EP3233738A1 - Verfahren zur entwässerung von schlamm mithilfe eines flockungsreagens und anlage zur durchführung solch eines verfahrens - Google Patents
Verfahren zur entwässerung von schlamm mithilfe eines flockungsreagens und anlage zur durchführung solch eines verfahrensInfo
- Publication number
- EP3233738A1 EP3233738A1 EP15820500.5A EP15820500A EP3233738A1 EP 3233738 A1 EP3233738 A1 EP 3233738A1 EP 15820500 A EP15820500 A EP 15820500A EP 3233738 A1 EP3233738 A1 EP 3233738A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- sludge
- mixer
- reagent
- injection
- upstream
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/14—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
- C02F11/147—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using organic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/312—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
- B01F25/3121—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/121—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
- C02F11/127—Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/14—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
- C02F11/143—Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F2025/91—Direction of flow or arrangement of feed and discharge openings
- B01F2025/913—Vortex flow, i.e. flow spiraling in a tangential direction and moving in an axial direction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01F—MIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
- B01F25/00—Flow mixers; Mixers for falling materials, e.g. solid particles
- B01F25/30—Injector mixers
- B01F25/31—Injector mixers in conduits or tubes through which the main component flows
- B01F25/312—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
- B01F25/3125—Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characteristics of the Venturi parts
- B01F25/31252—Nozzles
- B01F25/312522—Profiled, grooved, ribbed nozzle, or being provided with baffles
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/34—Treatment of water, waste water, or sewage with mechanical oscillations
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/5236—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
- C02F1/5245—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
- C02F1/54—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
- C02F1/56—Macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F11/00—Treatment of sludge; Devices therefor
- C02F11/12—Treatment of sludge; Devices therefor by de-watering, drying or thickening
- C02F11/13—Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
Definitions
- the field of the invention is that of sludge treatment, whether or not they contain organic matter.
- the invention relates in particular to the treatment of sludge from sewage treatment plants, whether or not mixed with other waste, as well as sludge from processes for producing drinking water or sludge from other industrial processes.
- the invention relates to a sludge dewatering process, whatever their origin, implementing an injection of flocculating reagent, such as a polymer, therein.
- flocculating reagent such as a polymer
- sludge dryness means the percentage by mass of dry matter that they contain.
- sludges are fluids composed of a mixture of mineral matter and water, and chemical residues when they come from industry and, where appropriate, organic materials. The dryness of the sludge is calculated by establishing the mass ratio between the mass of the dry matter and the total mass of the sludge.
- This sludge may in particular be derived from water purification processes or from domestic or industrial effluent treatment processes.
- Such a method has the disadvantage of involving the implementation of a magnetic field, which is a complex technique to implement.
- the FlocFormer process from Aquen is also known, which implements two main stages, the first consisting in injecting a polymer into a stirred chamber receiving the sludge, the second flocculating the mixture of sludge and polymer in a second chamber. voluminous, stirred slowly to form the flocs.
- This technique has the disadvantage of involving high energy consumption related to the volume that can be very important to the flocculation chamber.
- the device implementing such a method is independent of the dehydration plant upstream of which it is provided and must therefore be managed independently of it.
- Such a method has the disadvantage of being volumic and involve a set of expensive elements and requiring maintenance such as a compressor, a reactor or a separator
- IH M in line hydrodynamic mixer
- EMO in line hydrodynamic mixer
- the invention aims to provide a sludge dewatering process for improving the sludge dryness, consumption of flocculant reagent and quality equal centers, and / or optimize the consumption of flocculant reagent quality equal centers and / or to optimize the loading of existing dewatering equipment such as centrifuges, and / or to increase the rate of capture of the solid phase by the flocculating reagent.
- Another object of the present invention is to describe such a process which can easily be integrated into an existing dehydration process without disturbing it.
- Another object of the present invention is to propose an installation for implementing such a method.
- An object of the present invention is to disclose such an installation, which at least in some embodiments, can integrate existing dewatering equipment to optimize the operation thereof.
- an object of the present invention is to disclose such an installation for optimizing the operation of centrifuges already in place to dewater sludge.
- An object of the present invention is also to describe such a facility whose implementation can be done very easily without having to disassemble or move or replace the dewatering equipment such as the centrifuge already in place. Presentation of the invention
- the invention which relates to a flocculant reagent-assisted sludge dewatering process, said process comprising an injection of flocculating reagent, such as a polymer, into sludge and a step of dehydration of said sludge characterized in that it comprises a preliminary step in said dehydration step of mixing said sludge so as to destructure and reduce their viscosity.
- the invention therefore proposes a simple method to be implemented for subjecting the sludge to be dewatered to a preliminary stage of physical treatment consisting of a mixing which destroys the sludge and reduces their viscosity.
