EP3237354A2 - Liant acido-basique comprenant des ciments a base de phosphate - Google Patents

Liant acido-basique comprenant des ciments a base de phosphate

Info

Publication number
EP3237354A2
EP3237354A2 EP15832810.4A EP15832810A EP3237354A2 EP 3237354 A2 EP3237354 A2 EP 3237354A2 EP 15832810 A EP15832810 A EP 15832810A EP 3237354 A2 EP3237354 A2 EP 3237354A2
Authority
EP
European Patent Office
Prior art keywords
calcium
binder
potassium
binder according
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15832810.4A
Other languages
German (de)
English (en)
Inventor
Raul LEIVA MUNOZ
Joel NUNEZ SANZ
Zahia TOUTOU-MELINGE
Joumana YAMMINE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Weber SA
Original Assignee
Saint Gobain Weber SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Weber SA filed Critical Saint Gobain Weber SA
Publication of EP3237354A2 publication Critical patent/EP3237354A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • C04B28/342Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders the phosphate binder being present in the starting composition as a mixture of free acid and one or more reactive oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B12/00Cements not provided for in groups C04B7/00 - C04B11/00
    • C04B12/02Phosphate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/12Nitrogen containing compounds organic derivatives of hydrazine
    • C04B24/14Peptides; Proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/38Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the present invention relates to a mineral binder based on phosphates.
  • This type of binder used in construction products results from an acid-base reaction between a metal oxide and a salt or a phosphoric acid derivative.
  • Most basic oxides which react with phosphoric acid or one of its acid derivatives form, when mixed with water, a homogeneous mass which hardens with time at room temperature.
  • phosphatic cements mention may be made of phosphomagnesium cements which have been developed to compete with synthetic resins since they make it possible to obtain quick-setting concretes with an almost immediate appearance of the desired resistances. They are particularly applicable in the biomedical field and in dentistry, in the rapid repair of roads, tracks or bridges, or in the encapsulation of hazardous waste.
  • a cement of this type called Cerami Crête developed at Bat s-Uni is obtained by mixing magnesium oxide or magnesia, with potassium monophosphate KH 2 PO.
  • magnesia reacts with phosphate groups under acidic conditions to form an insoluble phosphate phase which hardens and has the properties of a ceramic.
  • This phase is k-struvite of formula MgKPO 4 , 6H 2 0.
  • Boric acid is very often used to increase the workability time of this type of cement.
  • boric acid is classified as a toxic substance for reproduction. Other solutions for controlling setting time are therefore contemplated.
  • Articles describe the possibility of lengthening the setting time and thus the workability by using a particular magnesium oxide, namely calcined magnesia at high temperature and by varying the particle size of the basic metal oxide used. But this does not allow to achieve setting times or workability comparable to those obtained for systems based on Portland cements.
  • Another disadvantage of this type of system is related to the strong exothermicity of the reaction that takes place between magnesia and phosphate. Boric acid used as retarder does not control the thermodynamics of the reaction. The end user must therefore take into account this high exothermicity which causes a significant evaporation of the water present in the system during the preparation of the construction material.
  • the present invention relates to a phosphate-based inorganic binder obtained by reaction between at least one basic component and an acid phosphate salt, in the presence of a retarding agent which is a salt X + A " whose solubility in aqueous medium measured at 25 ° C is greater than that of the acidic phosphate salt, and in which
  • X " is a cation selected from alkali metals, alkaline earth metals, zinc, aluminum and ammonium ion, and A- is an acetate, formate, benzoate, tartrate, oxalate, oleate, bromide or iodide anion.
  • the presence of the retarding agent as described above advantageously makes it possible to control the kinetics and the exothermicity of the acid-base reaction that takes place between the basic constituent (s) present and the acidic phosphate salt.
  • the use of such a retarding agent makes it possible to avoid the use of boric acid or its derivatives.
  • the basic constituent, acting as a base in the acid-base reaction for obtaining the binder according to the invention is chosen from metal oxides, metal hydroxides or sulphates.
  • Oxides metal may be calcium oxide, magnesium oxide, zinc oxide, aluminum oxide, and / or iron oxide.
  • the metal oxide may also be introduced in the form of a more complex inorganic compound which comprises one or more metal oxides. Mention may be made in this category of silicates, metallurgical slags (for example steelworks slags or blast furnace slags), lime, fly ash, dolomite, mica, kaolin and / or metakaolin.
  • Metal hydroxides such as magnesium or calcium hydroxide can also be used as the basic component for forming the binder according to the present invention.
  • Sulphates such as calcium sulphate can also be used as the basic component for forming the binder according to the present invention.
  • Sources of calcium sulphates include plaster, gypsum, hemihydrate and / or anhydrite. It is possible to use a mixture of these different sources of metal oxides or hydroxides and sulfates to prepare the binder according to the present invention.
  • the binder according to the present invention is obtained from a mixture of at least two basic constituents, at least one of them being chosen from magnesium oxide, calcium hydroxide or magnesium, wollastonite, alumina, metallurgical slags and calcium sulphate.
  • the additional basic constituent may then be chosen from kaolin, metakaolin, fly ash, lachaux, ladolomite, calcined clays, mica and / or talc, for example.
  • the acidic phosphate salt participating in the acidic binder formation reaction according to the present invention is selected from:
  • dihydrogen phosphates of potassium, calcium, magnesium, aluminum, sodium or ammonium potassium, calcium, magnesium, aluminum, sodium or ammonium
  • acid pyrophosphates of potassium, calcium, magnesium, aluminum, sodium or ammonium, and / or
  • acid polyphosphates of potassium, calcium, magnesium, aluminum, sodium or ammonium of potassium, calcium, magnesium, aluminum, sodium or ammonium.
  • Hydrogen phosphates are salts comprising anion HP0 ⁇ 2 ".
  • the dihydrogen phosphates are salts comprising anion ⁇ H 2 P0".
  • the acidic pyrophosphates are salts derived from pyrophosphoric acid and correspond to the formulas MH3P2O7, M2H2P2O7 and M3HP2O7.
  • the acid polyphosphates are salts derived from polyphosphoric acid and correspond to the general formula in which n is an integer strictly greater than 2.
  • the acidic phosphate salt thus comprises at least one proton capable of being released during the aqueous dissolution of the binder, resulting in an acid attack to dissolve the metal oxide present in solution.
  • the acidic phosphate salt is chosen from potassium dihydrogen phosphate KH 2 PO (MKP), ammonium dihydrogen phosphate (NH 4 ) H 2 PO (MAP) and diammonium hydrogen phosphate (NH 4 ) 2 HPO 4.
  • MKP potassium dihydrogen phosphate KH 2 PO
  • MAP ammonium dihydrogen phosphate
  • DAP diammonium hydrogen phosphate
  • calcium dihydrogen phosphate Ca (H 2 PO 4 ) 2 sodium dihydrogen phosphate NaH 2 PO 4, aluminum hydrophosphate AIH 3 (PO) 2 xH 2 O, calcium metaphosphate Ca (HPO 3) 2
  • Preferred acid phosphate salts are those which do not release ammonia during the reaction and therefore are selected from potassium dihydrogen phosphate KH 2 PC 4 (MKP), calcium dihydrogen phosphate Ca (H 2 PO 4 ) 2 , metaphosphate Calcium Ca (HPO 3 ) 2, sodium dihydrogenphosphate NaH 2 PO 4, and aluminum hydrophosphate AIH 3 (PO 4 ) 2, xH 2 O, magnesium dihydrogen phosphate Mg (H 2 PC 4) 2 or trihydrogenphosphate d aluminum AI (H 2 PO) 3 .
  • the retarding agent used to control the reactivity of the binder according to the present invention is an ionic salt of formula X + A in which the X + cation is chosen from alkali metals, alkaline earth metals, zinc, aluminum and aluminum.
  • ammonium ion, and the anion A " is chosen from acetate, formate, benzoate, tartrate, oleate, oxalate, bromide or iodide anions
  • the cation may be chosen from alkali metals, alkaline earth metals, aluminum and ammonium ion and the anion A " may be selected from acetate, formate, benzoate, tartrate, oleate, bromide or iodide anions.
  • Table 2 gives the solubility in grams in 100 mL of water at 25 ° C of acid phosphate salts suitable for use in the binder formation reaction of the present invention.
  • the retarding agent is selected depending on the acid phosphate salt used in the binder formation reaction. It is essential that its solubility be greater than that of the acid phosphate salt.
  • a salt whose cation is identical to the cation of the acid phosphate salt involved in the binder formation reaction will be chosen as a retarding agent.
  • the retarding agents whose anions are acetates or formates are preferred. These anions make it possible to obtain a longer workability time and a better control of the exothermicity of the reaction.
  • the amount of retarding agent is between 1 and 10% by weight of the total amount of binder components.
  • the amount of retarding agent is between 2 and 7% by weight.
  • a mixture of several retarding agents in a binder formulation.
  • a mixture of salts whose anions are chosen from acetates, formates and oxalates is used as retarding agents.
  • a mixture of acetate and oxalate or a mixture of formate and oxalate can be used as retarding agents.
  • the amount of total retarding agents remains between 1 and 10% by weight, preferably between 2 and 7% by weight of the total amount of the constituents of the binder.
  • the binder according to the present invention may comprise, in addition to the acidic phosphate salt, another phosphate compound chosen from the salts of orthophosphates, polyphosphates or pyrophosphates in which the cation is chosen from sodium, potassium, calcium or the ammonium ion.
  • the orthophosphate salts are salts derived from orthophosphoric acid comprising the PO 3 - anion
  • Pyrophosphates are salts derived from pyrophosphoric acid comprising the ⁇ 2 ⁇ / 4 - anion.
  • the solubility of sodium tripolyphosphate is about 14.5 g in 100 ml water at 25 ° C. That of sodium pyrophosphate Na 4 P 2 O / is about 7 under the same conditions. 3 this additional phosphate compound is a base it is It is important, however, that the amounts introduced into the binder composition remain, however, low in order to maintain the acidic nature of the phosphorus-based component occurring in the acid-base reaction.
  • the present invention also relates to a mortar or concrete composition
