EP0048873B1 - Heat transfer device - Google Patents

Heat transfer device Download PDF

Info

Publication number
EP0048873B1
EP0048873B1 EP81107194A EP81107194A EP0048873B1 EP 0048873 B1 EP0048873 B1 EP 0048873B1 EP 81107194 A EP81107194 A EP 81107194A EP 81107194 A EP81107194 A EP 81107194A EP 0048873 B1 EP0048873 B1 EP 0048873B1
Authority
EP
European Patent Office
Prior art keywords
tubes
heat transfer
transfer device
tubular jacket
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81107194A
Other languages
German (de)
French (fr)
Other versions
EP0048873A2 (en
EP0048873A3 (en
Inventor
Klaus-Dieter Brocks
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lorowerk Kh Vahlbrauk GmbH
Original Assignee
Lorowerk Kh Vahlbrauk GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lorowerk Kh Vahlbrauk GmbH filed Critical Lorowerk Kh Vahlbrauk GmbH
Priority to AT81107194T priority Critical patent/ATE7960T1/en
Publication of EP0048873A2 publication Critical patent/EP0048873A2/en
Publication of EP0048873A3 publication Critical patent/EP0048873A3/en
Application granted granted Critical
Publication of EP0048873B1 publication Critical patent/EP0048873B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/106Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of two coaxial conduits or modules of two coaxial conduits

