US20180002787A1 - Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom - Google Patents

Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom Download PDF

Info

Publication number
US20180002787A1
US20180002787A1 US15/543,133 US201515543133A US2018002787A1 US 20180002787 A1 US20180002787 A1 US 20180002787A1 US 201515543133 A US201515543133 A US 201515543133A US 2018002787 A1 US2018002787 A1 US 2018002787A1
Authority
US
United States
Prior art keywords
aluminum alloy
alloy
die casting
aluminum
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/543,133
Inventor
Atsuo KABURAGI
Satoshi MIYAJIRI
Naoto Oshiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiki Aluminium Industry Co Ltd
Original Assignee
Daiki Aluminium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiki Aluminium Industry Co Ltd filed Critical Daiki Aluminium Industry Co Ltd
Assigned to DAIKI ALUMINIUM INDUSTRY CO., LTD. reassignment DAIKI ALUMINIUM INDUSTRY CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KABURAGI, Atsuo, MIYAJIRI, Satoshi, OSHIRO, NAOTO
Publication of US20180002787A1 publication Critical patent/US20180002787A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/04Casting aluminium or magnesium

Definitions

  • the present invention relates to an aluminum alloy for die casting having improved yield strength and ductility, and an aluminum alloy die cast produced using the alloy.
  • Aluminum alloys are lightweight and are excellent in moldability and mass productivity, and therefore are widely used as materials for components in various fields such as automobiles, industrial machines, aircrafts, and electrical home appliances.
  • Patent Literature 1 described below discloses an aluminum alloy for casting that contains: silicon by 5.0 to 11.0%; magnesium by 0.2 to 0.8%; chromium by 0.3 to 1.5%; and iron by not more than 1.2%, and that has a high elongation percentage, as a material suitable for components requiring high elongation, such as disc wheels of automobiles.
  • the aluminum alloy is not certain whether the aluminum alloy is applicable to components requiring higher elongation and high yield strength, such as engine mounts, and it is difficult to say that the aluminum alloy has suitability for die casting that enables mass production of fine components such as engine mounts.
  • a main objective of the present invention is to provide: an aluminum alloy for die casting having castability equivalent to that of ADC12 that is an Al—Si—Cu based alloy for die casting specified by Japanese Industrial Standards JIS H5302 (hereinafter simply referred to as “ADC12”), and having high yield strength and high ductility; and an aluminum alloy die cast produced using the alloy.
  • ADC12 Al—Si—Cu based alloy for die casting specified by Japanese Industrial Standards JIS H5302
  • a first aspect of the present invention is an aluminum alloy for die casting containing: Si by more than 6.00 wt % and less than 6.50 wt %; Mg by 0.10 to 0.50 wt %; Fe by not more than 0.30 wt %; Mn by 0.30 to 0.60 wt %; Cr by 0.10 to 0.30 wt %; and Al and unavoidable impurities as a remaining portion of the aluminum alloy.
  • Si is contained as a main component by more than 6.00 wt % and less than 6.50 wt % to minimize reduction in elongation while maintaining fluidity during die casting, and the content ratio of Fe, which significantly affects elongation of the alloy, is reduced to not more than 0.30 wt %, and further, Mn, which has an effect to improve anti-seizing characteristic and elongation of the alloy during die casting, is contained by 0.30 to 0.60 wt %. Therefore, it is possible to obtain an alloy having: suitability for die casting equivalent to that of ADC12; yield strength equivalent to that of ADC12; and elongation significantly higher than that of ADC12.
  • an ingot of an aluminum alloy for die casting having not only excellent castability for die casting but also excellent mechanical properties, especially elongation (ductility) and yield strength, can be produced safely and easily.
  • At least one selected from Na, Sr, and Ca is added by 30 to 200 ppm, or Sb is added by 0.05 to 0.20 wt %. By doing so, it is possible to reduce the size of particles of eutectic Si and further improve strength and toughness of the aluminum alloy.
  • adding Ti by 0.05 to 0.30 wt % or adding B by 1 to 50 ppm is also preferable. By doing so, crystal grains of the aluminum alloy can be miniaturized even when the amount of Si is particularly small or when a casting method having a low cooling rate is used. As a result, elongation of the aluminum alloy can be improved.
  • a second aspect of the present invention is an aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting according to the first aspect.