  • a mortar or concrete composition comprising at least one lant as described above.
  • the composition contains aggregates, aggregates and / or sands, and is commonly referred to as mortar or concrete depending on the size of the aggregates.
  • Light weight aggregates such as expanded clays, perlite, aerogels, vermiculite, expanded glass or expanded polystyrene may also be used in the mortar or concrete composition of the present invention. These compounds j particular on the rheology, the hardness or the fi nal appearance of the product. They are generally composed of silicious, calcareous and / or calcareous sand.
  • the composition may also include components called yarns, limestone or silicate and other possible additives and adjuvants imparting particular properties.
  • rheological agents for protecting against the growth of algae and fungi such as biocides, fungicides, algicides and bactericides.
  • the present invention also relates to structural products, such as mortars, floor tiles, tile adhesives, screeds, floor coatings, technical mortars, insulating mortars or mortars. facade coatings obtained from the concrete or mortar composition defined above. These products are obtained by mixing the composition with water, the pasty composition thus formed then being cured.
  • Technical mortars include special mortars formulated for special applications, such as sealing mortars, repair mortars, mortars or mortars. Prefabricated elements can also be obtained from compositions comprising the binder according to the present invention.
  • the building products according to the invention can be prepared on site or prefabricated.
  • the products thus obtained have workability times compatible with the desired applications, since the product remains usable after mixing for a longer time than when the composition does not include the retarding agent.
  • the products obtained from the mortar or concrete compositions according to the present invention do not have defects of aesthetic appearance due to eff lorescence phenomena.
  • the examples below illustrate the invention without limiting its scope.
  • the practical degree of use is measured for different binder compositions.
  • This practical duration of use corresponds to the maximum duration after the preparation of the binder, that is to say after the mixing of the different powdery constituents with the mixing water, during which the wet paste thus obtained can be used.
  • the determination of the practical duration of use is made by measuring the time that elapses between the moment when the product is prepared with the desired consistency of dough and the moment when the viscosity of the dough has increased so that the product does not be more fluid enough to apply.
  • the practical duration of use is correlated with the initial setting time due to hardening of the dough, the setting time being measured according to the Vicat test according to the NF EN 196-3 standard.
  • the workability time is defined as the time during which a fresh dough retains a sufficiently low viscosity to be easily applied with good workability.
  • the powdery products are mixed together before adding the mixing water to prepare the fresh dough.
  • the amount of water that is added and given in% by weight of water may vary depending on the application and desired workability so as to obtain the consistency of the desired pulp.
  • the determination of the consistency of the fresh dough is performed at the shaking table according to standard NF EN 1015-3.
  • the powder mixture is mixed with the water so to obtain a homogeneous paste.
  • the fresh dough is poured into a given mold on the tray of a shaking table. After removal of the mold, the fresh dough is subjected to a given number of vertical shaking. The diameter of the pulp circle is measured. Identical diameters make it possible to ensure that the consistencies of the pastas are comparable.
  • compositions of lants according to the present invention are prepared. Measurements of practical duration of use are made on identical compositions with or without retarding agents.
  • compositions of the ingredients are prepared by mixing the basic component (s) with the acidic phosphate salt in the presence of the salt used as a retarding agent.
  • each of the constituents is given as a percentage by weight, the total sum of the quantities of pulverulent products being equal to 100%.
  • the mixing water which is added is indicated for each example and corresponds to the quantity of water necessary to obtain the same consistency of dough.
  • the water content indicated in each example corresponds to the amount which is added to a mixture which comprises 100% of pulverulent products.
  • the examples below show that the practical duration of application of the paste obtained by mixing the lye according to the present invention with water is increased in the presence of the retarding agent.
  • the binder is obtained by reaction between one or more basic constituents and an acidic phosphate salt and is therefore inherently extremely reactive. Consequently, mortar compositions prepared therefrom, which may include other components such as sands or films which may also contribute to the increase in the practical duration of application, will permit the use of the same. practical durations of application even better.
  • KH 2 PC1 ⁇ 4 (Prayon) is prepared.
  • the water is added to the powder mixture thus obtained in an amount representing 20% by weight relative to the total amount of powder constituents.
  • the measured practical use time of the dough is 0.5 min.
  • the same composition is prepared by adding 3% by weight of potassium acetate (Sgma Aldrich) as a retarding agent.
  • the amount of water added is also 20% by weight.
  • the measured practical duration of use of the paste comprising the retarding agent is then 7 min.
  • a mixture consisting of 50 wt.% CaSO 3 wollastonite (Nordkalk) and 50 wt.% Calcium dihydrogenphosphate Ca (H 2 PO 4) 2 -H 2 O (Budenheim) is prepared.
  • the water is added to the pulverulent mixture thus obtained in an amount representing 50% by weight relative to the total amount of powder constituents.
  • the measured practical duration of use of this paste is 0.2 min.
  • the same composition is prepared by adding 3% by weight of calcium acetate (Sgma Aldrich) as a retarding agent.
  • the amount of water added is also 50% by weight.
  • the measured practical useful life of the paste comprising the retarding agent is up to 3 minutes.
  • Composition 3-1 corresponds to 25% by weight of MgO and 75% by weight of MKP.
  • the amount of water added is 20% by weight relative to the total sum of the pulverulent compounds.
  • Composition 3-2 corresponds to 50% by weight of MgO and 50% by weight of MKP.
  • the amount of water added is 21% by weight relative to the total sum of the pulverulent compounds.
  • the composition 3-3 corresponds to 75% by weight of MgO and 25% by weight of MKP.
  • the amount of water added is 22% by weight relative to the total sum of the pulverulent compounds.
  • compositions 3-1, 3-2 and 3-3 3% by weight of potassium acetate (Sgma Aldrich) is added to each of compositions 3-1, 3-2 and 3-3, maintaining the MgO: MKP ratios which are respectively 25/75, 50/50 and 75/25.
  • the mixing water is added in the same proportions.
  • the practical durations of use of the pastes obtained from the compositions 3-1, 3-2 and 3-3 to which the retarding agent has been added have been measured and are worth respectively 80 min for the paste obtained from the composition 3 -1, 50 min for the paste obtained from the composition 3-2 and 18 min for the paste obtained from the composition 3-3.
  • compositions with a weight ratio MgO: MKP identical to that of the composition 3-3 are prepared from the same raw materials.
  • Composition 4-1 corresponds to 75% by weight of highly calcined MgO at high temperature and 25% by weight of MKP.
  • Composition 4-2 comprises 37.5% by weight of highly calcined MgO at high temperature, 12.5% by weight of MKP and 50% by weight of silica sand.
  • Compositions 4-3 comprise 72.8% by weight of highly calcined MgO at high temperature, 24.2% by weight of MKP and 3% by weight of retarding agent.
  • Various retarding agents are tested: potassium acetate of Sgma Aldrich (composition 4-3a), potassium formate of VWR (composition
  • composition 4-3d comprises a mixture of 2.40% by weight of potassium formate (VWR) and 0.6% by weight of potassium oxalate (VWR).
  • composition 4-3e comprises a mixture of 2.40% by weight of potassium acetate (Sgma Aldrich) and 0.6% by weight of oxalate of potassium (VWR).
  • Other retarding agents such as Alfa Aesar's Zn formate (composition 4-3f) and VWR calci um formate (composition 4-3g) were used in an amount of 3% by weight. The amount of water added for the mixing is 22% by weight relative to the total sum of the pulverulent compounds.
  • Composition 5-1 corresponds to 25% by weight of highly calcined MgO at high temperature and 75% by weight of MKP.
  • Composition 5-2 comprises 12.5% by weight of highly calcined MgO at high temperature, 37.5% by weight of MKP and 50% by weight of silica sand.
  • Compositions 5-3 comprise 24.2% by weight of highly calcined MgO at high temperature, 72.8% by weight of MKP and 3% by weight of a retarding agent.
  • Various retarding agents are tested: potassium acetate of Sgma Aldrich (composition 5-3a), potassium oxalate of VWR (composition 5-3b) and for comparison pure boric acid with 99.8% of Panreac (composition 5-3c).
  • the amount of water added for the mixing is 22% by weight relative to the total sum of the pulverulent compounds.
  • composition 6-1 consisting of:
  • composition 6-2 The same dough composition is prepared by adding 3% by weight of potassium acetate of Sgma Aldrich (composition 6-2). The practical duration of application of this paste is increased and is 40 min.
  • Figures 1 and 2 show the cured products obtained from these compositions 6-1 and 6-2: we note the presence of white areas in Figure 1, reflecting the phenomena of efflorescence. In the presence of potassium acetate, this phenomenon of efflorescence is controlled, the color of the sample being more uniform.
  • a mixture comprising 52.6% by weight of slightly calcined magnesium oxide (ISMAF), 42.1% by weight of potassium dihydrogenphosphate KH 2 PO (Prayon) and 5.3% by weight of retarding agent is prepared. of different types, some being non-compliant with the invention and therefore given for comparison.
  • the amount of water added is 37% by weight relative to the total amount of the powdery constituents.
  • the practical durations of use of the various pastes obtained are measured and indicated in the table below: Delaying agent Practical duration of use (min)
  • a mortar composition is prepared by mixing the following different constituents:
  • the amount of added water is 20% by weight relative to the total sum of the pulverulent compounds.
  • the same dough composition is prepared by adding 3% by weight of potassium acetate.
  • the practical duration of application of this paste is increased and is 32 mi.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

