie ist mit einer Querbohrung 111 verschnitten, die in eine Ringnut 112 einmündet. Die Ringnut 112 befindet sich in besagtem weiteren Fluidübergabebereich 105. Hierdurch wird der externe Tankanschluss 6 dargestellt. - Infolge seiner Ausrüstung mit der Ringnut 112 ist auch der Fluidübergabebereich 104 so gestaltet, dass über ihn unabhängig von der absoluten Einschraubtiefe bzw. dem Drehwinkel, den der Kupplungsabschnitt 101 beim Einschrauben in den Hydraulikblock 100 zurückgelegt hat, eine fluidleitende Verbindung zwischen dem Druckverstärker und dem Hydraulikblock hergestellt werden kann.
- Angemerkt sei noch, dass der Fluidübergabebereich 105 alternativ entsprechend ausgestaltet sein kann, wie der Fluidübergabebereich 104, also an der Umfangsmantelfläche des Kupplungsabschnitts liegen kann. Bevorzugt ist eine solche Ausgestaltung indes nicht.
- Besonders zweckmäßig ist es, den außerhalb des Hydraulikblocks 100 liegenden Abschnitt des Zylinderblocks 13 mit einem Kupplungsabschnitt für ein Schraubwerkzeug zu versehen, bevorzugt in Gestalt eines Außensechskants - was in diesem Ausführungsbeispiel aber nicht zeichnerisch dargestellt ist.
- Der externe Hochdruckanschluss 7 befindet sich bei diesem Ausführungsbeispiel bevorzugt an der dem Kupplungsabschnitt 101 abgewandten Seite des Druckverstärkers 1. Hier erfolgt auf konventionellem Wege eine fluidleitende Verbindung zum Hochdruckverbraucher.
- Die
Figuren 8 und9 zeigen ein zweites konkretes Ausführungsbeispiel des erfindungsgemäßen Druckverstärkers. Die vorhergehenden Ausführungen für das erste Ausführungsbeispiel gelten hier ebenfalls, soweit nicht nachfolgend etwas anderes beschrieben ist. - Hier wird der Kupplungsabschnitt durch den überwiegenden Teil der Umfangsmantelfläche des Zylinderblocks 13 gebildet. Vorzugsweise ist der Zylinderblock 13 des Druckverstärkers 1 so gestaltet, dass er auf mindestens ½, besser 2/3 der Länge, die der Zylinderblock 13 in Richtung seiner Längsachse L besitzt, in eine Bohrung des Hydraulikblocks 100 eingeführt werden kann. Im konkreten Fall ist der Zylinderblock so gestaltet, dass das erste und das zweite Zylinderblockelement 13.1 und 13.2 vollständig in den Hydraulikblock 100 eingeschoben werden können. Der hoch belastete Bereich des Druckverstärkers, in dem sich der Differentialkolben hin und her bewegt, liegt nun vollständig in dem Hydraulikblock, von dem dadurch eine steifigkeitserhöhende Stützwirkung ausgeht. Wie man sieht, ist der Kupplungsabschnitt 101 auch hier so gestaltet, dass ihn die aufnehmende Bohrung des Hydraulikblocks 100 an seinem Umfang und an seinem freien Stirnende vollständig umschließen kann.
- Auch hier gilt, dass der Durchmesser des Kupplungsabschnitts vorzugsweise dem Kerndurchmesser eines metrischen Gewindes entspricht und diesem gegenüber um ein Toleranzmaß verringert ist, das es erlaubt, den kein Außengewinde tragenden Teil des Kupplungsabschnitts durch den ein Innengewinde tragenden Abschnitt des Hydraulikblocks hindurchzuschieben.
- An dem Kupplungsabschnitt 101 sind bei diesem Ausführungsbeispiel drei Fluidübergabebereiche 104, 105 und 113 ausgebildet. Sie liegen in Richtung der Längsachse L des Druckverstärkers gesehen hintereinander und in Einschraubrichtung des Kupplungsabschnitts gesehen ggf. vor dem mit einem Außengewinde versehenen Bereich des Kupplungsabschnitts.
- Über diese Fluidübergabebereiche 104, 105 und 113 (und nur über diese) kommuniziert der Druckverstärker 1 unmittelbar nach außen, d. h. mit dem Hydraulikblock. Eine zusätzliche Schlauch- oder Rohrverbindung zur Verbindung mit dem Hochdruckverbraucher ist hier nicht vorgesehen, der Hochdruckverbraucher wird vom Druckverstärker 1 über den Hydraulikblock 100 gespeist.