  • the aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting according to the present invention can be mass produced with satisfactory castability and is superior in yield strength and elongation, the aluminum alloy die cast is most suitable for structural components for automobiles, especially components such as engine mounts.
  • an aluminum alloy for die casting having castability equivalent to that of ADC12 and high yield strength and high ductility; and an aluminum alloy die cast produced using the alloy.
  • FIG. 1 shows graphs representing the relationships between the amount of Mn in aluminum alloys for die casting according to Examples and Comparative Examples of the present invention, and mechanical properties of the alloys, in which FIG. 1( a ) represents the relationship between the amount of Mn and elongations of the alloys, and FIG. 1( b ) represents the relationship between the amount of Mn and 0.2%-yield strengths of the alloys.
  • An aluminum alloy for die casting of the present invention (hereinafter, also simply referred to as “aluminum alloy”) mainly contains: Si (silicon) by more than 6.00 wt % and less than 6.50 wt %; Mg (magnesium) by 0.10 to 0.50 wt %; Fe (iron) by not more than 0.30 wt %; Mn (manganese) by 0.30 to 0.60 wt %; Cr (chromium) by 0.10 to 0.30 wt %; and Al (aluminum) and unavoidable impurities as a remaining portion of the aluminum alloy.
  • Si silicon
  • Mg magnesium
  • Fe iron
  • Mn manganesese
  • Cr chromium
  • Si silicon is an important element that contributes to improvement of fluidity, reduction in liquidus temperature, and the like when the aluminum alloy is molten, thereby to improve castability.
  • the content ratio of Si with respect to the whole weight of the aluminum alloy is preferably within a range of more than 6.00 wt % and less than 6.50 wt % as described above.
  • the content ratio of Si is not more than 6.00 wt %, melting temperature and casting temperature of the aluminum alloy increase, and sufficient fluidity cannot be ensured during die casting since fluidity of the aluminum alloy reduces when the aluminum alloy is molten.
  • the content ratio of Si is more than 6.50 wt %, elongation of the obtained alloy is reduced although sufficient fluidity can be ensured during die casting.
  • Mg manganesium mainly exists as Mg 2 Si or in a solid-solution state in an Al base material in the aluminum alloy, and is a component that provides 0.2%-yield strength and tensile strength to the aluminum alloy, but, when being contained by an excessive amount, has an adverse effect on castability and elongation of the alloy.
  • the content ratio of Mg with respect to the whole weight of the aluminum alloy is preferably within a range of 0.10 to 0.50 wt % as described above.
  • the presence of Mg within the above range can improve mechanical properties of the aluminum alloy such as yield strength and tensile strength, without greatly affecting castability and elongation of the alloy.
  • the blending ratio of Mg is more than 0.50 wt %, elongation of the alloy is reduced, which results in degraded quality of an aluminum alloy die cast produced by using the alloy.
  • Fe iron
  • Fe is known to have a seizing prevention effect during die casting.
  • Fe causes crystallization of a needle like crystal in the form of Al—Si—Fe, significantly reduces elongation of the aluminum alloy, and, when being added in a large quantity, causes melting at a suitable temperature to be difficult.
  • the content ratio of Fe with respect to the whole weight of the aluminum alloy is preferably not more than 0.30 wt % as described above.
  • the content ratio of Fe is more than 0.30 wt %, elongation of the alloy is remarkably reduced although the seizing prevention effect is sufficient.
  • Mn manganese
  • the blending ratio of Mn with respect to the whole weight of the aluminum alloy is preferably within a range of 0.30 to 0.60 wt % as described above, and more preferably within a range of 0.40 to 0.60 wt %.
  • the blending ratio of Mn is less than 0.30 wt %, seizing will occur between the aluminum alloy and a mold during die casting.
  • the blending ratio of Mn is more than 0.60 wt %, elongation of the alloy is reduced although the problem of seizing does not occur during die casting.
  • an Al—Mn based scrap having high Mn content as in the case with aluminum can recycled materials, can be used as a part of the raw material for the alloy.
  • Cr chromium mainly exists in a molten state when the aluminum alloy is molten, and when the aluminum alloy is solid, exists in a solid-solution state in an Al phase or in a crystallized state as an Al—Si—Cr phase or an Al—Si—Cr—Fe phase. Cr is used for preventing seizing of the aluminum alloy and a mold during die casting.
  • the blending ratio of Cr with respect to the whole weight of the aluminum alloy is preferably within the range of 0.10 to 0.30 wt % as described above.