L'invention décrit un liant minéral à base de phosphate obtenu par réaction entre au moins un constituant basique et un sel de phosphate acide, en présence d'un agent retardateur qui est un sel X+A- dont la solubilité en milieu aqueux mesurée à 25°C est supérieure à celle du sel de phosphate acide, et dans lequel X+ est un cation choisi parmi les métaux alcalins, les métaux alcalinoterreux, le zinc, l'aluminium et l'ion ammonium, et A- est un anion acétate, formiate, benzoate, tartrate, oléate, oxalate, bromure ou iodure.

Description

LIANT ACI DO- BASQUE COMPRENANT DES CIMENTS A BASE DE PHOSPHATE
La présente invention porte sur un liant minéral à base de phosphates. Ce type de liant, utilisé dans les produits de construction résulte d'une réaction acido-basique entre un oxyde métallique et un sel ou un dérivé de l'acide phosphorique. La plupart des oxydes basiques qui réagissent avec l'acide phosphorique ou un de ses dérivés acides forment, lors d'un mélange avec de l'eau, une masse homogène qui durcit avec le temps à température ambiante. Parmi les ciments phosphatés les plus connus, on peut citer les ciments phosphomagnésiens qui ont été développés pour concurrencer les résines synthétiques puisqu'ils permettent d'obtenir des bétons à prise rapide avec une apparition quasi-immédiate des résistances recherchées. Ils trouvent notamment leur application dans le domaine biomédical et dans la dentisterie, dans la réfection rapide des routes, pistes ou ponts, ou dans l'encapsulât ion de déchets dangereux. Un ciment de ce type appelé Cerami crête développé aux Bat s- Uni s est obtenu en mélangeant de l'oxyde de magnésium ou magnésie, avec du monophosphate de potassium KH2P0. En présence d'eau, la magnésie réagit avec les groupements phosphates dans des conditions acides pour former une phase phosphate insoluble qui durcit et qui a les propriétés d'une céramique. Cette phase est la k-struvite de formule MgKP04, 6H20. La réaction de formation de cette phase est très rapide et nécessite l'utilisation d'un retardateur de prise. L'acide borique est très souvent utilisé pour augmenter le temps d'ouvrabilité de ce type de ciment. Toutefois, selon les réglementations européennes et notamment la Directive REACH, l'acide borique est classé parmi les substances toxiques pour la reproduction. D'autres solutions pour contrôler le temps de prise sont par conséquent envisagées. Des articles décrivent la possibilité d'allonger le temps de prise et donc I ' ouvrabi lité en utilisant un oxyde de magnésium particulier, à savoir de la magnésie calcinée à haute température et en jouant sur la taille des particules de l'oxyde métallique basique mis en jeu. Mais ceci ne permet pas d'atteindre des temps de prise ou durée d'ouvrabilité comparables à celles que l'on obtient pour des systèmes à base de ciments Portland. Un autre inconvénient de ce type de système est lié à la forte exothermicité de la réaction qui a lieu entre la magnésie et le phosphate. L'acide borique utilisé comme retardateur ne permet pas de maîtriser la thermodynamique de la réaction. L'utilisateur final doit donc prendre en compte cette forte exothermicité qui entraîne une importante évaporation de l'eau présente dans le système lors de la préparation du matériau de construction.
D'autre part, un autre inconvénient lié à la trop forte réactivité et prise de ces systèmes est l'apparition de zones blanchies au niveau de la surface du matériau durci, qui traduit une remontée en surface de sels n'ayant pas réagi. Il s'agit d'efflorescence qui donne un défaut d'aspect esthétique important qui n'est pas acceptable pour les applications recherchées.
Il est nécessaire de développer des systèmes de liants à base de phosphate utilisables dans des compositions de mortier qui présentent des temps d'ouvrabilité plus longs, compatibles avec les applications recherchées, et qui ne présentent pas les inconvénients décrits ci-dessus. C'est dans ce cadre que s'inscrit la présente invention.
La présente invention porte sur un liant minéral à base de phosphate obtenu par réaction entre au moins un constituant basique et un sel de phosphate acide, en présence d'un agent retardateur qui est un sel X+A" dont la solubilité en milieu aqueux mesurée à 25°Cest supérieure à celle du sel de phosphate acide, et dans lequel
X*" est un cation choisi parmi les métaux alcalins, les métaux alcalinoterreux, le zinc, l'aluminium et l'ion ammonium, et A- est un anion acétate, formiate, benzoate, tartrate, oxalate, oléate, bromure ou iodure.
La présence de l'agent retardateur tel que décrit ci -dessus permet avantageusement de contrôler la cinétique et l'exothermicité de la réaction acido-basique qui a lieu entre le ou les constituants basiques présents et le sel de phosphate acide. L'utilisation d'un tel agent retardateur permet d'éviter l'utilisation de l'acide borique ou de ses dérivés.
Le constituant basique, jouant le rôle de base dans la réaction acido- basique permettant d'obtenir le liant selon l'invention est choisi parmi les oxydes métalliques, les hydroxydes métalliques ou les sulfates. Les oxydes métalliques peuvent être l'oxyde de calcium, l'oxyde de magnésium, l'oxyde de zinc, l'oxyde d'aluminium, et/ ou l'oxyde de fer. L'oxyde métallique peut également être introduit sous la forme d'un composé minéral plus complexe qui comprend un ou plusieurs oxydes métalliques. On peut citer dans cette catégorie les silicates, les laitiers métallurgiques (par exemple laitiers des aciéries ou laitiers de hauts-fourneaux), la chaux, les cendres volantes, la dolomite, le mica, le kaolin et/ ou le métakaolin. Des hydroxydes métalliques tels que l'hydroxyde de magnésium ou de calcium peuvent également être utilisés comme constituant basique permettant de former le liant selon la présente invention. Des sulfates tels que le sulfate de calcium peuvent également être utilisé comme constituant basique permettant de former le liant selon la présente invention. Parmi les sources de sulfates de calcium, on peut citer le plâtre, le gypse, l'hémihydrate et/ ou l'anhydrite. Il est possible d'utiliser un mélange de ces différentes sources d'oxydes ou d'hydroxydes métalliques et de sulfates pour préparer le liant selon la présente invention.
De façon préférée, le liant selon la présente invention est obtenu à partir d'un mélange d'au moins deux constituants basiques, l'un d'entre eux au moins étant choisi parmi l'oxyde de magnésium, l'hydroxyde de calcium ou de magnésium, la wollastonite, l'alumine, les laitiers métallurgiques et le sulfate de calcium. Le constituant basique additionnel, peut alors être choisi parmi le kaolin, le métakaolin, les cendres volantes, lachaux, ladolomite, les argiles calcinées, le mica et/ ou le talc par exemple.
Le sel de phosphate acide participant à la réaction aci do- basique de formation du liant selon la présente invention est choisi parmi :
-les hydrogénophosphates de potassium, de calcium, de magnésium, d'aluminium, de sodium ou d'ammonium,
