EP3230148B1 - Method for operating a shunting hump system and control device for such a system - Google Patents

Method for operating a shunting hump system and control device for such a system Download PDF

Info

Publication number
EP3230148B1
EP3230148B1 EP16700713.7A EP16700713A EP3230148B1 EP 3230148 B1 EP3230148 B1 EP 3230148B1 EP 16700713 A EP16700713 A EP 16700713A EP 3230148 B1 EP3230148 B1 EP 3230148B1
Authority
EP
European Patent Office
Prior art keywords
curve
arc
resistance
phases
control facility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16700713.7A
Other languages
German (de)
French (fr)
Other versions
EP3230148A1 (en
Inventor
Holger Gemeiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Mobility GmbH
Original Assignee
Siemens Mobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Mobility GmbH filed Critical Siemens Mobility GmbH
Publication of EP3230148A1 publication Critical patent/EP3230148A1/en
Application granted granted Critical
Publication of EP3230148B1 publication Critical patent/EP3230148B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61JSHIFTING OR SHUNTING OF RAIL VEHICLES
    • B61J3/00Shunting or short-distance haulage devices; Similar devices for hauling trains on steep gradients or as starting aids; Car propelling devices therefor
    • B61J3/02Gravity shunting humps

Definitions

  • the most accurate possible forecast of the running behavior of the individual processes also allows the capacity of the drainage system to be maximized, i.e. maximizing the number of carts that can be sorted using the drainage system in a certain period of time.
  • the curve resistance is a frictional resistance that occurs when a rail vehicle drives through a track curve.
  • the reason for this is that in a track curve the wheel on the outside of the curve has to cover a further distance than the wheel on the inside of the curve. Due to the fixed connection of the wheels on the respective axle in rail vehicles however, the two wheels have the same peripheral speed.
  • a certain path difference can be compensated for by the taper of the running surfaces; In tight radii, however, the path differences between the outer and inner rails are so great that they can only be compensated by sliding movements. The resulting friction causes the respective vehicle to brake and thus influences its running.
  • the arc resistance Due to the track topologies in shunting systems, which are also referred to as train formation systems, the arc resistance has a decisive influence on the free running of processes. Consequently, the determination and prognosis of the arc resistance that occurs is of considerable importance for the best possible control for influencing the speed of the processes of the track brakes provided. It must be taken into account that the arc resistances that occur can also be used in the determination and prognosis of the rolling resistances that affect the processes. As a result, the performance and maneuvering quality of the respective drainage system are therefore directly or indirectly influenced by the accuracy of the arc resistance determination. While the performance of a system is essentially determined by the number of processes sorted in a given period of time, the maneuvering quality is measured in particular according to the reliability with which corner joints and processes are prevented from running up at an impermissibly high speed.
  • the present invention is based on the object of a method for operating a shunting system specify that, through an improved determination of arc resistances that occur, an increase in the performance and / or maneuvering quality of the drainage system is possible.
  • this object is achieved by a method for operating a shunting process system, with several curve phases being determined for the respective processes in the form of running cars or groups of wagons based on at least one track curve in the route of the respective run, at least one value for a curve resistance in the at least one track curve is determined, with different calculation models being used for the determined curve running phases in the context of determining the at least one value for the curve resistance, and at least one track brake of the drainage system is controlled taking into account the at least one specific value for the curve resistance.
  • this is initially characterized in that several curve phases are determined for the respective processes in the form of running wagons or groups of wagons based on the respective track curve lying in the route of the respective process. Based on extensive studies and investigations, it was recognized that processes generally do not run through a track curve uniformly, but that different curve phases are advantageously to be distinguished here. In the context of the method according to the invention, the corresponding curve running phases are therefore determined in the first step in relation to the at least one track curve lying in the route of the respective sequence.
  • At least one value for a curve resistance in the at least one track curve is then determined, with different calculation models being used for the determined curve running phases.
  • certain knowledge of driving dynamics can advantageously be taken into account, in particular through measurements and multi-body simulations.
  • At least one track brake of the drainage system is controlled taking into account the at least one specific value for the arc resistance. At least one can do this
  • the value for the arch resistance can be taken into account in such a way that it is directly included in the control of the track brake as a parameter.
  • the at least one specific value for the arc resistance is used to calculate further variables or parameters and these are then included in the control of the at least one track brake.
  • the rolling resistance of the respective process is an important influencing variable in the control of a shunting system. In practice, the problem here is that the rolling resistance of a process cannot be measured directly with sufficient accuracy.
  • one task of a control device of a shunting system is to determine the rolling resistance of a process from available measurement data and to estimate it for a subsequent route section using a suitable prognosis method.
  • the rolling resistance can be determined from the available measurement data, for example, in such a way that first the total resistance acting on the respective sequence - for example from recorded speed differences - is determined and then other resistance components, such as air resistance, switch resistance and, in particular, arc resistance, are subtracted from this total resistance .
  • the remainder after the corresponding difference formation is assumed as the rolling resistance of the respective sequence or used as an input value for a corresponding rolling resistance prognosis.
  • the method according to the invention is based on the fundamental knowledge that by determining different sheet travel phases and using different calculation models for these sheet travel phases within the framework of the Determination of at least one value for the curve resistance in the relevant track curve, the accuracy in the curve resistance determination can be significantly improved. Since the at least one value determined in this way for the arc resistance is taken into account in the control of at least one track brake of the drainage system, this advantageously results in an increase in the performance of the drainage system. As an alternative or in addition to this, there is also the possibility of improving the maneuvering quality of the drainage system in such a way that accidents or damage to the maneuvered wagons or their load, for example due to corner joints or impermissibly strong impacts between the wagons, can be reliably avoided even under unfavorable operational conditions.
  • the determination of the at least one value for the curve resistance in the at least one track curve lying in the travel path of the respective sequence can take place both during the sequence process and before it. This means that the determination or prognosis of the arc resistance that occurs can also be carried out and completed in full before the respective sequence is printed. Depending on the architecture of the control system used, however, it can also be expedient that the corresponding arc resistance determination is only carried out during the sequence process, for example in a decentralized manner by the respective track brake control.
  • the sheet travel phases are determined specifically for the respective sequence.
  • the accuracy of the determination of the at least one value for the curve resistance in the at least one track curve can advantageously be increased further. So it has been shown that there are different types of freight wagons behave differently at the same points on a curved track and it is therefore advantageous to determine the curved path phases specifically for the respective sequence.
  • both the type of the respective sheet travel phase and the length of the respective sheet travel phase are determined specifically for the respective sequence.
  • a determination specific to the respective sequence takes place only with regard to the type or length of the sheet travel phases.
  • the method according to the invention can preferably also be developed in such a way that at least the following sheet travel phases are determined: sheet entry, quasi-static sheet travel, sheet exit.
  • sheet entry quasi-static sheet travel
  • sheet exit This is advantageous because it has been shown that conditions arise, especially at the entry and exit from a track curve, which result in significant differences in terms of the effective curve resistance compared to a quasi-static curve between these two phases.
  • the accuracy of the determination of the curve resistance of the relevant curve can advantageously be significantly improved, whereby an increase in the performance and / or maneuvering quality of the drainage system is ultimately achieved in accordance with the above explanations.
  • At least one of the following further arc running phases is additionally determined: change in the arc radius, change in the arc direction, transition arc, intermediate straight line.
  • a transition curve is understood, in accordance with the usual use of the term, to mean a routing element that is used as a connecting element between two circular arcs or between a straight line and a circular arc.
  • a transition curve is characterized by the fact that it has a different radius of curvature at each point having.
  • An intermediate straight describes the situation that after the first bogie has left a first arc, there is initially a short run-out phase with the length of the intermediate straight.
  • the method according to the invention can advantageously also be designed in such a way that at least one parameter characterizing the respective sequence is taken into account when selecting the respective calculation model.
  • the at least one parameter characterizing the respective sequence can be, for example, at least one type of running gear, a center distance, a parameter characterizing the running gear rigidity or a pivot spacing of the respective course.
  • the fact that at least one such parameter characterizing the respective sequence is taken into account when selecting the calculation model for the respective sheet travel phase it is advantageously made possible, for example, when calculating the at least one value for the sheet resistance, drive-specific properties, such as the rotation inhibition of bogies or the The rigidity of double-hook drives must be taken into account.
  • certain knowledge of driving dynamics can advantageously be taken into account, in particular through measurements and multi-body simulations.
  • the method according to the invention can preferably also be developed in such a way that at least one parameter characterizing the respective environmental conditions is taken into account when the respective calculation model is selected.
  • the at least one parameter characterizing the respective environmental conditions for example, the respective weather conditions, i.e. the presence of moisture, snow and / or ice, can be taken into account, whereby the accuracy of the determination of arc resistances can be further improved if necessary.
  • the respective calculation model is selected using a decision tree.
  • the use of a decision tree for the selection of the respective calculation model is advantageous, since this allows the selection of the calculation model suitable for the respective situation to be carried out in a simple, well-defined and fast manner.
  • the invention also relates to a control device for a shunting system.
  • the present invention is based on the object of specifying a control device for a marshalling drainage system, which enables an increase in the performance and / or the maneuvering quality of the drainage system through improved determination of arc resistances that occur.
  • a control device for a shunting process system being designed to determine, at least, several curve phases for the respective processes in the form of running cars or groups of wagons based on at least one track curve lying in the route of the respective process to determine a value for a curve resistance in the at least one track curve, different calculation models being used for the determined curve running phases within the scope of determining the at least one value for the curve resistance, and at least one track brake of the drainage system taking into account the at least one specific value for the curve resistance to control.
  • control device can also have software components, for example in the form of program code for simulating the running behavior of the processes.
  • the control device can be both a central control device of the shunting system and a decentralized control device, for example in the form of a downhill brake control or a directional track brake control.
  • the control device according to the invention can advantageously also be designed as a distributed control system, i.e., for example, comprise a central control device and decentralized track brake controls.
  • control device according to the invention corresponds to those of the method according to the invention, so that reference is made in this regard to the corresponding statements above.
  • control device it is designed to determine the sheet travel phases specifically for the respective sequence.
  • control device is designed to determine at least the following sheet travel phases: sheet entry, quasi-static sheet travel, sheet exit.
  • control device can also be designed to additionally determine at least one of the following further phases: change in the radius of the arc, change in the direction of the arc, transition arc, intermediate straight line.
  • control device can advantageously also be designed in such a way that it takes into account at least one parameter characterizing the respective sequence when selecting the respective calculation model.
  • control device is designed to take into account at least one parameter characterizing respective environmental conditions when selecting the respective calculation model.
  • control device can preferably also be designed to select the respective calculation model by means of a decision tree.
  • Figure 1 shows in a schematic sketch an embodiment of a drainage system 10 with an embodiment of the control device according to the invention.
  • the upper part of the Figure 1 the track diagram of the system 10 and the lower part of the figure the profile or a longitudinal section of the drainage system 10.
  • the drainage system 10 which is part of a shunting system for rail-bound traffic, has a drainage ramp 20, which is followed in the direction of travel by an intermediate slope 30, a distribution zone 40 with distribution switches 80 to 86 and directional tracks 50 to 57.
  • a drainage ramp 20 which is followed in the direction of travel by an intermediate slope 30, a distribution zone 40 with distribution switches 80 to 86 and directional tracks 50 to 57.
  • Track brakes in the form of valley brakes 60 and 61 and directional track brakes 70 to 77 can be seen.
  • the figure shows processes 100 and 101 as examples, which have been pushed or pulled over the drainage mountain by a push-pull locomotive 110 and then move along the drainage system 10, driven by the force of gravity.
  • the rest of the illustration focuses on the front flow 100 in the running direction, it being assumed with reference to this that it is intended for the directional track 50 and therefore passes the track brakes 60 and 70 on its way.
  • a valley brake control 200 is indicated, which is connected to the valley brake 60, 61 via communication connections 210 and 211, which can be wired or wireless.
  • the directional track brakes 70 to 77 are connected to a directional track brake controller 220 in terms of communication technology.
  • a corresponding communication link 221 between the directional track brake 77 and the directional track brake controller 220 is shown merely as an example.
  • the lower brake control 200 and the directional track brake control 220 are each connected to a central control device 230 of the sequential system 10 via communication connections 231 and 232, respectively.
  • the components 200, 220 and 230 together form a control device for controlling the track brakes in the form of the valley brakes 60 and 61 and the directional track brakes 70 to 77 in the form of a distributed control system.
  • the valley brakes 60, 61 and the directional track brakes 70 to 77 it would of course also be possible, for example, for the valley brakes 60, 61 and the directional track brakes 70 to 77 to be connected directly to the central control device 230.
  • the control of the track brakes in the form of the valley brakes 60, 61 and the directional track brakes 70 to 77 of the sequence system 10 is now carried out according to an exemplary embodiment of the method according to the invention in relation to the sequence 100 in such a way that in a first method step related to at least one in the route of the sequence 100 lying track curves, several curve running phases can be determined.
  • the curve of the track can be, for example, that between the distribution switch 82 and the directional track brake 70.
  • the sheet travel phases are advantageously determined specifically for the sequence 100. This means that when determining the lengths and / or the type of sheet travel phases, at least one parameter of the sequence 100 is taken into account. This can be, for example, the number of carriages, the number of axles, a pivot spacing and / or at least one type of drive of the sequence 100.
  • a phase of a quasi-static arc that is arranged between these two phases is taken into account as the arc running phases in addition to a phase of entry or exit of the drain 100 from the respective track curve.
  • a change in the curve radius, a change in the direction of the curve, a transition curve and an intermediate straight as possible independent curve phases is also possible.
  • the determination of the sheet travel phases takes place within the scope of the described embodiment of the method according to the invention both with regard to the occurrence of certain sheet travel phases and with regard to the length of the respective sheet travel phase taking into account the respective track topology, ie based on the known track course of the respective route.
  • empirically determined calculation formulas or calculation models can be used, which are based on, for example, series of measurements recorded measured values can be derived taking into account multi-body simulations as well as specific properties for the respective process.
  • the calculation models can be parameterized, for example, using adaptive methods.
  • At least one value for a curve resistance in the at least one track curve is determined, with different calculation models being used for the curve running phases determined.
  • at least one parameter characterizing the respective sequence can advantageously be taken into account.
  • the corresponding parameter characterizing the respective sequence can in turn be, for example, the number of carriages, the number of axles, a pivot spacing and / or at least one type of drive of the sequence 100.
  • at least one parameter characterizing the respective environmental conditions can also be taken into account when selecting the respective calculation model.
  • the determination of values for the curve resistance in routes of runs of curved track curves is of fundamental importance in shunting systems, since the corresponding curve resistance has a significant influence on the running behavior of the processes.
  • the freight wagons in automated train formation systems with a drainage mountain run autonomously through the system due to gravity and are guided to their predetermined direction with the help of automatically set points.
  • the free movement of the freight wagons or processes must be checked at all times for safety reasons. Since freight wagons that run independently usually have no technical means of continuously regulating their speed, the speed can only be adjusted using the ones that are installed at certain points in the route Track brakes are influenced. As a result, the free running of the car between the brakes must be predicted in order to be able to recognize possible dangerous situations at an early stage.
  • the at least one value for the arc resistance of the sequence 100 can in principle take place both in relation to track curves ahead in the route and in relation to track curves in the back in the route.
  • the resistance components that are known or can be estimated with sufficient accuracy such as the air resistance, Switch resistances and the arc resistances that occur are deducted from this total resistance.
  • the remainder is assumed as rolling resistance or used as an input value for a rolling resistance forecast in a subsequent section of the route.
  • At least one track brake of the drainage system 10 is now controlled, taking into account the at least one specific value for the arc resistance.
  • it can be the valley brake 60 and / or the directional track brake 70. Due to the determination of the arc travel phases and the associated higher accuracy in the determination or prognosis of the arc resistance that occurs and the more precise rolling resistance estimated values resulting from this, the result is an improvement in the target braking.
  • the control device which comprises at least one of the components central control device 230, valley brake control 200 or directional track brake control 220, in addition to hardware components, for example in the form of corresponding processors and storage means, also has software components, for example in the form of program code for simulating the Running behavior of the processes 100, 101.
  • the valley brakes 60, 61 as well as the directional track brakes 70 to 77, preferably the sequence 101 following the sequence 100 as well as any sequence that precedes or precedes the sequence 100, if applicable.
  • the respective common path of the processes 100, 101 is to be considered in order to avoid catching-up processes and to enable a reliable changeover of the distribution switches 80 to 86 in the distribution zone 40.
  • other boundary conditions such as maximum travel speeds in the path, can also be taken into account as part of the method.
  • Figure 2 shows in a schematic representation an embodiment of a decision tree used in the context of an embodiment of the method according to the invention.
  • the respective calculation model is preferably selected using a decision tree.
  • the respective calculation model to be used depends advantageously not only on the respective sheet travel phase but also on at least one further parameter characterizing the respective sequence and / or at least one further parameter characterizing respective environmental conditions.
  • Figure 2 shows a decision tree which has three levels L1, L2 and L3. For the sake of simplicity, only part of an entire decision tree is shown here, namely that part that corresponds to the situation in Figure 1 for processes in the form of single wagons finds. Accordingly, a branching to branch 300 takes place at level L1 of the decision tree when the decision criterion “single wagon” is met. On the basis of this, a differentiation takes place at level L2 of the decision tree according to a parameter characterizing the respective car, which, according to the above explanations, can be, for example, a type of carriage of the car or the number of its axles.
  • branches 310 and 320 Examples are in Figure 2 a distinction is made between two branches 310 and 320, where branch 310 could, for example, correspond to the decision criterion “two-axis” and branch 320 could correspond to the decision criterion “four-axis”. As an alternative to this, branch 310 could also correspond to the decision criterion “double hook drive” and branch 320 could correspond to the decision criterion “Y25 bogie”. As in Figure 2 indicated, further branches can also be provided depending on the particular circumstances and requirements for further different types of car.
  • a further level L3 of the decision tree different branches are provided for different sheet travel phases. It can be seen here that a different number of sheet travel phases is taken into account for the two different types of carriage or carriage. It is assumed that for processes that meet the decision criterion 310 on the second level L2, the decision criterion 311 corresponding to a sheet running phase "sheet entry”, the decision criterion 312 corresponding to a sheet running phase "quasi-static sheet run” and the decision criterion 313 corresponding to a sheet run phase Sheet run phase "sheet run-out" are provided.
  • the decision criterion 321 of a sheet running phase "sheet entry”
  • the decision criterion 322 of a sheet running phase "quasi-static sheet running”
  • the decision criterion 323 of a sheet running phase “sheet run-out”
  • the decision criterion 324 of an additional sheet running phase “Change of arc direction”
  • Figure 3 shows a first schematic representation of the arc resistance as a function of the location, based on a first track curve and a first sequence. It is assumed here that the sequence is again a single wagon with a double hook drive.
  • the arc resistance w b is shown as a function of the path or location s.
  • the lower part of the Figure 3 is also indicated in the form of a "curved band" B, the course of the track curve under consideration as a function of the location s. It becomes clear that the track curve extends between the locations s 1 and s 4.
  • the arc resistance w b then decreases in the further course up to a location s 3 to a resistance value w q , which is the resistance value in a subsequent arc travel phase P2, which is also referred to as the quasi-static phase.
  • w max w q applies.
  • the running-in phase P1 is ended after a distance which corresponds to twice the center distance l ax of the freight wagon with double-hook drive.
  • the quasi-static phase P2 begins.
  • a phase-out phase P5 beginning at location s 4 with the first axle of the carriage running out of the curved track.
  • the arc resistance w b now drops continuously to 0, with the arc resistance w b at location s 5 , that is to say after approximately half a car length, has subsided.
  • the representation in the Figures 3 and 4 In relation to the location information s, it relates to the first axis of the respective sequence in the running direction.
  • the length of the quasi-static phase P2 extending between the route points s 3 and s 4 results according to Figure 3 from the difference between the arc length l b and twice the center distance l ax .
  • Figure 4 shows, based on a second track curve and a second sequence, a second schematic representation of the curve resistance as a function of location.
  • the Figure 4 assumed that the sequence concerned is a four-axle single wagon with a Y25 bogie.
  • the run-in phase P1 begins at location s 1 with the entry of the first bogie of the freight wagon into the curved track and continues until the second bogie also enters the curve. At this point in time, the foremost axle of the car is at location s 2 .
  • the change of direction phase P3 is defined by the fact that the two bogies of the sequence under consideration are located in curved tracks with different directions of curvature. Both in the case of a change of direction and in the case of a change in radius with the arc direction remaining the same, there is an increased arc resistance, which is preferably to be taken into account when determining the arc resistance w b.
  • the pivot spacing has a decisive influence on the length of the curve travel phases.
  • the run-in phase P1 limited by the locations s 1 and s 2 , the change-of-direction phase P3 limited by the locations s 3 and s 4 and the run-out phase P5 limited by the locations s 5 and s 6 each have a length that corresponds to the pivot spacing l dz of the sequence corresponds to.
  • the length of the quasi-static phases P2 and P4 is in each case the arc length l b minus the pivot distance l dz .
  • Figure 5 in a first diagram of the spatial coordinates x and y in relation to a first sequence, a first exemplary embodiment of different sheet travel phases. It is assumed that the sequence in question is a single wagon with a Y25 bogie with a pivot spacing of 7 m.
  • the representation of the sheet running phases a 1 to a 10 in this xy diagram showing the course of the running path corresponds to an imaginary movement of the respective course through the relevant route section, identifying the sheet running phase prevailing at the corresponding location xy.
  • the sheet running phase a 1 is a running-in phase that changes into a quasi-static sheet running phase a 2 .
  • a phase of the change in radius or direction a 3 which in turn merges into a quasi-static arc travel phase a 4.
  • a so-called intermediate straight line a 6 follows a run-out phase a 5 .
  • An intermediate straight line describes the situation that after the first bogie has left a first arc, there is initially a short run-out phase with the length of the intermediate straight line. After that, When the first bogie enters the second curve, there is a special curve running phase in that the intermediate straight is under the carriage and the second bogie is still running in the first curve.
  • This arc running phase is referred to as an intermediate straight line in the context of the present description.
  • the intermediate straight line a 6 is followed by a running- in phase a 7 , which in turn merges into a phase of the quasi-static sheet travel a 8.
  • This is completed by a run-out phase a 9 , to which, according to the illustration of the Figure 5 a straight line a 10 connects.
  • a 10 is not actually a curve running phase, since, based on the illustrated embodiment, at this point or at this point in time all axes of the sequence have already completely passed the curve of the path.
  • Figure 6 shows in a second diagram of the spatial coordinates x and y related to a second sequence a second embodiment of different sheet travel phases. It is assumed here that it is again a single freight wagon with a Y25 bogie, but in this case with a significantly longer pivot spacing of 19 m.
  • a run-out phase a 16 is in turn followed by a sheet-run phase in the form of an intermediate straight line a 17 , which is followed by a run-in phase a 18 .
  • a run-in phase a 18 is followed by a run-in phase a 18 .
  • a further quasi-static sheet travel phase a 19 and a run-out phase a 20 the illustration of FIG Figure 6 with a section a 21 in the form of a straight line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Train Traffic Observation, Control, And Security (AREA)