Definitions

  • the invention relates to a heat exchanger for transferring heat between flowing media which are separated from one another by heat transfer surfaces, in which the heat transfer surfaces are designed as at least two tubes arranged in a jacket tube and at least one guide tube extends through each of these tubes in such a way that between a gap space is formed for each guide tube and the inner wall of the associated tube, and in which both the jacket tube and the guide tubes are connected to one another via a distribution space on the one hand and a collector for a first medium, each of which connects the tubes and the gap spaces to one another Distribution chamber or collector chamber for a second medium are separated.
  • Heat exchangers of this type are becoming increasingly important in the context of increasing energy shortages. This arises from the tendency of rising energy prices, on the basis of which it is increasingly proving to be worthwhile to use, for example, previously unused residual energy via an exchange process. In addition, efficient and inexpensive heat exchangers are required as part of the heat pump technology that is becoming increasingly important.
  • a large number of heat exchangers such as coaxial heat exchangers, tube bundle heat exchangers, plate heat exchangers, lamellar tube bundle heat exchangers, are known. It has been found, however, that when using plate heat exchangers, for example, a favorable heat transfer can be achieved due to large heat transfer surfaces, this advantage is countered by major manufacturing disadvantages. Because of the large specific load, it is necessary to use corset constructions that are highly resistant to static loads. Because of this necessity, the cost of materials is high and the construction is necessarily heavy. In addition, there is a need for a large number of surface interlinking points, which on the one hand make production more difficult and on the other hand cost-intensive. Tube heat exchangers also have this disadvantage.
  • the cost-intensive production is caused in particular by the high-quality material of the welded-in tube bundles and, furthermore, by complex distributor structures, such as spiders, throttles and regulators, which are necessary for optimal operation and which are expensive and produce high pressure losses.
  • the invention has for its object to simplify and improve the structure in terms of design and manufacture in a heat exchanger according to the preamble of claim 1, but above all to significantly improve the heat exchange function of the heat exchanger, both by influencing the flow of the flow cross sections provided as well as the design of these flow cross sections with each other.
  • this object is achieved in a heat exchanger according to the preamble of claim 1 in that the jacket tube and the tubes arranged therein, each enclosing a guide tube, have rectangular cross-sections and each guide tube is round in cross-section, and both in the between the outer walls of the tubes surrounding the guide tubes formed gap space and in the gap between the outer walls of the tubes surrounding the guide tubes and the inner walls of the casing tube flow-guiding devices in the form of meander wires are arranged, the thickness of which corresponds to the inside width of the gap spaces.
  • the jacket tube and the tubes surrounding the guide tubes are provided with a rectangular, preferably square cross-section, it is possible to separate the gaps between the jacket tube and the tubes surrounding the guide tubes and between the tubes surrounding the guide tubes themselves to be provided with a completely constant cross-section. In this way, it is initially achieved in principle that the flow conditions in all of the gap spaces formed in this way are constant, which in turn means very good use of space within the body formed by these tubes and the jacket tube with its gap spaces. Due to this constant cross section, the pressure losses that are particularly significant in such a heat exchanger are limited to a minimum.
  • the rectangular or square cross-sectional shapes of the pipes mentioned also lead, in conjunction with the meandering wires guided through the gap spaces, to complete and secure support of these pipes with one another, which is essential in the case of the considerable pressure differences that occur.
  • the meander wires arranged in the gap cross-sections which remain the same create a flow guide which leads to automatic turbulence, so that the laminar flows which are disadvantageous for heat transfer are reliably and completely avoided.
  • the described mutual support of the tubes surrounding the guide tubes and the jacket tube in each case creates a type of honeycomb structure which brings about a high overall strength even with small wall thicknesses of the individual tubes.
  • the heat exchanger can therefore be used at a high pressure level without the need for high-strength materials for its formation.
  • the basic components of the heat exchanger are a jacket tube 1, tubes 2 and guide tubes 3.
  • the casing tube 1 has a rectangular, preferably a square cross section.
  • the tubes 2, which have a rectangular, preferably square, cross section adapted to the cross section of the jacket tube 1, extend through this jacket tube 1 in the longitudinal direction, so that four tubes 2 are distributed over the cross section of the jacket tube 1.
  • the guide tubes 3 with a round cross section extend through the tubes 2 parallel to these. These have an insignificantly smaller cross-section than the tubes 2.
  • the guide tubes 3 are provided with outer surfaces, between which and the inner surfaces of the tubes 2 opposite them a relatively small gap space 13 is provided, which has a small flow cross-section.
  • the casing tube 1 is closed at both ends with covers 8, 8a. These covers 8, 8a delimit anterooms 7, 7a on their inner sides facing the tubes 2, into which the guide tubes 3 open. In the area of the mouths of the guide tubes 3, these are connected to one another via tube plates 6, 6a. These tube sheets 6, 6a delimit the vestibules 7, 7a in the casing tube 1 on the side opposite the covers 8, 8a.
  • the vestibules 7, 7a are connected via inlet openings 20, 21 to an inlet nozzle 11 and an outlet nozzle 11a.
  • a medium enters or exits the heat exchanger in these inlet connections 11, 11a.
  • the medium entering through the inlet nozzle 11 flows through the inlet opening 20 into the antechamber 7, flows through the interior of the guide tubes 3, collects in the antechamber 7a and exits via the inlet opening 21 through the outlet nozzle 11a.
  • a distributor chamber 5a or a collector chamber 5 facing away from the anterooms 7, 7a This distributor chamber 5a or collector chamber 5 is delimited on its side facing away from the tube sheets 6, 6a by orifices 22, 23, which are formed by flanging the distributor chamber 5a or Collector chamber 5 facing ends 24, 25 of the tubes 2 are formed. These ends 24, 25 are connected to one another via welds 4. Depending on the quality of the medium acting on the tubes 2, all other connection options of the ends 24, 25 can also be used, for example adhesive connections. In addition, the ends 24, 25 are also connected on their sides facing the jacket tube 1 to the latter via weld seams 4. Other connection options can also be used here.
  • the distributor chamber 5a and the collector chamber 5 are each connected via openings 26, 27 to an outlet nozzle 9 and an inlet nozzle 9a.
  • a second medium acting on the guide tubes 3 on their outer sides passes through these openings 26, 27. This medium flows through gap spaces 13 so that it achieves a relatively high passage speed in view of the small passage cross section of these gap spaces 13.
  • the inlet nozzle 11 and the outlet nozzle 11 are each connected via a distributor space 10 or collector 15 to the inlet openings 20 or 21 and also to a further inlet opening 28 or 29 which are arranged in the casing tube 1.
  • a distributor space 10 or collector 15 to the inlet openings 20 or 21 and also to a further inlet opening 28 or 29 which are arranged in the casing tube 1.
  • the medium flowing through the inlet nozzle 11 or flowing out of the outlet nozzle 11a can enter or exit an interior space 30 formed by the casing tube 1.
  • This interior 30 is traversed by the tubes 2, so that only gap spaces 14 remain of it, through which the medium flowing through the nozzles 11, 11a passes.
  • This medium enters through the inlet opening 28, flows through the gap spaces 14 and merges via the outlet opening 29 with the medium emerging from the vestibules 7, 7a in the region of the distributor space 10 or collector 15.
  • the gap spaces 14 are traversed by flow-guiding devices in the form of meandering wires 12, the diameter of which corresponds approximately to the clear width of the gap spaces 14. In this way it is achieved that the tubes 2 are mutually supported.
  • the meandering wires 12 are used to support the tubes 2 with respect to the jacket tube 1.
  • the meander wires are laid in the manner that is most favorable for the respective heat transfer purpose. For example, it is conceivable to wind the meandering wires spirally around the tubes 2, so that a crosswise or opposite to the medium passing through the guide tubes 3. Cross flow of the second medium passing through the casing tube 1 is achieved.
  • any other type of fastening can also be considered, so that any type of mutual flow conditions can be realized in the heat exchanger.
  • any other arrangement of pipes 2 in the casing pipe 1 can also be carried out. It is essential that the respective gap spaces 13 and 14 are provided with such a narrow passage cross-section that the media passing through them are suitable for the respective gap spaces 13 and 14 by appropriate selection of cross sections of both the casing tube 1 and the tube 2 and the guide tubes 3 get an optimal heat transfer necessary passage speed.
  • tubes 2 it is conceivable to also arrange tubes 2 to be dimensioned in a jacket tube 1 with a square cross section in a number that corresponds to the square number of the basic numbers.
  • the jacket tube 1 a rectangular cross section with a corresponding number of tubes 2. In any case, the dimensioning of both the casing tube 1 and the tube 2 and the guide tubes 3 will have to be based on the dimensions to which the corresponding tubes can be obtained cheaply, for example as semi-finished products.
  • the heat exchanger works as follows: a medium, for example cooling water, enters both the antechamber 7 and the interior 30 through the inlet connection 11 and the distributor space 10. It is distributed over the interior of the guide tubes 3 and is simultaneously guided past the outer walls of the tubes 2 through the braided wires 12. This medium portion pouring out through the interior 30 of the heat exchanger enters the collector 15 through the outlet opening 29 and is passed on by the latter in the direction of the outlet opening 11a. The medium portion passing through the guide tubes 3 collects in the vestibule 7a, enters the distribution space 15 through the opening 21 and is also discharged through the outlet opening 11a.
  • a medium for example cooling water
  • the other medium for example hot gas
  • the other medium for example hot gas
  • the heat exchanger according to the invention can be used both as an evaporator and as a condenser. If it is used as an evaporator, it has an optimal gas distribution as a partial pipe apparatus and works due to its design features such as. B. in the prechambers 7, 7a even in flooded operation of the distributor with evenly distributed pressure losses. If, on the other hand, it is used as a condenser, all surfaces involved in the heat transfer are evenly acted upon and utilized by means of uniform evaporation and condensate drainage on the hot gas side. The application of these heat transfer surfaces is arithmetically uniform due to the constructive arrangement of the parallel fluid paths.
  • the design of the heat exchanger works like a multi-plate heat exchanger, since the heat always passes from one gas path to two parallel liquid paths. Additional distribution apparatuses and / or collectors are unnecessary due to the structural geometry and the vestibules 7, 7a.
  • the heat exchanger can also be used in a large number of applications, since it can be used as a countercurrent, cocurrent, crossflow or crossflow exchanger.
  • the heat exchanger can be used as a tertiary exchanger with three separate heat transfer media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Power Steering Mechanism (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Gloves (AREA)

Abstract

1. Heat transfer device for the transfer of heat between two flowing media which are separated from each other by heat transfer surfaces, in which the heat transfer surfaces are formed as at least two tubes (2) arranged in a tubular jacket (1) and through each of these tubes there extends at least one conduit tube (3) such that a clearance space (13) is formed between each conduit tube and the inner wall surface of the associated tube, and in which both the tubular jacket and also the conduit tubes are connected to each other by way of a distributing chamber (10) for a first medium on the one hand and a collector (15) for the first medium on the other hand, said distributing chamber and collector being separated respectively from a distributing chamber (5a) and collecting chamber (5) for a second medium connecting the tubes and the clearance spaces to each other, characterised in that the tubular jacket (1) and the tubes (2) which are arranged therein and which each surround a conduit tube (3) each have a rectangular cross-section and each conduit tube (3) has a circular cross-section, and, both in the clearance space (30) formed between the outer wall surfaces of the tubes (2) and also in the clearance space (14) formed between the outer wall surfaces of the tubes (2) and the inner wall surface of the tubular jacket (1), there are arranged flow-guiding devices (12) in the form of meander wires having a thickness corresponding to the effective width of the clearance spaces (14, 30).