-les di hydrogénophosphates de potassium, de calcium, de magnésium, d'aluminium, de sodium ou d'ammonium,
-les pyrophosphates acides de potassium, de calcium, de magnésium, d'aluminium, de sodium ou d'ammonium, et/ ou
-les polyphosphates acides de potassium, de calcium, de magnésium, d'aluminium, de sodium ou d'ammonium.
Ces sel s de phosphates acides peuvent être utilisés seuls ou en mélange. Les hydrogénophosphates sont des sels comprenant Γ anion HP02". Les dihydrogénophosphates sont des sels comprenant Γ anion H2P0". Les pyrophosphates acides sont des sels dérivés de l'acide pyrophosphorique et répondent aux formules MH3P2O7, M2H2P2O7 et M3HP2O7. Les polyphosphates acides sont des sels dérivés de l'acide polyphosphorique et répondent à la formule générale dans lesquelles n est un entier strictement supérieur à 2.
Le sel de phosphate acide comprend donc au moins un proton susceptible d'être libéré lors de la mise en solution aqueuse du liant, entraînant une attaque acide permettant de dissoudre l'oxyde métallique présent en solution.
De façon préférée, le sel de phosphate acide est choisi parmi le dihydrogénophosphate de potassium KH2P0 (MKP), le dihydrogénophosphate d'ammonium (NH4)H2P0 (MAP), Γ hydrogénophosphate de diammonium (NH4)2HP04 (DAP), le dihydrogénophosphate de calcium Ca(H2P04)2, le dihydrogénophosphate de sodium NaH2P04, Γ hydrophosphate d'aluminum AIH3(P0)2xH20, le métaphosphate de calcium Ca(HP03)2, le dihydrogénophosphate Mg(H2P0)2 de magnésium ou le tri hydrogénophosphate d'aluminium AI(H2P0)3. Les sels de phosphate acides préférés sont ceux ne libérant pas d'ammoniac pendant la réaction et par conséquent sont choisis parmi le dihydrogénophosphate de potassium KH2PC¼ (MKP), le dihydrogénophosphate de calcium Ca(H2P04)2, le métaphosphate de calcium Ca(HP03)2, le dihydrogénophosphate de sodium NaH2P04, et Γ hydrophosphate d'aluminum AIH3(P04)2 ,xH20, le dihydrogénophosphate de magnésium Mg(H2PC¼)2 ou le tri hydrogénophosphate d'aluminium AI(H2P0)3.
L'agent retardateur utilisé pour contrôler la réactivité du liant selon la présente invention est un sel ionique de formule X+A dans lequel le cation X+ est choisi parmi les métaux alcalins, les métaux alcalinoterreux, le zinc, l'aluminium et l'ion ammonium, et l'anion A" est choisi parmi les anions acétate, formiate, benzoate, tartrate, oléate, oxalate, bromure ou iodure. Le cation peut être choisi parmi les métaux alcalins, les métaux alcalinoterreux, l'aluminium et l'ion ammonium et l'anion A" peut être choisi parmi lesanions acétate, formiate, benzoate, tartrate, oléate, bromure ou iodure. Ces sels sont solublesdans l'eau et doivent, pour jouer leur rôle de retardateur, être plus solubles en milieu aqueux que le sel de phosphate acide. Le tableau 1 ci -dessous donne à titre indicatif la solubilité en grammes dans 100mL d'eau à 25°Cde sels utilisables comme agents retardateurs.
Le tableau 2 donne la solubilité en grammes dans 100 mL d'eau à 25°Cde sels de phosphate acide susceptibles d'être utilisés dans la réaction de formation du liant selon la présente invention.
Tableau 2 L'agent retardateur est choisi en fonction du sel de phosphate acide utilisé dans la réaction de formation du liant. Il est indispensable que sa solubilité soit plus importante que celle du sel de phosphate acide.
De façon préférée, on choisira comme agent retardateur un sel dont le cation est identique au cation du sel de phosphate acide mis en jeu dans la réaction de formation du liant. Les agents retardateurs dont les anions sont des acétates ou des for mi at es sont préférés. Ces anions permettent d'obtenir un temps d'ouvrabilité plus long et un meilleur contrôle de l'exothermicité de la réaction. La quantité d'agent retardateur représente entre 1 et 10%en poids de la quantité totale des constituants du liant. De façon préférée, la quantité d'agent retardateur est comprise entre 2 et 7%en poids.
Il est possible, sans sortir du cadre de la présente invention, d'utiliser un mélange de plusieurs agents retardateurs dans une formulation de liant. De façon préférée, on utilise comme agents retardateurs un mélange de sels dont les anions sont choisis parmi les acétates, les formiates et les oxalates. On peut par exemple utiliser comme agents retardateurs un mélange d'acétate et d'oxalate ou un mélange de formiate et d'oxalate. Dans le cas des mélanges, la quantité d'agents retardateurs totale reste comprise entre 1 et 10%en poids, préférentiellement entre 2 et 7%en poids de la quantité totale des constituants du liant.
Le liant selon la présente invention peut comprendre, en plus du sel de phosphate acide, un autre composé phosphaté choisi parmi les sels d' orthophosphates, de polyphosphates ou de pyrophosphates dans lequel le cation est choisi parmi le sodium, le potassium, le calcium ou l'ion ammonium. Les sels d' orthophosphates sont des sels dérivés de l'acide orthophosphorique comprenant l'anion PO3". Les pyrophosphates sont des sels dérivés de l'acide pyrophosphorique comprenant l'anion Ρ2Ο/4". On citera en particulier le tripolyphosphate de sodium Na5P3Oi0(Na-TPP) ou le pyrophosphate de calcium C^C^. Cet autre composé phosphaté participe notamment à l'effet retardateur. Par exemple, la solubilité du tripolyphosphate de sodium est environ de 14,5 g dans 100 ml l'eau à 25°C. Celle du pyrophosphate de sodium Na4P2O/ est d'environ 7 dans les mêmes conditions. 3 ce composé phosphaté supplémentaire est une base, il est i mportant que les quantités introduites dans la composition du liant restent toutefois faibles, pour conserver le caractère acide du constituant à base de phosphore i ntervenant dans la réaction aci do-basique.
La présente invention porte également sur une composition de mortier ou béton comprend au moins un l iant tel que décrit précédemment . La composition contient des granulats, agrégats et/ ou sables, et on parle alors couramment de mortier ou de béton en fonction de la tail le des granulats. Des granulats al légés tels que des argiles expansées, de la perl ite, des aérogels, de la vermicul ite, du verre expansé ou du polystyrène expansé peuvent également être uti lisés dans la composition de mortier ou béton selon la présente i nvention. Ces composés j ouent notamment sur la rhéologie, la dureté ou l ' aspect fi nal du produit . Ils sont généralement formés de sables sil iceux, calcaires et/ ou sil icocalcaires. La composition peut également comprendre des composants appelés fil lers, calcaires ou sil iceux et d' autres éventuels additifs et adj uvants conférant des propriétés particul ières. On citera par exemple, des agents rhéologiques, des agents rétenteurs d' eau, des agents entraîneurs d' air, des agents épaississants, des agents de protection contre la croissance des algues et des champignons tels que des agents biocides, fongicides, algicides, bactéricides, des agents dispersants, des pigments, des accélérateurs et/ ou des retardateurs de prise, ai nsi que d' autres agents pour amél iorer la prise, le durcissement, la stabi lité des produits après appl ication et notamment pour aj uster la couleur, l ' ouvrabil ité, la mise en œuvre ou l ' i mperméabil ité.