- This step has indeed proved effective in increasing the affinity of the sludge for the flocculating reagent and corollary increase the effectiveness of it in the dehydration equipment.
- This step also makes it possible to refine the larger and / or heavier particles present in the sludge and to potentially release more water bound to them.
- said preliminary step of mixing said sludge comprises introducing them into a mixer comprising a cylindrical chamber provided with blades rotatably mounted on an axis rotating at a speed of rotation of between 500 rpm and 4000 rpm. preferably between 1000 rpm and 2000 rpm.
- a mixer comprising a cylindrical chamber provided with blades rotatably mounted on an axis rotating at a speed of rotation of between 500 rpm and 4000 rpm. preferably between 1000 rpm and 2000 rpm.
- said dehydration step is a centrifugation step implemented using at least one centrifuge.
- Centrifuges are commonly used to dewater sludge. This is expensive equipment whose price varies greatly depending on their size and performance. The method according to the invention therefore offers an economically attractive alternative to replacing less powerful equipment (older) with more efficient equipment (more recent).
- said polymer injection is carried out in the nose of said centrifuge.
- nose of the centrifuge is the point of entry into the centrifuge of this material.
- said flocculant reagent injection step is performed by injecting said polymer at or upstream of said preliminary stage.
- said flocculating reagent is mixed with the unstructured sludge to give an intimate mixture in which the flocculant reagent sees its optimized function.
- the method further comprises an injection of additive, in particular a coagulant such as ferric chloride, into said sludge at or upstream of said preliminary stage.
- additive in particular a coagulant such as ferric chloride
- the method comprises the injection of hot water and / or live steam or flash vapor and / or condensate (such condensates may be from other processes and available on site), during or before said preliminary step, in order to preheat said sludge.
- a preheating step makes it possible to further reduce the viscosity of the sludge and further optimize their dehydration while optimizing the consumption of flocculant reagent.
- the method further comprises an injection of dilution water in said sludge at or upstream of said preliminary stage.
- a step makes it possible to dilute the sludge so as to further optimize the contact of the flocculating reagent with the sludge.
- the method comprises aeration of said sludge during or upstream of said preliminary stage. This step also allows the flocculant reagent to better interact with the sludge by forming a sludge / polymer / air emulsion in the mixer chamber.
- the invention also relates to an installation for implementing the method according to the invention comprising a sludge dewatering equipment and flocculant reagent injection means, characterized in that it includes a mixer provided upstream of said equipment of dehydration.
- a mixer can be easily integrated on an already existing installation including said dehydration equipment to boost the performance thereof.
- said mixer comprises a cylindrical chamber provided with rotatably mounted blades.
- Such mixers can be found commercially. The only purpose of the blades is to mix the sludge. They do not work to advance the mud in the room.
- the cylindrical chamber has a small volume and the residence time in it is very short, of the order of a few seconds.
- said dewatering equipment is a centrifuge.
- said mixer is connected to flocculating reagent injection means such as a polymer.
- said mixer is connected to organic or inorganic coagulant injection means such as ferric chloride.
- said mixer is connected to means for injecting dilution water.
- said mixer is connected to means for injecting hot water and / or live steam or flash and / or condensate to preheat the sludge.
- said mixer is connected to means for injecting compressed air.
- the installation preferably includes a degassing pot provided between said dynamic mixer and said dewatering equipment.
- FIG 1 shows, schematically, an installation according to the present invention
- FIG. 2 is a graph indicating the consumption of flocculant reagent (polymer) during the implementation of the installation according to FIG. 1 by the process according to the invention on the one hand and by a conventional process of the art. previous on the other hand.
- the installation comprises sludge dewatering equipment consisting of a centrifuge (of Andritz ® brand, model D2L). This centrifuge is connected to sludge feed means 2 and to polymer injection means 3.
- sludge dewatering equipment consisting of a centrifuge (of Andritz ® brand, model D2L). This centrifuge is connected to sludge feed means 2 and to polymer injection means 3.
- the installation also comprises a mixer 4 provided upstream of said dewatering equipment provided with compressed air injection means 5, water supply means 6, and means for injecting chloride. ferric 6a.
- the sludge feed means 2, the polymer injection means 3, the compressed air injection means 5 and the water supply means are connected by pipes, respectively 12, 13, 15, 16 to a manifold 7.
- Valves 22, 23, 25, 26 are used to distribute, respectively sludge, polymer, compressed air and water therein.
- the duct 15 supplying compressed air to the manifold 7 is equipped with a flowmeter 55.
- the sludge feed means 2, the polymer injection means 3, and the water supply means 6 are connected by pipes 32, 33, 36 respectively to the centrifuge 1.
- Valves 42, 43 , 46 allow to distribute, respectively sludge, polymer, and water directly to the nose thereof.
- the compressed air injection means 5 are in turn connected by a pipe 35 to a degassing pot 8, equipped with a vent 8a, a valve 45 for distributing this compressed air to it.
