EP3208566A1 - Primary heat exchanger - Google Patents

Primary heat exchanger Download PDF

Info

Publication number
EP3208566A1
EP3208566A1 EP17157365.2A EP17157365A EP3208566A1 EP 3208566 A1 EP3208566 A1 EP 3208566A1 EP 17157365 A EP17157365 A EP 17157365A EP 3208566 A1 EP3208566 A1 EP 3208566A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
plates
exhaust gas
heat transfer
primary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17157365.2A
Other languages
German (de)
French (fr)
Other versions
EP3208566B1 (en
Inventor
Karsten Rebien
Stephanie Dallmeier
Matthias Wodtke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vaillant GmbH
Original Assignee
Vaillant GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vaillant GmbH filed Critical Vaillant GmbH
Publication of EP3208566A1 publication Critical patent/EP3208566A1/en
Application granted granted Critical
Publication of EP3208566B1 publication Critical patent/EP3208566B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • F28D21/0005Recuperative heat exchangers the heat being recuperated from exhaust gases for domestic or space-heating systems
    • F28D21/0007Water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0012Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form
    • F28D9/0018Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the apparatus having an annular form without any annular circulation of the heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0062Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by spaced plates with inserted elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/02Constructions of heat-exchange apparatus characterised by the selection of particular materials of carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • F28F3/086Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning having one or more openings therein forming tubular heat-exchange passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/10Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium
    • F24H1/12Continuous-flow heaters, i.e. heaters in which heat is generated only while the water is flowing, e.g. with direct contact of the water with the heating medium in which the water is kept separate from the heating medium