Description

In rangiertechnischen Ablaufanlagen werden Wagen oder Wagengruppen, die auch als Abläufe bezeichnet werden, unter Nutzung der auf die Abläufe wirkenden Schwerkraft aus einem Berggleis in unterschiedliche Richtungsgleise sortiert. Im Sinne der Effizienz und Zuverlässigkeit erfolgt hierbei üblicherweise eine weitgehende Automatisierung des Betriebs der Ablaufanlage. Ein zu diesem Zwecke geeignetes automatisches Steuerungssystem ist beispielsweise aus der Firmenveröffentlichung "Automatisierungssystem für Zugbildungsanlagen Trackguard® Cargo MSR32 - Mehr Effizienz und Sicherheit im Güterverkehr", Bestell-Nr.: A19100-V100-B981, Siemens AG 2014 bekannt.In shunting systems, wagons or groups of wagons, which are also referred to as processes, are sorted from a mountain track into different directional tracks using the force of gravity acting on the processes. In the interests of efficiency and reliability, the operation of the drainage system is usually largely automated. An automatic control system suitable for this purpose is known, for example, from the company publication "Automation system for train formation systems Trackguard® Cargo MSR32 - More efficiency and safety in freight traffic", order no .: A19100-V100-B981, Siemens AG 2014.

Generell ist beim Betrieb einer Ablaufanlage eine möglichst genaue Prognose des Laufverhaltens der Abläufe wünschenswert. Dies gilt einerseits im Hinblick darauf, Einholvorgänge der Abläufe während ihres Laufs in Richtung der Richtungsgleise zu vermeiden, da diese zu Unfällen oder Beschädigungen der Abläufe beziehungsweise der transportierten Güter führen können. Darüber hinaus erlaubt eine möglichst genaue Prognose des Laufverhaltens der einzelnen Abläufe auch eine Maximierung der Kapazität der Ablaufanlage, d.h. eine Maximierung der Anzahl der mittels der Ablaufanlage in einem bestimmten Zeitraum sortierbaren Wagen.In general, when operating a drainage system, it is desirable to predict the running behavior of the processes as precisely as possible. On the one hand, this applies with regard to the avoidance of catching-up processes of the processes during their run in the direction of the direction tracks, since these can lead to accidents or damage to the processes or the transported goods. In addition, the most accurate possible forecast of the running behavior of the individual processes also allows the capacity of the drainage system to be maximized, i.e. maximizing the number of carts that can be sorted using the drainage system in a certain period of time.

Eine wichtige Einflussgröße bei der Steuerung einer Ablaufanlage stellen die auf die Abläufe in Gleisbögen wirkenden Bogenwiderstände dar. Der Bogenwiderstand ist ein Reibungswiderstand, der auftritt, wenn ein Schienenfahrzeug durch einen Gleisbogen fährt. Ursache hierfür ist, dass in einem Gleisbogen das bogenäußere Rad einen weiteren Weg als das bogeninnere Rad zurücklegen muss. Aufgrund der bei Schienenfahrzeugen festen Verbindung der Räder über die jeweilige Achse besitzen die beiden Räder jedoch die gleiche Umfangsgeschwindigkeit. Zwar kann eine gewisse Wegdifferenz durch die Konizität der Laufflächen ausgeglichen werden; in engen Radien sind die Wegdifferenzen zwischen äußerer und innerer Schiene jedoch so groß, dass sie nur durch Gleitbewegungen kompensiert werden können. Die hierdurch entstehende Reibung bewirkt ein Abbremsen des jeweiligen Fahrzeugs und beeinflusst somit seinen Lauf.An important influencing variable in the control of a sequence system is the arc resistance that affects the processes in track curves. The curve resistance is a frictional resistance that occurs when a rail vehicle drives through a track curve. The reason for this is that in a track curve the wheel on the outside of the curve has to cover a further distance than the wheel on the inside of the curve. Due to the fixed connection of the wheels on the respective axle in rail vehicles however, the two wheels have the same peripheral speed. A certain path difference can be compensated for by the taper of the running surfaces; In tight radii, however, the path differences between the outer and inner rails are so great that they can only be compensated by sliding movements. The resulting friction causes the respective vehicle to brake and thus influences its running.

Aufgrund der Gleistopologien in rangiertechnischen Ablaufanlagen, die auch als Zugbildungsanlagen bezeichnet werden, hat der Bogenwiderstand einen maßgeblichen Einfluss auf den freien Lauf der Abläufe. Folglich ist die Bestimmung und Prognose der auftretenden Bogenwiderstände von erheblicher Bedeutung für eine bestmögliche Steuerung zur Beeinflussung der Geschwindigkeit der Abläufe vorgesehener Gleisbremsen. Dabei ist zu berücksichtigen, dass die auftretenden Bogenwiderstände auch bei der Bestimmung und Prognose von auf die Abläufe einwirkenden Rollwiderständen verwendet werden können. Im Ergebnis werden Leistungsfähigkeit und Rangierqualität der jeweiligen Ablaufanlage daher unmittelbar oder mittelbar durch die Genauigkeit der Bogenwiderstandsbestimmung beeinflusst. Während die Leistungsfähigkeit einer Anlage im Wesentlichen durch die Anzahl der in einer vorgegebenen Zeitdauer sortierten Abläufe bestimmt ist, bemisst sich die Rangierqualität insbesondere danach, mit welcher Zuverlässigkeit Eckstöße sowie ein Auflaufen der Abläufe mit unzulässig hoher Geschwindigkeit vermieden werden.Due to the track topologies in shunting systems, which are also referred to as train formation systems, the arc resistance has a decisive influence on the free running of processes. Consequently, the determination and prognosis of the arc resistance that occurs is of considerable importance for the best possible control for influencing the speed of the processes of the track brakes provided. It must be taken into account that the arc resistances that occur can also be used in the determination and prognosis of the rolling resistances that affect the processes. As a result, the performance and maneuvering quality of the respective drainage system are therefore directly or indirectly influenced by the accuracy of the arc resistance determination. While the performance of a system is essentially determined by the number of processes sorted in a given period of time, the maneuvering quality is measured in particular according to the reliability with which corner joints and processes are prevented from running up at an impermissibly high speed.

Aus der deutschen Patentschrift DE 101 55 896 C1 ist ein Verfahren zur steuerungstechnischen Einbindung von Gefälleausgleichsbremsen in einen automatischen Rangierablauf bekannt. Hierbei werden Streckenwiderstandsanteile entlang einer Weglänge getrennt nach Neigung, Bogenwiderstand und - sofern vorhanden - Weichenwiderstand ermittelt.From the German patent specification DE 101 55 896 C1 a method for the control-technical integration of gradient compensation brakes in an automatic maneuvering process is known. Here, the route resistance components along a path are determined separately according to inclination, arc resistance and - if available - switch resistance.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betreiben einer rangiertechnischen Ablaufanlage anzugeben, das durch eine verbesserte Bestimmung auftretender Bogenwiderstände eine Erhöhung der Leistungsfähigkeit und/oder Rangierqualität der Ablaufanlage ermöglicht.The present invention is based on the object of a method for operating a shunting system specify that, through an improved determination of arc resistances that occur, an increase in the performance and / or maneuvering quality of the drainage system is possible.