La présente invention porte également sur des produits de constructions, tels que des mortiers de j oint oiement s, des j oi nt s de carrelage, des colles à carrelages, des chapes, des enduits de sols, des mortiers techniques, des mortiers isolants ou des enduits de façade obtenus à partir de la composition de béton ou mortier déf inie ci-dessus. Ces produits sont obtenus par gâchage de la composition avec de l ' eau, la composition pâteuse ainsi formée étant ensuite durcie. SDUS le terme de mortiers techniques, on comprend des mortiers spéciaux formulés pour des appl ications particul ières, comme par exemple les mortiers de scel lement , les mortiers de réparation, les mortiers de hourdage ou les mortiers d' ancrage. Des éléments préfabriqués peuvent également être obtenus à parti r de compositions comprenant le liant selon la présente invention. Les produits de constructions selon l'invention peuvent être préparés sur chantier ou préfabriqués.
Les produits ainsi obtenus ont des temps d'ouvrabilité compatibles avec les applications souhaitées, puisque le produit reste utilisable après gâchage pendant un temps plus long que lorsque la composition ne comprend pas l'agent retardateur. D'autre part, les produits obtenus à partir des compositions de mortiers ou béton selon la présente invention ne comportent pas de défaut s d' aspect esthétique dus à des phénomènes d' eff lorescence. Les exemples ci -après illustrent l'invention sans en limiter la portée.
Dans les exemples suivants, ladurée pratique d'utilisation est mesurée pour différentes compositions de liants. Cette durée pratique d'utilisation correspond à la durée maximale après la préparation du liant, c'est-à-dire après le mélange des différents constituants pulvérulents avec l'eau de gâchage, pendant laquelle la pâte humide ainsi obtenue peut être utilisée. La détermination de la durée pratique d'utilisation est réalisée en mesurant la durée qui s'écoule entre le moment où le produit est préparé avec la consistance de pâte souhaitée et le moment où la viscosité de la pâte a augmenté de sorte que le produit ne soit plus suffisamment fluide pour être appliqué. La durée pratique d'utilisation est corrélée au temps de prise initial dû au durcissement de la pâte, le temps de prise étant mesuré selon le test Vicat selon la norme NF EN 196-3. La durée d'ouvrabilité est définie comme la durée pendant laquelle une pâte fraîche garde une viscosité suffisamment faible pour être facilement appliquée avec une bonne maniabilité.
Pour tous les exemples ci-après, les produits pulvérulents sont mélangés entre eux avant d'ajouter l'eau de gâchage pour préparer la pâte fraîche. La quantité d'eau qui est ajoutée et donnée en %en poids d'eau peut varier en fonction de l'application et de la maniabilité souhaitée de sorte à obtenir la consistance de la pâte recherchée. La détermination de la consistance de la pâte fraîche est effectuée à la table à secousses selon la norme NF EN 1015-3. Le mélange pulvérulent est mélangé avec l'eau de sorte à obtenir une pâte homogène. La pâte fraîche est versée dans un moule donné sur le plateau d' une table à secousses défi nie. Après retrait du moule, la pâte fraîche est soumise à un nombre donné de secousses verticales. Le diamètre du cercle de pâte f raîche est mesuré. Des diamètres identiques permettent de s' assurer que les consistances des pâtes sont comparables.
Différentes compositions de l iants selon la présente invention sont préparées. Les mesures de durée pratique d' util isation sont effectuées sur des compositions identiques avec ou sans agents retardateurs.
Les compositions de l iants sont préparées en mélangeant le ou les constituants basiques avec le sel de phosphate acide, en présence du sel util isé comme agent retardateur.
La teneur de chacun des constituants est donnée en pourcentage en poids, la somme totale des quantités de produits pulvérulents valant 100% L' eau de gâchage qui est aj outée est indiquée pour chaque exemple et correspond à la quantité d' eau nécessaire pour obteni r la même consistance de pâte. La teneur en eau indiquée dans chaque exemple correspond à la quantité qui est aj outée à un mélange qui comprend 100% de produits pulvérulents.
Les exemples ci -après montrent que la durée pratique d' appl ication de la pâte obtenue par mélange du l iant selon la présente invention avec de l ' eau est augmentée en présence de l ' agent retardateur. Le liant est obtenu par réaction entre un ou pl usieurs constituants basiques et un sel de phosphate acide et est donc par nature extrêmement réactif . Par conséquent, des compositions de mortiers préparées à partir de ce l iant , qui peuvent comprendre d' autres composants tels que des sables ou fi 11 ers pouvant également participer à l ' augmentation de la durée pratique d' application, permettront d' avoi r des durées pratiques d' application encore meil leures.
.Exemple 1
Un mélange consistant en 50% en poids d' oxyde de magnésium légèrement calciné (ISMAF) et 50% en poids de di hydrogénophosphate de potassi um KH2PC¼ (Prayon) est préparé. L'eau est ajoutée au mélange pulvérulent ainsi obtenu dans une quantité représentant 20%en poids par rapport à la quantité totale de constituants pulvérulents. La durée pratique d'utilisation mesurée de la pâte est de 0,5 min. La même composition est préparée en ajoutant 3% en poids d'acétate de potassium (Sgma Aldrich) comme agent retardateur. La quantité d'eau ajoutée est également 20% en poids. La durée pratique d'utilisation mesurée de la pâte comprenant l'agent retardateur est alors de 7 min.
.Exemple 2
Un mélange consistant en 50%en poids de CaS03 wollastonite (Nordkalk) et 50% en poids de dihydrogénophosphate monohydrate de calcium Ca(H2P0)2-H20 (Budenheim) est préparé. L'eau est ajoutée au mélange pulvérulent ainsi obtenu dans une quantité représentant 50% en poids par rapport à la quantité totale de constituants pulvérulents. La durée pratique d'utilisation mesurée de cette pâte est de 0,2 min. La même composition est préparée en ajoutant 3% en poids d'acétate de calcium (Sgma Aldrich) comme agent retardateur. La quantité d'eau ajoutée est également 50% en poids. La durée pratique d'utilisation mesurée de la pâte comprenant l'agent retardateur est al ors de 3 min.
Eïxemple 3
Trois différents mélanges d'oxyde de magnésium fortement calciné à haute température (1500°C) et fritté (Grecian Magnesite) et de dihydrogénophosphate de potassium KH2P0 (Prayon) sont préparés en faisant varier le rapport pondéral MgO:MKP.
La composition 3-1 correspond à 25%en poids de MgOet 75%en poids de MKP. La quantité d'eau ajoutée est de 20%en poids par rapport à la somme totale des composés pulvérulents.
La composition 3-2 correspond à 50%en poids de MgO et 50%en poids de MKP. La quantité d'eau ajoutée est de 21%en poids par rapport à la somme totale des composés pulvérulents. La composition 3-3 correspond à 75% en poids de MgO and 25% en poids de MKP. La quantité d'eau ajoutée est de 22%en poids par rapport à la somme totale des composés pulvérulents.