Definitions

  • the invention relates to a primary heat exchanger for direct-fired, condensing primary heat transfer in heaters, especially in gas-fired heaters.
  • Generic primary heat exchangers are used in heaters for transmitting the heat obtained from the combustion heat to a heat transfer medium, which serves the heating of buildings or the heating of process water.
  • This object is achieved by a primary heat exchanger according to the features of the independent claim by a primary heat exchanger made of carbon or graphite.
  • the invention makes use of the fact that carbon or graphite is a good conductor of heat.
  • plate-type graphite exchangers are known, they are currently only designed as recuperator solutions and are not fired directly. Due to the reservations that graphite could not be used as a heat exchanger material in directly fired primary heat exchangers, directly fired primary heat exchangers made of graphite were not used despite the good heat conduction.
  • the primary heat exchanger is formed by graphite plates with identical or different contours, which are superimposed and clamped together. This makes it possible, both perpendicular to the surface of the individual heat exchanger plates in the form of channels as well as to provide in parallel in the form of flow slots flow paths through which the exhaust gas and / or the heat transfer medium can flow. This makes it possible to form a very close-meshed heat exchanger structure, which effectively prevents the formation of local hotspots.
  • small heat exchanger plates are provided between two large heat exchanger plates, which are shaped so that in each case a plurality of flow slots are formed in a plane. This makes it possible, for example, to guide both exhaust gas and the heat transfer medium in a plane.
  • the supply and the discharge of the exhaust gas can be provided on opposite sides of the heat exchanger plate stack.
  • the primary heat exchanger can be designed so that the exhaust gas flows radially from the inside to the outside.
  • the channels through which the exhaust gas and / or the heat transfer medium flow can be formed meander-shaped by a corresponding shaping of the individual heat transfer plates, branch and / or unite. As a result, an even better heat transfer between the exhaust gas and / or the heat transfer medium and the heat exchanger plates is achieved.
  • FIG. 1 represents a perspective view of a condensing primary heat exchanger of graphite plates in block construction in parallel arrangement to the heating gas flow according to the invention.
  • FIG. 2 shows two sections through this primary heat exchanger.
  • the primary heat exchanger comprises a heat exchanger plate stack 4, which is formed from a plurality of alternately first and second heat exchanger plates 1, 2.
  • the second heat exchanger plates 2 are made smaller than the first heat exchanger plates 1, so that between two adjacent first heat exchanger plates 1, a flow slot 7 is formed, through which the exhaust gas can flow, which is guided from an exhaust gas inlet side 5 to an exhaust gas outlet side 6 , Holes in the individual heat exchanger plates 1, 2 are arranged so that they form in the mounted state of the heat exchanger plate stack 4 heat transfer medium channels 8, through which the heat transfer medium is guided and dissipates the heat from the exhaust gas.
  • the heat transfer surfaces are thus arranged parallel to the flow of heating gas.
  • flow slots 7 are generated on the surfaces of the heat transfer takes place.
  • the illustrated design is scalable by the number of plates inserted alternately.
  • the heat exchanger plates by clamping between two or more plates 3 higher mechanical strength.
  • heat transfer elements and clamping plates form a combustion chamber for a burner to be connected to the primary heat exchanger according to the invention, the Dimensioning meets the requirements of efficient and low-emission combustion.
  • the heat exchanger plates 1, 2 In the direction orthogonal to the flow of heating gas, the heat exchanger plates 1, 2 according to the invention form heat transfer medium channels 8 for heating and / or service water supply, which are arranged such that a countercurrent process is realized. Furthermore, heat transfer channels 8 for the heating and / or service water supply are arranged so that the exhaust gas through the right section in FIG. 2 opposite the left cut in FIG. 2 offset channels is deflected, whereby hot temperature strands are avoided by the heat exchanger.
  • FIG. 3 is a perspective view of an embodiment of the primary heat exchanger according to the invention and in FIG. 4 the view of the heat exchanger plate stack 4 of the primary heat exchanger shown.
  • the structure of this embodiment consists of disc-shaped heat exchanger plates 1, which are arranged coaxially to a not shown here in a combustion chamber 11 provided radially from the inside to the outside flowing burner over each other.
  • second heat exchanger plates 2 in the form of webs and first heat exchanger plates 1 flow slots 7 for the exhaust gas and on the inside of the heat exchanger stack 4 perpendicular to the surface of the first heat exchanger plates 1 leading heat transfer medium channels 8 for heating or service water.
  • the wedge-shaped flow slots 7 are alternately arranged annularly around the burner. Scalable is the illustrated design by the number of introduced in exchange heat exchanger plates 1, 2 in the axial direction.
  • heat exchanger plates 1, 2 by clamping between two or more plates 3 in the axial direction.
  • the heat exchanger elements are surrounded by a sealing jacket 10, which covers the heating gas flow from the heating or service water flow separates.
  • burners, heat exchanger elements 1, 2 and plates 3 form a combustion chamber, the dimensioning of which meets the requirements of efficient and low-emission combustion.
  • a countercurrent of exhaust gas and heat transfer medium is achieved by inflow of heating or hot water from outside to inside and the flow of the heating gas from the inside out.
  • the exhaust gas flow can be discharged outside the heat exchanger both in the upper and lower region. Heating or service water supply and removal are directed against the flow of heating gas.
  • FIG. 5 is a perspective view of another embodiment of the heat exchanger plate stack 4 of the primary heat exchanger according to the invention shown.
  • FIG. 6 shows a sectional view of this embodiment.
  • the heat transfer surfaces are arranged orthogonal to the flow of heating gas.
  • each overlapping webs 16 and passages 17 are formed which produce meandering exhaust gas channels 9, in which heat is transferred by convection.
  • a combustion chamber 11 is formed for receiving a burner, not shown.
  • the heat exchanger plates 1 by clamping between two or more plates 3 not shown higher mechanical strength. Furthermore, heat is transferred, in particular by radiation, to the walls of the heat exchanger formed by graphite plates.
  • the heat transfer medium channels for heating and / or service water flow surround both combustion chamber and flow channels of the fuel gas and are with the Heat transfer medium flow 14 flows from bottom to top against the exhaust gas flow 13.
  • individual insulating plates 15 may be made of insulator material, such as ceramic, whereby local overheating may be avoided as needed.
  • the invention is not limited to the embodiments. Individual features of the embodiments can also be combined with each other according to the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Die Erfindung betrifft einen Primärwärmetauscher zur Übertragung von Wärme vom Abgas aus einem Verbrennungsvorgang auf ein Wärmeträgermedium. Um eine kompakte Bauweise zu erzielen, umfasst der Primärwärmetauscher mehrere Wärmeübertragerplatten 1, 2 aus Graphit, welche einen Wärmeübertragerplattenstapel 4 bilden. Wdie Wärmeübertragerplatten 1, 2 sind so geformt und angeordnet, dass in oder zwischen den Wärmeübertragerplatten 1, 2 Strömungswege 7, 8, 9 für das Abgas und/oder das Wärmeträgermedium gebildet werden. Die Wärmeübertragerplatten 1, 2 sind durch Verspannung zwischen zwei oder mehreren Platten 3 miteinander verspannt.The invention relates to a primary heat exchanger for transferring heat from the exhaust gas from a combustion process to a heat transfer medium. In order to achieve a compact construction, the primary heat exchanger comprises a plurality of heat exchanger plates 1, 2 made of graphite, which form a heat exchanger plate stack 4. Whe heat exchanger plates 1, 2 are shaped and arranged so that in or between the heat exchanger plates 1, 2 flow paths 7, 8, 9 are formed for the exhaust gas and / or the heat transfer medium. The heat exchanger plates 1, 2 are clamped together by bracing between two or more plates 3.

Description

Die Erfindung betrifft einen Primärwärmetauscher für direktbefeuerte, kondensierende Primärwärmeübertragung in Heizgeräten, insbesondere in Gasbeheizten Heizgeräten. Gattungsgemäße Primärwärmetauscher dienen in Heizgeräten zur Übertragung der aus der Verbrennung gewonnenen Wärme auf ein Wärmeträgermedium, welches der Beheizung von Gebäuden oder der Erwärmung von Brauchwasser dient.The invention relates to a primary heat exchanger for direct-fired, condensing primary heat transfer in heaters, especially in gas-fired heaters. Generic primary heat exchangers are used in heaters for transmitting the heat obtained from the combustion heat to a heat transfer medium, which serves the heating of buildings or the heating of process water.