- Der erste Fluidübergabebereich 104 wird beidseitig durch Dichtungen 114 begrenzt, bei denen es sich vorzugsweise um mit oder ohne Stützring in eine Umfangsringnut am Kupplungsabschnitt 101 eingelegte Schnurdichtungen handelt.
- Der in
Fig. 8 gut zu erkennende Niederdruckleitungsabschnitt 8 mündet in eine Querbohrung, die an ihrer anderen Seite in die Außenoberfläche des Zylinderblocks bzw. (wo vorhanden) des zweiten Zylinderblockelements 13.2 mündet, innerhalb des ersten Fluidübergabebereichs 104. Dadurch wird der externe Niederdruckanschluss 5 ausgebildet. Vorzugsweise trägt der Zylinderblock 13 in diesem Bereich aus Festigkeitsgründen keine Ringnut, sondern ist glatt und damit ungeschwächt. Die entsprechende Ringnut ist hier stattdessen bevorzugt im Hydraulikblock 100 angebracht. - Die in
Fig. 8 gezeigte "Tankleitung" wird vorzugweise durch eine innerhalb des Zylinderblocks 13 verlaufende Bohrung bis in den Bereich des Stirnabsatzes 116 des Kupplungsabschnitts 101 verlängert, wo sie ausmündet, in den zweiten Fluidübergabebereich 105. Hierdurch wird der externe Tankanschluss 6 dargestellt. Bevorzugt wird der zweite Fluidübergabebereich in Richtung zur Außenseite des Hydraulikblocks durch eine weitere Dichtung 118 begrenzt und dadurch klein gehalten, wobei die Dichtung vorzugsweise ebenfalls in einer umlaufenden Ringnut des Kupplungsabschnitts liegt und den Dichtungen 114, 115 entsprechen kann. - Der Stirnabsatz 116 wird dadurch gebildet, dass sich der Kupplungsabschnitt hier verjüngt.
- Der verjüngte Zylinderfortsatz 117 des Kupplungsabschnitts 101 ist so gestaltet, dass er in einen zweiten, verjüngten Teil der hier als Stufenbohrung in dem Hydraulikblock 100 ausgeführten Aufnahmebohrung eingeführt werden kann. Der verjüngte Zylinderfortsatz 117 trägt mindestens eine, besser zwei umlaufende Ringnuten, in die - meist mit Stützringen - eine bzw. zwei Dichtungen 119 eingelegt sind. Diese eine bzw. zwei Dichtungen dichten den dritten Fluidübergabebereich 113 gegenüber dem zweiten Fluidübergabebereich 105 ab. Der dritte Fluidübergabebereich ist also am freien Stirnende des Kupplungsabschnitts 101 ausgebildet. In das freie Stirnende mündet die Hochdruckleitung ein, so dass hier der externe Hochdruckanschluss 7 gebildet wird.
- Die besagte Verjüngung des Zylinderfortsatzes 117 erfolgt mit Rücksichtnahme auf den dort anstehenden Hochdruck. Dieser macht es bevorzugt notwendig, die abzudichtenden Längen klein zu halten und auch die der Hochdruckwirkung ausgesetzten Flächen und damit die dort entstehenden Kräfte klein zu halten.
- Unabhängiger Schutz wird auch beansprucht für eine Druckverstärkerkaskade aus einem Hydraulikblock 100 und mehreren hydraulisch in Reihe hintereinander geschalteten Druckverstärkern 1, dadurch gekennzeichnet, dass die nebeneinander an dem Hydraulikblock 100 angebrachten Druckverstärker 1 solche nach einem der vorhergehenden Ansprüche sind.
