WO2017211542A1 - Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en oeuvre d'un tel procede - Google Patents

Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en oeuvre d'un tel procede Download PDF

Info

Publication number
WO2017211542A1
WO2017211542A1 PCT/EP2017/061634 EP2017061634W WO2017211542A1 WO 2017211542 A1 WO2017211542 A1 WO 2017211542A1 EP 2017061634 W EP2017061634 W EP 2017061634W WO 2017211542 A1 WO2017211542 A1 WO 2017211542A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
mixer
upstream
reagent
injection
Prior art date
Application number
PCT/EP2017/061634
Other languages
English (en)
Inventor
Cédric CRAMPON
Malik Djafer
Eric Guibelin
Original Assignee
Veolia Water Solutions & Technologies Support
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veolia Water Solutions & Technologies Support filed Critical Veolia Water Solutions & Technologies Support
Priority to NZ748838A priority Critical patent/NZ748838B2/en
Priority to CA3026314A priority patent/CA3026314A1/fr
Priority to AU2017276542A priority patent/AU2017276542B2/en
Priority to US16/307,288 priority patent/US10981820B2/en
Priority to EP17722823.6A priority patent/EP3468928A1/fr
Priority to CN201780042374.1A priority patent/CN109476520B/zh
Priority to KR1020187037974A priority patent/KR102339124B1/ko
Priority to JP2018534047A priority patent/JP6792623B2/ja
Priority to BR112018075325-4A priority patent/BR112018075325A2/pt
Publication of WO2017211542A1 publication Critical patent/WO2017211542A1/fr
Priority to IL263527A priority patent/IL263527B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/143Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents using inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents
    • C02F1/5245Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents using basic salts, e.g. of aluminium and iron
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/121Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering
    • C02F11/127Treatment of sludge; Devices therefor by de-watering, drying or thickening by mechanical de-watering by centrifugation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/14Treatment of sludge; Devices therefor by de-watering, drying or thickening with addition of chemical agents
    • C02F11/148Combined use of inorganic and organic substances, being added in the same treatment step
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/34Treatment of water, waste water, or sewage with mechanical oscillations
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/002Construction details of the apparatus
    • C02F2201/005Valves
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2301/00General aspects of water treatment
    • C02F2301/06Pressure conditions
    • C02F2301/063Underpressure, vacuum
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/06Sludge reduction, e.g. by lysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/26Reducing the size of particles, liquid droplets or bubbles, e.g. by crushing, grinding, spraying, creation of microbubbles or nanobubbles