Diese Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zum Betreiben einer rangiertechnischen Ablaufanlage, wobei für die jeweiligen Abläufe in Form von ablaufenden Wagen oder Wagengruppen bezogen auf zumindest einen im Fahrweg des jeweiligen Ablaufs liegenden Gleisbogen mehrere Bogenlaufphasen ermittelt werden, zumindest ein Wert für einen Bogenwiderstand in dem zumindest einen Gleisbogen bestimmt wird, wobei für die ermittelten Bogenlaufphasen im Rahmen der Bestimmung des zumindest einen Wertes für den Bogenwiderstand unterschiedliche Berechnungsmodelle verwendet werden, und zumindest eine Gleisbremse der Ablaufanlage unter Berücksichtigung des zumindest einen bestimmten Wertes für den Bogenwiderstand gesteuert wird.According to the invention, this object is achieved by a method for operating a shunting process system, with several curve phases being determined for the respective processes in the form of running cars or groups of wagons based on at least one track curve in the route of the respective run, at least one value for a curve resistance in the at least one track curve is determined, with different calculation models being used for the determined curve running phases in the context of determining the at least one value for the curve resistance, and at least one track brake of the drainage system is controlled taking into account the at least one specific value for the curve resistance.

Gemäß dem ersten Schritt des erfindungsgemäßen Verfahrens zeichnet sich dieses zunächst dadurch aus, dass für die jeweiligen Abläufe in Form von ablaufenden Wagen oder Wagengruppen bezogen auf den jeweiligen im Fahrweg des jeweiligen Ablaufs liegenden Gleisbogen mehrere Bogenlaufphasen ermittelt werden. Basierend auf umfassenden Studien und Untersuchungen wurde erkannt, dass Abläufe einen Gleisbogen in der Regel nicht gleichmäßig durchlaufen, sondern dass hierbei vorteilhafterweise verschiedene Bogenlaufphasen zu unterscheiden sind. Im Rahmen des erfindungsgemäßen Verfahrens werden daher im ersten Schritt die entsprechenden Bogenlaufphasen bezogen auf den zumindest einen im Fahrweg des jeweiligen Ablaufs liegenden Gleisbogen ermittelt.According to the first step of the method according to the invention, this is initially characterized in that several curve phases are determined for the respective processes in the form of running wagons or groups of wagons based on the respective track curve lying in the route of the respective process. Based on extensive studies and investigations, it was recognized that processes generally do not run through a track curve uniformly, but that different curve phases are advantageously to be distinguished here. In the context of the method according to the invention, the corresponding curve running phases are therefore determined in the first step in relation to the at least one track curve lying in the route of the respective sequence.

Gemäß dem zweiten Schritt des erfindungsgemäßen Verfahrens wird sodann zumindest ein Wert für einen Bogenwiderstand in dem zumindest einen Gleisbogen bestimmt, wobei für die ermittelten Bogenlaufphasen unterschiedliche Berechnungsmodelle verwendet werden. Dies bedeutet, dass der Bogenwiderstand in den verschiedenen Bogenlaufphasen auf unterschiedliche Art und Weise berechnet wird. Bei den jeweilig verwendeten Berechnungsmodellen können hierbei vorteilhafterweise insbesondere durch Messungen sowie Mehrkörpersimulationen bestimmte fahrdynamische Kenntnisse berücksichtigt werden.According to the second step of the method according to the invention, at least one value for a curve resistance in the at least one track curve is then determined, with different calculation models being used for the determined curve running phases. This means that the arc resistance in the different arc travel phases in different ways and way is calculated. In the case of the respective calculation models used, certain knowledge of driving dynamics can advantageously be taken into account, in particular through measurements and multi-body simulations.

Gemäß dem dritten Schritt des erfindungsgemäßen Verfahrens wird zumindest eine Gleisbremse der Ablaufanlage unter Berücksichtigung des zumindest einen bestimmten Wertes für den Bogenwiderstand gesteuert. Dabei kann der zumindest eine bestimmte Wert für den Bogenwiderstand einerseits derart berücksichtigt werden, dass er unmittelbar in die Steuerung der Gleisbremse als Parameter eingeht. Andererseits ist es jedoch auch möglich, dass der zumindest eine bestimmte Wert für den Bogenwiderstand zur Berechnung weiterer Größen oder Parameter verwendet wird und diese dann in die Steuerung der zumindest einen Gleisbremse eingehen. So stellt - wie zuvor bereits ausgeführt - insbesondere auch der Rollwiderstand des jeweiligen Ablaufs eine wichtige Einflussgröße bei der Steuerung einer rangiertechnischen Ablaufanlage dar. In der Praxis besteht hierbei das Problem, dass der Rollwiderstand eines Ablaufs nicht mit ausreichender Genauigkeit direkt messbar ist. Folglich besteht eine Aufgabe einer Steuereinrichtung einer rangiertechnischen Ablaufanlage darin, den Rollwiderstand eines Ablaufs aus verfügbaren Messdaten zu bestimmen und durch ein geeignetes Prognoseverfahren für einen nachfolgenden Streckenabschnitt zu schätzen. Hierbei kann die Bestimmung des Rollwiderstandes aus den verfügbaren Messdaten beispielsweise derart geschehen, dass zunächst der auf den jeweiligen Ablauf wirkende Gesamtwiderstand - beispielsweise aus erfassten Geschwindigkeitsdifferenzen - bestimmt wird und anschließend andere Widerstandsanteile, wie beispielsweise Luftwiderstand, Weichenwiderstand sowie insbesondere Bogenwiderstand, von diesem Gesamtwiderstand abgezogen werden. Der nach der entsprechenden Differenzbildung verbleibende Rest wird als Rollwiderstand des jeweiligen Ablaufs angenommen beziehungsweise als Eingangswert für eine entsprechende Rollwiderstandsprognose verwendet. Somit führt eine Verbesserung der Bestimmung auftretender Bogenwiderstände letztlich auch zu genaueren Schätzwerten für den Rollwiderstand und trägt damit im Ergebnis zu einer Verbesserung der Laufzielbremsung bei. Hierdurch wird somit ein effizienteres und schonenderes Rangieren, gegebenenfalls auch ohne Förderanlage, ermöglicht.According to the third step of the method according to the invention, at least one track brake of the drainage system is controlled taking into account the at least one specific value for the arc resistance. At least one can do this On the one hand, the value for the arch resistance can be taken into account in such a way that it is directly included in the control of the track brake as a parameter. On the other hand, however, it is also possible that the at least one specific value for the arc resistance is used to calculate further variables or parameters and these are then included in the control of the at least one track brake. As already mentioned, the rolling resistance of the respective process is an important influencing variable in the control of a shunting system. In practice, the problem here is that the rolling resistance of a process cannot be measured directly with sufficient accuracy. Consequently, one task of a control device of a shunting system is to determine the rolling resistance of a process from available measurement data and to estimate it for a subsequent route section using a suitable prognosis method. The rolling resistance can be determined from the available measurement data, for example, in such a way that first the total resistance acting on the respective sequence - for example from recorded speed differences - is determined and then other resistance components, such as air resistance, switch resistance and, in particular, arc resistance, are subtracted from this total resistance . The remainder after the corresponding difference formation is assumed as the rolling resistance of the respective sequence or used as an input value for a corresponding rolling resistance prognosis. Thus, an improvement in the determination of arc resistance that occurs ultimately also leads to more precise estimated values for the rolling resistance and thus contributes to an improvement in the target braking. This enables more efficient and gentler maneuvering, possibly even without a conveyor system.

Dem erfindungsgemäßen Verfahren liegt die grundlegende Erkenntnis zugrunde, dass durch eine Ermittlung unterschiedlicher Bogenlaufphasen und eine Verwendung unterschiedlicher Berechnungsmodelle für diese Bogenlaufphasen im Rahmen der Bestimmung zumindest eines Wertes für den Bogenwiderstand in dem betreffenden Gleisbogen die Genauigkeit bei der Bogenwiderstandsbestimmung erheblich verbessert werden kann. Indem der solchermaßen bestimmte zumindest eine Wert für den Bogenwiderstand bei der Steuerung zumindest einer Gleisbremse der Ablaufanlage berücksichtigt wird, ergibt sich somit vorteilhafterweise eine Erhöhung der Leistungsfähigkeit der Ablaufanlage. Alternativ oder zusätzlich hierzu besteht auch die Möglichkeit, dass die Rangierqualität der Ablaufanlage dahingehend verbessert wird, dass Unfälle oder Beschädigungen der rangierten Wagen oder ihrer Ladung, beispielsweise durch Eckstöße oder unzulässig starke Auflaufstöße der Wagen untereinander, auch unter ungünstigen betrieblichen Bedingungen zuverlässig vermieden werden.The method according to the invention is based on the fundamental knowledge that by determining different sheet travel phases and using different calculation models for these sheet travel phases within the framework of the Determination of at least one value for the curve resistance in the relevant track curve, the accuracy in the curve resistance determination can be significantly improved. Since the at least one value determined in this way for the arc resistance is taken into account in the control of at least one track brake of the drainage system, this advantageously results in an increase in the performance of the drainage system. As an alternative or in addition to this, there is also the possibility of improving the maneuvering quality of the drainage system in such a way that accidents or damage to the maneuvered wagons or their load, for example due to corner joints or impermissibly strong impacts between the wagons, can be reliably avoided even under unfavorable operational conditions.

Es sei darauf hingewiesen, dass die Bestimmung des zumindest einen Wertes für den Bogenwiderstand in dem zumindest einem im Fahrweg des jeweiligen Ablaufs liegenden Gleisbogen sowohl während des Ablaufvorgangs als auch bereits vor diesem erfolgen kann. Dies bedeutet, dass die Bestimmung beziehungsweise Prognose der auftretenden Bogenwiderstände auch schon vollständig vor dem Abdrücken des jeweiligen Ablaufs ausgeführt und abgeschlossen werden kann. In Abhängigkeit von der Architektur des verwendeten Steuerungssystems kann es jedoch auch zweckmäßig sein, dass die entsprechende Bogenwiderstandsbestimmung erst während des Ablaufvorgangs beispielsweise dezentral von der jeweiligen Gleisbremsensteuerung durchgeführt wird.It should be pointed out that the determination of the at least one value for the curve resistance in the at least one track curve lying in the travel path of the respective sequence can take place both during the sequence process and before it. This means that the determination or prognosis of the arc resistance that occurs can also be carried out and completed in full before the respective sequence is printed. Depending on the architecture of the control system used, however, it can also be expedient that the corresponding arc resistance determination is only carried out during the sequence process, for example in a decentralized manner by the respective track brake control.

Gemäß einer besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden die Bogenlaufphasen spezifisch für den jeweiligen Ablauf ermittelt. Durch eine für den jeweiligen Ablauf spezifische Ermittlung der Bogenlaufphasen, d.h. durch eine Berücksichtigung von Eigenschaften des jeweiligen konkreten Ablaufs, kann vorteilhafterweise die Genauigkeit der Bestimmung des zumindest einen Wertes für den Bogenwiderstand in dem zumindest einen Gleisbogen weiter erhöht werden. So hat sich gezeigt, dass sich unterschiedliche Arten von Güterwagen an denselben Stellen eines Gleisbogens unterschiedlich verhalten und es daher vorteilhaft ist, die Bogenlaufphasen spezifisch für den jeweiligen Ablauf zu ermitteln. Vorteilhafterweise wird dabei sowohl die Art der jeweiligen Bogenlaufphase als auch die Länge der jeweiligen Bogenlaufphase spezifisch für den jeweiligen Ablauf ermittelt. Alternativ hierzu ist es grundsätzlich jedoch auch denkbar, dass lediglich in Bezug auf die Art oder die Länge der Bogenlaufphasen eine für den jeweiligen Ablauf spezifische Ermittlung erfolgt.According to a particularly preferred embodiment of the method according to the invention, the sheet travel phases are determined specifically for the respective sequence. By determining the curve running phases specifically for the respective sequence, ie by taking properties of the respective concrete sequence into account, the accuracy of the determination of the at least one value for the curve resistance in the at least one track curve can advantageously be increased further. So it has been shown that there are different types of freight wagons behave differently at the same points on a curved track and it is therefore advantageous to determine the curved path phases specifically for the respective sequence. Advantageously, both the type of the respective sheet travel phase and the length of the respective sheet travel phase are determined specifically for the respective sequence. As an alternative to this, however, it is in principle also conceivable that a determination specific to the respective sequence takes place only with regard to the type or length of the sheet travel phases.

Vorzugsweise kann das erfindungsgemäße Verfahren auch derart weitergebildet sein, dass zumindest die folgenden Bogenlaufphasen ermittelt werden: Bogeneinlauf, quasistatischer Bogenlauf, Bogenauslauf. Dies ist vorteilhaft, da sich gezeigt hat, dass sich insbesondere beim Einlauf sowie beim Auslauf aus einen Gleisbogen Verhältnisse einstellen, die im Vergleich zu einem zwischen diesen beiden Phasen liegenden quasistatischen Bogenlauf deutliche Unterschiede in Bezug auf den wirkenden Bogenwiderstand zur Folge haben. Bereits durch eine Unterscheidung beziehungsweise Ermittlung der genannten drei Bogenlaufphasen kann somit im Ergebnis die Genauigkeit der Bestimmung des Bogenwiderstandes des betreffenden Gleisbogens vorteilhafterweise deutlich verbessert werden, wodurch entsprechend den vorstehenden Ausführungen letztlich eine Steigerung der Leistungsfähigkeit und/oder Rangierqualität der Ablaufanlage erzielt wird.The method according to the invention can preferably also be developed in such a way that at least the following sheet travel phases are determined: sheet entry, quasi-static sheet travel, sheet exit. This is advantageous because it has been shown that conditions arise, especially at the entry and exit from a track curve, which result in significant differences in terms of the effective curve resistance compared to a quasi-static curve between these two phases. Already by differentiating or determining the aforementioned three curve travel phases, the accuracy of the determination of the curve resistance of the relevant curve can advantageously be significantly improved, whereby an increase in the performance and / or maneuvering quality of the drainage system is ultimately achieved in accordance with the above explanations.