-
- 1
- Druckverstärker
- 2
- Druckverstärkerkolben
- 3
- Steuerkolben
- 3.1
- Steuerhülse des Steuerkolbens
- 3.2
- Dämpfungskolben
- 4.1
- Rückschlagventil
- 4.2
- Rückschlagventil
- 4.3
- steuerbares Rückschlagventil
- 5
- Anschluss externer Niederdruck (Niederdruckanschluss)
- 6
- Anschluss externer Tank (Tankanschluss)
- 7
- Anschluss externer Hochdruckverbraucher (Hochdruckanschluss)
- 8
- Niederdruckleitung
- 8.1
- Niederdruckleitungsabschnitt zum Hochdruckarbeitsraum
- 8.2
- Niederdruckleitungsabschnitt zum Hochdruckverbraucher
- 8.3
- Niederdruckleitungsabschnitt zur dauernden Vorspannung des Steuerkolbens
- 8.4
- Niederdruckleitungsabschnitt, um dem Steuerkolben die Weiterleitung von Niederdruckarbeitsfluid zu ermöglichen
- 8.5
- Steuerleitung
- 9
- Tank- oder Rückflussleitung
- 9.1
- Rückflussleitungsabschnitt zum Hochdruckverbraucher
- 9.2
- Rückflussleitungsabschnitt zum Steuerkolben
- 10
- Niederdruckarbeitsraum
- 11
- Hochdruckarbeitsraum
- 12
- Zwischenraum
- 13
- Zylinderblock
- 13.1
- erstes Zylinderblockelement
- 13.2
- zweites Zylinderblockelement
- 13.3
- drittes Zylinderblockelement
- 14
- Verbindungsleitung vom Steuerkolben zum Druckverstärkerkolben
- 15 bis 24
- nicht vergeben
- 24*
- Bypass-Drossel
- 25
- Umschaltventil
- 26
- externe Niederdruckspeisepumpe
- 27
- bis 99 nicht vergeben
- 100
- Hydraulikblock
- 101
- Kupplungsabschnitt
- 102
- Gewinde des Kupplungsabschnitts
- 103
- Gewinde des Kupplungsabschnitts
- 104
- erster Fluidübergabebereich
- 105
- zweiter Fluidübergabebereich
- 106
- Dichtung
- 107
- Dichtung
- 108
- Bohrung
- 109
- Bohrung
- 110
- Stopfen
- 111
- Querbohrung
- 112
- Ringnut
- 113
- dritter Fluidübergabebereich
- 114
- Dichtung
- 115
- Dichtung
- 116
- Stirnabsatz
- 117
- Zylinderfortsatz
- 118
- weitere Dichtung
- 119
- weitere Dichtung
- L
- Längsachse des Druckverstärkers bzw. seines Zylinderblocks
- H
- Hochdruckkolben
- N
- Niederdruckkolben
- S
- Kolbenschaft
- DH
- Durchmesser Hochdruckkolben
- DN
- Durchmesser Niederdruckkolben
- V1
- erster verschlankter Bereich des Steuerkolbens
- V2
- zweiter verschlankter Bereich des Steuerkolbens
- DW
- Wandstärke der Spannhülse in radialer Richtung
- D
- lichter Innendurchmesser der Spannhülse
Claims (12)
- Druckverstärker (1) für Fluide, insbesondere für Flüssigkeiten, bestehend aus einem Zylinderblock (13), in dem sich ein Druckverstärkerkolben (2) und ein Steuerkolben (3) zyklisch bewegen, wobei der Druckverstärkerkolben (2) in dem Zylinderblock (13) einen Hochdruckarbeitsraum (11) und einen Niederdruckarbeitsraum (10) bildet und der Zylinderblock (13) einen Niederdruckanschluss (5) zum Einspeisen von unter Niederdruck stehenden Fluid von außen, einen Hochdruckanschluss (7) zur Abgabe von unter einem höheren Druck stehenden Arbeitsfluid nach außen und einen Anschluss zur Abgabe von Fluid, dessen Arbeitsfähigkeit in dem Druckverstärker (1) erschöpft ist, besitzt, wobei der Zylinderblock (13) einen starr mit ihm verbundenen Kupplungsabschnitt (101) aufweist, der in eine aufnehmende Bohrung eines Hydraulikblocks (100) eingeführt und dort festgesetzt werden kann, so dass die aufnehmende Bohrung den Kupplungsabschnitt (101) umschließt, wobei der Kupplungsabschnitt (101) mindestens zwei durch eine Dichtung fluidisch voneinander getrennte Fluidübergabebereiche (104, 105, 113) zum Austausch von Fluid zwischen dem Druckverstärker (1) und dem Hydraulikblock (100), in den er eingesetzt ist, besitzt, dadurch gekennzeichnet, dass der Kupplungsabschnitt (101) ein Gewinde (102) zum Einschrauben des Kupplungsabschnitts (101) in einen Hydraulikblock (100) besitzt1.