Description

Die Erfindung bezieht sich auf einen Wärmeübertrager zur Übertragung von Wärme zwischen strömenden Medien, die durch Wärmeübertragungsflächen voneinander getrennt sind, bei dem die Wärmeübertragungsflächen als wenigstens zwei in einem Mantelrohr angeordnete Rohre ausgebildet sind und sich durch jedes dieser Rohre wenigstens ein Leitrohr derart erstreckt, daß zwischen jedem Leitrohr und der Innenwandung des zugehörigen Rohres ein Spaltraum gebildet ist, und bei dem sowohl das Mantelrohr als auch die Leitrohre über einen Verteilerraum einerseits und einen Sammler andererseits für ein erstes Medium miteinander verbunden sind, die jeweils von einer die Rohre und die Spalträume miteinander verbindenden Verteilerkammer bzw. Sammlerkammer für ein zweites Medium getrennt sind.The invention relates to a heat exchanger for transferring heat between flowing media which are separated from one another by heat transfer surfaces, in which the heat transfer surfaces are designed as at least two tubes arranged in a jacket tube and at least one guide tube extends through each of these tubes in such a way that between a gap space is formed for each guide tube and the inner wall of the associated tube, and in which both the jacket tube and the guide tubes are connected to one another via a distribution space on the one hand and a collector for a first medium, each of which connects the tubes and the gap spaces to one another Distribution chamber or collector chamber for a second medium are separated.

Wärmeübertrager dieser Art erhalten im Zeichen einer zunehmenden Energieverknappung eine immer größer werdende Bedeutung. Diese erwächst aus der Tendenz steigender Energiepreise, aufgrund der es sich im zunehmenden Maße als lohnend erweist, beispielsweise bisher ungenutzte Restenergien über ein Austauschverfahren wieder nutzbar zu machen. Außerdem werden im Rahmen der ständig an Bedeutung gewinnenden Wärmepumpentechnik leistungsfähige und preiswerte Wärmeübertrager benötigt.Heat exchangers of this type are becoming increasingly important in the context of increasing energy shortages. This arises from the tendency of rising energy prices, on the basis of which it is increasingly proving to be worthwhile to use, for example, previously unused residual energy via an exchange process. In addition, efficient and inexpensive heat exchangers are required as part of the heat pump technology that is becoming increasingly important.

Es sind eine Vielzahl von Wärmeübertragern, wie Koaxialwärmeübertrager, Rohrbündelwärmeübertrager, Plattenwärmeübertrager, Lamellen-Rohrbündelwärmeübertrager bekannt. Es hat sich jedoch herausgestellt, daß bei der Verwendung von beispielsweise Plattenwärmeübertragern zwar eine günstige Wärmeübertragung aufgrund großer Wärmeübertragungsflächen erreicht werden kann, diesem Vorteil jedoch große fertigungstechnische Nachteile entgegenstehen. So ist es hier aufgrund der großen spezifischen Belastung erforderlich, statisch hoch belastbare Korsett-Konstruktionen zu verwenden. Durch diese Notwendigkeit ist der Materialaufwand groß und die Konstruktion notwendigerweise schwer. Hinzu kommt die Notwendigkeit einer Vielzahl von Flächenverkettungspunkten, durch die die Fertigung zum einen erschwert und zum anderen kostenintensiv wird. Mit diesem Nachteil sind auch Rohrbündelwärmeübertrager behaftet. Hierbei wird die kostenintensive Fertigung insbesondere durch das hochwertige Material der eingeschweißten Rohrbündel und im weiteren von für den optimalen Betrieb notwendigen aufwendigen Verteilerkonstruktionen wie Spinnen, Drossel und Regler verursacht, die teuer sind und hohe Druckverluste erbringen.A large number of heat exchangers, such as coaxial heat exchangers, tube bundle heat exchangers, plate heat exchangers, lamellar tube bundle heat exchangers, are known. It has been found, however, that when using plate heat exchangers, for example, a favorable heat transfer can be achieved due to large heat transfer surfaces, this advantage is countered by major manufacturing disadvantages. Because of the large specific load, it is necessary to use corset constructions that are highly resistant to static loads. Because of this necessity, the cost of materials is high and the construction is necessarily heavy. In addition, there is a need for a large number of surface interlinking points, which on the one hand make production more difficult and on the other hand cost-intensive. Tube heat exchangers also have this disadvantage. In this case, the cost-intensive production is caused in particular by the high-quality material of the welded-in tube bundles and, furthermore, by complex distributor structures, such as spiders, throttles and regulators, which are necessary for optimal operation and which are expensive and produce high pressure losses.

Um diese Nachteile zu vermeiden, ist man teilweise dazu übergegangen, lange Rohre mit kleinen Querschnitten zu verwenden. Aber auch die auf diese Weise entstehenden hohen Druckverluste verhindern einen optimalen Betrieb der gesamten Anlage.In order to avoid these disadvantages, some have started to use long pipes with small cross sections. But the high pressure losses that arise in this way also prevent optimal operation of the entire system.