Gemäß heutigem Stand der Technik werden metallische Werkstoffe, wie Edelstähle, Aluminium und Kupfer sowie deren Legierungen, zum Teil zuzüglich Beschichtungen für kondensierende Wärmeübertrager verwendet. Nachteilhaft hierbei ist die bisherige Beschränkung auf Materialien mit vergleichsweise geringen Wärmeleitfähigkeiten. Daher ist das Potenzial kompakter Bauweise ausgereizt.According to the current state of the art, metallic materials, such as stainless steels, aluminum and copper and their alloys, in some cases plus coatings for condensing heat exchangers, are used. The disadvantage here is the previous limitation to materials with relatively low thermal conductivity. Therefore, the potential of compact design is exhausted.

Es ist Aufgabe der Erfindung, einen Primärwärmetauscher bereitzustellen, der eine kompaktere Bauweise erlaubt. Diese Aufgabe wird erfindungsgemäß durch einen Primärwärmetauscher gemäß den Merkmalen des unabhängigen Anspruchs durch einen Primärwärmetauscher aus Carbon bzw. Graphit gelöst. Die Erfindung macht sich die Tatsache zunutze, dass Carbon bzw. Graphit ein guter Wärmeleiter ist. Wärmetauscher in Plattenbauweise aus Graphit sind zwar bekannt, diese werden jedoch derzeit nur als Rekuperator-Lösungen ausgeführt und nicht direkt befeuert. Aufgrund der Vorbehalte, Graphit könne nicht als Wärmetauscher-Werkstoff in direkt befeuerten Primärwärmetauschern eingesetzt werden, wurden trotz der guten Wärmeleitung direkt befeuerte Primärwärmetauscher aus Graphit nicht eingesetzt. Erfindungsgemäß wird der Primärwärmetauscher durch Graphit-Platten mit identischer oder unterschiedlicher Kontur gebildet, die aufeinander gelegt und miteinander verspannt sind. Dadurch ist es möglich, sowohl senkrecht zur Oberfläche der einzelnen Wärmeübertragerplatten in Form von Kanälen als auch parallel dazu in Form von Strömungsschlitzen Strömungswege vorzusehen, durch die das Abgas und/oder das Wärmeträgermedium strömen kann. Dadurch ist es möglich, eine sehr engmaschige Wärmeübertragerstruktur zu bilden, die die Ausbildung von lokalen Hotspots wirksam verhindert.It is an object of the invention to provide a primary heat exchanger, which allows a more compact design. This object is achieved by a primary heat exchanger according to the features of the independent claim by a primary heat exchanger made of carbon or graphite. The invention makes use of the fact that carbon or graphite is a good conductor of heat. Although plate-type graphite exchangers are known, they are currently only designed as recuperator solutions and are not fired directly. Due to the reservations that graphite could not be used as a heat exchanger material in directly fired primary heat exchangers, directly fired primary heat exchangers made of graphite were not used despite the good heat conduction. According to the invention, the primary heat exchanger is formed by graphite plates with identical or different contours, which are superimposed and clamped together. This makes it possible, both perpendicular to the surface of the individual heat exchanger plates in the form of channels as well as to provide in parallel in the form of flow slots flow paths through which the exhaust gas and / or the heat transfer medium can flow. This makes it possible to form a very close-meshed heat exchanger structure, which effectively prevents the formation of local hotspots.

In einer Weiterbildung der Erfindung werden zwischen zwei großen Wärmeübertragerplatten kleine Wärmeübertragerplatten vorgesehen, die so geformt sind, dass in einer Ebene jeweils auch mehrere Strömungsschlitze gebildet werden. Dadurch ist es möglich, beispielsweise sowohl Abgas als auch das Wärmeträgermedium in einer Ebene zu führen.In a further development of the invention small heat exchanger plates are provided between two large heat exchanger plates, which are shaped so that in each case a plurality of flow slots are formed in a plane. This makes it possible, for example, to guide both exhaust gas and the heat transfer medium in a plane.

In einer Variante der Erfindung können die Zufuhr und die Abfuhr des Abgases auf gegenüberliegenden Seiten des Wärmeübertragerplattenstapels vorgesehen sein.In a variant of the invention, the supply and the discharge of the exhaust gas can be provided on opposite sides of the heat exchanger plate stack.

In einer anderen Variante kann der Primärwärmetauscher so ausgebildet sein, dass das Abgas radial von innen nach außen strömt.In another variant, the primary heat exchanger can be designed so that the exhaust gas flows radially from the inside to the outside.

Die Kanäle, durch die das Abgas und/oder das Wärmeträgermedium strömen, können durch eine entsprechende Formung der einzelnen Wärmeübertragerplatten mäanderförmig ausgebildet sein, sich verzweigen und/oder sich vereinigen. Dadurch wird eine noch bessere Wärmeübertragung zwischen dem Abgas und/oder dem Wärmeträgermedium und dem Wärmeübertragerplatten erzielt.The channels through which the exhaust gas and / or the heat transfer medium flow can be formed meander-shaped by a corresponding shaping of the individual heat transfer plates, branch and / or unite. As a result, an even better heat transfer between the exhaust gas and / or the heat transfer medium and the heat exchanger plates is achieved.