  • the blending ratio of Cr is less than 0.10 wt %, seizing will occur between the aluminum alloy and a mold during die casting.
  • the blending ratio of Cr is more than 0.30 wt %, elongation of the aluminum alloy is rapidly reduced although seizing during die casting is solved.
  • elongation (breaking elongation) thereof is preferably not less than 11%, and at the same time, 0.2%-yield strength thereof is preferably not less than 125 MPa.
  • An aluminum alloy for die casting having such mechanical properties is particularly suitable as a die-cast material for engine mounts of automobiles.
  • At least one element selected from Na (sodium), Sr (strontium), Ca (calcium), and Sb (antimony) may be added as a modification material.
  • a modification material By adding such a modification material, it is possible to reduce the size of eutectic Si particles, and further improve toughness and strength of the aluminum alloy.
  • the addition ratio of the modification material with respect to the whole weight of the aluminum alloy is preferably within a range of 30 to 200 ppm when the modification material is Na, Sr, and Ca, and within a range of 0.05 to 0.20 wt % when the modification material is Sb.
  • the addition ratio of the modification material is less than 30 ppm (0.05 wt % in the case with Sb)
  • miniaturizing eutectic Si particles in the aluminum alloy becomes difficult
  • the addition ratio of the modification material is more than 200 ppm (0.20 wt % in the case with Sb)
  • eutectic Si particles in the aluminum alloy are sufficiently miniaturized, and no further addition effect can be obtained even when the added amount is increased.
  • At least one of Ti (titanium) and B (boron) may be added instead of or together with the modification material.
  • Ti and B boron
  • crystal grains of the aluminum alloy are miniaturized, and elongation of the alloy can be improved. It should be noted that such an advantageous effect becomes significant when the amount of Si is particularly small or when a casting method having a low cooling rate is used.
  • the addition ratios of Ti and B with respect to the whole weight of the aluminum alloy are preferably within a range of 0.05 to 0.30 wt % and a range of 1 to 50 ppm, respectively.
  • the addition ratio of Ti is less than 0.05 wt % or the addition ratio of B is less than 1 ppm, miniaturizing the crystal grains in the aluminum alloy becomes difficult, whereas when the addition ratio of Ti is more than 0.30 wt % or the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficiently miniaturized, and no further addition effect can be obtained even when the added amount is increased.
  • the aluminum alloy for die casting according to the present invention When the aluminum alloy for die casting according to the present invention is to be produced, first, a raw material designed to contain, at the predetermined ratio described above, each of the elemental components of Al, Si, Mg, Fe, Mn, and Cr is prepared. Next, the raw material is placed in a melting furnace such as a sealed melting furnace or a melting furnace with a fore hearth to melt the raw material. The molten raw material, i.e., the molten metal of the aluminum alloy is subjected to refinement treatments such as a dehydrogenation treatment and an inclusion removal treatment, if necessary. Then, the refined molten metal is casted in a predetermined mold and solidified in order to form the molten metal of the aluminum alloy into an alloy base metal ingot or the like.
  • a melting furnace such as a sealed melting furnace or a melting furnace with a fore hearth to melt the raw material.
  • the molten raw material i.e., the molten metal of the aluminum
  • a solution treatment and an aging treatment, etc. are performed if necessary.
  • a solution treatment and an aging treatment, etc. are performed if necessary.
  • a solid emission spectrophotometer (Thermo Scientific (registered trademark) ARL 4460) manufactured by Thermo Fisher Scientific Inc. was used for component analysis of the round bar test piece produced by die casting.
  • Table 1 shows elemental compositions, mechanical properties, and suitabilities for die casting of aluminum alloys, which are the objects of the present invention, in Examples 1 and 2 and Comparative Examples 1 to 3.
  • Comparative Example 1 corresponds to ADC12 that is widely used as an aluminum alloy for die casting.
  • Examples 1 and 2 are compared with Comparative Examples 2 and 3 in which only the content ratios of Mn are different from those of Examples 1 and 2, it is found from FIG. 1 and Table 1 that, with 0.3 wt % of Mn being a boundary, Examples 1 and 2 containing more than 0.3 wt % of Mn are able to effectively prevent seizing during die casting, and have improved elongations and 0.2%-yield strengths of the alloys.