- This degassing pot is connected to the nose of the centrifuge 1 by a pipe 9.
- the mixer 4 comprises a cylindrical chamber 4a equipped with a rotary axis 4b on which are mounted blades 4c.
- the rotary axis is driven by a motor (not shown in FIG. allows to drive at a high speed of rotation the blades between 500 revolutions / min and 4000 rev / min.
- the mixer 4 receives sludge, polymer, ferric chloride, water and compressed air from the manifold 7 via a common pipe.
- the mixed sludge is conveyed to the degassing pot 8 via a pipe 11.
- the installation described here makes it possible to convey the water, the polymer and the compressed air to the collector 7 and / or to the centrifuge.
- the centrifuge has always been used at its maximum capacity (2000 G).
- valves 22, 23, 25, 26, 45, 46 have been closed and only the valves 42 and 43 have been opened so as to direct the sludge and the polymer coming from the feed means 2 and 3. of these compounds directly in the nose of the centrifuge 1, without passing through the mixer, according to the prior art.
- valves 23, 25, 26, 45, 46 have been kept closed.
- the valve 22 has been opened to allow the sludge to be dispensed into the mixer 4 via the manifold 7 and the valve 42 has been closed.
- the valve 43 was kept open to continue feeding the polymer in the nose of the centrifuge 1.
- valves 25, 26, 35, 46 were kept closed.
- the valve 22 was kept open, the valve 43 was closed and the valve 23 was opened to allow, according to the invention, the transport of sludge and polymer to the mixer 4.
- the polymer was used at three different dosages, namely, 5 kg / TMS (dry matter tonne), 7.5 kg / TMS and 11 kg / TMS.
- the mixer was used for the second and third experimental phases with a blade speed of 2000 rpm to deconstruct the sludge before transporting it to the centrifuge 1 via the degassing pot 8.
- the sludge does not require it, no ferric chloride has been added.
- the sludge dryness results at the outlet of the centrifuge 1 are synthesized on the graph shown in FIG.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Hydrology & Water Resources (AREA)
- Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Treatment Of Sludge (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Centrifugal Separators (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1462915A FR3030485B1 (fr) | 2014-12-19 | 2014-12-19 | Procede de deshydratation de boues assistee par reactif floculant et installation pour la mise en œuvre d'un tel procede. |
PCT/EP2015/080598 WO2016097343A1 (fr) | 2014-12-19 | 2015-12-18 | Procédé de déshydratation de boues assistée par réactif floculant et installation pour la mise en œuvre d'un tel procédé |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3233738A1 true EP3233738A1 (de) | 2017-10-25 |
Family
ID=52477990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15820500.5A Withdrawn EP3233738A1 (de) | 2014-12-19 | 2015-12-18 | Verfahren zur entwässerung von schlamm mithilfe eines flockungsreagens und anlage zur durchführung solch eines verfahrens |
Country Status (8)
Country | Link |
---|---|
US (1) | US20170349470A1 (de) |
EP (1) | EP3233738A1 (de) |
JP (1) | JP2017537785A (de) |
KR (1) | KR20170098833A (de) |
CN (1) | CN107108301A (de) |
AU (1) | AU2015366314A1 (de) |
FR (1) | FR3030485B1 (de) |
WO (1) | WO2016097343A1 (de) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108328899A (zh) * | 2018-02-02 | 2018-07-27 | 深圳市中电加美电力技术有限公司 | 一种用于污泥处理的离心机平稳供料系统 |
FR3081860B1 (fr) * | 2018-06-01 | 2022-07-08 | Orege | Procede et dispositif de traitement pour deshydratation de boues organiques |
FR3086941B1 (fr) | 2018-10-08 | 2021-07-09 | Veolia Water Solutions & Tech | Procede ameliore de deshydratation de boues assistee par reactif floculant |
JP6751174B2 (ja) * | 2019-01-29 | 2020-09-02 | 月島機械株式会社 | 有機性汚泥の処理設備および処理方法 |
KR102445715B1 (ko) * | 2019-11-11 | 2022-09-21 | 주식회사 엘지화학 | 원심 탈수기 및 원심 탈수 방법 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61268399A (ja) * | 1985-05-23 | 1986-11-27 | Ngk Insulators Ltd | 有機性汚泥の調質方法 |
JP3303268B2 (ja) * | 1994-05-13 | 2002-07-15 | 財団法人埼玉県下水道公社 | スカム除去・処理設備 |
CA2349803C (en) * | 2000-06-01 | 2009-01-27 | Lystek International, Inc. | Treatment of sewage sludge |