- Druckverstärker (1) nach Anspruch 1, dadurch gekennzeichnet, dass in einen Fluidübergabebereich (104, 105, 113) (aus dem Inneren des Zylinderblocks (13) kommend) ein Kanal einmündet, über den der Druckverstärker (1) im Betrieb Fluid abgibt, dessen Arbeitsleistung erschöpft ist, und in einen weiteren Fluidübergabebereich (104, 105, 113) ein weiterer Kanal einmündet, über den im Druckverstärker (1) Niederdruckfluid eingespeist wird.
1 Erteilter Anspruch 6 (identisch zu ursprünglich eingereichtem Anspruch 6) - Druckverstärker (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Kupplungsabschnitt (101) einen dritten Fluidübergabebereich (113) zur Übergabe des unter höherem Druck stehenden Arbeitsfluids an den Hydraulikblock (100) besitzt.
- Druckverstärker (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens einer der Fluidübergabebereiche (104, 105, 113) eine umlaufende Ringnut (112) umfasst.
- Druckverstärker (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass mindestens ein Kanal in die Stirnseite (ganze Stirn oder Stirnfläche einer Ringschulter) des Kupplungsabschnitts (101) einmündet, idealerweise der Kanal, über den das unter höherem Druck stehende Arbeitsfluid vom Druckverstärker (1) abgegeben wird.
- Druckverstärker (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fluidübergabebereiche (104, 105, 113) zwischen dem freien, in den Hydraulikblock (100) einzuführenden Ende des Kupplungsabschnitts (101) und dem Gewinde (102) des Kupplungsabschnitts (101) angeordnet sind.
- Druckverstärker (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Zylinderblock (13) des Druckverstärkers (1) einen angeformten Sechskant besitzt.
- Druckverstärker (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Kupplungsabschnitt (101) von mindestens zwei parallel zur Längsachse (L) des Druckverstärkers (1) verlaufenden Bohrungen (108, 109) durchzogen ist, die sich von der freien Stirnseite des Kupplungsabschnitts (101) bis in den Bereich des Zylinderblocks (13) erstrecken, der stets außerhalb des den Kupplungsabschnitt (101) aufnehmenden Hydraulikblocks (100) positioniert ist.
- Druckverstärker (1) nach Anspruch 8, dadurch gekennzeichnet, dass das in die freie Stirnseite des Kupplungsabschnitts (101) ausmündende Ende bei mindestens einer der Bohrungen (108, 109) durch einen Stopfen (110) verschlossen ist, und dass diese Bohrung (108, 109) sich mit einer Querbohrung (111) schneidet, die in einen Fluidübergabebereich (104) ausmündet.
- Hydraulikaggregat mit einem Hydraulikblock (100),in dem mehrere von Hydraulikfluid durchflossene Bohrungen zur Verbindung unterschiedlicher hydraulischer Wirkorgane ausgebildet sind, und mindestens einem Druckverstärker (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Druckverstärker (1) einen Kupplungsabschnitt (101) aufweist, der in eine Bohrung in dem Hydraulikblock (100) eingeführt ist.
- Hydraulikaggregat nach Anspruch 10, dadurch gekennzeichnet, dass das Hydraulikaggregat mehrere Druckverstärker (1) nach einem der Ansprüche 1 bis 11 aufweist, die jeweils einen Kupplungsabschnitt (101) besitzen, der in eine Bohrung des Hydraulikblocks (100) eingeführt ist.