Die Erfindung wird nun anhand der Figuren detailliert erläutert.The invention will now be explained in detail with reference to FIGS.

Es stellen dar:

  • Figur 1: Eine perspektivische Ansicht eines erfindungsgemäßen Primärwärmetauschers,
  • Figur 2: zwei Schnitte durch den Primärwärmetauscher aus Figur 1,
  • Figur 3: eine perspektivische Ansicht einer Ausführungsvariante des erfindungsgemäßen Primärwärmetauschers,
  • Figur 4: die Ansicht des Wärmeübertragerplattenstapels des Primärwärmetauschers aus der Figur 3
  • Figur 5: eine perspektivische Ansicht einer weiteren Ausführungsvariante des erfindungsgemäßen Primärwärmetauschers
  • Figur 6: einen Schnitt durch den Primärwärmetauscher aus Figur 5.
They show:
  • FIG. 1 : A perspective view of a primary heat exchanger according to the invention,
  • FIG. 2 : two cuts through the primary heat exchanger FIG. 1 .
  • FIG. 3 a perspective view of an embodiment of the invention Primary heat exchanger,
  • FIG. 4 : the view of the heat exchanger plate stack of the primary heat exchanger from the FIG. 3
  • FIG. 5 : A perspective view of another embodiment of the primary heat exchanger according to the invention
  • FIG. 6 : a section through the primary heat exchanger FIG. 5 ,

Figur 1 stellt eine perspektivische Ansicht eines erfindungsgemäßen kondensierenden Primärwärmetauschers aus Graphitplatten in Blockbauweise in paralleler Anordnung zum Heizgasstrom dar. Figur 2 zeigt zwei Schnitte durch diesen Primärwärmetauscher. Der Primärwärmetauscher umfasst einen Wärmeübertragerplattenstapel 4, der aus einer Vielzahl von abwechselnd ersten und zweiten Wärmeübertragerplatten 1, 2 gebildet wird. Dabei sind die zweiten Wärmeübertragerplatten 2 kleiner ausgeführt als die ersten Wärmeübertragerplatten 1, so dass sich zwischen zwei benachbarten ersten Wärmeübertragerplatten 1 ein Strömungsschlitz 7 ausbildet, durch den das Abgas strömen kann, welches von einer Abgas-Eingangsseite 5 zu einer Abgas-Ausgangsseite 6 geführt wird. Bohrungen in den einzelnen Wärmeübertragerplatten 1, 2 sind so angeordnet, dass sie im montierten Zustand des Wärmeübertragerplattenstapels 4 Wärmeträgermedium-Kanäle 8 bilden, durch die das Wärmeträgermedium geführt wird und die Wärme vom Abgas abgeführt. FIG. 1 represents a perspective view of a condensing primary heat exchanger of graphite plates in block construction in parallel arrangement to the heating gas flow according to the invention. FIG. 2 shows two sections through this primary heat exchanger. The primary heat exchanger comprises a heat exchanger plate stack 4, which is formed from a plurality of alternately first and second heat exchanger plates 1, 2. Here, the second heat exchanger plates 2 are made smaller than the first heat exchanger plates 1, so that between two adjacent first heat exchanger plates 1, a flow slot 7 is formed, through which the exhaust gas can flow, which is guided from an exhaust gas inlet side 5 to an exhaust gas outlet side 6 , Holes in the individual heat exchanger plates 1, 2 are arranged so that they form in the mounted state of the heat exchanger plate stack 4 heat transfer medium channels 8, through which the heat transfer medium is guided and dissipates the heat from the exhaust gas.

Bei diesem Konzept sind die Wärmeübertragungsflächen also parallel zur Heizgasströmung angeordnet. Im Wechsel mit kleineren Wärmeübertragerplatten 2 werden Strömungsschlitze 7 generiert, an deren Flächen die Wärmeübertragung stattfindet. Skalierbar ist die dargestellte Bauform durch die Anzahl der im Wechsel eingebrachten Platten. Eingefasst werden die Wärmeübertragerplatten durch Verspannung zwischen zwei oder mehreren Platten 3 höherer mechanischer Festigkeit. Hierbei bilden Wärmeübertragerelemente und Einspannplatten einen Brennraum für einen mit dem erfindungsgemäßen Primärwärmetauscher zu verbindenden Brenner, dessen Dimensionierung den Anforderungen effizienter sowie emissionsarmer Verbrennung entspricht.In this concept, the heat transfer surfaces are thus arranged parallel to the flow of heating gas. In alternation with smaller heat exchanger plates 2 flow slots 7 are generated on the surfaces of the heat transfer takes place. The illustrated design is scalable by the number of plates inserted alternately. Enclosed are the heat exchanger plates by clamping between two or more plates 3 higher mechanical strength. Here, heat transfer elements and clamping plates form a combustion chamber for a burner to be connected to the primary heat exchanger according to the invention, the Dimensioning meets the requirements of efficient and low-emission combustion.