Abstract

Provided are: an aluminum alloy for die casting, having castability equivalent to that of ADC12 and having high yield strength and high ductility; and an aluminum alloy die cast obtained through die-casting the alloy. That is, the aluminum alloy for die casting according to the present invention contains: Si by more than 6.00 wt % and less than 6.50 wt %; Mg by 0.10 to 0.50 wt %; Fe by not more than 0.30 wt %; Mn by 0.30 to 0.60 wt %; Cr by 0.10 to 0.30 wt %; and Al and unavoidable impurities as a remaining portion of the aluminum alloy.

Description

    TECHNICAL FIELD
  • The present invention relates to an aluminum alloy for die casting having improved yield strength and ductility, and an aluminum alloy die cast produced using the alloy.
  • BACKGROUND ART
  • Aluminum alloys are lightweight and are excellent in moldability and mass productivity, and therefore are widely used as materials for components in various fields such as automobiles, industrial machines, aircrafts, and electrical home appliances.
  • For use in automobiles, many components using aluminum alloys are adopted for the purpose of reducing the weight of an automobile body. Meanwhile, with increase in the number of components for which use of aluminum alloys is considered, existing aluminum alloys cannot satisfy mechanical properties required of these components in some cases.
  • Under such circumstances, as a technology for solving the above problem, for example, Patent Literature 1 described below discloses an aluminum alloy for casting that contains: silicon by 5.0 to 11.0%; magnesium by 0.2 to 0.8%; chromium by 0.3 to 1.5%; and iron by not more than 1.2%, and that has a high elongation percentage, as a material suitable for components requiring high elongation, such as disc wheels of automobiles.
  • According to this technology, it is possible to provide an aluminum alloy for casting that has high elongation while containing iron as an impurity.
  • CITATION LIST Patent Literature
  • [PTL 1] Japanese Laid-Open Patent Publication No. S52-126609
  • SUMMARY OF INVENTION Technical Problem
  • However, in the above-described conventional technology, it is not certain whether the aluminum alloy is applicable to components requiring higher elongation and high yield strength, such as engine mounts, and it is difficult to say that the aluminum alloy has suitability for die casting that enables mass production of fine components such as engine mounts.
  • Thus, a main objective of the present invention is to provide: an aluminum alloy for die casting having castability equivalent to that of ADC12 that is an Al—Si—Cu based alloy for die casting specified by Japanese Industrial Standards JIS H5302 (hereinafter simply referred to as “ADC12”), and having high yield strength and high ductility; and an aluminum alloy die cast produced using the alloy.
  • Solution to Problem
  • A first aspect of the present invention is an aluminum alloy for die casting containing: Si by more than 6.00 wt % and less than 6.50 wt %; Mg by 0.10 to 0.50 wt %; Fe by not more than 0.30 wt %; Mn by 0.30 to 0.60 wt %; Cr by 0.10 to 0.30 wt %; and Al and unavoidable impurities as a remaining portion of the aluminum alloy.
  • In this aspect, Si is contained as a main component by more than 6.00 wt % and less than 6.50 wt % to minimize reduction in elongation while maintaining fluidity during die casting, and the content ratio of Fe, which significantly affects elongation of the alloy, is reduced to not more than 0.30 wt %, and further, Mn, which has an effect to improve anti-seizing characteristic and elongation of the alloy during die casting, is contained by 0.30 to 0.60 wt %. Therefore, it is possible to obtain an alloy having: suitability for die casting equivalent to that of ADC12; yield strength equivalent to that of ADC12; and elongation significantly higher than that of ADC12.
  • As described above, in the present invention, by simply containing the five types of elemental components at the predetermined ratio, an ingot of an aluminum alloy for die casting having not only excellent castability for die casting but also excellent mechanical properties, especially elongation (ductility) and yield strength, can be produced safely and easily.
  • With respect to the aluminum alloy for die casting according to the present invention, preferably, at least one selected from Na, Sr, and Ca is added by 30 to 200 ppm, or Sb is added by 0.05 to 0.20 wt %. By doing so, it is possible to reduce the size of particles of eutectic Si and further improve strength and toughness of the aluminum alloy.
  • In addition, adding Ti by 0.05 to 0.30 wt % or adding B by 1 to 50 ppm is also preferable. By doing so, crystal grains of the aluminum alloy can be miniaturized even when the amount of Si is particularly small or when a casting method having a low cooling rate is used. As a result, elongation of the aluminum alloy can be improved.
  • A second aspect of the present invention is an aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting according to the first aspect.
  • Since the aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting according to the present invention can be mass produced with satisfactory castability and is superior in yield strength and elongation, the aluminum alloy die cast is most suitable for structural components for automobiles, especially components such as engine mounts.
  • Advantageous Effects of Invention
  • According to the present invention, it is possible to provide: an aluminum alloy for die casting, having castability equivalent to that of ADC12 and high yield strength and high ductility; and an aluminum alloy die cast produced using the alloy.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows graphs representing the relationships between the amount of Mn in aluminum alloys for die casting according to Examples and Comparative Examples of the present invention, and mechanical properties of the alloys, in which FIG. 1(a) represents the relationship between the amount of Mn and elongations of the alloys, and FIG. 1(b) represents the relationship between the amount of Mn and 0.2%-yield strengths of the alloys.