Les durées pratiques d'application de ces 3 pâtes sont mesurées et sont respectivement de 17 min pour la pâte obtenue à partir de la composition
3- 1, 5 min pour la pâte obtenue à partir de la composition 3-2 et 4 min pour la pâte obtenue à partir de la composition 3-3.
3%en poids d'acétate de potassium (Sgma Aldrich) est ajoutée à chacune des compositions 3-1, 3-2 et 3-3, en maintenant les ratios MgO: MKP qui sont respectivement de 25/75, 50/50 et 75/25. L'eau de gâchage est ajoutée dans les mêmes proportions. Les durées pratiques d'utilisation des pâtes obtenues à partir des compositions 3-1, 3-2 et 3-3 auxquelles a été ajouté l'agent retardateur ont été mesurées et valent respectivement 80 min pour la pâte obtenue à partir de la composition 3-1, 50 min pour la pâte obtenue à partir de la composition 3-2 et 18 min pour la pâte obtenue à partir de la composition 3-3.
.Exemple 4
Plusieurs compositions avec un ratio pondéral MgO : MKP identique à celui de la composition 3-3 sont préparées à partir des mêmes matières premières.
La composition 4-1 correspond à 75%en poids de MgO fortement calciné à haute température et 25%en poids de MKP.
La composition 4-2 comprend 37,5% en poids de MgO fortement calciné à haute température, 12,5%en poids de MKP et 50%en poids de sable de silice. Les compositions 4-3 comprend 72, 8% en poids de MgO fortement calciné à haute température, 24,2%en poids de MKP et 3%en poids d'agent retardeur. Dfférents agents retardateurs sont testés : l'acétate de potassium de Sgma Aldrich (composition 4-3a), le formiate de potassium de VWR (composition
4- 3b) et à titre de comparaison l'acide borique pur à 99,8% de Panreac (composition 4-3c). Des mélanges d'agents retardateurs ont également été testés: la composition 4-3d comprend un mélange de 2,40% en poids de formiate de potassium (VWR) et de 0,6% en poids d'oxalate de potassium (VWR). La composition 4-3e comprend un mélange de 2,40% en poids d'acétate de potassium (Sgma Aldrich) et de 0,6% en poids d'oxalate de potassium (VWR). D' autres agents retardateurs comme le formiate de zi nc de Alfa Aesar (composition 4-3f) et le formiate de calci um de VWR (composition 4- 3g) ont été uti lisés, dans une quantité de 3% en poids. La quantité d' eau aj outée pour le gâchage est de 22%en poids par rapport à la somme totale des composés pulvérulents.
Les durées pratiques d' uti lisation des différentes compositions sont mesurées et sont données dans le tableau ci-après :
Tableau 3 On constate que le sable de silice participe à l'effet retardateur, mais de façon moins efficace que les agents retardateurs selon la présente invention, qui permettent d'obtenir pour certains un effet supérieur à celui qui était obtenu avec des retardateurs comme l'acide borique utilisés dans l'art antérieur.
.Exemple 5
De la même façon, différentes compositions comprenant un ratio MgO : MKP de 25/ 75 sont préparées comme dans I ' exempl e 4.
La composition 5-1 correspond à 25%en poids de MgO fortement calciné à haute température et 75%en poids de MKP.
La composition 5-2 comprend 12,5% en poids de MgO fortement calciné à haute température, 37,5%en poids de MKP et 50%en poids de sable de silice. Les compositions 5-3 comprend 24,2% en poids de MgO fortement calciné à haute température, 72,8% en poids de MKP et 3% en poids d'un agent retardateur. Différents agents retardateurs sont testés: l'acétate de potassium de Sgma Aldrich (composition 5- 3a), l'oxalate de potassium de VWR (composition 5-3b) et à titre de comparaison l'acide borique pur à 99,8% de Panreac (composition 5-3c). La quantité d'eau ajoutée pour le gâchage est de 22%en poids par rapport à la somme totale des composés pulvérulents.
Les durées pratiques d'utilisation des différentes compositions sont mesurées et sont données dans le tableau ci-après :
Composition Composition Composition Composition Composition 5-1 5-2 5- 3a 5- 3b 5- 3c
Durée
pratique 17 25 80 40 57 d' utilisât
ion (min) .Exemple 6
On prépare un mélange (composition 6-1) consistant en :
- 15,8% en poids de magnésie fortement calcinée à haute température (1500°C) et frittée (Grecian Magnesite)
- 3%en poids de wollastonite CaSO3 (Nordkalk)
- 1%en poids d'alumine calcinée Al 2Ο½ (RBH)
- 79,2%en poids de dihydrogénophosphate de potassium KH2PO (Prayon)
- 1%en poids d'un pigment minéral (Oximed 12A Europigments) qui permet de colorer l'échantillon et de révéler visuellement la présence d'efflorescence. La quantité d'eau ajoutée est de 17%en poids par rapport à la somme totale des composés pulvérulents.
La durée pratique d'application de cette pâte est de 13 min.
La même composition de pâte est préparée en ajoutant 3%en poids d'acétate de potassium de Sgma Aldrich (composition 6-2). La durée pratique d'application de cette pâte est augmentée et vaut 40 min.
Les Figures 1 and 2 représentent les produits durcis obtenus à partir de ces compositions 6-1 and 6-2 : on remarque la présence de zones blanches sur la figure 1, traduisant les phénomènes d'efflorescence. En présence d'acétate de potassium, ce phénomène d'efflorescence est contrôlé, la couleur de l'échantillon étant plus uniforme.
Exemple 7
On prépare un mélange comprenant 52, 6% en poids d'oxyde de magnésium légèrement calciné (ISMAF), 42,1% en poids de dihydrogénophosphate de potassium KH2PO (Prayon) et 5,3%en poids d'agent retardateur, de différents types, certains étant non conformes à l'invention et donc donnés à titre comparatif. La quantité d'eau ajoutée est de 37%en poids par rapport à la quantité totale des constituants pulvérulents. Les durées pratiques d'utilisation des différentes pâtes obtenues sont mesurées et indiquées dans le tableau ci-dessous : Agent retardateur Durée pratique d' util isation (min)
Formiate de potassi um (VWR) 8
Tartrate de di-potassi um (Sgma 2
Aldrich)
Benzoate de potassium (Sgma 4
Aldrich)
Bromure de potassium (Panreac) 5
lodure de potasssium (Panreac) 4
Oéate de potassium (Panreac) 1
Qtrate de calcium (Sgma Aldrich) 0, 5
Acide borique pur à 99, 8%( Panreac) 1 1
Acétate de potassium (Sgma Aldrich) 12
Tableau 5 A titre de comparaison, la même formulation sans aucun agent retardateur a une durée pratique d' appl ication de 0, 3 min.
.Exemple 7
Une composition de mortier est préparée en mélangeant les différents constituants suivants :
- 40%en poids de magnésie fortement calcinée à haute température (1500°C) et frittée (Grecian Magnesite)
- 40%en poids de di hydrogénophosphate de potassium KH2PC¼ (Prayon) - 20%en poids de sable de sil ice.
La quantité d' eau aj outée est de 20%en poids par rapport à la somme totale des composés pulvérulents.
La durée pratique d' appl ication de cette pâte est de 4, 5 min.
La même composition de pâte est préparée en aj outant 3%en poids d' acétate de potassium. La durée pratique d' appl ication de cette pâte est augmentée et vaut 32 mi n.