Definitions

  • the field of the invention is that of sludge treatment, whether or not they contain organic matter.
  • the invention relates in particular to the treatment of sludge from sewage treatment plants, whether or not mixed with other waste, as well as sludge from processes for producing drinking water or sludge from other industrial processes.
  • the invention relates to a sludge dewatering process, whatever their origin, implementing an injection of flocculating reagent, such as a polymer, therein.
  • flocculating reagent such as a polymer
  • sludge dryness means the percentage by mass of dry matter that they contain.
  • sludges are fluids composed of a mixture of mineral matter and water, and chemical residues when they come from industry and, where appropriate, organic materials. The dryness of the sludge is calculated by establishing the mass ratio between the mass of the dry matter and the total mass of the sludge.
  • This sludge may in particular be derived from water purification processes or from domestic or industrial effluent treatment processes.
  • the dehydrated Lime ® process of the company SUEZ Environment which consists of mixing lime with the sludge to be dehydrated in a mixer and then conveying it to a centrifuge whose nose is injected with the polymer.
  • Such a method has the disadvantage of involving the implementation of a magnetic field, which is a complex technique to implement.
  • FlocFormer ® of Aquen company which implements two main stages, the first consisting in injecting a polymer in a stirred chamber receiving the sludge, the second being to flocculate the mixture of sludge and polymer in a second chamber more voluminous, stirred slowly to form the flocks.
  • This technique has the disadvantage of involving high energy consumption related to the volume that can be very important to the flocculation chamber.
  • the device implementing such a method is independent of the dehydration plant upstream of which it is provided and must therefore be managed independently of it.
  • the Orege SLG ® process is also known, which proposes subjecting the sludge to a slight flow of compressed air, of the order of 1 to 2 bar, before the sludge / compressed air is loosened and degassed in order to facilitate subsequent dehydration.
  • the polymer is injected into the nose of the centrifuge, or more or less upstream of the centrifuge, on the sludge feed pipe, as may be recommended by the state of the art in certain situations.
  • Such a method has the drawback of being implemented in bulky installations and of involving a set of expensive and maintenance-requiring elements, such as for example a compressor, a reactor or a separator.
  • the process I HM ® in line hydrodynamic mixer
  • EMO consists in injecting the polymer upstream of the centrifuge and then creating a turbulence by means of a valve in order to improve the mud / polymer mixture. , the energy to create turbulence from the fluid itself and thus from the feed pump of the centrifuge.
  • the invention aims to provide a method for improving the dryness of sludge at the outlet of any dewatering process and more particularly at the outlet of a centrifuge, with flocculant reagent consumption and quality of equal centers, and / or optimizing the consumption of flocculant reagent of equal centric quality, and / or optimizing the load of existing dewatering equipment such as centrifuges, and / or increasing the rate of capture of the solid phase by the flocculating reagent.
  • Another object of the present invention is to describe such a process which can easily be integrated into an existing dehydration process without disturbing it.
  • Another object of the present invention is to propose an installation for implementing such a method.
  • An object of the present invention is to disclose such an installation, which at least in some embodiments, can integrate existing dewatering equipment to optimize the operation thereof.
  • an object of the present invention is to disclose such an installation for optimizing the operation of sludge dewatering devices, such as mainly centrifuges but also press filters, band filters, etc.
  • An object of the present invention is also to describe such a facility whose implementation can be done very easily without having to disassemble or move or replace the dewatering equipment such as the centrifuge already in place.
  • a flocculant reagent-assisted sludge dewatering process comprising an injection of flocculating reagent, such as a polymer, into sludge and a step of dehydration of said sludge characterized in that it comprises a preliminary step of mixing said sludge in a mixer comprising a cylindrical chamber provided with blades rotatably mounted on an axis rotating at a speed of rotation of between 500 revolutions / min and 4000 rev / min, so as to destructure and reduce their viscosity, and to remove the sludge from said mixer via a network to said dehydration step, and in that it comprises a step of depressurizing said mixer and said a network causing cavitation lysis of said sludge, said depressurization step being conducted for a duration of at least 0.1 sec. ndia.
  • the invention therefore proposes a simple method to be implemented in order to subject the sludge to dehydrate a mix to destructure and lower their viscosity, the depression of the mixer promoting their destructuring by improving the heat transfer.
  • the depression of the network allows the mechanical lysis of the sludge by cavitation.
  • This method makes it possible to increase the affinity of the sludge for the flocculating reagent and corollarily to increase the effectiveness thereof in the dewatering equipment.
  • the process also makes it possible to refine the larger and / or heavier particles present in the sludge and to potentially release more water bound to them.
  • This process also allows, during mechanical lysis, to release more bound water and further reduce the size particles.
  • Such an increase in efficiency makes it possible either to gain dryness points at the outlet of the flocculant reagent dehydration equipment, or to substantially reduce the doses of flocculating reagent to be used to obtain a given dryness of these agents.
  • ci either to increase the capture efficiency of the organic material by the flocculating reagent, or to increase the load of the dehydration equipment In any case, the invention allows significant savings in the operating costs of such equipment. equipment and costs of sludge disposal.
  • said depressurization step consists of applying to said mixer and the network is conducted a lower pressure of 0.001 bar at 1 bar at atmospheric pressure for a period of between 0.1 seconds and 30 seconds, preferably between 1 second and 10 seconds.
  • said preliminary step of mixing said sludge comprises the introduction thereof into a mixer comprising a cylindrical chamber provided with blades rotatably mounted on an axis rotating at a speed of rotation preferably between 1000 rpm and 2000 rpm. min.
  • a mixer comprising a cylindrical chamber provided with blades rotatably mounted on an axis rotating at a speed of rotation preferably between 1000 rpm and 2000 rpm. min.
  • the method according to the invention can be implemented with any dehydration process.
  • said dehydration step is a centrifugation step implemented using at least one centrifuge.
  • Centrifuges are commonly used to dewater sludge. This is expensive equipment whose price varies greatly depending on their size and performance.
  • the method according to the invention therefore offers an economically attractive alternative to replacing less powerful equipment (older) with more efficient equipment (more recent).
  • said polymer injection is carried out in the nose of said centrifuge. (The term "nose" of the centrifuge is the point of entry into the centrifuge of this material.)