In orthogonaler Richtung zur Heizgasströmung bilden die Wärmeübertragerplatten 1, 2 erfindungsgemäß Wärmeträgermedium-Kanäle 8 für Heizung- und/oder Brauchwasserführung, die derart angeordnet sind, dass ein Gegenstromverfahren realisiert wird. Des Weiteren sind Wärmeträger-Kanäle 8 für die Heizung- und/oder Brauchwasserführung so angeordnet, dass das Abgas durch den rechten Schnitt in Figur 2 gegenüber dem linken Schnitt in Figur 2 versetzte Kanäle umgelenkt wird, wodurch heiße Temperatursträhnen durch den Wärmetauscher vermieden werden.In the direction orthogonal to the flow of heating gas, the heat exchanger plates 1, 2 according to the invention form heat transfer medium channels 8 for heating and / or service water supply, which are arranged such that a countercurrent process is realized. Furthermore, heat transfer channels 8 for the heating and / or service water supply are arranged so that the exhaust gas through the right section in FIG. 2 opposite the left cut in FIG. 2 offset channels is deflected, whereby hot temperature strands are avoided by the heat exchanger.

In Figur 3 ist eine perspektivische Ansicht einer Ausführungsvariante des erfindungsgemäßen Primärwärmetauschers sowie in Figur 4 die Ansicht des Wärmeübertragerplattenstapels 4 des Primärwärmetauschers dargestellt.In FIG. 3 is a perspective view of an embodiment of the primary heat exchanger according to the invention and in FIG. 4 the view of the heat exchanger plate stack 4 of the primary heat exchanger shown.

Der Aufbau dieser Ausführungsvariante besteht aus scheibenförmigen Wärmeübertragerplatten 1, die koaxial zu einem hier nicht dargestellten in einem Brennraum 11 vorgesehenen radial von innen nach außen strömenden Brenner übereinander angeordnet sind. Hierbei werden durch im Wechsel angeordnete zweite Wärmeübertragerplatten 2 in Form von Stegen und erste Wärmeübertragerplatten 1 Strömungsschlitze 7 für das Abgas sowie auf der Innenseite des Wärmeübertragers Stapels 4 senkrecht zur Oberfläche der ersten Wärmeübertragerplatten 1 führende Wärmeträgermedium-Kanäle 8 für Heizungs- bzw. Brauchwasser gebildet. Die keilförmigen Strömungsschlitze 7 sind im Wechsel ringförmig um den Brenner angeordnet. Skalierbar ist die dargestellte Bauform durch die Anzahl der im Wechsel eingebrachten Wärmeübertragerplatten 1, 2 in axialer Richtung. Eingefasst werden die Wärmeübertragerplatten 1, 2 durch Verspannung zwischen zwei oder mehreren Platten 3 in axialer Richtung. Umgeben werden die Wärmeübertragerelemente durch eine dichtende Ummantelung 10, die die Heizgasströmung von der Heizungs- bzw. Brauchwasserströmung trennt. Hierbei bilden Brenner, Wärmeübertragerelemente 1, 2 und Platten 3 einen Brennraum, dessen Dimensionierung den Anforderungen effizienter sowie emissionsarmer Verbrennung entspricht. Eine Gegenströmung von Abgas und Wärmeträgermedium wird durch Zufluss des Heizungs- bzw. Brauchwasser von außen nach innen sowie der Strömung des Heizgases von innen nach außen erzielt. Der Abgasstrom kann außen am Wärmeübertrager sowohl im oberen als auch unteren Bereich abgeführt werden. Heizungs- bzw. Brauchwasser Zu- bzw. Abfuhr sind dem Heizgasstrom entgegen gerichtet.The structure of this embodiment consists of disc-shaped heat exchanger plates 1, which are arranged coaxially to a not shown here in a combustion chamber 11 provided radially from the inside to the outside flowing burner over each other. Here are formed by alternately arranged second heat exchanger plates 2 in the form of webs and first heat exchanger plates 1 flow slots 7 for the exhaust gas and on the inside of the heat exchanger stack 4 perpendicular to the surface of the first heat exchanger plates 1 leading heat transfer medium channels 8 for heating or service water. The wedge-shaped flow slots 7 are alternately arranged annularly around the burner. Scalable is the illustrated design by the number of introduced in exchange heat exchanger plates 1, 2 in the axial direction. Enclosed are the heat exchanger plates 1, 2 by clamping between two or more plates 3 in the axial direction. The heat exchanger elements are surrounded by a sealing jacket 10, which covers the heating gas flow from the heating or service water flow separates. Here, burners, heat exchanger elements 1, 2 and plates 3 form a combustion chamber, the dimensioning of which meets the requirements of efficient and low-emission combustion. A countercurrent of exhaust gas and heat transfer medium is achieved by inflow of heating or hot water from outside to inside and the flow of the heating gas from the inside out. The exhaust gas flow can be discharged outside the heat exchanger both in the upper and lower region. Heating or service water supply and removal are directed against the flow of heating gas.

In Figur 5 ist eine perspektivische Ansicht einer weiteren Ausführungsvariante des Wärmeübertragerplattenstapels 4 des erfindungsgemäßen Primärwärmetauschers dargestellt. Figur 6 zeigt eine Schnittdarstellung dieser Ausführungsvariante.In FIG. 5 is a perspective view of another embodiment of the heat exchanger plate stack 4 of the primary heat exchanger according to the invention shown. FIG. 6 shows a sectional view of this embodiment.