- Hydraulikaggregat nach Anspruch 11, dadurch gekennzeichnet, dass mindestens zwei, besser mindestens drei Druckverstärker (1) hintereinander in Reihe geschaltet sind, so dass der von einem in Strömungsrichtung vorangehenden Druckverstärker (1) gelieferte Hochdruck den Druck darstellt, mit dem ein in Strömungsrichtung nachfolgender Druckverstärker (1) eingangsseitig gespeist wird.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DK16168387.5T DK3242017T4 (da) | 2016-05-04 | 2016-05-04 | Trykforstærker til iskruning |
EP16168387.5A EP3242017B2 (de) | 2016-05-04 | 2016-05-04 | Druckübersetzer als einschraubgerät |
US15/581,543 US20170321728A1 (en) | 2016-05-04 | 2017-04-28 | Pressure Intensifier for Fluids |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16168387.5A EP3242017B2 (de) | 2016-05-04 | 2016-05-04 | Druckübersetzer als einschraubgerät |
Publications (3)
Publication Number | Publication Date |
---|---|
EP3242017A1 EP3242017A1 (de) | 2017-11-08 |
EP3242017B1 EP3242017B1 (de) | 2019-01-02 |
EP3242017B2 true EP3242017B2 (de) | 2023-10-11 |
Family
ID=56068661
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16168387.5A Active EP3242017B2 (de) | 2016-05-04 | 2016-05-04 | Druckübersetzer als einschraubgerät |
Country Status (3)
Country | Link |
---|---|
US (1) | US20170321728A1 (de) |
EP (1) | EP3242017B2 (de) |
DK (1) | DK3242017T4 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DK3473863T3 (da) * | 2017-10-19 | 2021-03-29 | Pistonpower Aps | Hydraulisk trykforstærkerarrangement |
EP3543460B1 (de) * | 2018-03-19 | 2021-03-10 | Caterpillar Global Mining Europe GmbH | Hydraulische schildhalterung und druckverstärker |
EP3730806B1 (de) * | 2019-04-24 | 2023-01-18 | Piston Power s.r.o. | Hydraulische aktuatoranordnung |
US11480165B2 (en) * | 2019-09-19 | 2022-10-25 | Oshkosh Corporation | Reciprocating piston pump comprising a housing defining a first chamber and a second chamber cooperating with a first piston and a second piston to define a third chamber and a fourth chamber |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3940937A (en) * | 1972-04-14 | 1976-03-02 | Pauliukonis Richard S | Intensifier |
US5451145A (en) * | 1993-11-05 | 1995-09-19 | Sauter; William | High pressure fluid pump transformer and method |
US5669739A (en) * | 1995-07-05 | 1997-09-23 | Hl & H Timber Products (Proprietary) Limited | Prestressing of mine props |
DE19633258C1 (de) | 1996-08-17 | 1997-08-28 | Iversen Hydraulics Aps | Druckverstärker für Fluide, insbesondere für Hydraulikflüssigkeiten |
US6336802B1 (en) * | 1998-03-10 | 2002-01-08 | David R. Hall | Reduced mass unitary frame for ultra high-pressure high-temperature press apparatus |
DE10107115B4 (de) * | 2001-02-14 | 2004-09-30 | Robert Bosch Gmbh | Drucksteuerventil |
DE10158178C1 (de) * | 2001-11-28 | 2003-07-17 | Minibooster Hydraulics As Soen | Hydraulischer Druckverstärker |
DE10249523C5 (de) * | 2002-10-23 | 2015-12-24 | Minibooster Hydraulics A/S | Druckverstärker |
WO2004048786A1 (en) | 2002-11-25 | 2004-06-10 | Hartho-Hydraulic Aps | Amplifier assembly |
DE10328286B4 (de) * | 2003-06-23 | 2015-05-13 | Caterpillar Global Mining Europe Gmbh | Hydraulischer Schildausbau |
DE102006038862A1 (de) * | 2006-08-18 | 2008-02-21 | Scanwill Aps | Druckübersetzer mit Doppelsitzventil |
DE102007031282A1 (de) * | 2007-07-05 | 2009-01-08 | Uwe Hammer | Hydraulischer Druckverstärker |
DE102009030514B4 (de) | 2009-06-04 | 2015-09-10 | Scanwill Fluid Power Aps | Ausblaswerkzeug |
-
2016
- 2016-05-04 DK DK16168387.5T patent/DK3242017T4/da active
- 2016-05-04 EP EP16168387.5A patent/EP3242017B2/de active Active
-
2017
- 2017-04-28 US US15/581,543 patent/US20170321728A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20170321728A1 (en) | 2017-11-09 |
DK3242017T4 (da) | 2023-12-18 |
DK3242017T3 (en) | 2019-04-23 |
EP3242017A1 (de) | 2017-11-08 |
EP3242017B1 (de) | 2019-01-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2564105B1 (de) | Hydraulikkupplungsmuffe | |
EP2019931B1 (de) | Lageranordnung und zumessventil und absaugeinrichtung hierfür | |
EP3242017B2 (de) | Druckübersetzer als einschraubgerät | |
DE102007036844B4 (de) | Verfahren zum Betrieb einer hydropneumatischen Vorrichtung zur Druckübersetzung | |
DE2848208C2 (de) | Vorgesteuertes Druckbegrenzungsventil mit Einspeisefunktion | |
DE102005051606B4 (de) | Steuermechanismus | |
EP3416783B1 (de) | Vorrichtung und verfahren zum übersetzen einer mechanischen kraft zum antreiben einer pressvorrichtung für pressfittings | |
DE102014016639A1 (de) | Hydraulikventilanordnung mit Steuerungs-/Regelungsfunktion | |
DE2501020A1 (de) | Klemmkupplung zum starren verbinden einer antriebsbuchse mit einer darin verschiebbar gefuehrten spindel | |