  • said flocculant reagent injection step is performed by injecting said polymer at or upstream of said preliminary stage.
  • the flocculating reagent is mixed with the destructurized sludge and mechanically lysed by cavitation to give an intimate mixture in which the flocculating reagent sees its optimized function.
  • the method further comprises an injection of an additive, in particular a coagulant such as ferric chloride, or a pH rectifier such as C0 2 , into said sludge at or upstream of said preliminary stage.
  • an additive in particular a coagulant such as ferric chloride, or a pH rectifier such as C0 2 .
  • the method comprises the injection of hot water and / or live steam or flash vapor and / or condensate (such condensates may be from other processes and available on site), during or before said preliminary step, in order to preheat said sludge.
  • a preheating step makes it possible to further reduce the viscosity of the sludge and to further optimize their dehydration while optimizing the consumption of flocculant reagent.
  • the method further comprises an injection of dilution water in said sludge at or upstream of said preliminary stage.
  • a step makes it possible to dilute the sludge so as to further optimize the contact of the flocculating reagent with the sludge.
  • the method comprises aeration of said sludge during or upstream of said preliminary stage. This step also allows the flocculating reagent to better interact with the sludge by forming a sludge / polymer / air emulsion in the mixer chamber.
  • the invention also relates to an installation for implementing the method according to the invention comprising sludge dewatering equipment and flocculant reagent injection means, characterized in that it includes a mixer comprising a cylindrical chamber provided with rotary mounted blades provided upstream of said dewatering equipment and a network for conveying said sludge from said mixer to said dewatering equipment and in that it comprises means for depressurizing said chamber of said mixer and said network.
  • Such mixers can be found commercially.
  • the blades have the sole purpose of mixing the sludge and do not compete to advance the sludge in the room.
  • the cylindrical chamber has a small volume and the residence time in it is very short, of the order of a few seconds.
  • said depressurizing means include a valve provided upstream of said mixer and a pump provided downstream of said mixer which can be actuated so as to allow cavitation of the sludge passing through the network.
  • Such a mixer and such depressurizing means can be easily integrated on an already existing installation including said dehydration equipment to boost the performance of the latter.
  • said dewatering equipment is a centrifuge.
  • said mixer is connected to flocculating reagent injection means such as a polymer.
  • said mixer is connected to organic or inorganic coagulant injection means such as ferric chloride.
  • said mixer is connected to means for injecting dilution water.
  • said mixer is connected to means for injecting hot water and / or live steam or flash and / or condensate to preheat the sludge.
  • said mixer is connected to means for injecting compressed air.
  • FIG. 1 shows schematically an installation according to the present invention
  • FIG. 2 is a graph indicating the consumption of flocculant reagent (polymer) during the implementation of the installation according to FIG. 1 by the process according to the invention on the one hand and by a conventional process of the art. previous on the other hand.
  • the installation comprises sludge dewatering equipment 1 constituted by a centrifuge. This centrifuge is connected to sludge feed means 2 and to polymer injection means 3.
  • the installation also comprises a mixer 4 provided upstream of said dewatering equipment provided with means for supplying water 6, and if necessary means for injecting ferric chloride 6a in case of chemical conditioning of the sludge.
  • a mixer 4 provided upstream of said dewatering equipment provided with means for supplying water 6, and if necessary means for injecting ferric chloride 6a in case of chemical conditioning of the sludge.
  • ferric chloride 6a in case of chemical conditioning of the sludge.
  • the sludge feed means 2, the polymer injection means 3, and the water supply means 6 and the ferric chloride injection means 6a (optional) 6a are connected by pipes, respectively 12 , 13, 16 to a manifold 7.
  • Valves 22, 23, 26 allow to distribute therein, respectively sludge, the polymer, and water optionally mixed with ferric chloride.
  • the sludge feed means 2, the polymer injection means 3, and the water supply means 6 are connected by pipes 32, 33, 36 respectively to the centrifuge 1.
  • Valves 42, 43 , 46 allow to distribute, respectively sludge, polymer, and water directly to the nose thereof.
  • the pipes 16 and 36 supply water respectively to a mixing tank 7 and the centrifuge are each equipped with a common flow meter 56.
  • the mixer 4 comprises a cylindrical chamber 4a equipped with a rotary axis 4b on which are mounted blades 4c.
  • the rotary shaft is driven by a motor (not shown in FIG. 1) which makes it possible to drive the blades at a high speed of rotation between 500 rpm and 4000 rpm.
  • the mixer 4 receives the sludge mixed with polymer, optionally ferric chloride, and optionally water from the mixing tank 7 via a common pipe equipped with a valve 10.
  • the mixed and lysed sludge is conveyed to the centrifuge by a pipe 11 equipped with a pump 12 and a valve 13.
  • the centrifuge has always been used at its maximum capacity (2000 G).
  • valves 22, 23, 26, 46 have been closed and only the valves 42 and 43 have been opened so as to direct the sludge and the polymer coming from the feed means 2 and 3 of these compounds directly. in the nose of the centrifuge 1, without passing through the mixer, according to the prior art.
  • valves 23, 26, 46 have been kept closed.
  • the valve 22 has been opened to allow the sludge to be dispensed into the mixer 4 via the tank 7 and the valve 42 has been closed.
  • the valve 43 was kept open to continue feeding the polymer in the nose of the centrifuge 1.
  • valves 26 and 46 were kept closed.
  • the valve 22 was kept open, the valve 43 was closed and the valve 23 was opened to allow, according to the invention, the transport of sludge and polymer to the mixer 4.
  • the mixture from the collector 7 was pumped by the pump 12 in the mixer 4 and the valve 10 was partially closed, so as to cause cavitation of this mixture by the depression of the chamber mixer 4 and the network between the valve 10 and the pump 12 for 1 to 5 seconds.
  • the pressure in this chamber and in the network is lowered from 0.1 to 0.3 bar below atmospheric pressure.
  • the depression of the network between the closed valve 10 and the pump 12 causes the pump 12 to cavitate, causing it to operate outside its pump curve.
  • the valve 13 creates a pressure drop downstream of the pump 12 so as to put the pump 12 on a pump curve (the HMT of the pump is corrected) and to ensure that it is always in charge and that it does not defuse.
  • the polymer was used at three different dosages, namely 5 kg / TMS (ton of dry matter), 7.5 kg / TMS and 11 kg / TMS.
  • the mixer was used for the second and third experimental phases with a blade speed of 2000 rpm to deconstruct the sludge before transporting it to the centrifuge 1.
  • the sludge does not require it, no ferric chloride has been added.
  • the sludge dryness results at the outlet of the centrifuge 1 are synthesized on the graph shown in FIG. 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Sludge (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