Es ist nun aus der FR-PS 603 110 ein Wärmeübertrager der eingangs angegebenen und damit dem Oberbegriff des Anspruchs 1 entsprechenden Art bekanntgeworden. Bei diesem bekannten Wärmeübertrager finden ausschließlich Rohre mit kreisförmigem Querschnitt Verwendung, nämlich ein Mantelrohr, darin angeordnete Rohre und wiederum von diesen umschlossene Leitrohre mit jeweils kreisrundem Querschnitt. Daraus ergibt sich der für die Wärmeübertragerfunktion ganz wesentliche Nachteil, daß für das Wärmetauschermedium sehr unterschiedliche Durchlaßquerschnitte gebildet werden, so daß wiederum vollständig ungleichmäßige und vor allem unbeherrschbare Strömungsverhältnisse herrschen. Dies gilt ganz besonders für den Randbereich in der Nähe des Mantelrohrs mit kreisrundem Querschnitt. Entsprechendes gilt für einen Wärmeübertrager ähnlicher Art nach der DE-OS-21 43 276. Auch dort werden im Bereich der Wärmetauscherfunktion ausschließlich Rohre mit rundem bzw. kreisrundem Querschnitt verwendet. Für diesen bekannten Wärmeübertrager gelten im übrigen die einleitend beschriebenen konstruktiven Nachteile.It has now become known from FR-PS 603 110 a heat exchanger of the type mentioned and thus corresponding to the preamble of claim 1. In this known heat exchanger only tubes with a circular cross-section are used, namely a jacket tube, tubes arranged therein and, in turn, guide tubes enclosed by them, each with a circular cross-section. This results in the very significant disadvantage for the heat exchanger function that very different passage cross sections are formed for the heat exchanger medium, so that again completely uneven and, above all, uncontrollable flow conditions prevail. This applies particularly to the edge area near the tubular casing with a circular cross-section. The same applies to a heat exchanger of a similar type according to DE-OS-21 43 276. Here too, only tubes with a round or circular cross section are used in the area of the heat exchanger function. For this known heat exchanger, the constructional disadvantages described in the introduction apply.

Der Erfindung liegt die Aufgabe zugrunde, bei einem Wärmeübertrager nach dem Gattungsbegriff des Anspruchs 1 den Aufbau hinsichtlich der Konstruktion und Fertigung zu vereinfachen und zu verbessern, vor allem aber die Wärmetauschfunktion des Wärmeübertragers wesentlich zu verbessern, und zwar sowohl durch die Beeinflussung der für den Durchfluß der Medien vorgesehenen Durchlaßquerschnitte als auch durch die Gestaltung dieser Durchflußquerschnitte untereinander.The invention has for its object to simplify and improve the structure in terms of design and manufacture in a heat exchanger according to the preamble of claim 1, but above all to significantly improve the heat exchange function of the heat exchanger, both by influencing the flow of the flow cross sections provided as well as the design of these flow cross sections with each other.

Nach der Erfindung wird diese Aufgabe bei einem Wärmeübertrager nach dem Gattungsbegriff des Anspruchs 1 dadurch gelöst, daß das Mantelrohr und die darin angeordneten, jeweils ein Leitrohr umschließenden Rohre rechteckigen und jedes Leitrohr runden Querschnitt aufweisen und sowohl in dem zwischen den Außenwandungen der die Leitrohre umschließenden Rohre gebildeten Spaltraum als auch in dem zwischen den Außenwandungen der die Leitrohre umschließenden Rohre und den Innenwandungen des Mantelrohrs gebildeten Spaltraum strömungsleitende Vorrichtungen in Form von Mäanderdrähten angeordnet sind, deren Dicke der lichten Weite der Spalträume entspricht.According to the invention, this object is achieved in a heat exchanger according to the preamble of claim 1 in that the jacket tube and the tubes arranged therein, each enclosing a guide tube, have rectangular cross-sections and each guide tube is round in cross-section, and both in the between the outer walls of the tubes surrounding the guide tubes formed gap space and in the gap between the outer walls of the tubes surrounding the guide tubes and the inner walls of the casing tube flow-guiding devices in the form of meander wires are arranged, the thickness of which corresponds to the inside width of the gap spaces.

Dieser Aufbau erlaubt zunächst eine wirtschaftliche Fertigung. Hierbei ist wesentlich, daß die einzelnen Verbindungsinsbesondere Schweißstellen gut erreichbar sind und zum anderen die Einzelteile in einfachster Weise zusammengefügt werden können. Die ineinandergefügten Rohre genügen aufgrund ihrer Formstabilität hohen Festigkeitsansprüchen. Weiterhin macht sich vorteilhaft bemerkbar, daß innerhalb des Aufbaus auch kostengünstige Halbzeuge verwendbar sind.This structure initially allows economical production. It is essential here that the individual connections, in particular welding points, are easily accessible and, on the other hand, that the individual parts can be joined together in the simplest way. Because of their dimensional stability, the pipes that are joined together meet high strength requirements. Continue to pretend partly noticeable that inexpensive semi-finished products can also be used within the structure.

Ferner werden wesentliche Vorteile hinsichtlich der Wärmetauschfunktion erzielt : Da das Mantelrohr und die die Leitrohre umschließenden Rohre mit rechteckigem, vorzugsweise quadratischem Querschnitt versehen sind, ist es möglich, die Spalträume zwischen dem Mantelrohr und den die Leitrohre umschließenden Rohren sowie zwischen den die Leitrohre umschließenden Rohren selbst mit völlig gleichbleibendem Querschnitt zu versehen. Dadurch wird zunächst grundsätzlich erreicht, daß die Strömungsverhältnisse in allen so gebildeten Spalträumen gleichbleibend sind, was wiederum eine sehr gute Raumausnutzung innerhalb des durch diese Rohre und das Mantelrohr gebildeten Körpers mit seinen Spalträumen bedeutet. Durch diesen gleichbleibenden Querschnitt werden die bei einem derartigen Wärmeübertrager besonders wesentlichen Druckverluste auf ein Mindestmaß beschränkt. Die rechteckigen bzw. quadratischen Querschnittsformen der genannten Rohre führen ferner in Verbindung mit den durch die Spalträume geführten Mäanderdrähten zu einer vollständigen und sicheren Abstützung dieser Rohre untereinander, was bei den auftretenden erheblichen Druckunterschieden von wesentlicher Bedeutung ist. Zugleich erzeugen die in den so gleichbleibenden Spaltraumquerschnitten angeordneten Mäanderdrähte eine Strömungsführung, die zu einer selbsttätigen Turbulenz führt, so daß die für die Wärmeübertragung nachteiligen laminaren Strömungen sicher und vollständig vermieden werden. Somit verbinden sich die konstruktiv und funktionsmäßig erzielten Wirkungen zu einem wesentlichen Vorteil hinsichtlich der Wärmetauschfunktion, nämlich hinsichtlich eines sicheren, gleichmäßigen und besonders guten Wärmeübergangs.Furthermore, significant advantages are achieved with regard to the heat exchange function: since the jacket tube and the tubes surrounding the guide tubes are provided with a rectangular, preferably square cross-section, it is possible to separate the gaps between the jacket tube and the tubes surrounding the guide tubes and between the tubes surrounding the guide tubes themselves to be provided with a completely constant cross-section. In this way, it is initially achieved in principle that the flow conditions in all of the gap spaces formed in this way are constant, which in turn means very good use of space within the body formed by these tubes and the jacket tube with its gap spaces. Due to this constant cross section, the pressure losses that are particularly significant in such a heat exchanger are limited to a minimum. The rectangular or square cross-sectional shapes of the pipes mentioned also lead, in conjunction with the meandering wires guided through the gap spaces, to complete and secure support of these pipes with one another, which is essential in the case of the considerable pressure differences that occur. At the same time, the meander wires arranged in the gap cross-sections which remain the same create a flow guide which leads to automatic turbulence, so that the laminar flows which are disadvantageous for heat transfer are reliably and completely avoided. Thus, the constructively and functionally achieved effects combine to an essential advantage with regard to the heat exchange function, namely with regard to a safe, uniform and particularly good heat transfer.