Gemäß einer weiteren besonders bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird zusätzlich zumindest eine der folgenden weiteren Bogenlaufphasen ermittelt: Änderung des Bogenradius, Wechsel der Bogenrichtung, Übergangsbogen, Zwischengerade. Dabei wird unter einem Übergangsbogen entsprechend der üblichen Begriffsverwendung ein Trassierungselement verstanden, das als Verbindungselement zwischen zwei Kreisbögen oder zwischen einer Geraden und einem Kreisbogen verwendet wird. Dabei zeichnet sich ein Übergangsbogen dadurch aus, dass er an jeder Stelle einen anderen Krümmungsradius aufweist. Eine Zwischengerade beschreibt die Situation, dass sich nach Auslauf des ersten Drehgestells aus einem ersten Bogen zunächst eine kurze Auslaufphase mit der Länge der Zwischengerade anschließt. Danach, mit Einlauf des ersten Drehgestells in den zweiten Bogen, herrscht eine besondere Bogenlaufphase dahingehend vor, dass sich die Zwischengerade unter dem Wagen befindet und das zweite Drehgestell noch im ersten Bogen läuft. Diese Bogenlaufphase wird im Rahmen der Beschreibung der vorliegenden Erfindung als Zwischengerade bezeichnet. Durch die zusätzliche Berücksichtigung zumindest einer der zuvor genannten Bogenlaufphasen kann - in Abhängigkeit von dem jeweiligen Ablauf - vorteilhafterweise eine weitere Verbesserung im Rahmen der Bestimmung des zumindest einen Wertes für den Bogenwiderstand in dem zumindest einen Gleisbogen erzielt werden.According to a further particularly preferred embodiment of the method according to the invention, at least one of the following further arc running phases is additionally determined: change in the arc radius, change in the arc direction, transition arc, intermediate straight line. In this context, a transition curve is understood, in accordance with the usual use of the term, to mean a routing element that is used as a connecting element between two circular arcs or between a straight line and a circular arc. A transition curve is characterized by the fact that it has a different radius of curvature at each point having. An intermediate straight describes the situation that after the first bogie has left a first arc, there is initially a short run-out phase with the length of the intermediate straight. Then, when the first bogie enters the second curve, there is a special curve running phase in that the intermediate straight is under the carriage and the second bogie is still running in the first curve. This arc running phase is referred to as an intermediate straight line in the context of the description of the present invention. By additionally taking into account at least one of the above-mentioned curve travel phases, a further improvement can advantageously be achieved in the determination of the at least one value for the curve resistance in the at least one track curve, depending on the respective sequence.

Vorteilhafterweise kann das erfindungsgemäße Verfahren auch derart ausgestaltet sein, dass bei der Auswahl des jeweiligen Berechnungsmodells zumindest ein den jeweiligen Ablauf charakterisierender Parameter berücksichtigt wird. Bei dem zumindest einen den jeweiligen Ablauf charakterisierenden Parameter kann es sich beispielsweise um zumindest einen Laufwerkstyp, einen Achsabstand, einen die Laufwerkssteifigkeit charakterisierender Parameter oder einen Drehzapfenabstand des jeweiligen Ablaufs handeln. Dadurch, dass bei der Auswahl des Berechnungsmodells für die jeweilige Bogenlaufphase zumindest ein solcher den jeweiligen Ablauf charakterisierender Parameter berücksichtigt wird, wird es vorteilhafterweise z.B. ermöglicht, bei der Berechnung des zumindest einen Wertes für den Bogenwiderstand laufwerksspezifische Eigenschaften, wie z.B. die Drehhemmung von Drehgestellen oder die Steifigkeit von Doppelschaken-Laufwerken, zu berücksichtigen. Bei den jeweilig verwendeten Berechnungsmodellen können hierbei vorteilhafterweise insbesondere durch Messungen sowie Mehrkörpersimulationen bestimmte fahrdynamische Kenntnisse berücksichtigt werden.The method according to the invention can advantageously also be designed in such a way that at least one parameter characterizing the respective sequence is taken into account when selecting the respective calculation model. The at least one parameter characterizing the respective sequence can be, for example, at least one type of running gear, a center distance, a parameter characterizing the running gear rigidity or a pivot spacing of the respective course. The fact that at least one such parameter characterizing the respective sequence is taken into account when selecting the calculation model for the respective sheet travel phase, it is advantageously made possible, for example, when calculating the at least one value for the sheet resistance, drive-specific properties, such as the rotation inhibition of bogies or the The rigidity of double-hook drives must be taken into account. In the case of the respective calculation models used, certain knowledge of driving dynamics can advantageously be taken into account, in particular through measurements and multi-body simulations.

Alternativ oder zusätzlich zu der zuvor beschriebenen Ausführungsform kann das erfindungsgemäße Verfahren vorzugsweise auch derart weitergebildet sein, dass bei der Auswahl des jeweiligen Berechnungsmodells zumindest ein jeweilige Umweltbedingungen charakterisierender Parameter berücksichtigt wird. Dabei kann mittels des zumindest einen die jeweiligen Umweltbedingungen charakterisierenden Parameters beispielsweise eine Berücksichtigung der jeweiligen Witterungsverhältnisse, d.h. etwa das Vorliegen von Nässe, Schnee und/oder Eis, erfolgen, wodurch die Genauigkeit der Bestimmung auftretender Bogenwiderstände gegebenenfalls weiter verbessert werden kann.As an alternative or in addition to the embodiment described above, the method according to the invention can preferably also be developed in such a way that at least one parameter characterizing the respective environmental conditions is taken into account when the respective calculation model is selected. By means of the at least one parameter characterizing the respective environmental conditions, for example, the respective weather conditions, i.e. the presence of moisture, snow and / or ice, can be taken into account, whereby the accuracy of the determination of arc resistances can be further improved if necessary.

Gemäß einer weiteren besonders bevorzugten Weiterbildung des erfindungsgemäßen Verfahrens erfolgt die Auswahl des jeweiligen Berechnungsmodells mittels eines Entscheidungsbaums. Die Verwendung eines Entscheidungsbaums bei der Auswahl des jeweiligen Berechnungsmodells ist vorteilhaft, da hierdurch die Auswahl des für die jeweilige Situation geeigneten Berechnungsmodells auf einfache, wohldefinierte und schnelle Art und Weise erfolgen kann.According to a further particularly preferred development of the method according to the invention, the respective calculation model is selected using a decision tree. The use of a decision tree for the selection of the respective calculation model is advantageous, since this allows the selection of the calculation model suitable for the respective situation to be carried out in a simple, well-defined and fast manner.

Die Erfindung betrifft darüber hinaus eine Steuereinrichtung für eine rangiertechnische Ablaufanlage.The invention also relates to a control device for a shunting system.

Hinsichtlich der Steuereinrichtung liegt der vorliegenden Erfindung die Aufgabe zugrunde, eine Steuereinrichtung für eine rangiertechnische Ablaufanlage anzugeben, die durch eine verbesserte Bestimmung auftretender Bogenwiderstände eine Erhöhung der Leistungsfähigkeit und/oder der Rangierqualität der Ablaufanlage ermöglicht.With regard to the control device, the present invention is based on the object of specifying a control device for a marshalling drainage system, which enables an increase in the performance and / or the maneuvering quality of the drainage system through improved determination of arc resistances that occur.

Diese Aufgabe wird erfindungsgemäß gelöst durch eine Steuereinrichtung für eine rangiertechnische Ablaufanlage, wobei die Steuereinrichtung ausgebildet ist, für die jeweiligen Abläufe in Form von ablaufenden Wagen oder Wagengruppen bezogen auf zumindest einen im Fahrweg des jeweiligen Ablaufs liegenden Gleisbogen mehrere Bogenlaufphasen zu ermitteln, zumindest einen Wert für einen Bogenwiderstand in dem zumindest einen Gleisbogen zu bestimmen, wobei für die ermittelten Bogenlaufphasen im Rahmen der Bestimmung des zumindest einen Wertes für den Bogenwiderstand unterschiedliche Berechnungsmodelle verwendet werden, und zumindest eine Gleisbremse der Ablaufanlage unter Berücksichtigung des zumindest einen bestimmten Wertes für den Bogenwiderstand zu steuern.This object is achieved according to the invention by a control device for a shunting process system, the control device being designed to determine, at least, several curve phases for the respective processes in the form of running cars or groups of wagons based on at least one track curve lying in the route of the respective process to determine a value for a curve resistance in the at least one track curve, different calculation models being used for the determined curve running phases within the scope of determining the at least one value for the curve resistance, and at least one track brake of the drainage system taking into account the at least one specific value for the curve resistance to control.

Die erfindungsgemäße Steuereinrichtung kann neben hardwaretechnischen Komponenten, etwa in Form entsprechender Prozessoren und Speichermittel, weiterhin softwaretechnische Komponenten, etwa in Form von Programmcode zur Simulation des Laufverhaltens der Abläufe, aufweisen. Aus hardwaretechnischer Sicht kann es sich bei der Steuereinrichtung sowohl um eine zentrale Steuervorrichtung der rangiertechnischen Ablaufanlage als auch um eine dezentrale Steuereinrichtung, etwa in Form einer Talbremsensteuerung oder Richtungsgleisbremsensteuerung, handeln. Darüber hinaus kann die erfindungsgemäße Steuereinrichtung vorteilhafterweise auch als verteiltes Steuerungssystem ausgebildet sein, d.h. beispielsweise eine zentrale Steuervorrichtung sowie dezentrale Gleisbremsensteuerungen umfassen.In addition to hardware components, for example in the form of corresponding processors and storage means, the control device according to the invention can also have software components, for example in the form of program code for simulating the running behavior of the processes. From a hardware point of view, the control device can be both a central control device of the shunting system and a decentralized control device, for example in the form of a downhill brake control or a directional track brake control. In addition, the control device according to the invention can advantageously also be designed as a distributed control system, i.e., for example, comprise a central control device and decentralized track brake controls.

Die Vorteile der erfindungsgemäßen Steuereinrichtung entsprechen denjenigen des erfindungsgemäßen Verfahrens, so dass diesbezüglich auf die entsprechenden vorstehenden Ausführungen verwiesen wird. Gleiches gilt hinsichtlich der im Folgenden genannten bevorzugten Weiterbildungen der erfindungsgemäßen Steuereinrichtung in Bezug auf die entsprechenden bevorzugten Weiterbildungen des erfindungsgemäßen Verfahrens, so dass auch diesbezüglich auf die entsprechenden vorstehenden Erläuterungen verwiesen wird.The advantages of the control device according to the invention correspond to those of the method according to the invention, so that reference is made in this regard to the corresponding statements above. The same applies to the preferred developments of the control device according to the invention mentioned below in relation to the corresponding preferred developments of the method according to the invention, so that reference is also made in this regard to the corresponding explanations above.

Gemäß einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Steuereinrichtung ist diese ausgebildet, die Bogenlaufphasen spezifisch für den jeweiligen Ablauf zu ermitteln.According to a particularly preferred embodiment of the control device according to the invention, it is designed to determine the sheet travel phases specifically for the respective sequence.

Entsprechend einer weiteren besonders bevorzugten Weiterbildung ist die erfindungsgemäße Steuereinrichtung ausgebildet, zumindest die folgenden Bogenlaufphasen zu ermitteln: Bogeneinlauf, quasistatischer Bogenlauf, Bogenauslauf.According to a further particularly preferred development, the control device according to the invention is designed to determine at least the following sheet travel phases: sheet entry, quasi-static sheet travel, sheet exit.

Gemäß einer weiteren besonders bevorzugten Ausführungsform kann die erfindungsgemäße Steuereinrichtung auch ausgebildet sein, zusätzlich zumindest eine der folgenden weiteren Phasen zu ermitteln: Änderung des Bogenradius, Wechsel der Bogenrichtung, Übergangsbogen, Zwischengerade.According to a further particularly preferred embodiment, the control device according to the invention can also be designed to additionally determine at least one of the following further phases: change in the radius of the arc, change in the direction of the arc, transition arc, intermediate straight line.

Vorteilhafterweise kann die erfindungsgemäße Steuereinrichtung auch derart ausgebildet sein, dass sie bei der Auswahl des jeweiligen Berechnungsmodells zumindest einen den jeweiligen Ablauf charakterisierenden Parameter berücksichtigt.The control device according to the invention can advantageously also be designed in such a way that it takes into account at least one parameter characterizing the respective sequence when selecting the respective calculation model.

Gemäß einer bevorzugten Weiterbildung der erfindungsgemäßen Steuereinrichtung ist diese ausgebildet, bei der Auswahl des jeweiligen Berechnungsmodells zumindest einen jeweilige Umweltbedingungen charakterisierenden Parameter zu berücksichtigen.According to a preferred development of the control device according to the invention, it is designed to take into account at least one parameter characterizing respective environmental conditions when selecting the respective calculation model.

Vorzugsweise kann die erfindungsgemäße Steuereinrichtung auch dazu ausgebildet sein, das jeweilige Berechnungsmodell mittels eines Entscheidungsbaums auszuwählen.The control device according to the invention can preferably also be designed to select the respective calculation model by means of a decision tree.

Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erläutert. Hierzu zeigt

Figur 1
in einer schematischen Skizze ein Ausführungsbeispiel einer Ablaufanlage mit einem Ausführungsbeispiel der erfindungsgemäßen Steuereinrichtung,
Figur 2
in einer schematischen Darstellung ein Ausführungsbeispiel eines im Rahmen eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens verwendeten Entscheidungsbaums,
Figur 3
bezogen auf einen ersten Gleisbogen und einen ersten Ablauf eine erste schematische Darstellung des Bogenwiderstands als Funktion des Ortes,
Figur 4
bezogen auf einen zweiten Gleisbogen und einen zweiten Ablauf eine zweite schematische Darstellung des Bogenwiderstands als Funktion des Ortes,
Figur 5
in einem ersten Diagramm der Ortskoordinaten x und y bezogen auf einen ersten Ablauf ein erstes Ausführungsbeispiel unterschiedlicher Bogenlaufphasen und
Figur 6
in einem zweiten Diagramm der Ortskoordinaten x und y bezogen auf einen zweiten Ablauf ein zweites Ausführungsbeispiel unterschiedlicher Bogenlaufphasen.
The invention is explained in more detail below with the aid of exemplary embodiments. This shows
Figure 1
in a schematic sketch an exemplary embodiment of a drainage system with an exemplary embodiment of the control device according to the invention,
Figure 2
in a schematic representation an embodiment of a decision tree used in the context of an embodiment of the method according to the invention,
Figure 3
based on a first track curve and a first sequence, a first schematic representation of the curve resistance as a function of the location,
Figure 4
a second schematic representation of the arc resistance as a function of the location, based on a second track curve and a second sequence,
Figure 5
in a first diagram of the location coordinates x and y, based on a first sequence, a first exemplary embodiment of different sheet travel phases and
Figure 6
in a second diagram of the spatial coordinates x and y in relation to a second sequence, a second exemplary embodiment of different sheet travel phases.

In den Figuren sind sich entsprechende Komponenten und Größen mit identischen Bezugszeichen gekennzeichnet.Corresponding components and sizes are identified by identical reference symbols in the figures.