Claims

REVENDICATIONS
1. Liant minéral à base de phosphate obtenu par réaction entre au moins un constituant basique et un sel de phosphate acide, en présence d'un agent retardateur qui est un sel X+A" dont la solubilité en milieu aqueux mesurée à 25°Cest supérieure à celle du sel de phosphate acide, et dans lequel
X+ est un cation choisi parmi les métaux alcalins, les métaux alcalinoterreux, le zinc, l'aluminium et l'ion ammonium, et
A" est un anion acétate, formiate, benzoate, tartrate, oléate, oxalate, bromure ou iodure.
2. Liant selon la revendication 1 caractérisé en ce que le constituant basique est choisi parmi les oxydes métalliques, les hydroxydes métalliques ou les sulfates.
3. Liant selon la revendication 1 caractérisé en ce que le constituant basique est choisi parmi l'oxyde de fer, l'oxyde d'aluminum, l'oxyde de zinc, l'oxyde de magnésium ou l'oxyde de calcium, les silicates, les sources de sulfate de calcium telles que le plâtre, le gypse, Γ hémihydrate et/ ou l'anhydrite, et les laitiers métallurgiques .
4. Liant selon l'une des revendications précédentes, caractérisé en ce qu'il est obtenu à partir d'un mélange d'au moins deux constituants basiques, l'un d'entre eux au moins étant choisi parmi l'oxyde de magnésium, l'hydroxyde de calcium ou de magnésium, la wollastonite, l'alumine, les laitiers métallurgiques et le sulfate de calcium.
5. Liant selon la revendication 4 caractérisé en ce que ledit mélange comprend un constituant basique additionnel choisi parmi le kaolin, le métakaolin, les argiles calcinées, les cendres volantes, la chaux, la dolomite, le mica et/ ou le talc.
6. Liant selon l'une des revendications précédentes caractérisé en ce que le sel de phosphate acide participant à la réaction acido-basique de formation du liant est choisi parmi :
- les hydrogénophosphates de potassium, de calcium, de magnésium, d'aluminium, de sodium ou d'ammonium, - les dihydrogénophosphates de potassium, de calcium, de magnésium, d'aluminium, de sodium ou d'ammonium,
- les pyrophosphates acides de potassium, de calcium, de magnésium, d'aluminium, de sodium ou d'ammonium, et/ ou
- les polyphosphates acides de potassium, de calcium, de magnésium, d'aluminium, de sodium ou d'ammonium, seulsou en mélange.
7. Liant selon l'une des revendications précédentes caractérisé en ce que le cation X+ de l'agent retardateur est choisi parmi le potassium, le calcium, le magnésium, le sodium, le zinc, l'aluminum ou l'ion ammonium.
8. Liant selon l'une des revendications 6 ou 7 caractérisé en ce que le cation X+ de l'agent retardateur est identique au cation du sel de phosphate acide mis en jeu dans la réaction de formation du liant.
9. Liant selon l'une des revendications précédentes caractérisé en ce que l'anion A" est un ion acétate ou un ion formiate.
10. Liant selon l'une des revendications précédentes caractérisé en ce que l'agent retardateur est un mélange de sels dont les anions sont choisis parmi les acétates, lesformiateset lesoxalates.
11. Liant selon l'une des revendications précédentes caractérisé en ce que la teneur en agent retardateur représente entre 1 et 10% en poids, de préférence entre 2 et 7%en poids, de la quantité totale de constituants du liant.
12. Liant selon Γ une des revendications précédentes caractérisé en ce qu'il comprend un autre composé phosphaté choisi parmi les sels d' orthophosphates, de polyphosphates ou de pyrophosphates dans lequel le cation est choisi parmi le sodium, le potassium, le calcium ou l'ion ammonium.
13. Composition de mortier ou béton caractérisée en ce qu'elle comprend au moins un liant selon l'une des revendications précédentes.
14. Produits de constructions, préparés sur chantier ou préfabriqués, tels que des mortiers de jointoiements, des joints de carrelages, des colles à carrelages, des chapes, des enduits de sols ou des mortiers techniques, des mortiers isolants ou des enduits de façade obtenus à partir de la composition de béton ou mortier selon la revendication 13.
EP15832810.4A 2014-12-23 2015-12-21 Liant acido-basique comprenant des ciments a base de phosphate Withdrawn EP3237354A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1463243A FR3030498B1 (fr) 2014-12-23 2014-12-23 Liant acido-basique comprenant des ciments a base de phosphate
PCT/FR2015/053692 WO2016102868A2 (fr) 2014-12-23 2015-12-21 Liant acido-basique comprenant des ciments a base de phosphate

Publications (1)

Publication Number Publication Date
EP3237354A2 true EP3237354A2 (fr) 2017-11-01

Family

ID=52627470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15832810.4A Withdrawn EP3237354A2 (fr) 2014-12-23 2015-12-21 Liant acido-basique comprenant des ciments a base de phosphate

Country Status (13)

Country Link
US (1) US10322972B2 (fr)
EP (1) EP3237354A2 (fr)
CN (1) CN107428615A (fr)
AR (1) AR103189A1 (fr)
BR (1) BR112017012561A2 (fr)
CA (1) CA2970705A1 (fr)
CL (1) CL2017001667A1 (fr)
FR (1) FR3030498B1 (fr)
MX (1) MX2017008297A (fr)
MY (1) MY182145A (fr)
RU (1) RU2707316C2 (fr)
SA (1) SA517381813B1 (fr)
WO (1) WO2016102868A2 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102394746B1 (ko) * 2017-07-31 2022-05-06 헤레우스 도이칠란트 게엠베하 운트 코. 카게 수성 코팅물을 제조하기 위한 다성분 조성물
US20220098874A1 (en) * 2018-12-20 2022-03-31 Ceram Polymerik Pty Ltd Fire resistant cladding material
CN110330292A (zh) * 2019-07-04 2019-10-15 长沙归一建材科技有限公司 炉渣水泥混凝土接缝料
FR3105215B1 (fr) 2019-12-20 2022-01-14 Orano Cycle Thiosulfates pour une utilisation comme retardateurs de prise de pâtes de ciments phosphomagnésiens
EP4060105B1 (fr) * 2021-02-26 2024-02-07 Allshield Holding B.V. Matériau non tissé durcissable à l'eau
CN113403474B (zh) * 2021-06-21 2022-10-04 广西三秋树环保科技有限公司 一种粘结剂及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030887A1 (fr) * 2009-09-14 2011-03-17 住友大阪セメント株式会社 Mélange de ciment, son procédé de production, et composition de ciment, mortier, et béton contenant chacun le mélange