Ein sehr wesentlicher Vorteil ergibt sich ferner durch die erfindungsgemäße Kombination der Leitrohre mit rundem Querschnitt mit den sie umschließenden Rohren mit rechteckigem, insbesondere quadratischem Querschnitt. Dies führt zu einem wesentlichen Vorteil hinsichtlich der Strömungscharakteristik für das weitere Übertragungsmedium. In dem Raum zwischen dem runden Leitrohr und dem es umschließenden rechteckigen oder quadratischen Rohr werden Zonen mit unterschiedlichem Durchflußquerschnitt gebildet, so daß es in den Zonen mit geringem Querschnitt (Außenwandung des Leitrohrs gegenüber der jeweiligen Seitenwand des umschließenden Rohrs) zu schnellerer Abkühlung und damit zu einer Verdichtung des dortigen Mediums im Fall eines Gases und im extremen Fall zur Kondensation. Da die Zonen in den jeweiligen Eckquerschnitten zwischen dem runden Leitrohr und dem umgebenden rechtekkigen oder quadratischen Rohr einen weitaus größeren Wärmedurchgangsweg aufweisen, kommt es durch bereits geringfügige Temperaturdifferenzen zu gewollten Turbulenzen und Wirbelschichtbildungen, die auch hier eine laminare Durchströmung vermeiden und ihrerseits zur besseren Tauschflächenausnutzung führen, da eine bessere Verteilung des Mediumstroms erreicht wird. Dies ist für Verdampfungs- und Kondensationsprozesses innerhalb der Rohre ein sehr wesentlicher Vorteil.Another very important advantage results from the combination according to the invention of the guide tubes with a round cross-section with the tubes surrounding them with a rectangular, in particular square, cross-section. This leads to a significant advantage with regard to the flow characteristics for the further transmission medium. Zones with different flow cross-sections are formed in the space between the round guide tube and the rectangular or square tube surrounding it, so that in the zones with a small cross-section (outer wall of the guide tube opposite the respective side wall of the surrounding tube) it cools down faster and thus to a Compression of the medium there in the case of a gas and in the extreme case for condensation. Since the zones in the respective corner cross sections between the round guide tube and the surrounding rectangular or square tube have a much larger heat transfer path, even slight temperature differences lead to deliberate turbulence and fluidized bed formation, which also avoid laminar flow and in turn lead to better utilization of the exchange surface, because a better distribution of the medium flow is achieved. This is a very important advantage for the evaporation and condensation process within the pipes.

Durch die geschilderte gegenseitige Abstützung der die Leitrohre umschließenden Rohre und des Mantelrohrs jeweils untereinander entsteht eine Art Wabenkonstruktion, die auch bei geringen Wandstärken der Einzelrohre eine hohe Gesamtfestigkeit mit sich bringt. Der Wärmeübertrager kann daher bei hohem Druckniveau eingesetzt werden, ohne daß zu seiner Ausbildung hochfeste Materialien notwendig wären.The described mutual support of the tubes surrounding the guide tubes and the jacket tube in each case creates a type of honeycomb structure which brings about a high overall strength even with small wall thicknesses of the individual tubes. The heat exchanger can therefore be used at a high pressure level without the need for high-strength materials for its formation.

Weitere vorteilhafte Ausbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet. Die Erfindung wird in der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnung erläutert, die einen Längsschnitt durch einen Wärmeübertrager nach der Erfindung zeigt.Further advantageous developments of the invention are characterized in the subclaims. The invention is explained in the following description of an embodiment with reference to the drawing, which shows a longitudinal section through a heat exchanger according to the invention.

Der Wärmeübertrager weist als Grundbestandteile ein Mantelrohr 1, Rohre 2 und Leitrohre 3 auf. Das Mantelrohr 1 hat einen rechteckigen, vorzugsweise einen quadratischen Querschnitt. Durch dieses Mantelrohr 1 erstrecken sich in Längsrichtung die Rohre 2, die einen dem Querschnitt des Mantelrohrs 1 angepaßten rechtekkigen, vorzugsweise quadratischen Querschnitt haben, so daß vier Rohre 2 auf den Querschnitt des Mantelrohres 1 verteilt sind.The basic components of the heat exchanger are a jacket tube 1, tubes 2 and guide tubes 3. The casing tube 1 has a rectangular, preferably a square cross section. The tubes 2, which have a rectangular, preferably square, cross section adapted to the cross section of the jacket tube 1, extend through this jacket tube 1 in the longitudinal direction, so that four tubes 2 are distributed over the cross section of the jacket tube 1.

Durch die Rohre 2 erstrecken sich parallel zu diesen die Leitrohre 3 mit rundem Querschnitt. Diese haben einen nur unwesentlich kleineren Querschnitt als die Rohre 2. Die Leitrohre 3 sind mit Außenflächen versehen, zwischen denen und den ihnen gegenüberliegenden Innenflächen der Rohre 2 ein relativ kleiner Spaltraum 13 vorgesehen ist, der einen geringen Durchströmquerschnitt aufweist.The guide tubes 3 with a round cross section extend through the tubes 2 parallel to these. These have an insignificantly smaller cross-section than the tubes 2. The guide tubes 3 are provided with outer surfaces, between which and the inner surfaces of the tubes 2 opposite them a relatively small gap space 13 is provided, which has a small flow cross-section.