  • DESCRIPTION OF EMBODIMENTS
  • In the following, an embodiment of the present invention will be described in detail with specific examples.
  • An aluminum alloy for die casting of the present invention (hereinafter, also simply referred to as “aluminum alloy”) mainly contains: Si (silicon) by more than 6.00 wt % and less than 6.50 wt %; Mg (magnesium) by 0.10 to 0.50 wt %; Fe (iron) by not more than 0.30 wt %; Mn (manganese) by 0.30 to 0.60 wt %; Cr (chromium) by 0.10 to 0.30 wt %; and Al (aluminum) and unavoidable impurities as a remaining portion of the aluminum alloy. Hereinafter, the properties of each of the elements will be described.
  • Si (silicon) is an important element that contributes to improvement of fluidity, reduction in liquidus temperature, and the like when the aluminum alloy is molten, thereby to improve castability.
  • The content ratio of Si with respect to the whole weight of the aluminum alloy is preferably within a range of more than 6.00 wt % and less than 6.50 wt % as described above. When the content ratio of Si is not more than 6.00 wt %, melting temperature and casting temperature of the aluminum alloy increase, and sufficient fluidity cannot be ensured during die casting since fluidity of the aluminum alloy reduces when the aluminum alloy is molten. On the other hand, when the content ratio of Si is more than 6.50 wt %, elongation of the obtained alloy is reduced although sufficient fluidity can be ensured during die casting.
  • Mg (magnesium) mainly exists as Mg2Si or in a solid-solution state in an Al base material in the aluminum alloy, and is a component that provides 0.2%-yield strength and tensile strength to the aluminum alloy, but, when being contained by an excessive amount, has an adverse effect on castability and elongation of the alloy.
  • The content ratio of Mg with respect to the whole weight of the aluminum alloy is preferably within a range of 0.10 to 0.50 wt % as described above. The presence of Mg within the above range can improve mechanical properties of the aluminum alloy such as yield strength and tensile strength, without greatly affecting castability and elongation of the alloy. When the blending ratio of Mg is more than 0.50 wt %, elongation of the alloy is reduced, which results in degraded quality of an aluminum alloy die cast produced by using the alloy.
  • Fe (iron) is known to have a seizing prevention effect during die casting. However, Fe causes crystallization of a needle like crystal in the form of Al—Si—Fe, significantly reduces elongation of the aluminum alloy, and, when being added in a large quantity, causes melting at a suitable temperature to be difficult.
  • The content ratio of Fe with respect to the whole weight of the aluminum alloy is preferably not more than 0.30 wt % as described above. When the content ratio of Fe is more than 0.30 wt %, elongation of the alloy is remarkably reduced although the seizing prevention effect is sufficient.
  • Mn (manganese) is used mainly for preventing seizing of the aluminum alloy and a mold during casting.
  • The blending ratio of Mn with respect to the whole weight of the aluminum alloy is preferably within a range of 0.30 to 0.60 wt % as described above, and more preferably within a range of 0.40 to 0.60 wt %. When the blending ratio of Mn is less than 0.30 wt %, seizing will occur between the aluminum alloy and a mold during die casting. On the other hand, when the blending ratio of Mn is more than 0.60 wt %, elongation of the alloy is reduced although the problem of seizing does not occur during die casting.
  • In the aluminum alloy of the present invention, since the blending ratio of Mn up to 0.60 wt % is accepted with respect to the weight of the whole alloy as described above, an Al—Mn based scrap having high Mn content, as in the case with aluminum can recycled materials, can be used as a part of the raw material for the alloy.
  • Cr (chromium) mainly exists in a molten state when the aluminum alloy is molten, and when the aluminum alloy is solid, exists in a solid-solution state in an Al phase or in a crystallized state as an Al—Si—Cr phase or an Al—Si—Cr—Fe phase. Cr is used for preventing seizing of the aluminum alloy and a mold during die casting.
  • The blending ratio of Cr with respect to the whole weight of the aluminum alloy is preferably within the range of 0.10 to 0.30 wt % as described above. When the blending ratio of Cr is less than 0.10 wt %, seizing will occur between the aluminum alloy and a mold during die casting. On the other hand, when the blending ratio of Cr is more than 0.30 wt %, elongation of the aluminum alloy is rapidly reduced although seizing during die casting is solved.
  • When the content ratios of Si, Mg, Fe, Mn, and Cr are adjusted in accordance with the content ratios described above, it is possible to obtain a base metal of an aluminum alloy for die casting having castability equivalent to that of ADC12, and having high yield strength and high ductility.
  • In the above-described aluminum alloy for die casting in an as-cast state, elongation (breaking elongation) thereof is preferably not less than 11%, and at the same time, 0.2%-yield strength thereof is preferably not less than 125 MPa. An aluminum alloy for die casting having such mechanical properties is particularly suitable as a die-cast material for engine mounts of automobiles.
  • In addition to the elemental components described above, at least one element selected from Na (sodium), Sr (strontium), Ca (calcium), and Sb (antimony) may be added as a modification material. By adding such a modification material, it is possible to reduce the size of eutectic Si particles, and further improve toughness and strength of the aluminum alloy.