Bei dieser Ausführungsvariante sind die Wärmeübertragungsflächen orthogonal zur Heizgasströmung angeordnet. Durch Schichtung von Wärmeübertragerplatten 1 aus Graphit mit unterschiedlichem Lochbild werden in Strömungsrichtung des Abgases 13 gesehen jeweils überdeckende Stege 16 und Durchlässe 17 gebildet, die mäandernde Abgas-Kanäle 9 erzeugen, in denen durch Konvektion Wärme übertragen wird. Dabei sind keine Strömungsschlitze 7 wie in den zuvor beschriebenen Ausführungsbeispielen vorgesehen. Durch Aussparungen der Wärmeübertragerplatten 1 in dem in Strömungsrichtung 13 des Abgases gesehenen oberen Bereich wird ein Brennraum 11 zur Aufnahme eines nicht dargestellten Brenners gebildet. Durch die beschriebene Heizgasführung, die Umlenkungen von 0 bis 180° beschreibt, wird eine turbulente Strömung generiert, durch die die Wärmeübertragung optimiert wird. Eingefasst werden die Wärmeübertragerplatten 1 durch Verspannung zwischen zwei oder mehreren nicht dargestellten Platten 3 höherer mechanischer Festigkeit. Des Weiteren wird insbesondere durch Strahlung Wärme an den durch Graphitplatten ausgeformten Wänden des Wärmeübertragers übertragen. Die Wärmeträgermedium-Kanäle für Heizung- und/oder Brauchwasserführung umgeben sowohl Brennkammer als auch Strömungskanäle des Heizgases und werden mit dem Wärmeträgermedium-Strom 14 von unten nach oben entgegen der Abgasströmung 13 durchströmt. Gegebenenfalls können einzelne Isolierplatten 15 aus Isolatormaterial, wie beispielsweise Keramik, bestehen, wodurch lokale Überhitzungen bei Bedarf vermieden werden können.In this embodiment, the heat transfer surfaces are arranged orthogonal to the flow of heating gas. By stratification of heat exchanger plates 1 made of graphite with different hole pattern seen in the flow direction of the exhaust gas 13 each overlapping webs 16 and passages 17 are formed which produce meandering exhaust gas channels 9, in which heat is transferred by convection. There are no flow slots 7 as provided in the embodiments described above. By recesses of the heat exchanger plates 1 in the upper area seen in the flow direction 13 of the exhaust gas, a combustion chamber 11 is formed for receiving a burner, not shown. By the described Heizgasführung, which describes deflections from 0 to 180 °, a turbulent flow is generated, through which the heat transfer is optimized. Enclosed are the heat exchanger plates 1 by clamping between two or more plates 3 not shown higher mechanical strength. Furthermore, heat is transferred, in particular by radiation, to the walls of the heat exchanger formed by graphite plates. The heat transfer medium channels for heating and / or service water flow surround both combustion chamber and flow channels of the fuel gas and are with the Heat transfer medium flow 14 flows from bottom to top against the exhaust gas flow 13. Optionally, individual insulating plates 15 may be made of insulator material, such as ceramic, whereby local overheating may be avoided as needed.

Die Erfindung ist nicht auf die Ausführungsbeispiele beschränkt. Einzelne Merkmale der Ausführungsvarianten können auch erfindungsgemäß untereinander kombiniert sein.The invention is not limited to the embodiments. Individual features of the embodiments can also be combined with each other according to the invention.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Erste WärmeübertragerplatteFirst heat exchanger plate
22
Zweite WärmeübertragerplatteSecond heat exchanger plate
33
Platteplate
44
WärmeübertragerplattenstapelWärmeübertragerplattenstapel
55
Abgas-EingangsseiteExhaust gas inlet side
66
Abgas-AusgangsseiteExhaust gas outlet side
77
Strömungsschlitzflow slot
88th
Wärmeträgermedium-KanalHeat transfer medium channel
99
Abgas-KanalExhaust duct
1010
Ummantelungjacket
1111
Brennerraumburner chamber
1212
Anschluss für das WärmeträgermediumConnection for the heat transfer medium
1313
Abgas-StromExhaust stream
1414
Wärmeträgermedium-StromHeat transfer medium stream
1515
Isolierplatteinsulation
1616
Stegweb
1717
Durchlasspassage

Claims (8)