EP3034889B1 (de) | Druckübersetzer mit Spannhülse | |
EP3109485B1 (de) | Hydraulisches system zur druckmittelversorgung eines hydrozylinders mit drei getrennten druckmittelbeaufschlagbaren wirkflächen und verfahren zum betreiben des hydraulischen systems | |
DE20110365U1 (de) | Kupplungsvorrichtung zur Übertragung von Fluiddruck | |
DE102014016642A1 (de) | Hydraulikventilanordnung mit Steuerungs-/Regelungsfunktion | |
DE10026616B4 (de) | Druckübersetzer, insbesondere hydropneumatischer Druckübersetzer | |
DE102016219220B4 (de) | Hydraulikantrieb | |
EP1135614A1 (de) | Entsperrbares rückschlagventil für sehr hohe systemdrücke | |
DE102009052076A1 (de) | Ventilanordnung | |
DE19806882A1 (de) | Vorrichtung zum radialen Anpressen eines Dichtkörpers | |
DE3625805C2 (de) | ||
DE102015218576B4 (de) | Steuereinheit | |
EP0574682B1 (de) | Kupplung zum reibschlüssigen Verbinden einer Welle mit einem Maschinenteil | |
DE19714505B4 (de) | Rückschlagventil | |
DE2221388A1 (de) | Stroemungsmittelbetaetigter Kolben-Druckverstaerker | |
DE2847951A1 (de) | Hydraulisch betaetigter hohlspannzylinder fuer spanneinrichtungen an einer rotierenden spindel | |
DE19927070B4 (de) | Hydraulische Presse |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20161124 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F15B 3/00 20060101ALI20180123BHEP Ipc: F04B 7/04 20060101AFI20180123BHEP Ipc: F04B 9/08 20060101ALI20180123BHEP Ipc: F04F 13/00 20090101ALI20180123BHEP |
|
INTG | Intention to grant announced |
Effective date: 20180208 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTC | Intention to grant announced (deleted) | ||
INTG | Intention to grant announced |
Effective date: 20180716 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1084715 Country of ref document: AT Kind code of ref document: T Effective date: 20190115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502016003032 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20190415 Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190502 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190402 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190402 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190403 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190502 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R026 Ref document number: 502016003032 Country of ref document: DE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLAX | Notice of opposition and request to file observation + time limit sent |
Free format text: ORIGINAL CODE: EPIDOSNOBS2 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
26 | Opposition filed |
Opponent name: MINIBOOSTER HYDRAULICS A/S Effective date: 20190925 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190504 |
|
PLBB | Reply of patent proprietor to notice(s) of opposition received |
Free format text: ORIGINAL CODE: EPIDOSNOBS3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502016003032 Country of ref document: DE Representative=s name: MISSELHORN, MARTIN, DIPL.-ING., DE Ref country code: DE Ref legal event code: R081 Ref document number: 502016003032 Country of ref document: DE Owner name: SCANWILL FLUID POWER APS, DK Free format text: FORMER OWNER: SCANWILL FLUID POWER APS, ALBERTSLUND, DK |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SCANWILL FLUID POWER APS |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190531 |
|
PLAY | Examination report in opposition despatched + time limit |
Free format text: ORIGINAL CODE: EPIDOSNORE2 |
|
PLBC | Reply to examination report in opposition received |
Free format text: ORIGINAL CODE: EPIDOSNORE3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20160504 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190102 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1084715 Country of ref document: AT Kind code of ref document: T Effective date: 20210504 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210504 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20230519 Year of fee payment: 8 |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20231011 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R102 Ref document number: 502016003032 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T4 Effective date: 20231213 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240522 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240522 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20240522 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240522 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20240522 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240531 Year of fee payment: 9 |