  • The addition ratio of the modification material with respect to the whole weight of the aluminum alloy is preferably within a range of 30 to 200 ppm when the modification material is Na, Sr, and Ca, and within a range of 0.05 to 0.20 wt % when the modification material is Sb. When the addition ratio of the modification material is less than 30 ppm (0.05 wt % in the case with Sb), miniaturizing eutectic Si particles in the aluminum alloy becomes difficult, whereas when the addition ratio of the modification material is more than 200 ppm (0.20 wt % in the case with Sb), eutectic Si particles in the aluminum alloy are sufficiently miniaturized, and no further addition effect can be obtained even when the added amount is increased.
  • Furthermore, at least one of Ti (titanium) and B (boron) may be added instead of or together with the modification material. By adding at least one of Ti and B in such manner, crystal grains of the aluminum alloy are miniaturized, and elongation of the alloy can be improved. It should be noted that such an advantageous effect becomes significant when the amount of Si is particularly small or when a casting method having a low cooling rate is used.
  • The addition ratios of Ti and B with respect to the whole weight of the aluminum alloy are preferably within a range of 0.05 to 0.30 wt % and a range of 1 to 50 ppm, respectively. When the addition ratio of Ti is less than 0.05 wt % or the addition ratio of B is less than 1 ppm, miniaturizing the crystal grains in the aluminum alloy becomes difficult, whereas when the addition ratio of Ti is more than 0.30 wt % or the addition ratio of B is more than 50 ppm, the crystal grains in the aluminum alloy are sufficiently miniaturized, and no further addition effect can be obtained even when the added amount is increased.
  • When the aluminum alloy for die casting according to the present invention is to be produced, first, a raw material designed to contain, at the predetermined ratio described above, each of the elemental components of Al, Si, Mg, Fe, Mn, and Cr is prepared. Next, the raw material is placed in a melting furnace such as a sealed melting furnace or a melting furnace with a fore hearth to melt the raw material. The molten raw material, i.e., the molten metal of the aluminum alloy is subjected to refinement treatments such as a dehydrogenation treatment and an inclusion removal treatment, if necessary. Then, the refined molten metal is casted in a predetermined mold and solidified in order to form the molten metal of the aluminum alloy into an alloy base metal ingot or the like.
  • Furthermore, after producing the aluminum alloy die cast using the aluminum alloy for die casting according to the present invention, a solution treatment and an aging treatment, etc., are performed if necessary. By performing the solution treatment and the aging treatment on the aluminum alloy die cast in such manner, mechanical properties of the aluminum alloy cast can be improved.
  • EXAMPLES
  • In the following, the present invention will be described specifically by means of Examples, but the present invention is not limited to the Examples.
  • Mechanical properties (tensile strength, elongation, and 0.2%-yield strength) in predetermined Examples and Comparative Examples were measured by a method described below. Specifically, by using an ordinary die casting machine (DC135EL manufactured by Toshiba Machine Co., Ltd.) having a clamping force of 135 ton, die casting was performed at an injection speed of 1.0 m/s with a casting pressure of 60 MPa to produce a round bar test piece that is in compliance with ASTM (American Society for Testing and Material) standard. Then, tensile strength, elongation (breaking elongation), and 0.2%-yield strength were measured for the round bar test piece in an as-cast state by using a universal testing machine (AG-IS 100kN) manufactured by Shimadzu Corp.
  • A solid emission spectrophotometer (Thermo Scientific (registered trademark) ARL 4460) manufactured by Thermo Fisher Scientific Inc. was used for component analysis of the round bar test piece produced by die casting.
  • Further, in order to evaluate castability of each alloy, fluidity of the molten metal and presence/absence of seizing to a mold (anti-seizing characteristic) during the die casting were visually observed, and were evaluated in three grades of ∘ (good), Δ (fair), x (poor).
  • Table 1 shows elemental compositions, mechanical properties, and suitabilities for die casting of aluminum alloys, which are the objects of the present invention, in Examples 1 and 2 and Comparative Examples 1 to 3. Comparative Example 1 corresponds to ADC12 that is widely used as an aluminum alloy for die casting.
  • TABLE 1
    Table 1-(1). Elemental compositions of Examples and Comparative Examples
    Elemental composition (wt %)
    Cu Si Mg Fe Mn Cr
    Example 1 0.00 6.17 0.35 0.19 0.41 0.20
    Example 2 0.01 6.24 0.36 0.19 0.60 0.20
    Comparative Example 1 1.79 10.41 0.27 1.28 0.19 0.04
    Comparative Example 2 0.01 6.24 0.34 0.19 0.01 0.20
    Comparative Example 3 0.01 6.21 0.35 0.19 0.21 0.20
    Table 1-(2). Physical property measurement results and castability evaluation results of
    Examples and Comparative Examples
    Physical property measurement result
    Tensile 0.2%-yield
    strength Elongation strength Anti-seizing
    (MPa) (%) (MPa) Fluidity characteristic
    Example 1 274 11.9 126
    Example 2 280 11.9 127
    Comparative 313 2.4 155
    Example 1
    Comparative 265 11.1 117 x
    Example 2
    Comparative 273 11.4 123 Δ
    Example 3
  • According to Table 1, when Examples 1 and 2, which are alloys of the present invention, are compared with Comparative Example 1 corresponding to ADC12, it is found that elongations of the alloys of Examples 1 and 2 are significantly higher than that of Comparative Example 1 corresponding to ADC12 although both have equivalent castability (i.e., suitability for die casting).
  • Further, when Examples 1 and 2 are compared with Comparative Examples 2 and 3 in which only the content ratios of Mn are different from those of Examples 1 and 2, it is found from FIG. 1 and Table 1 that, with 0.3 wt % of Mn being a boundary, Examples 1 and 2 containing more than 0.3 wt % of Mn are able to effectively prevent seizing during die casting, and have improved elongations and 0.2%-yield strengths of the alloys.