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4756762A (en) * 1987-07-16 1988-07-12 American Stone-Mix, Inc. Magnesium phosphate cement systems
US4786328A (en) * 1987-07-16 1988-11-22 American Stone-Mix, Inc. Magnesium phosphate cement systems
FR2714668B1 (fr) * 1993-12-31 1996-01-26 Rhone Poulenc Chimie Préparation de ciments phosphomagnésiens.
US6136088A (en) * 1997-10-09 2000-10-24 Mbt Holding Ag Rapid setting, high early strength binders
CN1378464A (zh) 1999-12-09 2002-11-06 H·C·罗伯特·马泰斯·斯蒂夫腾 用镁盐稳定的透钙磷石水硬性胶凝材料
DE10032220A1 (de) * 2000-07-03 2002-01-24 Sanatis Gmbh Magnesium-ammonium-phosphat-Zemente, deren Herstellung und Verwendung
MXPA03010455A (es) * 2001-05-15 2004-03-09 Procter & Gamble Composiciones para el cuidado bucal.
MXPA04001254A (es) * 2001-08-10 2005-11-04 Ceratech Inc Materiales compuestos y metodos para elaborar y utilizar estos materiales compuestos.
AT5628U1 (de) * 2002-02-15 2002-09-25 Styromagnesit Steirische Magne Wasserfeste zementmischung mit magnesia sowie verfahren zum herstellen von wasserfesten mörteln, formkörpern oder estrichen mit derartigen zementmischungen
DE60305036T2 (de) * 2002-06-19 2006-10-12 Dr. H.C. Robert Mathys Stiftung Hydraulischer zement auf basis von calciumphosphat für chirurgische anwendungen
GB0222291D0 (en) * 2002-09-26 2002-10-30 Smith & Nephew Adhesive bone cement
GB0311846D0 (en) * 2003-05-23 2003-06-25 Univ Birmingham High strength and injectable apatitic calcium phosphate cements
US7416602B2 (en) * 2005-04-08 2008-08-26 Howmedica Leibinger, Inc. Calcium phosphate cement
WO2007075464A1 (fr) * 2005-12-16 2007-07-05 21St Century Structures, Llc Materiau composite inorganique et processus de fabrication
EP2190798B1 (fr) * 2007-09-10 2016-08-03 Technology-Trade MS GmbH Composition à base de matières premières phosphatées et procédé de production de celle-ci
CN101319126A (zh) * 2008-07-15 2008-12-10 北京赛力格科技发展有限公司 无机粘合剂及其制备方法和应用
CN101328031A (zh) * 2008-08-04 2008-12-24 北京赛力格科技发展有限公司 固化剂和聚合物及方法
CN101381219A (zh) * 2008-10-09 2009-03-11 上海交通大学 磷酸盐快速修补建筑材料
CN101381220B (zh) * 2008-10-16 2012-08-29 上海交通大学 多功能胶凝材料
CN101492280A (zh) * 2009-03-05 2009-07-29 上海交通大学 磷酸盐多孔混凝土及其制品的制备方法
CN101538142A (zh) * 2009-04-23 2009-09-23 上海交通大学 磷酸盐建筑外墙保温砂浆
US20140305343A1 (en) * 2011-05-12 2014-10-16 Imi Tami Institute For Research And Development Ltd. Slow Release Phosphocement
US9550934B2 (en) * 2011-11-21 2017-01-24 Halliburton Energy Services, Inc. Calcium phosphate cement compositions comprising pumice and/or perlite and associated methods
US9815738B2 (en) * 2012-10-09 2017-11-14 Premier Magnesia, Llc Magnesium phosphate cement
CN102923986A (zh) * 2012-11-26 2013-02-13 东南大学 适用于快凝快硬磷酸镁水泥体系的缓凝剂及其使用方法
CN103104100B (zh) * 2013-01-27 2015-03-11 北京工业大学 应用磷酸镁水泥和纤维布复合材料加固混凝土的方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030887A1 (fr) * 2009-09-14 2011-03-17 住友大阪セメント株式会社 Mélange de ciment, son procédé de production, et composition de ciment, mortier, et béton contenant chacun le mélange

Also Published As

Publication number Publication date
WO2016102868A3 (fr) 2016-08-18
CN107428615A (zh) 2017-12-01
RU2017126181A3 (fr) 2019-05-27
MY182145A (en) 2021-01-18
FR3030498B1 (fr) 2019-06-07
CA2970705A1 (fr) 2016-06-30
AR103189A1 (es) 2017-04-19
US20180186697A1 (en) 2018-07-05
US10322972B2 (en) 2019-06-18
CL2017001667A1 (es) 2018-03-16
BR112017012561A2 (pt) 2018-01-02
WO2016102868A2 (fr) 2016-06-30
RU2707316C2 (ru) 2019-11-26
RU2017126181A (ru) 2019-01-24
FR3030498A1 (fr) 2016-06-24
SA517381813B1 (ar) 2020-11-23
MX2017008297A (es) 2017-10-02

Similar Documents

Publication Publication Date Title
EP3237354A2 (fr) Liant acido-basique comprenant des ciments a base de phosphate
FR3030497B1 (fr) Liant a base de compose mineral solide riche en oxyde alcalino-terreux avec activateurs phosphates
AU2016211774B2 (en) Corrosion resistant spray applied fire resistive materials
RU2737297C2 (ru) Двухкомпонентная система строительного раствора на основе глинозёмистого цемента и её применение
JP7307055B2 (ja) セメント質系のための凝結制御組成物
CA3000895C (fr) Utilisation d'un systeme de mortier 2k contenant du sulfate de calcium, a base de ciment alumineux, dans des applications d'ancrage afin d'augmenter les valeurs de charge et de re duire le retrait
JP5026643B2 (ja) 硫酸塩およびアルカリを含有しない凝結および硬化促進剤
MXPA06014916A (es) Composicion y aplicacion de cemento de fosfato espreable novedoso que se une a styrofoam.
RU2733587C2 (ru) Стабилизированная водная композиция для инициирования схватывания и отверждения композиций глиноземистого цемента
WO2013093344A1 (fr) Suspensions aqueuses comprenant un ciment alumineux et compositions liantes
JPH0848553A (ja) 無機バインダーを含む材料の凝結及び硬化の促進方法並びに凝結及び硬化の促進剤
NL8201905A (nl) Werkwijze en preparaat voor het tegengaan van volumeverandering in snelhardende, voor fluida ondoorlaatbare, cementeuse systemen.
JP6586417B2 (ja) 急結用混和材
CA2915539A1 (fr) Ciment a base de phosphate de magnesium, mortier et compositions de beton offrant une periode de travail prolongee
WO2023169877A1 (fr) Composition aqueuse stabilisée à base de laitier de haut fourneau granulé broyé bloqué pour initier le réglage et le durcissement de compositions de ciment alumineux
WO2023169878A1 (fr) Composition aqueuse stabilisée à base de ciment de silicate de calcium bloqué pour initier la prise et le durcissement de compositions de ciment alumineux
CA3201855A1 (fr) Adjuvant pour fluidifier une composition cimentaire a teneur reduite en ciment
JP2005104788A (ja) セメント混和剤及びモルタル・コンクリート組成物
CS263289B1 (cs) Komplexnípřísada do stavebních hmot

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170724

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180419

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SAINT-GOBAIN WEBER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20210701