Figur 1 zeigt in einer schematischen Skizze ein Ausführungsbeispiel einer Ablaufanlage 10 mit einem Ausführungsbeispiel der erfindungsgemäßen Steuereinrichtung. Dabei stellt der obere Teil der Figur 1 das Gleisbild der Anlage 10 und der untere Teil der Figur das Profil beziehungsweise einen Längsschnitt der Ablaufanlage 10 dar. Figure 1 shows in a schematic sketch an embodiment of a drainage system 10 with an embodiment of the control device according to the invention. The upper part of the Figure 1 the track diagram of the system 10 and the lower part of the figure the profile or a longitudinal section of the drainage system 10.

Entsprechend der Darstellung der Figur 1 weist die Ablaufanlage 10, die Bestandteil einer rangiertechnischen Anlage des schienengebundenen Verkehrs ist, eine Ablauframpe 20 auf, an die sich in Laufrichtung eine Zwischenneigung 30, eine Verteilweichen 80 bis 86 aufweisende Verteilzone 40 sowie Richtungsgleise 50 bis 57 anschließen. Darüber hinaus sind in Figur 1 Gleisbremsen in Form von Talbremsen 60 und 61 sowie Richtungsgleisbremsen 70 bis 77 erkennbar.According to the representation of the Figure 1 The drainage system 10, which is part of a shunting system for rail-bound traffic, has a drainage ramp 20, which is followed in the direction of travel by an intermediate slope 30, a distribution zone 40 with distribution switches 80 to 86 and directional tracks 50 to 57. In addition, in Figure 1 Track brakes in the form of valley brakes 60 and 61 and directional track brakes 70 to 77 can be seen.

Neben den genannten Komponenten der Ablaufanlage 10 sind in der Figur exemplarisch Abläufe 100 und 101 dargestellt, die von einer Abdrücklokomotive 110 über den Ablaufberg geschoben beziehungsweise abgedrückt worden sind und sich in der Folge angetrieben durch die einwirkende Schwerkraft entlang der Ablaufanlage 10 bewegen. Die weitere Darstellung konzentriert sich auf den in Laufrichtung vorderen Ablauf 100, wobei bezogen auf diesen angenommen sei, dass er für das Richtungsgleis 50 bestimmt ist und daher auf seinem Laufweg die Gleisbremsen 60 und 70 passiert.In addition to the components of the drainage system 10 mentioned, the figure shows processes 100 and 101 as examples, which have been pushed or pulled over the drainage mountain by a push-pull locomotive 110 and then move along the drainage system 10, driven by the force of gravity. The rest of the illustration focuses on the front flow 100 in the running direction, it being assumed with reference to this that it is intended for the directional track 50 and therefore passes the track brakes 60 and 70 on its way.

Zur Steuerung der Talbremsen 60 und 61 ist in Figur 1 des Weiteren eine Talbremsensteuerung 200 angedeutet, die über Kommunikationsverbindungen 210 und 211, die drahtgebunden oder auch drahtlos ausgeführt sein können, an die Talbremsen 60, 61 angebunden ist. In entsprechender Weise sind die Richtungsgleisbremsen 70 bis 77 kommunikationstechnisch an eine Richtungsgleisbremsensteuerung 220 angebunden. Aus Gründen der Übersichtlichkeit ist hierbei in Figur 1 lediglich exemplarisch eine entsprechende Kommunikationsverbindung 221 zwischen der Richtungsgleisbremse 77 und der Richtungsgleisbremsensteuerung 220 gezeigt. Die Talbremsensteuerung 200 sowie die Richtungsgleisbremsensteuerung 220 sind jeweils über Kommunikationsverbindungen 231 beziehungsweise 232 mit einer zentralen Steuervorrichtung 230 der Ablaufanlage 10 verbunden. Dies bedeutet, dass durch die Komponenten 200, 220 und 230 insgesamt eine Steuereinrichtung zum Steuern der Gleisbremsen in Form der Talbremsen 60 und 61 sowie der Richtungsgleisbremsen 70 bis 77 in Form eines verteilten Steuerungssystems gebildet wird. Alternativ hierzu wäre es selbstverständlich beispielsweise auch möglich, dass die Talbremsen 60, 61 sowie die Richtungsgleisbremsen 70 bis 77 unmittelbar mit der zentralen Steuervorrichtung 230 verbunden sind.To control the bottom brakes 60 and 61 is in Figure 1 Furthermore, a valley brake control 200 is indicated, which is connected to the valley brake 60, 61 via communication connections 210 and 211, which can be wired or wireless. In a corresponding manner, the directional track brakes 70 to 77 are connected to a directional track brake controller 220 in terms of communication technology. For the sake of clarity, in Figure 1 a corresponding communication link 221 between the directional track brake 77 and the directional track brake controller 220 is shown merely as an example. The lower brake control 200 and the directional track brake control 220 are each connected to a central control device 230 of the sequential system 10 via communication connections 231 and 232, respectively. This means that the components 200, 220 and 230 together form a control device for controlling the track brakes in the form of the valley brakes 60 and 61 and the directional track brakes 70 to 77 in the form of a distributed control system. As an alternative to this, it would of course also be possible, for example, for the valley brakes 60, 61 and the directional track brakes 70 to 77 to be connected directly to the central control device 230.

Die Steuerung der Gleisbremsen in Form der Talbremsen 60, 61 sowie der Richtungsgleisbremsen 70 bis 77 der Ablaufanlage 10 erfolgt nun gemäß einem Ausführungsbeispiel des erfindungsgemäßen Verfahrens bezogen auf den Ablauf 100 derart, dass für diesen in einem ersten Verfahrensschritt bezogen auf zumindest einen im Fahrweg des Ablaufs 100 liegenden Gleisbogen mehrere Bogenlaufphasen ermittelt werden. Bei dem Gleisbogen kann es sich im Rahmen des vorliegenden Ausführungsbeispiels beispielsweise um denjenigen zwischen der Verteilweiche 82 und der Richtungsgleisbremse 70 handeln. Vorteilhafterweise werden die Bogenlaufphasen hierbei spezifisch für den Ablauf 100 ermittelt. Dies bedeutet, dass bei der Ermittlung der Längen und/oder der Art der Bogenlaufphasen zumindest eine Kenngröße des Ablaufs 100 berücksichtigt wird. Hierbei kann es sich beispielsweise um die Anzahl der Wagen, die Anzahl der Achsen, einen Drehzapfenabstand und/oder zumindest einen Laufwerkstyp des Ablaufs 100 handeln.The control of the track brakes in the form of the valley brakes 60, 61 and the directional track brakes 70 to 77 of the sequence system 10 is now carried out according to an exemplary embodiment of the method according to the invention in relation to the sequence 100 in such a way that in a first method step related to at least one in the route of the sequence 100 lying track curves, several curve running phases can be determined. In the context of the present exemplary embodiment, the curve of the track can be, for example, that between the distribution switch 82 and the directional track brake 70. The sheet travel phases are advantageously determined specifically for the sequence 100. This means that when determining the lengths and / or the type of sheet travel phases, at least one parameter of the sequence 100 is taken into account. This can be, for example, the number of carriages, the number of axles, a pivot spacing and / or at least one type of drive of the sequence 100.

Im Rahmen des beschriebenen Ausführungsbeispiels sei angenommen, dass als Bogenlaufphasen neben einer Phase eines Einlaufens beziehungsweise eines Auslaufens des Ablaufs 100 aus dem jeweiligen Gleisbogen eine zwischen diesen beiden Phasen angeordnete Phase eines quasistatischen Bogenlaufs berücksichtigt wird. In Abhängigkeit von der Ausprägung des jeweiligen Gleisbogens besteht darüber hinaus die Möglichkeit, eine Änderung des Bogenradius, einen Wechsel der Bogenrichtung, einen Übergangsbogen sowie eine Zwischengerade jeweils als mögliche eigenständige Bogenlaufphasen zu berücksichtigen.In the context of the exemplary embodiment described, it is assumed that a phase of a quasi-static arc that is arranged between these two phases is taken into account as the arc running phases in addition to a phase of entry or exit of the drain 100 from the respective track curve. Depending on the characteristics of the respective track curve, it is also possible to take into account a change in the curve radius, a change in the direction of the curve, a transition curve and an intermediate straight as possible independent curve phases.

Die Ermittlung der Bogenlaufphasen erfolgt im Rahmen des beschriebenen Ausführungsbeispiels des erfindungsgemäßen Verfahrens sowohl in Bezug auf das Auftreten bestimmter Bogenlaufphasen als auch in Bezug auf die Länge der jeweiligen Bogenlaufphase unter Berücksichtigung der jeweiligen Gleistopologie, d.h. basierend auf dem bekannten Gleisverlauf des jeweiligen Fahrwegs. Dabei können empirisch ermittelte Berechnungsformeln beziehungsweise Berechnungsmodelle verwendet werden, die beispielsweise ausgehend von im Rahmen von Messreihen erfassten Messwerten unter Berücksichtigung von Mehrkörpersimulationen sowie von für den jeweiligen Ablauf spezifischen Eigenschaften abgeleitet werden können. Dabei kann die Parametrierung der Berechnungsmodelle beispielsweise unter Anwendung adaptiver Verfahren erfolgen.The determination of the sheet travel phases takes place within the scope of the described embodiment of the method according to the invention both with regard to the occurrence of certain sheet travel phases and with regard to the length of the respective sheet travel phase taking into account the respective track topology, ie based on the known track course of the respective route. In this case, empirically determined calculation formulas or calculation models can be used, which are based on, for example, series of measurements recorded measured values can be derived taking into account multi-body simulations as well as specific properties for the respective process. The calculation models can be parameterized, for example, using adaptive methods.

In einem zweiten Verfahrensschritt des beschriebenen Ausführungsbeispiels des erfindungsgemäßen Verfahrens wird zumindest ein Wert für einen Bogenwiderstand in dem zumindest einen Gleisbogen bestimmt, wobei für die ermittelten Bogenlaufphasen unterschiedliche Berechnungsmodelle verwendet werden. Dabei kann bei der Auswahl des jeweiligen Berechnungsmodells vorteilhafterweise zumindest ein den jeweiligen Ablauf charakterisierender Parameter berücksichtigt werden. Bei dem entsprechenden den jeweiligen Ablauf charakterisierenden Parameter kann es sich wiederum beispielsweise um die Anzahl der Wagen, die Anzahl der Achsen, einen Drehzapfenabstand und/oder zumindest einen Laufwerkstyp des Ablaufs 100 handeln. Alternativ oder zusätzlich zur Berücksichtigung zumindest eines den jeweiligen Ablauf charakterisierenden Parameters kann bei der Auswahl des jeweiligen Berechnungsmodells auch zumindest ein die jeweiligen Umweltbedingungen charakterisierender Parameter berücksichtigt werden.In a second method step of the described exemplary embodiment of the method according to the invention, at least one value for a curve resistance in the at least one track curve is determined, with different calculation models being used for the curve running phases determined. When selecting the respective calculation model, at least one parameter characterizing the respective sequence can advantageously be taken into account. The corresponding parameter characterizing the respective sequence can in turn be, for example, the number of carriages, the number of axles, a pivot spacing and / or at least one type of drive of the sequence 100. As an alternative or in addition to taking into account at least one parameter characterizing the respective sequence, at least one parameter characterizing the respective environmental conditions can also be taken into account when selecting the respective calculation model.

Die Bestimmung von Werten für den Bogenwiderstand in Fahrwegen von Abläufen liegender Gleisbögen ist in rangiertechnischen Ablaufanlagen von grundlegender Bedeutung, da entsprechende Bogenwiderstände einen erheblichen Einfluss auf das Laufverhalten der Abläufe haben. So laufen die Güterwagen in automatisierten Zugbildungsanlagen mit Ablaufberg aufgrund der Schwerkraft autonom durch die Anlage und werden mit Hilfe von automatisch gestellten Weichen in ihr vorbestimmtes Richtungsgleis geleitet. Dabei muss der freie Lauf der Güterwagen beziehungsweise Abläufe aus Sicherheitsgründen zu jeder Zeit kontrolliert werden. Da selbstständig ablaufende Güterwagen in der Regel keine technische Möglichkeit zur kontinuierlichen Geschwindigkeitsregelung besitzen, kann die Geschwindigkeit demnach ausschließlich über die punktuell im Laufweg installierten Gleisbremsen beeinflusst werden. Dies hat zur Folge, dass der freie Lauf der Wagen zwischen den Bremsen prognostiziert werden muss, um mögliche Gefahrensituationen frühzeitig erkennen zu können.The determination of values for the curve resistance in routes of runs of curved track curves is of fundamental importance in shunting systems, since the corresponding curve resistance has a significant influence on the running behavior of the processes. The freight wagons in automated train formation systems with a drainage mountain run autonomously through the system due to gravity and are guided to their predetermined direction with the help of automatically set points. The free movement of the freight wagons or processes must be checked at all times for safety reasons. Since freight wagons that run independently usually have no technical means of continuously regulating their speed, the speed can only be adjusted using the ones that are installed at certain points in the route Track brakes are influenced. As a result, the free running of the car between the brakes must be predicted in order to be able to recognize possible dangerous situations at an early stage.

Es sei darauf hingewiesen, dass im Rahmen des beschriebenen Verfahrens der zumindest eine Wert für den Bogenwiderstand des Ablaufs 100 grundsätzlich sowohl in Bezug auf im Fahrweg vorausliegende als auch in Bezug auf im Fahrweg zurückliegende Gleisbögen erfolgen kann.It should be pointed out that, within the scope of the method described, the at least one value for the arc resistance of the sequence 100 can in principle take place both in relation to track curves ahead in the route and in relation to track curves in the back in the route.

Bezogen auf einen im Laufweg vorausliegenden Gleisbogen, wie in der in Figur 1 dargestellten Situation beispielsweise dem zuvor genannten Gleisbogen zwischen der Verteilweiche 82 und der Richtungsgleisbremse 70, bedeutet dies, dass für diesen Gleisbogen eine Prognose des Bogenwiderstands erfolgt, um diese im Rahmen der Steuerung einer vor dem betreffenden Gleisbogen liegenden Gleisbremse, d.h. vorliegend der Talbremse 60, zu berücksichtigen.In relation to a curved track lying ahead in the path, as in the in Figure 1 For example, the above-mentioned curve of track between the distribution switch 82 and the directional track brake 70, this means that a prognosis of the curve resistance is made for this track curve in order to control a track brake located in front of the respective track curve, i.e. the valley brake 60 in the present case consider.