Claims (6)

1. An aluminum alloy for die casting comprising: Si by more than 6.00 wt % and less than 6.50 wt %; Mg by 0.10 to 0.50 wt %; Fe by not more than 0.30 wt %; Mn by 0.30 to 0.60 wt %; Cr by 0.10 to 0.30 wt %; and Al and unavoidable impurities as a remaining portion of the aluminum alloy.
2. The aluminum alloy for die casting according to claim 1, wherein at least one selected from Na, Sr, and Ca is added by 30 to 200 ppm.
3. The aluminum alloy for die casting according to claim 1, wherein Sb is added by 0.05 to 0.20 wt %.
4. The aluminum alloy for die casting according to claim 1, wherein Ti is added by 0.05 to 0.30 wt %.
5. The aluminum alloy for die casting according to claim 1, wherein B is added by 1 to 50 ppm.
6. An aluminum alloy die cast obtained through die-casting the aluminum alloy for die casting according to claim 1.
US15/543,133 2015-01-29 2015-01-29 Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom Abandoned US20180002787A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/000405 WO2016120905A1 (en) 2015-01-29 2015-01-29 Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom

Publications (1)

Publication Number Publication Date
US20180002787A1 true US20180002787A1 (en) 2018-01-04

Family

ID=54348604

Family Applications (1)

Application Number Title Priority Date Filing Date
US15/543,133 Abandoned US20180002787A1 (en) 2015-01-29 2015-01-29 Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom

Country Status (7)

Country Link
US (1) US20180002787A1 (en)
EP (1) EP3216884B1 (en)
JP (1) JP5797360B1 (en)
CN (1) CN107208196A (en)
MX (1) MX2017007836A (en)
PL (1) PL3216884T3 (en)
WO (1) WO2016120905A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170121793A1 (en) * 2015-04-15 2017-05-04 Daiki Aluminium Industry Co., Ltd. Aluminum alloy for die casting, and aluminum alloy die cast produced using same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017129542A1 (en) * 2016-12-22 2018-06-28 Ksm Castings Group Gmbh Al-cast alloy
CN109652687A (en) * 2018-12-28 2019-04-19 广东鸿泰科技股份有限公司 A kind of pack alloy and its die-casting process
JP7147647B2 (en) * 2019-03-20 2022-10-05 日本軽金属株式会社 Aluminum alloy and aluminum alloy die-cast material
CN113025854A (en) * 2021-02-09 2021-06-25 中信戴卡股份有限公司 Cast aluminum alloy with high iron content
WO2023167312A1 (en) * 2022-03-03 2023-09-07 日本軽金属株式会社 Al-si alloy for casting, al-si alloy casting and al-si alloy casting joint