Procédé de déshydratation de boues assistée par réactif floculant ledit procédé comprenant une injection de réactif floculant dans les boues et une étape de déshydratation desdites boues caractérisé en ce qu'il comprend une étape préliminaire consistant à mixer lesdites boues dans un mixeur (4) comprenant une chambre cylindrique (4a) munies de pales (4c) montées rotatives sur un axe (4b) tournant à une vitesse de rotation comprise entre 500 tours/min et 4000 tours/min, de façon à les déstructurer et à abattre leur viscosité, et à évacuer les boues provenant dudit mixeur (4) via un réseau (11) vers ladite étape de déshydratation, et en ce qu'il comprend une étape de dépressurisation dudit mixeur (4) et dudit réseau provoquant la lyse par cavitation desdites boues, ladite étape de dépressurisation étant menée pendant une durée d'au moins 0,1 seconde. Installation correspondante.

Description

Procédé amélioré de déshydratation de boues assistée par réactif floculant et installation pour la mise en œuvre d'un tel procédé.
Domaine de l'invention
Le domaine de l'invention est celui du traitement de boues, qu'elles contiennent ou non de la matière organique. L'invention concerne notamment le traitement des boues issues de stations d'épuration, mélangées ou non avec d'autres déchets, ainsi que celui des boues provenant des procédés de production d'eau potable ou les boues issues d'autres procédés industriels.
Plus précisément, l'invention concerne un procédé de déshydratation de boues, quelle que soit leur origine, mettant en œuvre une injection de réactif floculant, tel qu'un polymère, dans celles-ci. De tels procédés sont ici qualifiés de procédés de « déshydratation assistée par réactif floculant ».
Un tel procédé trouve notamment son application pour déshydrater des boues, le cas échéant déjà épaissies, présentant une siccité faible, en pratique inférieure à 15% en masse (de préférence de 2% à 7% en masse). Par « siccité des boues », on entend le pourcentage en masse de matière sèche qu'elles contiennent. En effet, les boues sont des fluides composés d'un mélange de matières minérales et d'eau, et de résidus chimiques lorsqu'elles sont issues de l'industrie, et le cas échéant de matières organiques. La siccité des boues est calculée en établissant le rapport massique entre la masse de la matière sèche et la masse totale des boues.
Ces boues peuvent notamment être issues de procédés de potabilisation d'eau ou de procédés de traitement d'effluents domestiques ou industriels.
Art antérieur
Les procédés de traitement des eaux génèrent des volumes de boues importants qui s'accroissent avec le développement industriel et urbain.
Des procédés ont été développés au cours des dernières décennies pour réduire le volume de ces boues, notamment des procédés de déshydratation. Ces procédés de déshydratation peuvent être mis en œuvre à l'aide de divers équipements (centrifugeuses, tambours, tables, filtres à plateaux, filtres à bandes...), et utilisent des réactifs floculant et/ou coagulant adaptés qui permettent de favoriser la séparation de l'eau du reste des boues au sein de l'équipement en question.
Les coûts de mise en œuvre de ces procédés de déshydratation assistée par réactif floculant sont impactés de façon non négligeable par le coût de celui- ci. Notamment, certaines boues particulièrement difficiles à déshydrater nécessitent de fortes doses de réactif floculant qui augmentent les coûts d'exploitation des installations mettant en œuvre de tels procédés.
Différents procédés ont ainsi été proposés dans l'art antérieur visant à optimiser la consommation de ces réactifs floculant ou à s'affranchir de leur utilisation.
On connaît ainsi le procédé Déhydris Lime® de la société SUEZ Environnement, qui consiste à mélanger de la chaux aux boues à déshydrater dans un mélangeur puis à les acheminer vers une centrifugeuse en nez de laquelle est injecté le polymère.
Une telle technique présente l'inconvénient de nécessiter l'apport d'un autre additif que le réactif floculant, à savoir de la chaux, et d'augmenter ainsi la masse de boues. Les éventuelles économies faites sur les quantités de polymères distribués sont, au moins en partie, compensées par les dépenses inhérentes à l'apport de chaux et à l'évacuation du volume de boue supplémentaire.
On connaît également le procédé Déhydris Osmo ® de la société SUEZ Environnement visant à soumettre les boues à un champ magnétique de façon à modifier leur potentiel zeta.
Un tel procédé présente l'inconvénient d'impliquer la mise en œuvre d'un champ magnétique, ce qui constitue une technique complexe à mettre en œuvre. On connaît également le procédé FlocFormer ® de la société Aquen qui met en œuvre deux étapes principales, la première consistant à injecter un polymère dans une chambre agitée recevant les boues, le seconde consistant à floculer le mélange de boues et de polymère dans une seconde chambre plus volumineuse, agitée lentement pour former les flocs.
Cette technique présente l'inconvénient d'impliquer des consommations énergétiques élevées liées au volume pouvant être très important de la chambre de floculation. De plus, le dispositif mettant en œuvre un tel procédé est indépendant de l'installation de déshydratation en amont de laquelle il est prévu et doit donc être géré de façon indépendante de celle-ci.
On connaît aussi le procédé SLG ® de la société Orege qui propose de soumettre les boues à un léger flux d'air comprimé, de l'ordre de 1 à 2 bar, avant de détendre et dégazer le mélange boue / air comprimé afin de faciliter la déshydratation ultérieure. Le polymère est injecté au nez de la centrifugeuse, voire plus ou moins en amont de la centrifugeuse, sur la canalisation d'alimentation des boues, comme cela peut-être recommandé par l'état de l'art dans certaines situations.
Un tel procédé présente l'inconvénient d'être mis en œuvre dans des installations encombrantes et d'impliquer un ensemble d'éléments coûteux et nécessitant une maintenance, comme par exemple un compresseur, un réacteur ou encore un séparateur
Le procédé I HM ® (« in line hydrodynamic mixer ») de la société EMO consiste quant à lui à injecter le polymère en amont de la centrifugeuse puis à créer une turbulence au moyen d'une vanne afin d'améliorer le mélange boue/polymère, l'énergie pour créer la turbulence provenant du fluide lui- même et donc de la pompe d'alimentation de la centrifugeuse.
Enfin, on peut aussi citer le procédé Crown ® de la société Siemens qui consiste, en amont d'un digesteur, à pressuriser les boues à 20 bar au travers d'un venturi de manière à les déstructurer très rapidement au niveau du divergent.
Tous ces procédés de l'art antérieur partagent l'inconvénient de devoir être mis en œuvre dans des installations encombrantes. De plus, aucun de ces procédés n'a fait la preuve d'une économie réelle de polymère, sauf à ajouter de la chaux, ni d'un gain de siccité significatif, à savoir au-delà de 1.5 % de siccité.
Objectifs de l'invention
L'invention a pour objectifs de proposer un procédé permettant d'améliorer la siccité des boues en sortie de tout procédé de déshydratation et plus particulièrement en sortie d'une centrifugeuse, à consommation de réactif floculant et qualité des centrats égales, et/ou d'optimiser la consommation de réactif floculant à qualité des centrats égales, et/ou à optimiser la charge des équipements de déshydratation tels que les centrifugeuses, existant, et/ou à augmenter le taux de capture de la phase solide par le réactif floculant.
Egalement un objectif de la présente invention est de décrire un tel procédé qui puisse facilement s'intégrer à un procédé de déshydratation existant et ce, sans perturber le celui-ci.