Das Mantelrohr 1 ist an seinen beiden Enden mit Deckeln 8, 8a verschlossen. Diese Deckel 8, 8a begrenzen auf ihren den Rohren 2 zugewandten Innenseiten Vorräume 7, 7a, in die die Leitrohre 3 münden. Im Bereich der Mündungen der Leitrohre 3 sind diese über Rohrböden 6, 6a miteinander verbunden. Diese Rohrböden 6, 6a begrenzen im Mantelrohr 1 auf der den Deckeln 8, 8a gegenüberliegenden Seite die Vorräume 7, 7a.The casing tube 1 is closed at both ends with covers 8, 8a. These covers 8, 8a delimit anterooms 7, 7a on their inner sides facing the tubes 2, into which the guide tubes 3 open. In the area of the mouths of the guide tubes 3, these are connected to one another via tube plates 6, 6a. These tube sheets 6, 6a delimit the vestibules 7, 7a in the casing tube 1 on the side opposite the covers 8, 8a.

Die Vorräume 7, 7a sind über Eintrittsöffnungen 20, 21 mit einem Eintrittsstutzen 11 bzw. einem Austrittsstutzen 11a verbunden. In diese Eintrittsstutzen 11, 11a tritt je nach der jeweils vorgesehenen Schaltung ein Medium in den Wärmeübertrager ein bzw. aus. Das durch den Eintrittsstutzen 11 eintretende Medium fließt durch die Eintrittsöffnung 20 in den Vorraum 7, fließt durch die Innenräume der Leitrohre 3, sammelt sich im Vorraum 7a und tritt über die Eintrittsöffnung 21 durch den Austrittsstutzen 11a aus.The vestibules 7, 7a are connected via inlet openings 20, 21 to an inlet nozzle 11 and an outlet nozzle 11a. Depending on the circuit provided in each case, a medium enters or exits the heat exchanger in these inlet connections 11, 11a. The medium entering through the inlet nozzle 11 flows through the inlet opening 20 into the antechamber 7, flows through the interior of the guide tubes 3, collects in the antechamber 7a and exits via the inlet opening 21 through the outlet nozzle 11a.

Die Rohrböden 6, 6a begrenzen auf ihrer vonThe tube sheets 6, 6a limit on their from

den Vorräumen 7, 7a abgewandten Unterseite eine Verteilerkammer 5a bzw. eine Sammlerkammer 5. Diese Verteilerkammer 5a bzw. Sammlerkammer 5 wird auf ihrer von den Rohrböden 6, 6a abgewandten Seite von Mündungen 22, 23 begrenzt, die durch Aufbördelung der der Verteilerkammer 5a bzw. Sammlerkammer 5 zugewandten Enden 24, 25 der Rohre 2 entstehen. Diese Enden 24, 25 sind über Schweißnähte 4 miteinander verbunden. Je nach der Qualität des die Rohre 2 beaufschlagenden Mediums können auch alle anderen Verbindungsmöglichkeiten der Enden 24, 25 genutzt werden, beispielsweise Klebverbindungen. Darüber hinaus sind die Enden 24, 25 auch an ihren dem Mantelrohr 1 zugewandten Seiten mit diesem über Schweißnähte 4 verbunden. Auch hier können andere Verbindungsmöglichkeiten genutzt werden.A distributor chamber 5a or a collector chamber 5 facing away from the anterooms 7, 7a. This distributor chamber 5a or collector chamber 5 is delimited on its side facing away from the tube sheets 6, 6a by orifices 22, 23, which are formed by flanging the distributor chamber 5a or Collector chamber 5 facing ends 24, 25 of the tubes 2 are formed. These ends 24, 25 are connected to one another via welds 4. Depending on the quality of the medium acting on the tubes 2, all other connection options of the ends 24, 25 can also be used, for example adhesive connections. In addition, the ends 24, 25 are also connected on their sides facing the jacket tube 1 to the latter via weld seams 4. Other connection options can also be used here.

Die Verteilerkammer 5a bzw. die Sammlerkammer 5 ist jeweils über Öffnungen 26, 27 mit einem Austrittsstutzen 9 bzw. einem Eintrittsstutzen 9a verbunden. Durch diese Öffnungen 26, 27 tritt ein die Leitrohre 3 auf ihren Außenseiten beaufschlagendes zweites Medium hindurch. Dieses Medium fließt durch Spalträume 13, so daß es im Hinblick auf den kleinen Durchtrittsquerschnitt dieser Spalträume 13 eine relativ hohe Durchtrittsgeschwindigkeit erreicht.The distributor chamber 5a and the collector chamber 5 are each connected via openings 26, 27 to an outlet nozzle 9 and an inlet nozzle 9a. A second medium acting on the guide tubes 3 on their outer sides passes through these openings 26, 27. This medium flows through gap spaces 13 so that it achieves a relatively high passage speed in view of the small passage cross section of these gap spaces 13.

Der Eintrittsstutzen 11 bzw. der Austrittsstutzen 11 ist jeweils über einen Verteilerraum 10 bzw. Sammler 15 außer mit den Eintrittsöffnungen 20 bzw. 21 auch noch mit einer weiteren Eintrittsöffnung 28 bzw. 29 verbunden, die im Mantelrohr 1 angeordnet sind. Durch diese Eintrittsöffnungen 28, 29 kann das durch den Eintrittsstutzen 11 zufließende bzw. den Austrittsstutzen 11a abfließende Medium in bzw. aus einen vom Mantelrohr 1 gebildeten Innenraum 30 eintreten. Dieser Innenraum 30 wird von den Rohren 2 durchzogen, so daß von ihm lediglich Spalträume 14 übrigbleiben, durch die das durch die Stutzen 11, 11a fließende Medium hindurchtritt. Dieses Medium tritt durch die Eintrittsöffnung 28 ein, durchfließt die Spalträume 14 und vereinigt sich über die Austrittsöffnung 29 mit dem aus den Vorräumen 7, 7a austretenden Medium im Bereich des Verteilerraumes 10 bzw. Sammlers 15.The inlet nozzle 11 and the outlet nozzle 11 are each connected via a distributor space 10 or collector 15 to the inlet openings 20 or 21 and also to a further inlet opening 28 or 29 which are arranged in the casing tube 1. Through these inlet openings 28, 29, the medium flowing through the inlet nozzle 11 or flowing out of the outlet nozzle 11a can enter or exit an interior space 30 formed by the casing tube 1. This interior 30 is traversed by the tubes 2, so that only gap spaces 14 remain of it, through which the medium flowing through the nozzles 11, 11a passes. This medium enters through the inlet opening 28, flows through the gap spaces 14 and merges via the outlet opening 29 with the medium emerging from the vestibules 7, 7a in the region of the distributor space 10 or collector 15.

Die Spalträume 14 sind von strömungsleitenden Vorrichtungen in Form von Mäanderdrähten 12 durchzogen, deren Durchmesser etwa der lichten Weite der Spalträume 14 entspricht. Auf diese Weise wird erreicht, daß sich die Rohre 2 gegenseitig gegeneinander abstützen. Außerdem wird mit Hilfe der Mäanderdrähte 12 eine Abstützung der Rohre 2 gegenüber dem Mantelrohr 1 herbeigeführt. Die Verlegung der Mäanderdrähte geschieht in der Weise, die für den jeweiligen Wärmeübertragungszweck sich am günstigsten erweist. Beispielsweise ist es denkbar, die Mäanderdrähte spiralförmig um die Rohre 2 zu wickeln, so daß gegenüber dem durch die Leitrohre 3 hindurchtretenden Medium eine Quer-bzw. Kreuzströmung des durch das Mantelrohr 1 hindurchtretenden zweiten Mediums erreicht wird. Außer dieser Verlegung der Mäanderdrähte kann auch an jede andere Art der Befestigung gedacht werden, so daß jede beliebige Art von gegenseitigen Strömungsverhältnissen in dem Wärmeübertrager verwirklicht werden kann.The gap spaces 14 are traversed by flow-guiding devices in the form of meandering wires 12, the diameter of which corresponds approximately to the clear width of the gap spaces 14. In this way it is achieved that the tubes 2 are mutually supported. In addition, the meandering wires 12 are used to support the tubes 2 with respect to the jacket tube 1. The meander wires are laid in the manner that is most favorable for the respective heat transfer purpose. For example, it is conceivable to wind the meandering wires spirally around the tubes 2, so that a crosswise or opposite to the medium passing through the guide tubes 3. Cross flow of the second medium passing through the casing tube 1 is achieved. In addition to this laying of the meander wires, any other type of fastening can also be considered, so that any type of mutual flow conditions can be realized in the heat exchanger.

Außer der Anordnung von vier Rohren 2 im Mantelrohr 1 kann auch jede andere Anordnung von Rohren 2 im Mantelrohr 1 vorgenommen werden. Dabei kommt es im wesentlichen darauf an, daß durch entsprechende Wahl von Querschnitten sowohl des Mantelrohrs 1 als auch des Rohres 2 und der Leitrohre 3 die jeweiligen Spalträume 13 bzw. 14 mit einem so engen Durchtrittsquerschnitt versehen werden, daß die durch sie hindurchtretenden Medien eine für eine optimale Wärmeübertragung notwendige Durchtrittsgeschwindigkeit erhalten. So ist es beispielsweise denkbar, in einem Mantelrohr 1 mit quadratischem Querschnitt auch entsprechend zu bemessende Rohre 2 in einer Anzahl anzuordnen, die der Quadratzahl der Grundzahlen entspricht. Es ist aber auch möglich, dem Mantelrohr 1 einen rechteckigen Querschnitt bei entsprechender Anzahl von Rohren 2 zu geben. In jedem Fall wird sich die Bemessung sowohl des Mantelrohres 1 als auch des Rohres 2 und der Leitrohre 3 danach zu orientieren haben, in welchen Abmaßen die entsprechenden Rohre beispielsweise als Halbzeuge billig bezogen werden können.In addition to the arrangement of four pipes 2 in the casing pipe 1, any other arrangement of pipes 2 in the casing pipe 1 can also be carried out. It is essential that the respective gap spaces 13 and 14 are provided with such a narrow passage cross-section that the media passing through them are suitable for the respective gap spaces 13 and 14 by appropriate selection of cross sections of both the casing tube 1 and the tube 2 and the guide tubes 3 get an optimal heat transfer necessary passage speed. For example, it is conceivable to also arrange tubes 2 to be dimensioned in a jacket tube 1 with a square cross section in a number that corresponds to the square number of the basic numbers. However, it is also possible to give the jacket tube 1 a rectangular cross section with a corresponding number of tubes 2. In any case, the dimensioning of both the casing tube 1 and the tube 2 and the guide tubes 3 will have to be based on the dimensions to which the corresponding tubes can be obtained cheaply, for example as semi-finished products.

Der Wärmeübertrager arbeitet wie folgt : durch den Eintrittsstutzen 11 und den Verteilerraum 10 tritt ein Medium, beispielsweise Kühlwasser, sowohl in den Vorraum 7 als auch in den Innenraum 30 ein. Es verteilt sich über die Innenräume der Leitrohre 3 und wird gleichzeitig durch die Mänderdrähte 12 an den Außenwandungen der Rohre 2 vorbeigeleitet. Dieser sich durch den Innenraum 30 des Wärmeübertragers ergießende Mediumanteil tritt durch die Austrittsöffnung 29 in den Sammler 15 ein und wird von diesem in Richtung auf die Austrittsöffnung 11a weitergeleitet. Der durch die Leitrohre 3 hindurchtretende Mediumsanteil sammelt sich im Vorraum 7a, tritt durch die Öffnung 21 in den Verteilerraum 15 ein und wird ebenfalls durch die Austrittsöffnung 11a abgeleitet.The heat exchanger works as follows: a medium, for example cooling water, enters both the antechamber 7 and the interior 30 through the inlet connection 11 and the distributor space 10. It is distributed over the interior of the guide tubes 3 and is simultaneously guided past the outer walls of the tubes 2 through the braided wires 12. This medium portion pouring out through the interior 30 of the heat exchanger enters the collector 15 through the outlet opening 29 and is passed on by the latter in the direction of the outlet opening 11a. The medium portion passing through the guide tubes 3 collects in the vestibule 7a, enters the distribution space 15 through the opening 21 and is also discharged through the outlet opening 11a.