Primärwärmetauscher zur Übertragung von Wärme vom Abgas aus einem Verbrennungsvorgang auf ein Wärmeträgermedium, dadurch gekennzeichnet, dass der Primärwärmetauscher mehrere Wärmeübertragerplatten (1, 2) aus Graphit umfasst, welche einen Wärmeübertragerplattenstapel (4) bilden, wobei die Wärmeübertragerplatten (1, 2) so geformt und angeordnet sind, dass in oder zwischen den Wärmeübertragerplatten (1, 2) Strömungswege (7, 8, 9) für das Abgas und/oder das Wärmeträgermedium gebildet werden, und dass die Wärmeübertragerplatten (1, 2) durch Verspannung zwischen zwei oder mehreren Platten (3) miteinander verspannt sind.Primary heat exchanger for transferring heat from the exhaust gas from a combustion process to a heat transfer medium, characterized in that the primary heat exchanger comprises a plurality of heat transfer plates (1, 2) made of graphite, which form a Wärmeübertragerplattenstapel (4), wherein the heat transfer plates (1, 2) shaped and are arranged, that in or between the heat exchanger plates (1, 2) flow paths (7, 8, 9) are formed for the exhaust gas and / or the heat transfer medium, and that the heat transfer plates (1, 2) by clamping between two or more plates ( 3) are braced together. Primärwärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass die Wärmeübertragerplatten (1, 2) Bohrungen aufweisen und dass die Bohrungen mehrerer verspannter Wärmeübertragerplatten (1, 2) Kanäle (8, 9) für das Abgas und/oder für das Wärmeträgermedium bilden, durch die im Betrieb das Abgas und/oder das Wärmeträgermedium orthogonal zu den Oberflächen der Wärmeübertragerplatten (1, 2) strömen kann..Primary heat exchanger according to claim 1, characterized in that the heat exchanger plates (1, 2) have bores and that the bores of a plurality of braced heat exchanger plates (1, 2) channels (8, 9) for the exhaust gas and / or for the heat transfer medium form by the Operation, the exhaust gas and / or the heat transfer medium orthogonal to the surfaces of the heat transfer plates (1, 2) can flow .. Primärwärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass erste Wärmeübertragerplatten (1) im Wechsel mit kleineren ein- oder mehrteiligen zweiten Wärmeübertragerplatten (2) angeordnet sind, so dass zwischen jeweils benachbarten ersten Wärmeübertragerplatten (1) Strömungsschlitze (7) gebildet werden, durch die im Betrieb das Abgas oder das Wärmeträgermedium parallel zu den Oberflächen der ersten Wärmeübertragerplatten (1) strömen kann.Primary heat exchanger according to claim 1 or 2, characterized in that first heat exchanger plates (1) in alternation with smaller one or more parts second heat exchanger plates (2) are arranged so that between each adjacent first heat exchanger plates (1) flow slots (7) are formed by in operation, the exhaust gas or the heat transfer medium can flow parallel to the surfaces of the first heat exchanger plates (1). Primärwärmetauscher nach Anspruch 3, dadurch gekennzeichnet, dass die kleineren zweiten Wärmeübertragerplatten (2) so geformt sind, dass in einer Ebene jeweils mehrere Strömungsschlitze (7) gebildet werden, durch die im Betrieb das Abgas und/oder das Wärmeträgermedium parallel zu den Oberflächen der ersten Wärmeübertragerplatten (1) strömen kann.Primary heat exchanger according to claim 3, characterized in that the smaller second heat exchanger plates (2) are shaped so that in a plane respectively a plurality of flow slots (7) are formed through which the exhaust gas and / or the heat transfer medium can flow in parallel to the surfaces of the first heat exchanger plates (1) during operation. Primärwärmetauscher nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Primärwärmetauscher eine seitlich des Wärmeübertragerplattenstapels (4) angeordnete Abgas-Eingangsseite (5) und eine seitlich des Wärmeübertragerplattenstapels (4) angeordnete Abgas-Ausgangsseite (6) umfasst, wobei die Abgas-Eingangsseite (5) und die Abgas-Ausgangsseite (6) an gegenüberliegenden Seiten des Wärmeübertragerplattenstapels (4) angeordnet sind.Primary heat exchanger according to claim 3 or 4, characterized in that the primary heat exchanger comprises a side of the Wärmeübertragerplattenstapels (4) arranged exhaust gas inlet side (5) and a side of the heat exchanger plate stack (4) arranged exhaust gas outlet side (6), wherein the exhaust gas inlet side ( 5) and the exhaust gas outlet side (6) are arranged on opposite sides of the heat exchanger plate stack (4). Primärwärmetauscher nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Primärwärmetauscher einen im Inneren des Wärmeübertragerplattenstapels (4) gebildeten Kanal (9) aufweist, durch den im Betrieb Abgas zuführbar ist, so dass das Abgas durch Strömungsschlitze (7) radial von innen nach außen geführt wird.Primary heat exchanger according to claim 3 or 4, characterized in that the primary heat exchanger in the interior of the Wärmeübertragerplattenstapels (4) formed channel (9) through which exhaust gas can be supplied during operation, so that the exhaust gas through flow slots (7) radially from the inside to the outside to be led. Primärwärmetauscher nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass der Wärmeübertragerplattenstapel (4) Wärmeübertragerplatten (1, 2) unterschiedlicher Kontur umfasst, so dass Kanäle (8, 9) für das Abgas und/oder für das Wärmeträgermedium gebildet werden, die in Fließrichtung mäanderförmig verlaufen und/oder sich verzweigen und/oder sich vereinen.Primary heat exchanger according to one of claims 2 to 6, characterized in that the Wärmeübertragerplattenstapel (4) comprises heat transfer plates (1, 2) of different contour, so that channels (8, 9) are formed for the exhaust gas and / or for the heat transfer medium, in Flow direction meandering and / or branch and / or unite. Primärwärmetauscher nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen Wärmeübertragerplatten (1, 2) Isolierplatten (15), bevorzugt aus Keramik, vorgesehen sind.Primary heat exchanger according to one of the preceding claims, characterized in that between heat exchanger plates (1, 2) insulating plates (15), preferably made of ceramic, are provided.
EP17157365.2A 2016-02-22 2017-02-22 Primary heat exchanger Active EP3208566B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016202699 2016-02-22