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2821495A (en) * 1955-06-24 1958-01-28 Aluminum Co Of America Brazing and heat treatment of aluminum base alloy castings
JPH1112705A (en) * 1997-06-20 1999-01-19 Sumitomo Light Metal Ind Ltd Production of high strength aluminum alloy forging excellent in machinability
US20050155676A1 (en) * 2001-07-10 2005-07-21 Francois Cosse High-ductility aluminium alloy part cast under pressure
US20060133949A1 (en) * 2003-07-10 2006-06-22 Gerard Laslaz Moulded AL-SI-CU aluminium alloy component with high hot-process resistance

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4104089A (en) * 1976-07-08 1978-08-01 Nippon Light Metal Company Limited Die-cast aluminum alloy products
JPS5842748A (en) * 1981-09-08 1983-03-12 Furukawa Alum Co Ltd Die casting aluminum alloy
JP2000026996A (en) * 1998-07-13 2000-01-25 Yamaha Motor Co Ltd Aluminum pats and production thereof
JP2002339030A (en) * 2001-05-17 2002-11-27 Yamaha Motor Co Ltd Aluminum alloy for diecasting
JP4994734B2 (en) * 2006-07-24 2012-08-08 株式会社大紀アルミニウム工業所 Aluminum alloy for casting and cast aluminum alloy
JP5469100B2 (en) * 2009-01-27 2014-04-09 株式会社大紀アルミニウム工業所 Aluminum alloy for pressure casting and cast aluminum alloy
CN102676887B (en) * 2012-06-11 2014-04-16 东莞市闻誉实业有限公司 Aluminum alloy for compression casting and casting of aluminum alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2821495A (en) * 1955-06-24 1958-01-28 Aluminum Co Of America Brazing and heat treatment of aluminum base alloy castings
JPH1112705A (en) * 1997-06-20 1999-01-19 Sumitomo Light Metal Ind Ltd Production of high strength aluminum alloy forging excellent in machinability
US20050155676A1 (en) * 2001-07-10 2005-07-21 Francois Cosse High-ductility aluminium alloy part cast under pressure
US20060133949A1 (en) * 2003-07-10 2006-06-22 Gerard Laslaz Moulded AL-SI-CU aluminium alloy component with high hot-process resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170121793A1 (en) * 2015-04-15 2017-05-04 Daiki Aluminium Industry Co., Ltd. Aluminum alloy for die casting, and aluminum alloy die cast produced using same

Also Published As

Publication number Publication date
PL3216884T3 (en) 2020-01-31
JP5797360B1 (en) 2015-10-21
JPWO2016120905A1 (en) 2017-04-27
EP3216884A1 (en) 2017-09-13
EP3216884B1 (en) 2019-09-11
CN107208196A (en) 2017-09-26
WO2016120905A1 (en) 2016-08-04
EP3216884A4 (en) 2017-12-13
MX2017007836A (en) 2018-02-21

Similar Documents

Publication Publication Date Title
JP5898819B1 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
JP5469100B2 (en) Aluminum alloy for pressure casting and cast aluminum alloy
EP3216884B1 (en) Aluminum alloy for die casting and aluminum-alloy die cast obtained therefrom
US11359264B2 (en) Aluminum alloy and die casting method
JP6852146B2 (en) Aluminum alloy for die casting and aluminum alloy die casting using this
US11286542B2 (en) Aluminum alloy for die casting and functional component using the same
US20170314111A1 (en) Aluminum alloy for die casting and method of heat treating the same
US20190136349A1 (en) Aluminum Alloys Having Improved Tensile Properties
JP5969713B1 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
JP4994734B2 (en) Aluminum alloy for casting and cast aluminum alloy
JP2007070716A (en) Aluminum alloy for pressure casting, and aluminum alloy casting made thereof
JP2020158788A (en) Aluminum alloy
JP2006322062A (en) Aluminum alloy for casting, and aluminum alloy casting thereby
JP6267408B1 (en) Aluminum alloy and aluminum alloy castings
JP2006316341A (en) Castable aluminum alloy and aluminum alloy cast made therefrom
JP5723064B2 (en) Aluminum alloy for die casting and aluminum alloy die casting using the same
JPH06271966A (en) Aluminum alloy material for casting
JP7401080B1 (en) Manufacturing method of Al alloy for casting
US11542580B2 (en) Method for manufacturing Al—Si—Mg aluminum alloy cast material

Legal Events

Date Code Title Description
AS Assignment

Owner name: DAIKI ALUMINIUM INDUSTRY CO., LTD., JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KABURAGI, ATSUO;MIYAJIRI, SATOSHI;OSHIRO, NAOTO;REEL/FRAME:042989/0254

Effective date: 20170630

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION