EP3216884B1 - Aluminiumlegierung für kokillenguss und daraus hergestellte aluminiumlegierungskokille - Google Patents

Aluminiumlegierung für kokillenguss und daraus hergestellte aluminiumlegierungskokille Download PDF

Info

Publication number
EP3216884B1
EP3216884B1 EP15879806.6A EP15879806A EP3216884B1 EP 3216884 B1 EP3216884 B1 EP 3216884B1 EP 15879806 A EP15879806 A EP 15879806A EP 3216884 B1 EP3216884 B1 EP 3216884B1
Authority
EP
European Patent Office
Prior art keywords
aluminum alloy
alloy
die casting
aluminum
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15879806.6A
Other languages
English (en)
French (fr)
Other versions
EP3216884A4 (de
EP3216884A1 (de
Inventor
Atsuo KABURAGI
Satoshi MIYAJIRI
Naoto Oshiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Aluminium Industry Co Ltd
Original Assignee
Daiki Aluminium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Aluminium Industry Co Ltd filed Critical Daiki Aluminium Industry Co Ltd
Priority to PL15879806T priority Critical patent/PL3216884T3/pl
Publication of EP3216884A1 publication Critical patent/EP3216884A1/de
Publication of EP3216884A4 publication Critical patent/EP3216884A4/de
Application granted granted Critical
Publication of EP3216884B1 publication Critical patent/EP3216884B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium

Definitions

  • the present invention relates to an aluminum alloy for die casting having improved yield strength and ductility, and an aluminum alloy die cast produced using the alloy.
  • Aluminum alloys are lightweight and are excellent in moldability and mass productivity, and therefore are widely used as materials for components in various fields such as automobiles, industrial machines, aircrafts, and electrical home appliances.
  • Patent Literature 1 described below discloses an aluminum alloy for casting that contains: silicon by 5.0 to 11.0%; magnesium by 0.2 to 0.8%; chromium by 0.3 to 1.5%; and iron by not more than 1.2%, and that has a high elongation percentage, as a material suitable for components requiring high elongation, such as disc wheels of automobiles.
  • CN 102 676 887 B describes an aluminum alloy comprising the following components in percentage by weight: 5.5 - 11.0 percent of Si, 0.3 - 0.7 percent of Mg, 0.05 - 0.3 percent of Cu, 0.2 - 0.8 percent of Fe, 0.2 - 0.5 percent of Mn, 0.05 - 0.3 percent of Ti, 0.05 - 0.1 percent of Cr, 0.05 - 0.3 percent of V and the balance of Al and inevitable impurities.
  • the aluminum alloy is not certain whether the aluminum alloy is applicable to components requiring higher elongation and high yield strength, such as engine mounts, and it is difficult to say that the aluminum alloy has suitability for die casting that enables mass production of fine components such as engine mounts.
  • a main objective of the present invention is to provide: an aluminum alloy for die casting having castability equivalent to that of ADC12 that is an Al-Si-Cu based alloy for die casting specified by Japanese Industrial Standards JIS H5302 (hereinafter simply referred to as "ADC12"), and having high yield strength and high ductility; and an aluminum alloy die cast produced using the alloy.
  • ADC12 Al-Si-Cu based alloy for die casting specified by Japanese Industrial Standards JIS H5302
  • a first aspect of the present invention is an aluminum alloy for die casting containing: Si by more than 6.00 wt% and less than 6.50 wt%; Mg by 0.10 to 0.50 wt%; Fe by more than 0 and not more than 0.30 wt%; Mn by 0.30 to 0.60 wt%; Cr by 0.20 to 0.30 wt%; and optionally Sb by 0.05 to 0.20 wt%, Ti by 0.05 to 0.30 wt%, B by 1 to 50 ppm and/or at least one selected from Na, Sr, and Ca by 30 to 200 ppm, with the remaining portion of the aluminum alloy being Al and unavoidable impurities.
  • Si is contained as a main component by more than 6.00 wt% and less than 6.50 wt% to minimize reduction in elongation while maintaining fluidity during die casting, and the content ratio of Fe, which significantly affects elongation of the alloy, is reduced to not more than 0.30 wt%, and further, Mn, which has an effect to improve anti-seizing characteristic and elongation of the alloy during die casting, is contained by 0.30 to 0.60 wt%. Therefore, it is possible to obtain an alloy having: suitability for die casting equivalent to that of ADC12; yield strength equivalent to that of ADC12; and elongation significantly higher than that of ADC12.
  • an ingot of an aluminum alloy for die casting having not only excellent castability for die casting but also excellent mechanical properties, especially elongation (ductility) and yield strength, can be produced safely and easily.
  • At least one selected from Na, Sr, and Ca is added by 30 to 200 ppm, or Sb is added by 0.05 to 0.20 wt%.
  • adding Ti by 0.05 to 0.30 wt% or adding B by 1 to 50 ppm is also preferable. By doing so, crystal grains of the aluminum alloy can be miniaturized even when the amount of Si is particularly small or when a casting method having a low cooling rate is used. As a result, elongation of the aluminum alloy can be improved.
  • a second aspect of the present invention is an aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting according to the first aspect.
  • the aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting according to the present invention can be mass produced with satisfactory castability and is superior in yield strength and elongation, the aluminum alloy die cast is most suitable for structural components for automobiles, especially components such as engine mounts.
  • an aluminum alloy for die casting having castability equivalent to that of ADC12 and high yield strength and high ductility; and an aluminum alloy die cast produced using the alloy.
  • FIG. 1 shows graphs representing the relationships between the amount of Mn in aluminum alloys for die casting according to Examples and Comparative Examples of the present invention, and mechanical properties of the alloys, in which FIG. 1(a) represents the relationship between the amount of Mn and elongations of the alloys, and FIG.1(b) represents the relationship between the amount of Mn and 0.2%-yield strengths of the alloys.
  • An aluminum alloy for die casting of the present invention (hereinafter, also simply referred to as "aluminum alloy”) mainly contains: Si (silicon) by more than 6.00 wt% and less than 6.50 wt%; Mg (magnesium) by 0.10 to 0.50 wt%; Fe (iron) by >0 to 0.30 wt%; Mn (manganese) by 0.30 to 0.60 wt%; Cr (chromium) by 0.20 to 0.30 wt%; and optionally Sb by 0.05 to 0.20 wt%, Ti by 0.05 to 0.30 wt%, B by 1 to 50 ppm and/or at least one selected from Na, Sr, and Ca by 30 to 200 ppm with the remaining portion of the aluminum alloy being Al (aluminum) and unavoidable impurities.
  • Si silicon
  • Mg magnesium
  • Fe iron
  • Mn mangaganese
  • Cr chromium
  • Si silicon is an important element that contributes to improvement of fluidity, reduction in liquidus temperature, and the like when the aluminum alloy is molten, thereby to improve castability.
  • the content ratio of Si with respect to the whole weight of the aluminum alloy is within a range of more than 6.00 wt% and less than 6.50 wt% as described above.
  • the content ratio of Si is not more than 6.00 wt%, melting temperature and casting temperature of the aluminum alloy increase, and sufficient fluidity cannot be ensured during die casting since fluidity of the aluminum alloy reduces when the aluminum alloy is molten.
  • the content ratio of Si is more than 6.50 wt%, elongation of the obtained alloy is reduced although sufficient fluidity can be ensured during die casting.
  • Mg manganesium mainly exists as Mg 2 Si or in a solid-solution state in an Al base material in the aluminum alloy, and is a component that provides 0.2%-yield strength and tensile strength to the aluminum alloy, but, when being contained by an excessive amount, has an adverse effect on castability and elongation of the alloy.
  • the content ratio of Mg with respect to the whole weight of the aluminum alloy is within a range of 0.10 to 0.50 wt% as described above.
  • the presence of Mg within the above range can improve mechanical properties of the aluminum alloy such as yield strength and tensile strength, without greatly affecting castability and elongation of the alloy.
  • the blending ratio of Mg is more than 0.50 wt%, elongation of the alloy is reduced, which results in degraded quality of an aluminum alloy die cast produced by using the alloy.
  • Fe iron
  • Fe is known to have a seizing prevention effect during die casting.
  • Fe causes crystallization of a needle like crystal in the form of Al-Si-Fe, significantly reduces elongation of the aluminum alloy, and, when being added in a large quantity, causes melting at a suitable temperature to be difficult.
  • the content ratio of Fe with respect to the whole weight of the aluminum alloy is >0 to 0.30 wt% as described above.
  • the content ratio of Fe is more than 0.30 wt%, elongation of the alloy is remarkably reduced although the seizing prevention effect is sufficient.
  • Mn manganese
  • the blending ratio of Mn with respect to the whole weight of the aluminum alloy is within a range of 0.30 to 0.60 wt% as described above, and more preferably within a range of 0.40 to 0.60 wt%.
  • the blending ratio of Mn is less than 0.30 wt%, seizing will occur between the aluminum alloy and a mold during die casting.
  • the blending ratio of Mn is more than 0.60 wt%, elongation of the alloy is reduced although the problem of seizing does not occur during die casting.
  • an Al-Mn based scrap having high Mn content as in the case with aluminum can recycled materials, can be used as a part of the raw material for the alloy.
  • Cr chromium mainly exists in a molten state when the aluminum alloy is molten, and when the aluminum alloy is solid, exists in a solid-solution state in an Al phase or in a crystallized state as an Al-Si-Cr phase or an Al-Si-Cr-Fe phase. Cr is used for preventing seizing of the aluminum alloy and a mold during die casting.
  • the blending ratio of Cr with respect to the whole weight of the aluminum alloy is within the range of 0.20 to 0.30 wt% as described above.
  • the blending ratio of Cr is less than 0.20 wt%, seizing will occur between the aluminum alloy and a mold during die casting.
  • the blending ratio of Cr is more than 0.30 wt%, elongation of the aluminum alloy is rapidly reduced although seizing during die casting is solved.
  • elongation (breaking elongation) thereof is preferably not less than 11%, and at the same time, 0.2%-yield strength thereof is preferably not less than 125 MPa.
  • An aluminum alloy for die casting having such mechanical properties is particularly suitable as a die-cast material for engine mounts of automobiles.
  • At least one element selected from Na (sodium), Sr (strontium), Ca (calcium), and Sb (antimony) may be added as a modification material.
  • a modification material By adding such a modification material, it is possible to reduce the size of eutectic Si particles, and further improve toughness and strength of the aluminum alloy.
  • the addition ratio of the modification material with respect to the whole weight of the aluminum alloy is preferably within a range of 30 to 200 ppm when the modification material is Na, Sr, and Ca, and within a range of 0.05 to 0.20 wt% when the modification material is Sb.
  • the addition ratio of the modification material is less than 30 ppm (0.05 wt% in the case with Sb)
  • miniaturizing eutectic Si particles in the aluminum alloy becomes difficult
  • the addition ratio of the modification material is more than 200 ppm (0.20 wt% in the case with Sb)
  • eutectic Si particles in the aluminum alloy are sufficiently miniaturized, and no further addition effect can be obtained even when the added amount is increased.
  • At least one of Ti (titanium) and B (boron) may be added instead of or together with the modification material.
  • Ti and B boron
  • crystal grains of the aluminum alloy are miniaturized, and elongation of the alloy can be improved. It should be noted that such an advantageous effect becomes significant when the amount of Si is particularly small or when a casting method having a low cooling rate is used.
  • the addition ratios of Ti and B with respect to the whole weight of the aluminum alloy are preferably within a range of 0.05 to 0.30 wt% and a range of 1 to 50 ppm, respectively.
  • the addition ratio of Ti is less than 0.05 wt% or the addition ratio of B is less than 1 ppm, miniaturizing the crystal grains in the aluminum alloy becomes difficult, whereas when the addition ratio of Ti is more than 0.30 wt% or the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficiently miniaturized, and no further addition effect can be obtained even when the added amount is increased.
  • the aluminum alloy for die casting according to the present invention When the aluminum alloy for die casting according to the present invention is to be produced, first, a raw material designed to contain, at the predetermined ratio described above, each of the elemental components of Al, Si, Mg, Fe, Mn, and Cr is prepared. Next, the raw material is placed in a melting furnace such as a sealed melting furnace or a melting furnace with a fore hearth to melt the raw material. The molten raw material, i.e., the molten metal of the aluminum alloy is subjected to refinement treatments such as a dehydrogenation treatment and an inclusion removal treatment, if necessary. Then, the refined molten metal is casted in a predetermined mold and solidified in order to form the molten metal of the aluminum alloy into an alloy base metal ingot or the like.
  • a melting furnace such as a sealed melting furnace or a melting furnace with a fore hearth to melt the raw material.
  • the molten raw material i.e., the molten metal of the aluminum
  • a solution treatment and an aging treatment, etc. are performed if necessary.
  • a solution treatment and an aging treatment, etc. are performed if necessary.
  • a solid emission spectrophotometer (Thermo Scientific (registered trademark) ARL 4460) manufactured by Thermo Fisher Scientific Inc. was used for component analysis of the round bar test piece produced by die casting.
  • Table 1 shows elemental compositions, mechanical properties, and suitabilities for die casting of aluminum alloys, which are the objects of the present invention, in Examples 1 and 2 and Comparative Examples 1 to 3.
  • Comparative Example 1 corresponds to ADC12 that is widely used as an aluminum alloy for die casting.
  • Examples 1 and 2 are compared with Comparative Examples 2 and 3 in which only the content ratios of Mn are different from those of Examples 1 and 2, it is found from FIG. 1 and Table 1 that, with 0.3 wt% of Mn being a boundary, Examples 1 and 2 containing more than 0.3 wt% of Mn are able to effectively prevent seizing during die casting, and have improved elongations and 0.2%-yield strengths of the alloys.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)
  • Body Structure For Vehicles (AREA)

Claims (6)

  1. Aluminiumlegierung zum Druckgießen aufweisend: mehr als 6,00 Gew.% und weniger als 6,50 Gew.% Si; 0,10 bis 0,50 Gew.% Mg; mehr als 0 und höchstens 0,30 Gew.% Fe; 0,30 bis 0,60 Gew.% Mn; 0,20 bis 0,30 Gew.% Cr ; und optional 0,05 bis 0,20 Gew % Sb, 0,05 bis 0,30 Gew % Ti, 1 bis 50 ppm B und/oder 30 bis 200 ppm von zumindest einem ausgewählt aus Na, Sr, und Ca, wobei der Rest der Aluminiumlegierung Al und unvermeidbare Unreinheiten sind.
  2. Aluminiumlegierung zum Druckgießen gemäß Anspruch 1, aufweisend 30 bis 200 ppm von zumindest einem ausgewählt aus Na, Sr, und Ca.
  3. Aluminiumlegierung zum Druckgießen gemäß Anspruch 1 oder 2, aufweisend 0,05 bis 0,20 Gew % Sb.
  4. Aluminiumlegierung zum Druckgießen gemäß einem der Ansprüche 1 bis 3, aufweisend 0,05 bis 0,30 Gew % Ti.
  5. Aluminiumlegierung zum Druckgießen gemäß einem der Ansprüche 1 bis 4, aufweisend 1 bis 50 ppm B.
  6. Aluminiumlegierungsdruckguss, der durch Druckgießen einer Aluminiumlegierung zum Druckgießen gemäß einem der Ansprüche 1 bis 5 erlangt ist.
EP15879806.6A 2015-01-29 2015-01-29 Aluminiumlegierung für kokillenguss und daraus hergestellte aluminiumlegierungskokille Active EP3216884B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15879806T PL3216884T3 (pl) 2015-01-29 2015-01-29 Stop aluminium do odlewania ciśnieniowego i otrzymany z niego odlew ciśnieniowy ze stopu aluminium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/000405 WO2016120905A1 (ja) 2015-01-29 2015-01-29 ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト

Publications (3)

Publication Number Publication Date
EP3216884A1 EP3216884A1 (de) 2017-09-13
EP3216884A4 EP3216884A4 (de) 2017-12-13
EP3216884B1 true EP3216884B1 (de) 2019-09-11

Family

ID=54348604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15879806.6A Active EP3216884B1 (de) 2015-01-29 2015-01-29 Aluminiumlegierung für kokillenguss und daraus hergestellte aluminiumlegierungskokille

Country Status (7)

Country Link
US (1) US20180002787A1 (de)
EP (1) EP3216884B1 (de)
JP (1) JP5797360B1 (de)
CN (1) CN107208196A (de)
MX (1) MX2017007836A (de)
PL (1) PL3216884T3 (de)
WO (1) WO2016120905A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3121302T3 (pl) * 2015-04-15 2019-03-29 Daiki Aluminium Industry Co., Ltd. Stop aluminium do odlewania kokilowego oraz odlew kokilowy ze stopu aluminium z jego użyciem
WO2018113838A1 (de) * 2016-12-22 2018-06-28 Ksm Castings Group Gmbh Al-gusslegierung
CN109652687A (zh) * 2018-12-28 2019-04-19 广东鸿泰科技股份有限公司 一种压铸铝合金及其压铸工艺
JP7147647B2 (ja) * 2019-03-20 2022-10-05 日本軽金属株式会社 アルミニウム合金及びアルミニウム合金ダイカスト材
CN113025854A (zh) * 2021-02-09 2021-06-25 中信戴卡股份有限公司 一种高铁含量铸造铝合金
WO2023167312A1 (ja) * 2022-03-03 2023-09-07 日本軽金属株式会社 鋳物用Al-Si合金及びAl-Si合金鋳物並びにAl-Si合金鋳物接合体

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2821495A (en) * 1955-06-24 1958-01-28 Aluminum Co Of America Brazing and heat treatment of aluminum base alloy castings
US4104089A (en) * 1976-07-08 1978-08-01 Nippon Light Metal Company Limited Die-cast aluminum alloy products
JPS5842748A (ja) * 1981-09-08 1983-03-12 Furukawa Alum Co Ltd ダイカスト用アルミニウム合金
JPH1112705A (ja) * 1997-06-20 1999-01-19 Sumitomo Light Metal Ind Ltd 切削性に優れた高強度アルミニウム合金鍛造品の製造方法
JP2000026996A (ja) * 1998-07-13 2000-01-25 Yamaha Motor Co Ltd アルミニウム部品及びその製造方法
JP2002339030A (ja) * 2001-05-17 2002-11-27 Yamaha Motor Co Ltd ダイカスト用アルミニウム合金
FR2827306B1 (fr) * 2001-07-10 2004-10-22 Pechiney Aluminium Alliage d'aluminium a haute ductilite pour coulee sous pression
FR2857378B1 (fr) * 2003-07-10 2005-08-26 Pechiney Aluminium Piece moulee en alliage d'aluminium a haute resistance a chaud
JP4994734B2 (ja) * 2006-07-24 2012-08-08 株式会社大紀アルミニウム工業所 鋳造用アルミニウム合金および同アルミニウム合金鋳物
JP5469100B2 (ja) * 2009-01-27 2014-04-09 株式会社大紀アルミニウム工業所 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物
CN102676887B (zh) * 2012-06-11 2014-04-16 东莞市闻誉实业有限公司 加压铸造用铝合金及该铝合金的铸件

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP5797360B1 (ja) 2015-10-21
PL3216884T3 (pl) 2020-01-31
MX2017007836A (es) 2018-02-21
WO2016120905A1 (ja) 2016-08-04
CN107208196A (zh) 2017-09-26
JPWO2016120905A1 (ja) 2017-04-27
US20180002787A1 (en) 2018-01-04
EP3216884A4 (de) 2017-12-13
EP3216884A1 (de) 2017-09-13

Similar Documents

Publication Publication Date Title
EP3121302B1 (de) Aluminiumlegierung zum druckgiessen und druckgussaluminiumlegierung damit
EP3216884B1 (de) Aluminiumlegierung für kokillenguss und daraus hergestellte aluminiumlegierungskokille
JP5469100B2 (ja) 加圧鋳造用アルミニウム合金および同アルミニウム合金鋳物
US11286542B2 (en) Aluminum alloy for die casting and functional component using the same
JP6852146B2 (ja) ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト
EP3436616B1 (de) Aluminiumlegierungen mit verbesserten dehnungseigenschaften
EP3640356B1 (de) Magnesiumlegierung mit hoher wärmeleitfähigkeit, wechselrichtergehäuse, wechselrichter und automobil
EP3196323B1 (de) Druckgussprodukt aus aluminiumlegierung
JP4994734B2 (ja) 鋳造用アルミニウム合金および同アルミニウム合金鋳物
JP2020158788A (ja) アルミニウム合金
CN112119172B (zh) Al-Si-Mg系铝合金
JP2006316341A (ja) 鋳造用アルミニウム合金および同アルミニウム合金鋳物
JP5723064B2 (ja) ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト
WO2018235272A1 (ja) アルミニウム合金およびアルミニウム合金鋳物品
US11542580B2 (en) Method for manufacturing Al—Si—Mg aluminum alloy cast material
KR20230171947A (ko) 내산화성 Al-Mg 고강도 다이캐스팅 주조용 합금
JPH07216486A (ja) 高圧鋳造用アルミニウム合金

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIKI ALUMINIUM INDUSTRY CO., LTD.

A4 Supplementary search report drawn up and despatched

Effective date: 20171114

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 21/02 20060101AFI20171108BHEP

Ipc: B22D 21/04 20060101ALI20171108BHEP

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180705

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1178526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015038029

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190911

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1178526

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015038029

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

26N No opposition filed

Effective date: 20200615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20230117

Year of fee payment: 9

Ref country code: IT

Payment date: 20230131

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240125

Year of fee payment: 10