Publications (2)

Publication Number Publication Date
EP3208566A1 true EP3208566A1 (en) 2017-08-23
EP3208566B1 EP3208566B1 (en) 2019-05-29

Family

ID=58158866

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17157365.2A Active EP3208566B1 (en) 2016-02-22 2017-02-22 Primary heat exchanger

Country Status (1)

Country Link
EP (1) EP3208566B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0203213A1 (en) * 1985-05-29 1986-12-03 SIGRI GmbH Procedure for manufacturing a plate heat exchanger
DE9319430U1 (en) * 1993-12-17 1994-03-03 Deutsche Carbone AG, 66538 Neunkirchen Heat exchanger block
DE29604521U1 (en) * 1996-03-11 1996-06-20 SGL Technik GmbH, 86405 Meitingen Heat exchanger body made of plates
US5544703A (en) * 1993-05-18 1996-08-13 Vicarb Plate heat exchanger
EP1873465A1 (en) * 2006-06-27 2008-01-02 MHG Heiztechnik GmbH Heat exchange with ring-shaped flow channels
DE202016000316U1 (en) * 2016-01-20 2016-02-19 Sgl Carbon Se Heat exchanger

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0203213A1 (en) * 1985-05-29 1986-12-03 SIGRI GmbH Procedure for manufacturing a plate heat exchanger
US5544703A (en) * 1993-05-18 1996-08-13 Vicarb Plate heat exchanger
DE9319430U1 (en) * 1993-12-17 1994-03-03 Deutsche Carbone AG, 66538 Neunkirchen Heat exchanger block
DE29604521U1 (en) * 1996-03-11 1996-06-20 SGL Technik GmbH, 86405 Meitingen Heat exchanger body made of plates
EP1873465A1 (en) * 2006-06-27 2008-01-02 MHG Heiztechnik GmbH Heat exchange with ring-shaped flow channels
DE202016000316U1 (en) * 2016-01-20 2016-02-19 Sgl Carbon Se Heat exchanger

Also Published As

Publication number Publication date
EP3208566B1 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
EP2678627B1 (en) Exhaust gas cooler
EP0981035B1 (en) Heat exchanger for exhaust gases
EP2843348B1 (en) Plate heat exchanger with heat exchanger blocks connected by metal foam
DE19536115A1 (en) Multi-fluid heat exchanger with plate stack construction
EP2825832B1 (en) Heat exchanger
WO2006032258A1 (en) Heat exchanger
WO2007025766A1 (en) Heat exchanger device for the rapid heating or cooling of fluids
EP1788320B1 (en) Heat exchanger
WO2012159958A1 (en) Multiplate heat exchanger
EP3208566B1 (en) Primary heat exchanger
EP1624270B1 (en) Heat cell for a heating apparatus
EP2757336B1 (en) Heat exchanger with optimised heat transmission and heating device with such a heat exchanger
EP3730890A1 (en) Plate heat exchanger
DE102010045905B3 (en) Cross-flow micro heat exchanger
EP0177904B1 (en) Device for exchange of heat between two gases conducted in cross-flow to each other
DE102011113045A1 (en) Cross flow heat exchanger i.e. cross flow-micro heat exchanger, for rapid temperature-control of fluid stream in channel groups, has heat transfer regions arranged at intersections of channels of channel group
WO2008003291A1 (en) Heating unit, particularly tube radiator
EP0225527A2 (en) Cooled wall structure for gas turbines
DE102020000274A1 (en) Method of manufacturing a fin and plate heat exchanger
DE8605274U1 (en) Gas burner
EP4105552A1 (en) Recuperator burner with a recuperator for guiding counter-flowing fluids
EP3746728B1 (en) Insulating surface coating on heat exchangers for reducing thermal stress
WO2022263006A1 (en) Recuperator burner with a recuperator for guiding counter-flowing fluids
DE2239086A1 (en) HEAT EXCHANGERS, IN PARTICULAR FOR FLOW HEATERS
EP0048873B1 (en) Heat transfer device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20180219

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 21/02 20060101AFI20181217BHEP

Ipc: F24H 1/12 20060101ALI20181217BHEP

Ipc: F28D 21/00 20060101ALI20181217BHEP

Ipc: F28D 9/00 20060101ALI20181217BHEP

Ipc: F28F 3/08 20060101ALI20181217BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017001418

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1138519

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190529

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190830

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190829

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502017001418

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

26N No opposition filed

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200222

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190529

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190929

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240131

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240201

Year of fee payment: 8

Ref country code: GB

Payment date: 20240129

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240227

Year of fee payment: 8