Da es für den Rollwiderstand eines Ablaufs kaum geeignete Schätzmodelle gibt, besteht darüber hinaus jedoch auch die Möglichkeit, dass auch der Bogenwiderstand in zumindest einem im Fahrweg des Ablaufs 100 zurückliegenden Gleisbogen bestimmt und dieser bei einer Berechnung beziehungsweise Abschätzung des Rollwiderstands des betreffenden Ablaufs berücksichtigt wird. In der in Figur 1 dargestellten Situation kann dies beispielsweise bezogen auf den zwischen der ersten Weiche und der Talbremse 60 angeordneten Gleisbogen geschehen. Konkret kann dies z.B. derart ablaufen, dass seitens der Talbremsensteuerung 200 zunächst der Gesamtwiderstand bestimmt wird, der auf den Ablauf 100 wirkt. Dies kann beispielsweise basierend auf dem Energieerhaltungssatz unter Verwendung anhand von Signalen von Radsensoren oder mittels gleisseitiger Radarmessgeräte ermittelter Geschwindigkeitsdifferenzen geschehen. Anschließend werden die Widerstandsanteile, die mit hinreichender Genauigkeit bekannt beziehungsweise abschätzbar sind, wie beispielsweise der Luftwiderstand, Weichenwiderstände sowie die auftretenden Bogenwiderstände, von diesem Gesamtwiderstand abgezogen. Der verbleibende Rest wird als Rollwiderstand angenommen beziehungsweise als Eingangswert für eine Rollwiderstandsprognose in einem nachfolgenden Streckenabschnitt verwendet.Since there are hardly any suitable estimation models for the rolling resistance of a sequence, there is also the option of determining the curve resistance in at least one track curve in the path of the sequence 100 and taking this into account when calculating or estimating the rolling resistance of the sequence in question. In the in Figure 1 This can be done, for example, in relation to the curved track arranged between the first switch and the valley brake 60. Specifically, this can take place, for example, in such a way that the bottom brake control 200 initially determines the total resistance that acts on the sequence 100. This can be done, for example, based on the law of conservation of energy using signals from wheel sensors or speed differences determined by means of trackside radar measuring devices. Then the resistance components that are known or can be estimated with sufficient accuracy, such as the air resistance, Switch resistances and the arc resistances that occur are deducted from this total resistance. The remainder is assumed as rolling resistance or used as an input value for a rolling resistance forecast in a subsequent section of the route.

Gemäß dem dritten Schritt des beschriebenen Ausführungsbeispiels des erfindungsgemäßen Verfahrens wird nun zumindest eine Gleisbremse der Ablaufanlage 10 unter Berücksichtigung des zumindest einen bestimmten Wertes für den Bogenwiderstand gesteuert. Gemäß der Darstellung der Figur 1 kann es sich hierbei bezogen auf den Ablauf 100 und dessen vorgesehenen Laufweg um die Talbremse 60 und/oder die Richtungsgleisbremse 70 handeln. Aufgrund der Ermittlung der Bogenlaufphasen und der hiermit verbundenen höheren Genauigkeit bei der Ermittlung beziehungsweise Prognose der auftretenden Bogenwiderstände sowie den hieraus resultierenden genaueren Rollwiderstandsschätzwerten ergibt sich im Ergebnis eine Verbesserung der Laufzielbremsung. Diese führt einerseits zu einem effizienteren und schonenderen Rangieren auch ohne Förderanlage; andererseits können durch die verbesserte Prognose des Laufverhaltens der Abläufe 100, 101 auch Einholvorgänge oder Eckstöße der Abläufe 100, 101 vermieden werden, was zu einer Verbesserung der Rangierqualität der Ablaufanlage 10 führt. Im Ergebnis kann somit durch die verbesserte Bestimmung der auftretenden Bogenwiderstände die Leistungsfähigkeit sowie die Rangierqualität der rangiertechnischen Anlage 10 insgesamt gesteigert werden.According to the third step of the described exemplary embodiment of the method according to the invention, at least one track brake of the drainage system 10 is now controlled, taking into account the at least one specific value for the arc resistance. According to the representation of the Figure 1 In relation to the sequence 100 and its intended path, it can be the valley brake 60 and / or the directional track brake 70. Due to the determination of the arc travel phases and the associated higher accuracy in the determination or prognosis of the arc resistance that occurs and the more precise rolling resistance estimated values resulting from this, the result is an improvement in the target braking. On the one hand, this leads to more efficient and gentler maneuvering even without a conveyor system; on the other hand, owing to the improved prognosis of the running behavior of the processes 100, 101, recovery operations or corner joints of the processes 100, 101 can also be avoided, which leads to an improvement in the maneuvering quality of the process system 10. As a result, through the improved determination of the arc resistances that occur, the performance and the maneuvering quality of the marshalling system 10 can be increased overall.

Zwecks Durchführung des zuvor beschriebenen Verfahrens weist die Steuereinrichtung, die zumindest eine der Komponenten zentrale Steuervorrichtung 230, Talbremsensteuerung 200 oder Richtungsgleisbremsensteuerung 220 umfasst, neben hardwaretechnischen Komponenten, etwa in Form entsprechender Prozessoren und Speichermittel, weiterhin softwaretechnische Komponenten, etwa in Form von Programmcode zur Simulation des Laufverhaltens der Abläufe 100, 101, auf. In diesem Zusammenhang sei darauf hingewiesen, dass bei der Steuerung der Talbremsen 60, 61 sowie der Richtungsgleisbremsen 70 bis 77 vorzugsweise der dem Ablauf 100 nachfolgende Ablauf 101 sowie ein gegebenenfalls dem Ablauf 100 vorhergehender beziehungsweise vorauslaufender Ablauf berücksichtigt werden. Hierbei ist insbesondere der jeweilige gemeinsame Laufweg der Abläufe 100, 101 zu betrachten, um Einholvorgänge zu vermeiden und ein sicheres Umstellen der Verteilweichen 80 bis 86 in der Verteilzone 40 zu ermöglichen. Darüber hinaus können im Rahmen des Verfahrens auch weitere Randbedingungen, wie beispielsweise maximale Befahrungsgeschwindigkeiten im Laufweg, berücksichtigt werden.In order to carry out the method described above, the control device, which comprises at least one of the components central control device 230, valley brake control 200 or directional track brake control 220, in addition to hardware components, for example in the form of corresponding processors and storage means, also has software components, for example in the form of program code for simulating the Running behavior of the processes 100, 101. In this context, it should be noted that when controlling the valley brakes 60, 61 as well as the directional track brakes 70 to 77, preferably the sequence 101 following the sequence 100 as well as any sequence that precedes or precedes the sequence 100, if applicable. In particular, the respective common path of the processes 100, 101 is to be considered in order to avoid catching-up processes and to enable a reliable changeover of the distribution switches 80 to 86 in the distribution zone 40. In addition, other boundary conditions, such as maximum travel speeds in the path, can also be taken into account as part of the method.

Im Folgenden werden Ausführungsbeispiele des erfindungsgemäßen Verfahrens weitergehend anhand der Figuren 2 bis 6 erläutert.In the following, exemplary embodiments of the method according to the invention will be described in greater detail using Figures 2 to 6 explained.

Figur 2 zeigt in einer schematischen Darstellung ein Ausführungsbeispiel eines im Rahmen eines Ausführungsbeispiels des erfindungsgemäßen Verfahrens verwendeten Entscheidungsbaums. Figure 2 shows in a schematic representation an embodiment of a decision tree used in the context of an embodiment of the method according to the invention.

Im Rahmen des beschriebenen Verfahrens erfolgt die Auswahl des jeweiligen Berechnungsmodells vorzugsweise mittels eines Entscheidungsbaums. Dabei hängt das jeweilige anzuwendende Berechnungsmodell vorteilhafterweise neben der jeweiligen Bogenlaufphase auch von zumindest einem weiteren den jeweiligen Ablauf charakterisierenden Parameter und/oder zumindest einem weiteren jeweilige Umweltbedingungen charakterisierenden Parameter ab. Letztlich führt dies dazu, dass situationsabhängig ein geeignetes Berechnungsmodell für den Bogenwiderstand ausgewählt wird. Dies geschieht vorteilhafterweise mittels eines Entscheidungsbaums, wie er beispielhaft in Figur 2 dargestellt ist.In the context of the method described, the respective calculation model is preferably selected using a decision tree. The respective calculation model to be used depends advantageously not only on the respective sheet travel phase but also on at least one further parameter characterizing the respective sequence and / or at least one further parameter characterizing respective environmental conditions. Ultimately, this means that a suitable calculation model for the arc resistance is selected depending on the situation. This is advantageously done using a decision tree, as exemplified in Figure 2 is shown.

Figur 2 zeigt einen Entscheidungsbaum, der drei Ebenen L1, L2 und L3 aufweist. Aus Gründen der einfacheren Darstellung ist hierbei lediglich ein Teil eines gesamten Entscheidungsbaums dargestellt und zwar derjenige Teil, der entsprechend der Situation in Figur 1 für Abläufe in Form von Einzelwagen Anwendung findet. Dementsprechend erfolgt auf Ebene L1 des Entscheidungsbaums eine Verzweigung in den Zweig 300 dann, wenn das Entscheidungskriterium "Einzelwagen" erfüllt ist. Ausgehend hiervon erfolgt auf der Ebene L2 des Entscheidungsbaums eine Differenzierung gemäß eines den jeweiligen Wagen charakterisierenden Parameters, bei dem es sich entsprechend den vorstehenden Ausführungen beispielsweise um einen Laufwerkstyp des Wagens oder die Anzahl seiner Achsen handeln kann. Exemplarisch sind hierbei in Figur 2 zwei Zweige 310 und 320 unterschieden, wobei der Zweig 310 beispielsweise dem Entscheidungskriterium "Zweiachser" und der Zweig 320 dem Entscheidungskriterium "Vierachser" entsprechen könnte. Alternativ hierzu könnte der Zweig 310 auch dem Entscheidungskriterium "Doppelschaken-Laufwerk" und der Zweig 320 dem Entscheidungskriterium "Y25-Drehgestell" entsprechen. Wie in Figur 2 angedeutet, können darüber hinaus in Abhängigkeit von den jeweiligen Gegebenheiten und Anforderungen für weitere unterschiedliche Wagentypen weitere Zweige vorgesehen sein. Figure 2 shows a decision tree which has three levels L1, L2 and L3. For the sake of simplicity, only part of an entire decision tree is shown here, namely that part that corresponds to the situation in Figure 1 for processes in the form of single wagons finds. Accordingly, a branching to branch 300 takes place at level L1 of the decision tree when the decision criterion “single wagon” is met. On the basis of this, a differentiation takes place at level L2 of the decision tree according to a parameter characterizing the respective car, which, according to the above explanations, can be, for example, a type of carriage of the car or the number of its axles. Examples are in Figure 2 a distinction is made between two branches 310 and 320, where branch 310 could, for example, correspond to the decision criterion “two-axis” and branch 320 could correspond to the decision criterion “four-axis”. As an alternative to this, branch 310 could also correspond to the decision criterion “double hook drive” and branch 320 could correspond to the decision criterion “Y25 bogie”. As in Figure 2 indicated, further branches can also be provided depending on the particular circumstances and requirements for further different types of car.

In einer weiteren Ebene L3 des Entscheidungsbaums sind unterschiedliche Zweige für unterschiedliche Bogenlaufphasen vorgesehen. Dabei ist erkennbar, dass für die beiden unterschiedenen Wagen- bzw. Laufwerkstypen eine unterschiedliche Anzahl von Bogenlaufphasen berücksichtigt wird. So sei angenommen, dass für Abläufe, die auf der zweiten Ebene L2 das Entscheidungskriterium 310 erfüllen, auf der dritten Ebene L3 das Entscheidungskriterium 311 entsprechend einer Bogenlaufphase "Bogeneinlauf", das Entscheidungskriterium 312 entsprechend einer Bogenlaufphase "quasistatischer Bogenlauf" und das Entscheidungskriterium 313 entsprechend einer Bogenlaufphase "Bogenauslauf" vorgesehen sind. Hingegen sei angenommen, dass im Falle eines Wagens, der das Entscheidungskriterium 320 erfüllt, das Entscheidungskriterium 321 einer Bogenlaufphase "Bogeneinlauf", das Entscheidungskriterium 322 einer Bogenlaufphase "quasistatischer Bogenlauf", das Entscheidungskriterium 323 einer Bogenlaufphase "Bogenauslauf" und das Entscheidungskriterium 324 einer zusätzlichen Bogenlaufphase "Wechsel der Bogenrichtung" entspricht. Dem liegt die Erkenntnis zugrunde, dass für unterschiedliche Typen von Güterwagen aufgrund unterschiedlicher fahrdynamischer Eigenschaften unterschiedliche Bogenlaufphasen relevant sind.In a further level L3 of the decision tree, different branches are provided for different sheet travel phases. It can be seen here that a different number of sheet travel phases is taken into account for the two different types of carriage or carriage. It is assumed that for processes that meet the decision criterion 310 on the second level L2, the decision criterion 311 corresponding to a sheet running phase "sheet entry", the decision criterion 312 corresponding to a sheet running phase "quasi-static sheet run" and the decision criterion 313 corresponding to a sheet run phase Sheet run phase "sheet run-out" are provided. On the other hand, it is assumed that in the case of a carriage which fulfills the decision criterion 320, the decision criterion 321 of a sheet running phase "sheet entry", the decision criterion 322 of a sheet running phase "quasi-static sheet running", the decision criterion 323 of a sheet running phase "sheet run-out" and the decision criterion 324 of an additional sheet running phase "Change of arc direction" corresponds. That is where the knowledge lies based on the fact that different curve travel phases are relevant for different types of freight wagons due to different driving dynamics properties.

Es sei darauf hingewiesen, dass in Abhängigkeit von den jeweiligen Gegebenheiten in der Praxis Entscheidungsbäume mit weiteren Ebenen Verwendung finden können. Hierdurch können ein oder mehrere weitere den jeweiligen Ablauf und/oder jeweilige Umweltbedingungen charakterisierende Parameter berücksichtigt werden. Als Beispiele für entsprechende Parameter sei der Achsabstand bei Güterwagen mit Doppelschaken-Laufwerken, der Drehzapfenabstand bei Güterwagen mit Y25-Drehgestellen oder etwa ein die Umweltbedingungen, beispielsweise in Form der Witterungsverhältnisse, d.h. beispielsweise Nässe oder Schnee, charakterisierender Parameter genannt.It should be noted that, depending on the respective circumstances, decision trees with additional levels can be used in practice. In this way, one or more further parameters characterizing the respective sequence and / or respective environmental conditions can be taken into account. Examples of such parameters are the axle spacing for freight wagons with double-hook drives, the pivot spacing for freight wagons with Y25 bogies or a parameter that characterizes the environmental conditions, for example in the form of weather conditions, i.e. wet or snow, for example.

Figur 3 zeigt bezogen auf einen ersten Gleisbogen und einen ersten Ablauf eine erste schematische Darstellung des Bogenwiderstands als Funktion des Ortes. Dabei sei angenommen, dass es sich bei dem Ablauf wiederum um einen Einzelwagen mit einem Doppelschaken-Laufwerk handelt. Figure 3 shows a first schematic representation of the arc resistance as a function of the location, based on a first track curve and a first sequence. It is assumed here that the sequence is again a single wagon with a double hook drive.

Im oberen Teil der Figur 3 ist der Bogenwiderstand wb als Funktion des Laufweges beziehungsweise Ortes s gezeigt. Im unteren Teil der Figur 3 ist darüber hinaus in Form eines "Bogenbandes" B der Verlauf des betrachteten Gleisbogens als Funktion des Ortes s angedeutet. Hierbei wird deutlich, dass sich der Gleisbogen zwischen den Orten s1 und s4 erstreckt.In the upper part of the Figure 3 the arc resistance w b is shown as a function of the path or location s. In the lower part of the Figure 3 is also indicated in the form of a "curved band" B, the course of the track curve under consideration as a function of the location s. It becomes clear that the track curve extends between the locations s 1 and s 4.

Im oberen Teil der Figur 3 ist erkennbar, dass im Rahmen der Bestimmung des Bogenwiderstands wb des Gleisbogens drei Bogenlaufphasen P1, P2 und P5 unterschieden werden. In der ersten Bogenlaufphase P1, die einer Einlaufphase entspricht, wird hierbei entsprechend dem betreffenden Berechnungsmodell zunächst ein kontinuierlicher Anstieg des Bogenwiderstands wb angenommen. Dabei beginnt die Einlaufphase P1 mit Einlauf der ersten Achse des Ablaufs in den Bogen. Der Maximalwert des Bogenwiderstands wb in der Einlaufphase P1 wird am Ort s2 erreicht und ist in Figur 1 als wmax bezeichnet. Anschließend sinkt der Bogenwiderstand wb im weiteren Verlauf bis zu einem Ort s3 auf einen Widerstandswert wq ab, bei dem es sich um den Widerstandswert in einer sich anschließenden Bogenlaufphase P2, die auch als quasistatische Phase bezeichnet wird, handelt. Es sei darauf hingewiesen, dass in Abhängigkeit von dem jeweiligen Achsabstand des Ablaufs auch ein Berechnungsmodell zur Anwendung kommen kann, bei dem wmax = wq gilt.In the upper part of the Figure 3 it can be seen that in the context of the determination of the curve resistance w b of the track curve, a distinction is made between three curve phases P1, P2 and P5. In the first sheet travel phase P1, which corresponds to a run-in phase, a continuous increase in sheet resistance w b is initially assumed in accordance with the relevant calculation model. The run-in phase P1 begins with the run-in of the first axis of the sequence in the sheet. The maximum value of the arc resistance w b in the run-in phase P1 is reached at location s 2 and is in Figure 1 referred to as w max . The arc resistance w b then decreases in the further course up to a location s 3 to a resistance value w q , which is the resistance value in a subsequent arc travel phase P2, which is also referred to as the quasi-static phase. It should be noted that, depending on the respective center distance of the sequence, a calculation model can also be used in which w max = w q applies.

Entsprechend der Darstellung der Figur 3 wird im Rahmen des vorliegenden Ausführungsbeispiels angenommen, dass die Einlaufphase P1 nach einer Wegstrecke beendet ist, die dem zweifachen Achsabstand lax des Güterwagens mit Doppelschaken-Laufwerk entspricht. Im Anschluss an die Einlaufphase P1 setzt hiernach nun die quasistatische Phase P2 ein. An diese schließt sich beginnend am Ort s4 mit Auslauf der ersten Achse des Wagens aus dem Gleisbogen eine Auslaufphase P5 an. In der Auslaufphase P5 sinkt der Bogenwiderstand wb nunmehr kontinuierlich auf 0 ab, wobei der Bogenwiderstand wb am Ort s5, d.h. etwa nach einer halben Wagenlänge, abgeklungen ist. In diesem Zusammenhang sei darauf hingewiesen, dass sich die Darstellung in den Figuren 3 und 4 in Bezug auf die Ortsangaben s jeweils auf die in Laufrichtung erste Achse des jeweiligen Ablaufs bezieht. Die Länge der sich zwischen den Streckenpunkten s3 und s4 erstreckenden quasistatischen Phase P2 ergibt sich gemäß Figur 3 aus der Differenz der Bogenlänge lb und des doppelten Achsabstandes lax.According to the representation of the Figure 3 it is assumed in the context of the present exemplary embodiment that the running-in phase P1 is ended after a distance which corresponds to twice the center distance l ax of the freight wagon with double-hook drive. Following the run-in phase P1, the quasi-static phase P2 begins. This is followed by a phase-out phase P5, beginning at location s 4 with the first axle of the carriage running out of the curved track. In the run-out phase P5, the arc resistance w b now drops continuously to 0, with the arc resistance w b at location s 5 , that is to say after approximately half a car length, has subsided. In this context, it should be noted that the representation in the Figures 3 and 4 In relation to the location information s, it relates to the first axis of the respective sequence in the running direction. The length of the quasi-static phase P2 extending between the route points s 3 and s 4 results according to Figure 3 from the difference between the arc length l b and twice the center distance l ax .

Figur 4 zeigt bezogen auf einen zweiten Gleisbogen und einen zweiten Ablauf eine zweite schematische Darstellung des Bogenwiderstands als Funktion des Ortes. Dabei sei im Rahmen des Ausführungsbeispiels der Figur 4 angenommen, dass es sich bei dem betreffenden Ablauf um einen vierachsigen Einzelwagen mit Y25-Drehgestell handelt. Figure 4 shows, based on a second track curve and a second sequence, a second schematic representation of the curve resistance as a function of location. In the context of the exemplary embodiment, the Figure 4 assumed that the sequence concerned is a four-axle single wagon with a Y25 bogie.

Die Darstellung der Figur 4 entspricht von ihrer Art derjenigen der Figur 3. Im Vergleich der beiden Figuren wird hierbei zunächst deutlich, dass bei dem Ausführungsbeispiel der Figur 4 entsprechend dem dargestellten Bogenband B ein Gleisbogen mit einem Richtungswechsel, d.h. einem Wechsel der Bogenrichtung, betrachtet wird. Für den im Rahmen des beschriebenen Ausführungsbeispiels angenommenen vierachsigen Wagen mit Y25-Drehgestellen werden hierbei gemäß der Darstellung in Figur 4 fünf Bogenlaufphasen P1, P2, P3, P4 und P5 unterschieden.The representation of the Figure 4 corresponds in nature to those of Figure 3 . In a comparison of the two figures, it is initially clear that in the embodiment of the figure 4th in accordance with the arched belt B shown, a track curve with a change of direction, ie a change in the direction of the curve, is considered. For the four-axle wagons with Y25 bogies assumed within the scope of the exemplary embodiment described, here, as shown in FIG Figure 4 differentiated five sheet travel phases P1, P2, P3, P4 and P5.

Neben der Einlaufphase P1, der quasistatischen Phase P2 und der Auslaufphase P5 wird hierbei im Vergleich zu Figur 3 zusätzlich eine Richtungswechselphase P3 sowie eine weitere quasistatische Phase P4 berücksichtigt. Die Einlaufphase P1 beginnt am Ort s1 mit Einlauf des ersten Drehgestells des Güterwagens in den Gleisbogen und hält solange an, bis auch das zweite Drehgestell in den Bogen einläuft. Zu diesem Zeitpunkt befindet sich die vorderste Achse des Wagens am Ort s2. Hieran schließt sich die quasistatische Bogenlaufphase P2 an, welche endet, sobald sich am ersten Drehgestell der Bogenradius ändert. Die Richtungswechselphase P3 ist dadurch definiert, dass sich die beiden Drehgestelle des betrachteten Ablaufs in Gleisbögen unterschiedlicher Krümmungsrichtung befinden. Sowohl bei einem Richtungswechsel als auch bei einem Radiuswechsel bei gleichbleibender Bogenrichtung liegt ein erhöhter Bogenwiderstand vor, der bei der Bestimmung des Bogenwiderstands wb vorzugsweise zu berücksichtigen ist.In addition to the run-in phase P1, the quasi-static phase P2 and the run-out phase P5, this is compared to Figure 3 a direction change phase P3 and a further quasi-static phase P4 are also taken into account. The run-in phase P1 begins at location s 1 with the entry of the first bogie of the freight wagon into the curved track and continues until the second bogie also enters the curve. At this point in time, the foremost axle of the car is at location s 2 . This is followed by the quasi-static arc phase P2, which ends as soon as the arc radius changes on the first bogie. The change of direction phase P3 is defined by the fact that the two bogies of the sequence under consideration are located in curved tracks with different directions of curvature. Both in the case of a change of direction and in the case of a change in radius with the arc direction remaining the same, there is an increased arc resistance, which is preferably to be taken into account when determining the arc resistance w b.

Im Ergebnis entsprechender Untersuchungen wurde festgestellt, dass im Falle eines vierachsigen Wagens mit Y25-Drehgestellen der Drehzapfenabstand maßgeblichen Einfluss auf die Länge der Bogenlaufphasen hat. So weisen entsprechend der Darstellung in Figur 4 die durch die Orte s1 und s2 begrenzte Einlaufphase P1, die durch die Orte s3 und s4 begrenzte Richtungswechselphase P3 sowie die durch die Orte s5 und s6 begrenzte Auslaufphase P5 jeweils eine Länge auf, die dem Drehzapfenabstand ldz des Ablaufs entspricht. Weiterhin beträgt die Länge der quasistatischen Phasen P2 und P4 jeweils die Bogenlänge lb abzüglich des Drehzapfenabstands ldz. Entsprechend der Darstellung der Figur 4 ergibt sich dabei in Bezug auf den Bogenwiderstand wb im Rahmen der Modellierung ein stufenartiger Verlauf, wobei der Wert des Bogenwiderstands wb in der Einlaufphase P1 mit we, in den quasistatischen Phasen P2 und P4 mit wq, in der Richtungswechselphase P3 mit ww und in der Auslaufphase P5 mit wa bezeichnet ist.As a result of corresponding investigations, it was found that in the case of a four-axle wagon with Y25 bogies, the pivot spacing has a decisive influence on the length of the curve travel phases. According to the representation in Figure 4 the run-in phase P1 limited by the locations s 1 and s 2 , the change-of-direction phase P3 limited by the locations s 3 and s 4 and the run-out phase P5 limited by the locations s 5 and s 6 each have a length that corresponds to the pivot spacing l dz of the sequence corresponds to. Furthermore, the length of the quasi-static phases P2 and P4 is in each case the arc length l b minus the pivot distance l dz . According to the representation of the Figure 4 In relation to the arc resistance w b, a step-like result results in the context of the modeling Course, with the value of the arc resistance w b in the run-in phase P1 with w e , in the quasi-static phases P2 and P4 with w q , in the direction change phase P3 with w w and in the run-out phase P5 with w a .

Im Vergleich der Figuren 3 und 4 wird überaus deutlich, dass eine Ermittlung von Bogenlaufphasen für den jeweiligen Ablauf und eine anschließende Verwendung unterschiedlicher Berechnungsmodelle bei der Bestimmung zumindest einen Wertes für einen Bogenwiderstand in dem jeweiligen zumindest einen Gleisbogen sowohl in Bezug auf die Art und Länge der jeweiligen Bogenlaufphasen als auch in Bezug auf die zugehörigen Berechnungsmodelle für den Bogenwiderstand zu deutlichen Unterschieden führt.In comparison of the Figures 3 and 4 it becomes very clear that a determination of curve phases for the respective sequence and a subsequent use of different calculation models in the determination of at least one value for a curve resistance in the respective at least one track curve both with regard to the type and length of the respective curve phases as well as in relation to the associated calculation models for the arc resistance lead to clear differences.

Zur weiteren Erläuterung zeigt Figur 5 in einem ersten Diagramm der Ortskoordinaten x und y bezogen auf einen ersten Ablauf ein erstes Ausführungsbeispiel unterschiedlicher Bogenlaufphasen. Dabei sei angenommen, dass der betreffende Ablauf ein Einzelwagen mit einem Y25-Drehgestell ist, das einen Drehzapfenabstand von 7 m aufweist.For further explanation shows Figure 5 in a first diagram of the spatial coordinates x and y in relation to a first sequence, a first exemplary embodiment of different sheet travel phases. It is assumed that the sequence in question is a single wagon with a Y25 bogie with a pivot spacing of 7 m.

Die Darstellung der Bogenlaufphasen a1 bis a10 in diesem den Verlauf des Laufweges anzeigenden x-y-Diagramm entspricht einer gedachten Bewegung des jeweiligen Ablaufs durch den betreffenden Streckenabschnitt unter Kennzeichnung der an dem entsprechenden Ort x-y vorherrschenden Bogenlaufphase.The representation of the sheet running phases a 1 to a 10 in this xy diagram showing the course of the running path corresponds to an imaginary movement of the respective course through the relevant route section, identifying the sheet running phase prevailing at the corresponding location xy.

Im Detail handelt es sich bei der Bogenlaufphase a1 um eine Einlaufphase, die in eine quasistatische Bogenlaufphase a2 übergeht. Entsprechend der Darstellung der Figur 5 schließt sich hieran eine Phase des Radien- beziehungsweise Richtungswechsels a3 an, die wiederum in eine quasistatische Bogenlaufphase a4 übergeht. Auf eine Auslaufphase a5 folgt eine so genannte Zwischengerade a6. Eine Zwischengerade beschreibt hierbei die Situation, dass sich nach Auslauf des ersten Drehgestells aus einem ersten Bogen zunächst eine kurze Auslaufphase mit der Länge der Zwischengerade anschließt. Danach, mit Einlauf des ersten Drehgestells in den zweiten Bogen, herrscht eine besondere Bogenlaufphase dahingehend vor, dass sich die Zwischengerade unter dem Wagen befindet und das zweite Drehgestell noch im ersten Bogen läuft. Diese Bogenlaufphase wird im Rahmen der vorliegenden Beschreibung als Zwischengerade bezeichnet.In detail, the sheet running phase a 1 is a running-in phase that changes into a quasi-static sheet running phase a 2 . According to the representation of the Figure 5 This is followed by a phase of the change in radius or direction a 3 , which in turn merges into a quasi-static arc travel phase a 4. A so-called intermediate straight line a 6 follows a run-out phase a 5 . An intermediate straight line describes the situation that after the first bogie has left a first arc, there is initially a short run-out phase with the length of the intermediate straight line. After that, When the first bogie enters the second curve, there is a special curve running phase in that the intermediate straight is under the carriage and the second bogie is still running in the first curve. This arc running phase is referred to as an intermediate straight line in the context of the present description.

An die Zwischengerade a6 schließt sich eine Einlaufphase a7 an, die wiederum in eine Phase des quasistatischen Bogenlaufs a8 übergeht. Diese wird durch eine Auslaufphase a9 abgeschlossen, an die sich gemäß der Darstellung der Figur 5 eine Gerade a10 anschließt. Dies bedeutet, dass es sich bei a10 nicht im eigentlichen Sinne um eine Bogenlaufphase handelt, da bezogen auf das dargestellte Ausführungsbeispiel an diesem Ort beziehungsweise zu diesem Zeitpunkt alle Achsen des Ablaufs die Gleisbögen des Laufweges bereits vollständig durchlaufen hat.The intermediate straight line a 6 is followed by a running- in phase a 7 , which in turn merges into a phase of the quasi-static sheet travel a 8. This is completed by a run-out phase a 9 , to which, according to the illustration of the Figure 5 a straight line a 10 connects. This means that a 10 is not actually a curve running phase, since, based on the illustrated embodiment, at this point or at this point in time all axes of the sequence have already completely passed the curve of the path.

Figur 6 zeigt in einem zweiten Diagramm der Ortskoordinaten x und y bezogen auf einen zweiten Ablauf ein zweites Ausführungsbeispiel unterschiedlicher Bogenlaufphasen. Hierbei sei angenommen, dass es sich wiederum um einen einzelnen Güterwagen mit Y25-Drehgestell handelt, jedoch in diesem Fall mit einem deutlich längeren Drehzapfenabstand von 19 m. Figure 6 shows in a second diagram of the spatial coordinates x and y related to a second sequence a second embodiment of different sheet travel phases. It is assumed here that it is again a single freight wagon with a Y25 bogie, but in this case with a significantly longer pivot spacing of 19 m.

Der in Figur 6 dargestellte Streckenverlauf entspricht demjenigen der Figur 5. Hierbei wird im Vergleich der beiden Figuren deutlich, dass sich die Bogenlaufphasen a11 bis a21 aufgrund des unterschiedlichen den jeweiligen Ablauf charakterisierenden Parameters in Form des Drehzapfenabstands sowohl in Bezug auf ihre Art als auch in Bezug auf ihre Länge deutlich von den in Figur 5 dargestellten Bogenlaufphasen a1 bis a10 unterscheiden. So schließt sich gemäß Figur 6 an eine Zwischengerade a11 eine Einlaufphase a12 gefolgt von einer kurzen Phase des quasistatischen Bogenlaufs a13 an. Hierauf folgt eine Phase des Radienwechsels a14, an die sich wiederum eine kurze Phase des quasistatischen Bogenlaufs a15 anschließt. Auf eine Auslaufphase a16 hin folgt wiederum eine Bogenlaufphase in Form einer Zwischengerade a17, der sich eine Einlaufphase a18 anschließt. Nach einer weiteren quasistatischen Bogenlaufphase a19 und einer Auslaufphase a20 schließt auch die Darstellung der Figur 6 mit einem Streckenabschnitt a21 in Form einer Geraden ab.The in Figure 6 The route shown corresponds to that of Figure 5 . When comparing the two figures, it becomes clear that the sheet travel phases a 11 to a 21, due to the different parameters characterizing the respective sequence in the form of the pivot spacing, differ significantly both in terms of their type and in terms of their length from those in Figure 5 different sheet travel phases a 1 to a 10 shown. So closes accordingly Figure 6 to an intermediate straight line a 11, a run-in period followed a 12 to from a short phase of the quasi-static sheet travel a. 13 This is followed by a phase of changing the radius a 14 , which in turn is followed by a short phase of quasi-static arc travel a 15 . A run-out phase a 16 is in turn followed by a sheet-run phase in the form of an intermediate straight line a 17 , which is followed by a run-in phase a 18 . After a further quasi-static sheet travel phase a 19 and a run-out phase a 20 , the illustration of FIG Figure 6 with a section a 21 in the form of a straight line.

Aus der Darstellung der Figuren 5 und 6 wird somit deutlich, dass es in Abhängigkeit von den jeweiligen Gegebenheiten zweckmäßig sein kann, die Bogenlaufphasen spezifisch für den jeweiligen Ablauf zu ermitteln. Bezüglich des in Figur 2 dargestellten Entscheidungsbaums kann dies beispielsweise dadurch geschehen, dass dies auf der zweiten Ebene berücksichtigt wird oder aber bei Bedarf eine weitere Ebene vorgesehen wird.From the representation of the Figures 5 and 6 It is thus clear that, depending on the particular circumstances, it can be useful to determine the sheet travel phases specifically for the respective sequence. Regarding the in Figure 2 In the decision tree shown, this can be done, for example, in that this is taken into account on the second level or, if necessary, a further level is provided.

Zusammenfassend wird anhand der zuvor beschriebenen Ausführungsbeispiele deutlich, dass Abläufe bezogen auf einen im Fahrweg des jeweiligen Ablaufs liegenden Gleisbogen unterschiedliche Bogenlaufhasen durchlaufen, die deutlich unterschiedliche Bogenwiderstände zur Folge haben. Folglich kann die Leistungsfähigkeit einer rangiertechnischen Ablaufanlage durch eine Berücksichtigung entsprechender Bogenlaufphasen und der Verwendung unterschiedlicher Berechnungsmodelle für diese Bogenlaufphasen im Rahmen der Berechnung zumindest einen Wertes für den Bogenwiderstand erheblich gesteigert werden. Vorzugsweise werden die Bogenlaufphasen hierbei spezifisch für den jeweiligen Ablauf ermittelt, wobei im Rahmen der Auswahl des jeweiligen Berechnungsmodells vorteilhafterweise zumindest ein den jeweiligen Ablauf charakterisierender Parameter und/oder zumindest ein jeweilige Umweltbedingungen charakterisierender Parameter berücksichtigt wird.In summary, based on the exemplary embodiments described above, it becomes clear that processes run through different curve phases in relation to a track curve lying in the route of the respective sequence, which result in significantly different curve resistances. Consequently, the performance of a shunting process system can be increased considerably by taking into account corresponding sheet travel phases and the use of different calculation models for these sheet travel phases in the context of the calculation of at least one value for the sheet resistance. The sheet travel phases are preferably determined specifically for the respective sequence, with at least one parameter characterizing the respective sequence and / or at least one parameter characterizing the respective environmental conditions being taken into account when selecting the respective calculation model.

Claims (14)

  1. Method for operating a shunting hump yard (10), wherein, for the respective humping operations (100, 101) in the form of cut humped wagons or groups of wagons,
    - a plurality of arc phases (P1, P2, P3, P4, P5) are ascertained in relation to at least one track curve lying in the travel path of the respective humping operation (100, 101),
    - at least one value for a curve resistance (wb) in the at least one track curve is determined, wherein different calculation models are used for the ascertained arc phases (P1, P2, P3, P4, P5) as part of the determination of the at least one value for the curve resistance, and
    - at least one rail brake (60, 70) of the hump yard (10) is controlled, taking into consideration the at least one determined value for the curve resistance (wb).
  2. Method according to claim 1,
    characterised in that
    the arc phases (P1, P2, P3, P4, P5) are ascertained specifically for the respective humping operation (100, 101).
  3. Method according to claim 1 or 2,
    characterised in that
    at least the following arc phases are ascertained:
    - curve run-in (P1),
    - semi-static arc (P2, P4),
    - curve run-out (P5).
  4. Method according to claim 3,
    characterised in that
    in addition, at least one of the following further arc phases is ascertained:
    - change in the curve radius,
    - change in the curve direction (P3),
    - transition curve,
    - intermediate straight.
  5. Method according to one of the preceding claims,
    characterised in that
    when selecting the respective calculation model, at least one parameter that characterises the respective humping operation (100, 101) is taken into consideration.
  6. Method according to one of the preceding claims,
    characterised in that
    when selecting the respective calculation model, at least one parameter that characterises respective environmental conditions is taken into consideration.
  7. Method according to one of the preceding claims,
    characterised in that
    the selection of the respective calculation model takes place by means of a decision tree.
  8. Control facility (200, 220, 230) for a shunting hump yard (10), wherein the control facility (200, 220, 230) is embodied, for the respective humping operations (100, 101), in the form of cut humped wagons or groups of wagons,
    - to ascertain a plurality of arc phases (P1, P2, P3, P4, P5) in relation to at least one track curve lying in the travel path of the respective humping operation (100, 101),
    - to determine at least one value for a curve resistance (wb) in the at least one track curve, wherein different calculation models are used for the ascertained arc phases (P1, P2, P3, P4, P5) as part of the determination of the at least one value for the curve resistance, and
    - to control at least one rail brake (60, 70) of the hump yard (10), taking into consideration the at least one determined value for the curve resistance (wb) .
  9. Control facility according to claim 8,
    characterised in that
    the control facility (200, 220, 230) is embodied to ascertain the arc phases (P1, P2, P3, P4, P5) specifically for the respective humping operation (100, 101).
  10. Control facility according to claim 8 or 9,
    characterised in that
    the control facility (200, 220, 230) is embodied to ascertain at least the following arc phases:
    - curve run-in (P1),
    - semi-static arc (P2, P4),
    - curve run-out (P5).
  11. Control facility according to claim 10,
    characterised in that
    the control facility (200, 220, 230) is embodied, in addition, to ascertain at least one of the following further phases:
    - change in the curve radius,
    - change in the curve direction (P3),
    - transition curve,
    - intermediate straight.
  12. Control facility according to one of claims 8 to 11,
    characterised in that
    the control facility (200, 220, 230) is embodied, when selecting the respective calculation model, to take into consideration at least one parameter that characterises the respective humping operation (100, 101).
  13. Control facility according to one of claims 8 to 12,
    characterised in that
    the control facility (200, 220, 230) is embodied, when selecting the respective calculation model, to take into consideration at least one parameter that characterises respective environmental conditions.
  14. Control facility according to one of claims 8 to 13,
    characterised in that
    the control facility (200, 220, 230) is embodied to select the respective calculation model by means of a decision tree.
EP16700713.7A 2015-02-11 2016-01-14 Method for operating a shunting hump system and control device for such a system Active EP3230148B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102015202432.6A DE102015202432A1 (en) 2015-02-11 2015-02-11 Method for operating a technical draining system and control device for such a system
PCT/EP2016/050656 WO2016128168A1 (en) 2015-02-11 2016-01-14 Method for operating a shunting hump system and control device for such a system

Publications (2)

Publication Number Publication Date
EP3230148A1 EP3230148A1 (en) 2017-10-18
EP3230148B1 true EP3230148B1 (en) 2021-04-14

Family

ID=55168247

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16700713.7A Active EP3230148B1 (en) 2015-02-11 2016-01-14 Method for operating a shunting hump system and control device for such a system

Country Status (5)

Country Link
EP (1) EP3230148B1 (en)
DE (1) DE102015202432A1 (en)
LT (1) LT3230148T (en)
RU (1) RU2673913C1 (en)
WO (1) WO2016128168A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110293992A (en) * 2019-07-09 2019-10-01 哈尔滨铁路减速顶调速研究有限公司 A kind of passenger train automatic anti-running system and stop support quantity computation method
DE102020135149B3 (en) 2020-12-30 2021-10-14 Deutsche Bahn Aktiengesellschaft PROCEDURE FOR OPERATING A SHOWING SYSTEM AND SHOWING SYSTEM
EP4328112A1 (en) * 2022-08-26 2024-02-28 Siemens Mobility GmbH Method for operating a shunting series system and control device for a shunting series system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2446109A1 (en) * 1974-09-26 1976-04-08 Siemens Ag Railway dispersal track wagon roll resistance determination - with movable rail section linked to counter force meter on ascending track
DE3019950C2 (en) * 1980-05-24 1986-01-23 Deutsche Bundesbahn, vertreten durch das Bundesbahn-Zentralamt Minden (Westf), 4950 Minden Installation in a drainage system with automatic speed control
US4610206A (en) * 1984-04-09 1986-09-09 General Signal Corporation Micro controlled classification yard
RU2080269C1 (en) * 1994-10-13 1997-05-27 Украинский научно-исследовательский, проектно-конструкторский и технологический институт взрывозащищенного и рудничного электрооборудования с опытно-экспериментальным производством Car electromagnetic retarder
DE50112353D1 (en) * 2000-03-03 2007-05-31 Tiefenbach Gmbh A method of controlling the operation of the wagons of a railway train to be dismantled from an expedition yard of a marshalling yard
DE10155896C1 (en) * 2001-11-14 2002-10-24 Deutsche Bahn Ag Braking control method for automatic train marshalling yard uses path length to target point for calculating number of incline compensation brakes controlled to obtain required train velocity
RU87132U1 (en) * 2008-02-12 2009-09-27 Александр Григорьевич Савицкий WAGON MODERN CONTROL SYSTEM
DE102010041183A1 (en) * 2010-09-22 2012-03-22 Siemens Aktiengesellschaft Method for operating a drainage system of the rail-bound traffic and control device for such a drainage system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
LT3230148T (en) 2021-07-26
DE102015202432A1 (en) 2016-08-11
RU2673913C1 (en) 2018-12-03
EP3230148A1 (en) 2017-10-18
WO2016128168A1 (en) 2016-08-18

Similar Documents

Publication Publication Date Title
EP3230147B1 (en) Method for operating a shunting hump system and control device for such a system
DE10039946C1 (en) Electric monorail
EP2718165B1 (en) Method for operating a shunting hump system and control means for same
EP3230148B1 (en) Method for operating a shunting hump system and control device for such a system
EP2720926B1 (en) Method for operating a switching hump yard, and control device for a switching hump yard
EP3713808B1 (en) Method for operating a hump-shunting system, and controller for a hump-shunting system
EP1858742A1 (en) Controlling the forming of trains in classification yards
EP2328791A1 (en) Method and device for the automated control of track-bound vehicles and magnetic track system
WO2013135501A1 (en) Method for controlling a shunting sorting system
EP2619066B1 (en) Method for operating a gravity shunting yard for rail-bound traffic, and control device for such a gravity shunting yard
DE2944571C2 (en) Device for optimizing the mountain performance of a drainage system
EP3419879B1 (en) Method and apparatus for determining a safe braking value of a rail vehicle
WO2016074912A1 (en) Method for implementing automatic railway traffic, and railway traffic system for implementing automatic railway traffic
DE102005032230A1 (en) Railway system for use on railway tracks of different widths, has conical or tapered annular step formed around rim of each twin-track wheel
EP3299249B1 (en) Method for operating a classification humpyard and control device for such a classification humpyard
DE102004048993A1 (en) Method for controlling a railway system has trackside sensors to monitor the braking and acceleration and determine the grip of the track wheels in order to set the optimum braking and acceleration programmes
DE202005010846U1 (en) Railway system for transporting passengers or other cargo, uses twin track wheels, each having half of track width difference wider than track width of certain track rail
DE102020135149B3 (en) PROCEDURE FOR OPERATING A SHOWING SYSTEM AND SHOWING SYSTEM
DE2654669C3 (en) Method for controlling bottom brakes in drainage systems
EP3194243A1 (en) Method for implementing automatic railway traffic, and railway traffic system for implementing automatic railway traffic
DE2852784A1 (en) Controlled rail track gradient braking system - calculates required speed for successive vehicles to maintain specified spacing
DE102008059893B4 (en) Method for maneuvering rail-bound cars
DE102006003364B3 (en) Rail-bound car e.g. freight car, switching system, has brakes provided with high switching speeds that are selected, such that process that is not braked in track area of gradient track has velocity plot longitudinal to track area
DE3040581C2 (en) Control device for influencing track-bound vehicles in drainage systems

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170712

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS MOBILITY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016012810

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1382117

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210515

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210816

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210714

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210715

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016012810

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210814

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230102

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230412

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LT

Payment date: 20231222

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20231211

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240119

Year of fee payment: 9

Ref country code: DE

Payment date: 20240318

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240108

Year of fee payment: 9

Ref country code: LV

Payment date: 20240117

Year of fee payment: 9

Ref country code: BE

Payment date: 20240119

Year of fee payment: 9