Egalement un objectif de la présente invention est de proposer une installation pour la mise en œuvre d'un tel procédé.
Un objectif de la présente invention est de divulguer une telle installation, qui au moins dans certains modes de réalisation, peut intégrer des équipements de déshydratation existants afin d'optimiser le fonctionnement de ceux-ci.
Notamment, un objectif de la présente invention est de divulguer une telle installation permettant d'optimiser le fonctionnement de dispositifs de déshydratation de boues, tels que principalement les centrifugeuses mais aussi les filtres presses, les filtres à bandes, etc. Un objectif de la présente invention est aussi de décrire une telle installation dont la mise en place peut se faire très facilement sans avoir à démonter ou déplacer ou remplacer, l'équipement de déshydratation tel que la centrifugeuse déjà en place.
Exposé de l'invention
Ces objectifs, ainsi que d'autres qui apparaîtront par la suite, sont atteints grâce à l'invention qui concerne un procédé de déshydratation de boues assistée par réactif floculant, ledit procédé comprenant une injection de réactif floculant, tel qu'un polymère, dans des boues et une étape de déshydratation desdites boues caractérisé en ce qu'il comprend une étape préliminaire consistant à mixer lesdites boues dans un mixeur comprenant une chambre cylindrique munies de pales montées rotatives sur un axe tournant à une vitesse de rotation comprise entre 500 tours/min et 4000 tours/min, de façon à les déstructurer et à abattre leur viscosité, et à évacuer les boues provenant dudit mixeur via un réseau vers ladite étape de déshydratation, et en ce qu'il comprend une étape de dépressurisation dudit mixeur et dudit réseau provoquant la lyse par cavitation desdites boues, ladite étape de dépressurisation étant menée pendant une durée d'au moins 0,1 seconde.
L'invention propose donc un procédé simple à mettre en œuvre visant à faire subir aux boues à déshydrater un mixage pour les déstructurer et abaisser leur viscosité, la mise en dépression du mixeur favorisant leur déstructuration en améliorant le transfert de chaleur. La mise en dépression du réseau permet quant à elle la lyse mécanique des boues par cavitation.
Ce procédé permet d'augmenter l'affinité des boues pour le réactif floculant et corolairement d'augmenter l'efficacité de celui-ci au sein de l'équipement de déshydratation. Le procédé permet aussi d'affiner les particules les plus grosses, et/ou les plus lourdes, présentes dans les boues et de libérer potentiellement plus d'eau liée à celles-ci. Ce procédé permet aussi, lors de la lyse mécanique, de libérer plus d'eau liée et de réduire davantage la taille des particules. Une telle augmentation d'efficacité permet soit de gagner des points de siccité en sortie de l'équipement de déshydratation à isoconsommation de réactif floculant, soit à réduire sensiblement les doses de réactif floculant devant être mises en œuvre pour obtenir une siccité donnée de celles-ci, soit à augmenter le rendement de capture de la matière organique par le réactif floculant, soit encore à augmenter la charge de l'équipement de déshydratation Dans tous les cas, l'invention permet des économies importantes sur les coûts d'exploitation de tels équipements et les coûts d'évacuation des boues.
Préférentiellement, ladite étape de dépressurisation consiste à appliquer audit mixeur et au réseau est menée une pression inférieure de 0,001 bar à 1 bar à la pression atmosphérique pendant une durée comprise entre 0,1 seconde et 30 secondes, préférentiellement entre 1 seconde et 10 secondes.
Avantageusement, ladite étape préliminaire consistant à mixer lesdites boues comprend l'introduction de celles-ci dans un mixeur comprenant une chambre cylindrique munies de pales montées rotatives sur un axe tournant à une vitesse de rotation comprise préférentiellement entre 1000 tours/min et 2000 tours/min. De telles vitesses de mixage permettent d'optimiser encore le but recherché, à savoir l'augmentation de l'efficacité du réactif floculant.
Le procédé selon l'invention pourra être mis en œuvre avec tout procédé de déshydratation. Ainsi, avantageusement, ladite étape de déshydratation est une étape de centrifugation mise en œuvre grâce à au moins une centrifugeuse. Les centrifugeuses sont couramment utilisées pour déshydrater les boues. Il s'agit d'équipement coûteux dont le prix varie grandement en fonction de leurs taille et performance. Le procédé selon l'invention offre donc une alternative économiquement intéressante au remplacement de matériel moins performant (plus ancien) par du matériel plus performant (plus récent). Selon une variante de l'invention, ladite injection de polymère est effectuée en nez de ladite centrifugeuse. (On entend par « nez » de la centrifugeuse le point d'entrée dans celle-ci de la matière à centrifuger.)
Toutefois, selon une variante particulièrement intéressante, ladite étape d'injection de réactif floculant est effectuée en injectant ledit polymère lors ou en amont de ladite étape préliminaire. Une telle variante permet encore d'optimiser l'efficacité du réactif floculant et donc les performances de l'équipement de déshydratation. Selon une telle variante le réactif floculant est mixé avec les boues déstructurées et lysées mécaniquement par cavitation pour donner un mélange intime dans lequel le réactif floculant voit sa fonction optimisée.
Selon une variante de l'invention, le procédé comprend de plus une injection d'additif, notamment un coagulant tel que du chlorure ferrique, ou un rectificateur de pH tel que du C02, dans lesdites boues lors ou en amont de ladite étape préliminaire. Une telle étape permet d'optimiser encore l'action du réactif floculant sur les boues.
Selon une variante de l'invention, le procédé comprend l'injection d'eau chaude et/ou de vapeur vive ou vapeur de flash et/ou de condensats (de tels condensats peuvent être issus d'autres procédés et disponibles sur site), lors ou en amont de ladite étape préliminaire, afin de préchauffer lesdites boues. Une telle étape de préchauffage, permet de diminuer encore la viscosité des boues et d'optimiser encore leur déshydratation tout en optimisant la consommation de réactif floculant.
Selon une variante de l'invention, le procédé comprend de plus une injection d'eau de dilution dans lesdites boues lors ou en amont de ladite étape préliminaire. Une telle étape permet de diluer les boues de façon à optimiser encore le contact du réactif floculant avec les boues.
Egalement selon une variante de l'invention, le procédé comprend une aération desdites boues lors ou en amont de ladite étape préliminaire. Cette étape permet aussi au réactif floculant de mieux interagir avec la boue en formant dans la chambre du mixeur une émulsion boues/polymère/air.
Tous ces fluides sont mélangés à très haute vitesse dans la chambre du mixeur dont les dimensions sont calculées en conséquence.
L'invention concerne également une installation pour la mise en œuvre du procédé selon l'invention comprenant un équipement de déshydratation de boues et des moyens d'injection de réactif floculant, caractérisée en ce qu'elle inclut un mixeur comprenant une chambre cylindrique munie de pales montées rotatives prévu en amont dudit équipement de déshydratation et un réseau d'acheminement desdites boues dudit mixeur vers ledit équipement de déshydratation et en ce que qu'elle comprend des moyens de dépressurisation de ladite chambre dudit mixeur et dudit réseau.
De tels mixeurs peuvent être trouvés dans le commerce. Les pales y ont pour seul objet de mixer les boues et ne concourent pas à faire avancer les boues dans la chambre. La chambre cylindrique présente un faible volume et le temps de séjour dans celle-ci est très court, de l'ordre de quelques secondes.
Préférentiellement, lesdits moyens de dépressurisation incluent une vanne prévue en amont dudit mixeur et une pompe prévue en aval dudit mixeur qui peuvent être actionnées de façon à permettre la cavitation des boues transitant dans le réseau.
Un tel mixeur et de tels moyens de dépressurisation peuvent être facilement intégrés sur une installation déjà existante incluant ledit équipement de déshydratation pour dynamiser les performances de celle-ci. Egalement avantageusement, ledit équipement de déshydratation est une centrifugeuse.
Préférentiellement ledit mixeur est relié à des moyens d'injection de réactif floculant tel qu'un polymère. Selon une variante, ledit mixeur est relié à des moyens d'injection de coagulant organique ou inorganique tel que du chlorure ferrique.
Selon une variante, ledit mixeur est relié à des moyens d'injection d'eau de dilution.
Egalement selon une variante, ledit mixeur est relié à des moyens d'injection d'eau chaude et/ou de vapeur vive ou de flash et/ou de condensais pour préchauffer les boues.
Egalement selon une variante, ledit mixeur est relié à des moyens d'injection d'air comprimé.
Liste des figures
L'invention, ainsi que les différents avantages qu'elle présente, seront plus facilement compris grâce à la description qui va suivre d'un mode de réalisation de celle-ci, donné à titre simplement illustratif et non limitatif, en référence aux figures, dans lesquelles :
- la figure 1 représente, de façon schématique, une installation selon la présente invention ;
la figure 2 est un graphique indiquant les consommations de réactif floculant (polymère) lors de la mise en œuvre de l'installation selon la figure 1 grâce au procédé selon l'invention d'une part et grâce à un procédé classique de l'art antérieur d'autre part.
Description de modes de réalisation de l'invention
Installation
En référence à la figure 1, l'installation comprend un équipement de déshydratation de boues 1 constitué par une centrifugeuse. Cette centrifugeuse est reliée à des moyens d'amenée de boues 2 et à des moyens d'injection de polymère 3.
Conformément à la présente invention l'installation comprend également un mixeur 4 prévu en amont dudit équipement de déshydratation pourvu de moyens d'amenée d'eau 6, et si besoin de moyens d'injection de chlorure ferrique 6a en cas de conditionnement chimique des boues. L'ajout du chlorure ferrique optionnel permet de diminuer la stabilité colloïdale des boues.
Les moyens d'amenée de boues 2, les moyens d'injection de polymère 3, et les moyens d'amenée d'eau 6 et les moyens d'injection 6a (optionnels) de chlorure ferrique 6a sont reliées par des canalisations, respectivement 12, 13, 16 à un collecteur 7. Des vannes 22, 23, 26 permettent de distribuer dans celui- ci, respectivement les boues, le polymère, et l'eau éventuellement mélangée à du chlorure ferrique.
Les moyens d'amenée de boues 2, les moyens d'injection de polymère 3, et les moyens d'amenée d'eau 6 sont reliées par des canalisations, respectivement 32, 33, 36 à la centrifugeuse 1. Des vannes 42, 43, 46 permettent de distribuer, respectivement les boues, le polymère, et l'eau directement au nez de celle-ci.
Les canalisations 16 et 36 d'amenée d'eau respectivement à une cuve de mélange 7 et à la centrifugeuse sont équipées chacune d'un débitmètre commun 56.
Conformément à la présente invention, le mixeur 4 comprend une chambre cylindrique 4a équipée d'un axe rotatif 4b sur lequel sont montées des pales 4c. L'axe rotatif est mu par un moteur (non représenté sur la figure 1) qui permet d'entraîner à une vitesse élevée de rotation les pales comprise entre 500 tours/min et 4000 tours/min.
Le mixeur 4 reçoit les boues mélangées à du polymère, le cas échéant du chlorure ferrique, et le cas échéant de l'eau provenant de la cuve de mélange 7 via une canalisation commune équipée d'une vanne 10. Les boues mixées et lysées sont acheminées vers la centrifugeuse par une canalisation 11 équipée d'une pompe 12 et d'une vanne 13.
L'installation ici décrite permet d'acheminer, les boues, l'eau, le polymère au collecteur 7 et/ou directement à la centrifugeuse 1. Procédé
L'installation représentée à la figure 1 a été mise en œuvre pour déshydrater des boues mixtes, digérées selon l'art antérieur d'une part et selon l'invention d'autre part. Ces boues présentaient une siccité de départ de 28 %.
Dans le cadre de ces expérimentations, la centrifugeuse a toujours été utilisée à sa capacité maximale (2000 G).
Dans une première phase expérimentale, les vannes 22, 23, 26, 46 ont été fermées et seules les vannes 42 et 43 ont été ouvertes de façon à diriger les boues et le polymère provenant des moyens d'amenée 2 et 3 de ces composés directement en nez de la centrifugeuse 1, sans transiter par le mixeur, selon l'art antérieur.
Dans une deuxième phase expérimentale, selon l'invention, les vannes 23, 26, 46 ont été maintenues fermées. La vanne 22 a été ouverte pour autoriser la distribution des boues dans le mixeur 4 via la cuve 7 et la vanne 42 a été fermée. La vanne 43 a été maintenue ouverte pour continuer d'acheminer le polymère en nez de la centrifugeuse 1.
Dans une troisième phase expérimentale, les vannes 26 et 46 ont été maintenues fermées. La vanne 22 a été maintenue ouverte, la vanne 43 a été fermée et la vanne 23 a été ouverte pour autoriser selon l'invention l'acheminement des boues et du polymère au mixeur 4.
Durant cette troisième phase expérimentale, le mélange provenant du collecteur 7 a été pompé grâce à la pompe 12 dans le mixeur 4 et la vanne 10 a été partiellement fermée, de façon à provoquer une cavitation de ce mélange par la mise en dépression de la chambre du mixeur 4 ainsi que du réseau entre la vanne 10 et la pompe 12 pendant 1 à 5 secondes. En pratique, la pression dans cette chambre et dans le réseau est abaissée de 0,1 à 0,3 bar en deçà de la pression atmosphérique. La mise en dépression du réseau entre la vanne 10 fermée et la pompe 12 provoque la cavitation de la pompe 12 la conduisant à fonctionner hors de sa courbe de pompe. La vanne 13 créée un perte de charge en aval de la pompe 12 de manière à remettre le pompe 12 sur une courbe de pompe (on corrige la HMT de la pompe) et à faire en sorte que celle-ci soit toujours en charge et qu'elle ne se désamorce pas.
Au cours de chacune de ces trois phases expérimentales on a mise en œuvre le polymère à trois dosages différents, à savoir 5 kg/TMS (tonne de matière sèche), 7,5 kg/TMS et 11 kg/TMS.
Le mixeur a été utilisé pour les deuxième et troisième phases expérimentales avec une vitesse des pales de 2000 tours/min permettant de déstructurer les boues avant de les acheminer à la centrifugeuse 1.
Les boues ne le nécessitant pas, il n'a pas été ajouté de chlorure ferrique.
Les résultats de siccité des boues en sortie de la centrifugeuse 1 sont synthétisés sur le graphe représenté à la figure 2.
Ces résultats montrent qu'avec la même dose de polymère, il est possible, grâce à l'invention, d'obtenir une siccité de boues bien meilleure avec l'invention, notamment lorsque l'injection du polymère est faite dans le collecteur prévue en amont du mixeur dynamique.
Ainsi, pour une dose de polymère de 11,3 kilogrammes par tonne de matières sèches (TMS) on a obtenu grâce à l'invention une siccité des boues de 32 %, et même de plus de 33% en injectant le polymère en amont du mixeur dynamique, alors que la siccité obtenue selon l'art antérieur n'a été que de 28,5 %. Ceci sans l'ajout de chlorure ferrique et d'air comprimé car les boues ne le nécessitaient pas. Une siccité comparable de 29% a pu être obtenue en ne mettant en œuvre le polymère qu'à raison de 5kg/TMS soit une économie de près de 50% en quantité de polymère.

Claims

REVENDICATIONS
Procédé de déshydratation de boues assisté par réactif floculant ledit procédé comprenant une injection de réactif floculant dans les boues et une étape de déshydratation desdites boues
caractérisé en ce qu'il comprend une étape préliminaire consistant à mixer lesdites boues dans un mixeur comprenant une chambre cylindrique munies de pales montées rotatives sur un axe tournant à une vitesse de rotation comprise entre 500 tours/min et 4000 tours/min, de façon à les déstructurer et à abattre leur viscosité, et à évacuer les boues provenant dudit mixeur via un réseau vers ladite étape de déshydratation,
et en ce qu'il comprend une étape de dépressurisation dudit mixeur et dudit réseau provoquant la lyse par cavitation desdites boues, ladite étape de dépressurisation étant menée pendant une durée d'au moins 0,1 seconde.
Procédé selon la revendication 1 caractérisé en ce que ladite étape de dépressurisation est menée pendant une durée comprise entre 0,1 seconde et 30 secondes.
Procédé selon la revendication 1 ou 2 ladite vitesse de rotation est comprise entre 1000 tours/min et 2000 tours/min.
Procédé selon l'une quelconque des revendications 1 à 3 caractérisé en ce que ladite étape de déshydratation est une étape de centrifugation mise en œuvre grâce à au moins une centrifugeuse.
5. Procédé selon l'une quelconque des revendications 1 à 4 caractérisé en ce que ladite étape d'injection de réactif floculant est effectuée en injectant ledit réactif floculant lors ou en amont de ladite étape préliminaire. 6. Procédé selon l'une quelconque des revendications 1 à 5 caractérisé en ce qu'il comprend l'injection d'eau chaude et/ou de vapeur vive ou vapeur de flash et/ou de condensats lors ou en amont de ladite étape préliminaire pour préchauffer lesdites boues. 7. Procédé selon l'une quelconque des revendications 1 à 6 caractérisé en ce qu'il comprend une injection d'eau de dilution dans lesdites boues lors ou en amont de ladite étape préliminaire.
8. Procédé selon l'une quelconque des revendications 1 à 7 caractérisé en ce qu'il comprend une oxygénation desdites boues lors ou en amont de ladite étape préliminaire.
9. Procédé selon l'une quelconque des revendications 1 à 8 caractérisé en ce qu'il comprend une injection de réactif coagulant dans lesdites boues lors ou en amont de ladite étape préliminaire.
10. Installation pour la mise en œuvre du procédé selon l'une quelconque des revendications 1 à 9 comprenant un équipement de déshydratation de boues et des moyens d'injection de réactif floculant, caractérisée en ce qu'elle inclut un mixeur comprenant une chambre cylindrique munie de pales montées rotatives et prévu en amont dudit équipement de déshydratation, et un réseau d'acheminement desdites boues dudit mixeur vers ledit équipement de déshydratation et en ce que qu'elle comprend des moyens de dépressurisation de ladite chambre dudit mixeur et dudit réseau
11. Installation selon le revendication 10, caractérisée en ce que lesdits moyens de dépressurisation incluant une vanne prévue en amont dudit mixeur et une pompe prévue en aval dudit mixeur.
12. Installation selon la revendication 10 ou 11 caractérisée en ce que ledit équipement de déshydratation est une centrifugeuse.
13. Installation selon l'une quelconque des revendications 10 à 12 caractérisée en ce que ledit mixeur est relié à des moyens d'injection de réactif floculant.
14. Installation selon l'une quelconque des revendications 10 à 13 caractérisée en ce que ledit mixeur est relié à des moyens d'injection de coagulant. 15. Installation selon l'une quelconque des revendications 10 à 14 caractérisée en ce que ledit mixeur est relié à des moyens d'injection d'eau de dilution.
16. Installation selon l'une quelconque des revendications 10 à 15 caractérisée en ce que ledit mixeur est relié à des moyens d'injection d'eau chaude et/ou de vapeur vive ou de flash et/ou de condensats.
17. Installation selon l'une quelconque des revendications 10 à 16 caractérisée en ce que ledit mixeur est relié à des moyens d'injection d'air comprimé.
PCT/EP2017/061634 2016-06-08 2017-05-15 Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en oeuvre d'un tel procede WO2017211542A1 (fr)

Priority Applications (10)

Application Number Priority Date Filing Date Title
NZ748838A NZ748838B2 (en) 2016-06-08 2017-05-15 Improved sludge dewatering process assisted by flocculating reactant and plant for the implementation of such a process
CA3026314A CA3026314A1 (fr) 2016-06-08 2017-05-15 Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en oeuvre d'un tel procede
AU2017276542A AU2017276542B2 (en) 2016-06-08 2017-05-15 Improved sludge dewatering process assisted by flocculating reactant and plant for the implementation of such a process
US16/307,288 US10981820B2 (en) 2016-06-08 2017-05-15 Sludge dewatering process assisted by flocculating reactant and plant for the implementation of such a process
EP17722823.6A EP3468928A1 (fr) 2016-06-08 2017-05-15 Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en oeuvre d'un tel procede
CN201780042374.1A CN109476520B (zh) 2016-06-08 2017-05-15 改善的絮凝试剂辅助的污泥脱水方法以及用于实施这种方法的设备
KR1020187037974A KR102339124B1 (ko) 2016-06-08 2017-05-15 응집제에 의해 보조되는 개선된 슬러지 탈수 방법 및 이러한 방법 실행용 설비
JP2018534047A JP6792623B2 (ja) 2016-06-08 2017-05-15 改良された凝集剤によってスラッジを脱水する方法及びこの方法を実施するプラント
BR112018075325-4A BR112018075325A2 (pt) 2016-06-08 2017-05-15 método para desidratar lama auxiliado por um reagente floculante e instalação para implantar o método
IL263527A IL263527B (en) 2016-06-08 2018-12-05 An improved process for removing water from sediment using a coagulation reagent and a plant for implementing such a process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1655229A FR3052450B1 (fr) 2016-06-08 2016-06-08 Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en œuvre d'un tel procede.
FR1655229 2016-06-08

Publications (1)

Publication Number Publication Date
WO2017211542A1 true WO2017211542A1 (fr) 2017-12-14

Family

ID=56842866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2017/061634 WO2017211542A1 (fr) 2016-06-08 2017-05-15 Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en oeuvre d'un tel procede

Country Status (11)

Country Link
US (1) US10981820B2 (fr)
EP (1) EP3468928A1 (fr)
JP (1) JP6792623B2 (fr)
KR (1) KR102339124B1 (fr)
CN (1) CN109476520B (fr)
AU (1) AU2017276542B2 (fr)
BR (1) BR112018075325A2 (fr)
CA (1) CA3026314A1 (fr)
FR (1) FR3052450B1 (fr)
IL (1) IL263527B (fr)
WO (1) WO2017211542A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3100536A1 (fr) * 2019-09-05 2021-03-12 Dfi-Elec Procédé de traitement d’un lixiviat de décharge ou d’un concentrat liquide de lixiviat ou de boues issues de lixiviats et dispositif pour la mise en œuvre du procédé

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3086941B1 (fr) 2018-10-08 2021-07-09 Veolia Water Solutions & Tech Procede ameliore de deshydratation de boues assistee par reactif floculant
KR102643959B1 (ko) * 2023-09-01 2024-03-08 디와이산업개발 주식회사 유기물 슬러지의 탈수 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009065509A1 (fr) * 2007-11-20 2009-05-28 J.F. Knauer Industrie-Elektronik Gmbh Procédé et dispositif pour le traitement de boues
KR101031191B1 (ko) * 2010-07-30 2011-04-26 조영호 소화슬러지 응집장치
KR101042008B1 (ko) * 2010-12-23 2011-06-16 주식회사 서남환경 슬러지 처리용 약품 혼합시스템
JP2015000380A (ja) * 2013-06-17 2015-01-05 水ing株式会社 汚泥凝集装置及び方法、及び汚泥処理装置
WO2015079175A1 (fr) * 2013-11-27 2015-06-04 Orege Procede et dispositif de traitement de boues liquides, et galettes de boues obtenues avec un tel procede
WO2015079177A1 (fr) * 2013-11-27 2015-06-04 Orege Procédé et dispositif de traitement d'un effluent organique.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2349803C (fr) * 2000-06-01 2009-01-27 Lystek International, Inc. Traitement des boues d'epuration
JP3731204B2 (ja) * 2001-03-27 2006-01-05 有限会社山口ティー・エル・オー 汚泥破砕装置及びそれを用いた有機性汚水の処理装置
CN101506101A (zh) 2006-08-24 2009-08-12 世界水技术有限责任公司 废水处理的控制系统和方法
JP5457620B2 (ja) * 2006-09-27 2014-04-02 日環特殊株式会社 汚泥減容炭化装置とその方法と有機性排水処理システム
KR20080108929A (ko) * 2008-10-16 2008-12-16 (주)오에치케이 슬러지 농축 처리 장치 및 방법
CN103347825B (zh) 2011-02-10 2016-06-22 水翼株式会社 污泥絮凝方法及污泥絮凝装置
CN102417285B (zh) * 2011-10-20 2013-05-01 同济大学 一种高含固生物污泥连续热水解装置与方法
JP6378865B2 (ja) * 2012-08-08 2018-08-22 水ing株式会社 汚泥の処理方法及び装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009065509A1 (fr) * 2007-11-20 2009-05-28 J.F. Knauer Industrie-Elektronik Gmbh Procédé et dispositif pour le traitement de boues
KR101031191B1 (ko) * 2010-07-30 2011-04-26 조영호 소화슬러지 응집장치
KR101042008B1 (ko) * 2010-12-23 2011-06-16 주식회사 서남환경 슬러지 처리용 약품 혼합시스템
JP2015000380A (ja) * 2013-06-17 2015-01-05 水ing株式会社 汚泥凝集装置及び方法、及び汚泥処理装置
WO2015079175A1 (fr) * 2013-11-27 2015-06-04 Orege Procede et dispositif de traitement de boues liquides, et galettes de boues obtenues avec un tel procede
WO2015079177A1 (fr) * 2013-11-27 2015-06-04 Orege Procédé et dispositif de traitement d'un effluent organique.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOGATE P R ET AL: "A review of applications of cavitation in biochemical engineering/biotechnology", BIOCHEMICAL ENGINEERING JOURNAL, ELSEVIER, AMSTERDAM, NL, vol. 44, no. 1, 15 April 2009 (2009-04-15), pages 60 - 72, XP025989157, ISSN: 1369-703X, [retrieved on 20081018], DOI: 10.1016/J.BEJ.2008.10.006 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3100536A1 (fr) * 2019-09-05 2021-03-12 Dfi-Elec Procédé de traitement d’un lixiviat de décharge ou d’un concentrat liquide de lixiviat ou de boues issues de lixiviats et dispositif pour la mise en œuvre du procédé

Also Published As

Publication number Publication date
CN109476520B (zh) 2022-05-03
US10981820B2 (en) 2021-04-20
FR3052450A1 (fr) 2017-12-15
FR3052450B1 (fr) 2020-01-10
NZ748838A (en) 2021-10-29
CA3026314A1 (fr) 2017-12-14
IL263527A (en) 2019-01-31
AU2017276542B2 (en) 2022-11-03
JP2019501020A (ja) 2019-01-17
EP3468928A1 (fr) 2019-04-17
AU2017276542A1 (en) 2018-12-20
IL263527B (en) 2021-08-31
BR112018075325A2 (pt) 2019-03-19
JP6792623B2 (ja) 2020-11-25
KR102339124B1 (ko) 2021-12-15
CN109476520A (zh) 2019-03-15
KR20190016042A (ko) 2019-02-15
US20200290911A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
FR3030485B1 (fr) Procede de deshydratation de boues assistee par reactif floculant et installation pour la mise en œuvre d'un tel procede.
EP2835357B1 (fr) Procede de separation entre liquide et matiere en suspension d'une boue et galette de boue solidifiée
WO2003053862A1 (fr) Procede de traitement d'eau par floculation lestee et decantation
EP3468928A1 (fr) Procede ameliore de deshydratation de boues assistee par reactif floculant et installation pour la mise en oeuvre d'un tel procede
WO2009130813A1 (fr) Système de réutilisation d’un liquide usagé à base d’huile animale/végétale
FR3015970A1 (fr) Procede de traitement des boues de nature thixotropique et contenant de la matiere organique.
EP2632860B1 (fr) Procédé et dispositif de clarification des eaux par traitement de structures colloïdales
KR101755009B1 (ko) 음식물 쓰레기 다중 처리 장치
FR2502609A1 (fr) Procede et installation pour le traitement des boues oleagineuses
FR3100536A1 (fr) Procédé de traitement d’un lixiviat de décharge ou d’un concentrat liquide de lixiviat ou de boues issues de lixiviats et dispositif pour la mise en œuvre du procédé
WO2005100270A1 (fr) Procede et systeme de traitement de boues d'epuration
WO2020074448A1 (fr) Procede ameliore de deshydratation de boues assistee par reactif floculant
JP2004196478A (ja) 脱水ケーキの圧送方法および圧送用脱水ケーキ
KR100879714B1 (ko) 원심분리공정 및 압밀공정이 개별적으로 이루어지는고액분리기
CN217351127U (zh) 一种高无机率污泥无机质分离及资源化系统
NZ748838B2 (en) Improved sludge dewatering process assisted by flocculating reactant and plant for the implementation of such a process
CN113173682A (zh) 一种在亚法甘蔗制糖生产中回收利用滤泥的工艺
WO2000009454A1 (fr) Dispositif de deshydratation des boues
OA16395A (fr) Procédé de séparation entre liquide et matière en suspension d'une boue et dispositif mettant en oeuvre un tel procédé.

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018534047

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17722823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3026314

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018075325

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017276542

Country of ref document: AU

Date of ref document: 20170515

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187037974

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017722823

Country of ref document: EP

Effective date: 20190108

ENP Entry into the national phase

Ref document number: 112018075325

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181206