CH702186A2 (de) * | 2009-11-03 | 2011-05-13 | Sanoxys Ag | Vorrichtung zum Entwässern von Erdmaterialien. |
US9114406B2 (en) * | 2009-12-10 | 2015-08-25 | Ex-Tar Technologies | Steam driven direct contact steam generation |
US20110263407A1 (en) * | 2010-04-27 | 2011-10-27 | John Jee Ho Jew | Efficiency of centrifuge in municipal sludge dewatering |
CN201770592U (zh) * | 2010-07-23 | 2011-03-23 | 无锡市通用机械厂有限公司 | 自来水厂尾水污泥脱水处理的专用设备 |
CN103347825B (zh) * | 2011-02-10 | 2016-06-22 | 水翼株式会社 | 污泥絮凝方法及污泥絮凝装置 |
US20150203385A1 (en) * | 2012-06-21 | 2015-07-23 | Suncore Energy Inc. | Dewatering of thick fine tailings with gas injection and flocculation |
JP6378865B2 (ja) * | 2012-08-08 | 2018-08-22 | 水ing株式会社 | 汚泥の処理方法及び装置 |
CN103626379B (zh) * | 2013-11-07 | 2015-04-22 | 华南理工大学 | 一种中高浓污泥调质装置及方法 |
WO2016019213A1 (en) * | 2014-07-31 | 2016-02-04 | Dow Global Technologies Llc | In-line dynamic mixing apparatus for flocculating and dewatering oil sands fine tailings |
-
2014
- 2014-12-19 FR FR1462915A patent/FR3030485B1/fr not_active Expired - Fee Related
-
2015
- 2015-12-18 KR KR1020177016874A patent/KR20170098833A/ko unknown
- 2015-12-18 US US15/536,824 patent/US20170349470A1/en not_active Abandoned
- 2015-12-18 EP EP15820500.5A patent/EP3233738A1/de not_active Withdrawn
- 2015-12-18 JP JP2017532089A patent/JP2017537785A/ja active Pending
- 2015-12-18 WO PCT/EP2015/080598 patent/WO2016097343A1/fr active Application Filing
- 2015-12-18 AU AU2015366314A patent/AU2015366314A1/en not_active Abandoned
- 2015-12-18 CN CN201580069280.4A patent/CN107108301A/zh active Pending
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2016097343A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR3030485A1 (fr) | 2016-06-24 |
FR3030485B1 (fr) | 2019-08-09 |
JP2017537785A (ja) | 2017-12-21 |
WO2016097343A1 (fr) | 2016-06-23 |
CN107108301A (zh) | 2017-08-29 |
KR20170098833A (ko) | 2017-08-30 |
US20170349470A1 (en) | 2017-12-07 |
AU2015366314A1 (en) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016097343A1 (fr) | Procédé de déshydratation de boues assistée par réactif floculant et installation pour la mise en œuvre d'un tel procédé | |
TWI542552B (zh) | Centrifugal dewatering and centrifugal dewatering | |
EP2835357B1 (de) | Verfahren zur Trennung von Flüssigkeit und Schwebstoff in einem Schlamm und Schlammkuchen | |
WO2003053862A1 (fr) | Procede de traitement d'eau par floculation lestee et decantation | |
WO2009130813A1 (ja) | 動植物油廃液の再利用システム | |
WO2017211542A1 (fr) | Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en oeuvre d'un tel procede | |
FR2973794A1 (fr) | Procede de traitement d'eau a traiter par clarification comprenant une adsorption d'une portion d'eau clarifiee et une clarification d'un melange d'eau clarifiee adsorbee et d'eau a traiter | |
EP2632860B1 (de) | Wasserklärvorrichtung und verfahren zur behandlung von kolloiden | |
FR2502609A1 (fr) | Procede et installation pour le traitement des boues oleagineuses | |
FR2997636A3 (fr) | Dispositif pour l'injection puis le melange de polymere dans une canalisation transportant une suspension de particules solides et procede mettant en oeuvre le dispositif | |
FR3100536A1 (fr) | Procédé de traitement d’un lixiviat de décharge ou d’un concentrat liquide de lixiviat ou de boues issues de lixiviats et dispositif pour la mise en œuvre du procédé | |
WO2015025533A1 (ja) | 排水処理設備 | |
WO2019007745A1 (fr) | Installation pour le traitement des eaux par floculation lestée et décantation intégrées et procédé correspondant | |
WO2020074448A1 (fr) | Procede ameliore de deshydratation de boues assistee par reactif floculant | |
NZ748838B2 (en) | Improved sludge dewatering process assisted by flocculating reactant and plant for the implementation of such a process | |
JP2003326107A (ja) | 濃縮凝集装置 | |
KR980001879A (ko) | 분뇨 및 정화조오니 전처리 시스템 및 원심분리기 | |
OA16395A (fr) | Procédé de séparation entre liquide et matière en suspension d'une boue et dispositif mettant en oeuvre un tel procédé. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20170606 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20180803 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20190214 |