Demgegenüber wird das andere Medium, beispielsweise heißes Gas, durch die Eintrittsöffnung 9a in die Verteilerkammer 5a eingeleitet. Das Medium verteilt sich über die Spalträume 13 und steigt in Längsrichtung der Rohre 2 in Richtung auf die Sammlerkammer 5 auf. Es tritt sodann durch die Öffnungen 26 in Richtung auf den Austrittsstutzen 9 aus.In contrast, the other medium, for example hot gas, is introduced into the distribution chamber 5a through the inlet opening 9a. The medium is distributed over the gap spaces 13 and rises in the longitudinal direction of the tubes 2 in the direction of the collector chamber 5. It then exits through the openings 26 in the direction of the outlet nozzle 9.

Statt der hier geschilderten Verteilung von flüssigen bzw. gasförmigen Medien können auch jeweils andere Medienkonstellationen durch den Wärmeübertrager hindurchgeleitet werden. Darüber hinaus ist es auch denkbar, andere Strömungsrichtungen einzuhalten. So ist es z. B. denkbar, die Eintritts- bzw. Austrittsstutzen 11, 11a und die Austritts- bzw. Eintrittsstutzen 9, 9a umzuschalten, so daß die Medien sich entweder im Gegenstrom oder im Gleichstrom beaufschlagen. Soweit Gas Verwendung findet, ist es sicherlich zweckmäßig, dieses durch den Eintrittsstutzen 9a in die Spalträume 13 einzuleiten. Anhand der soeben geschilderten Konstruktion ist erkennbar, daß die bei Plattenwärmeübertragern notwendigen aufwendigen und schweren Korsett-Konstruktionen beim Gegenstand der Erfindung überflüssig sind. Die Befestigung von Rohrbündeln in Lochböden beispielsweise durch Einwalzen oder Einlöten oder Einschweißen entfällt.Instead of the distribution of liquid or gaseous media described here, other media constellations can also be passed through the heat exchanger. In addition, it is also conceivable to adhere to other flow directions. So it is z. B. conceivable to switch the inlet or outlet nozzle 11, 11a and the outlet or inlet nozzle 9, 9a so that the media act either in countercurrent or in cocurrent. As far as gas is used, it is safe Lich expedient to initiate this through the inlet port 9a in the gap spaces 13. On the basis of the construction just described, it can be seen that the complex and heavy corset constructions necessary for plate heat exchangers are superfluous in the subject matter of the invention. The fastening of tube bundles in perforated plates, for example by rolling in or soldering in or welding in, is not necessary.

Der erfindungsgemäße Wärmeübertrager kann sowohl als Verdampfer als auch als Kondensator eingesetzt werden. Wird er als Verdampfer eingesetzt, so verfügt er als Teilrohrapparat über eine optimale Gasverteilung und arbeitet aufgrund seiner Konstruktionsmerkmale wie z. B. in den Vorkammern 7, 7a auch im überfluteten Betrieb des Verteilers mit gleichmäßig verteilten Druckverlusten. Wird er demgegenüber als Kondensator eingesetzt, werden alle an der Wärmeübertragung beteiligten Flächen durch gleichmäßigen Abdampftransport und Kondensatablauf auf der Heißgasseite gleichmäßig beaufschlagt und ausgenutzt. Die Beaufschlagung dieser wärmeübertragenden Flächen ist durch die konstruktive Anordnung der paralle geschalteten Flüssigkeitswege arithmetisch gleichmäßig.The heat exchanger according to the invention can be used both as an evaporator and as a condenser. If it is used as an evaporator, it has an optimal gas distribution as a partial pipe apparatus and works due to its design features such as. B. in the prechambers 7, 7a even in flooded operation of the distributor with evenly distributed pressure losses. If, on the other hand, it is used as a condenser, all surfaces involved in the heat transfer are evenly acted upon and utilized by means of uniform evaporation and condensate drainage on the hot gas side. The application of these heat transfer surfaces is arithmetically uniform due to the constructive arrangement of the parallel fluid paths.

Der Wärmeübertrager arbeitet in seiner Konzeption wie ein Vielfachplattenwärmeübertrager, da die Wärme immer von einem Gasweg auf zwei parallel verlaufende Flüssigkeitswege übergeht. Zusätzliche Verteilerapparate oder/und Sammler sind aufgrund der Aufbau-Geometrie und der Vorräume 7, 7a überflüssig.The design of the heat exchanger works like a multi-plate heat exchanger, since the heat always passes from one gas path to two parallel liquid paths. Additional distribution apparatuses and / or collectors are unnecessary due to the structural geometry and the vestibules 7, 7a.

Durch einfaches Aneinanderfügen der Rohre 2 und deren Verschweißung werden Festigkeitsbeeinträchtigungen ausgeschaltet. Die kompakte Konzeption der wärmeübertragenden Flächen macht den Einbau in Maschinen auf kleinstem Raum möglich.By simply joining the pipes 2 and welding them, impairments in strength are eliminated. The compact design of the heat transfer surfaces enables installation in machines in the smallest of spaces.

Da eine reine Schweißkonstruktion verwirklicht werden kann, sind Korrosionsschäden von der ölbelasteten Gasseite her nicht zu befürchten. Diese müssen indessen bei Silberloten mit hohem Phosphoranteil in Kauf genommen werden. Außerdem sind ggf. dennoch auftretende Fertigungsundichtigkeiten durch einfaches Nachschweißen kostengünstig zu beheben.Since a pure welded construction can be realized, there is no fear of corrosion damage from the oil-contaminated gas side. However, these have to be accepted for silver solders with a high phosphorus content. In addition, any manufacturing leaks that may occur can be remedied inexpensively by simple re-welding.

Druckverluste sind gegenüber herkömmlichen Konstruktionen sehr klein, da sehr kurze Weglängen im Parallelbetrieb betrieben werden. Der Wärmeübertrager ist darüber hinaus in einer Vielzahl von Anwendungsfällen benutzbar, da er als Gegenstrom-, Gleichstrom-, Kreuzstrom- oder Querstromübertrager Verwendung finden kann.Pressure losses are very small compared to conventional designs, since very short path lengths are operated in parallel. The heat exchanger can also be used in a large number of applications, since it can be used as a countercurrent, cocurrent, crossflow or crossflow exchanger.

In Ergänzung des geschilderten Aufbaus und seiner Funktion ist es auch möglich, die Spalträume 14 und 30 von den Vorräumen 7, 7a abzutrennen und ihnen getrennt von den Eintrittsstutzen 11, 11a für die Vorräume 7, 7a gesonderte Anschlußstutzen zuzuordnen. Dadurch kann der Wärmeübertrager als Tertiärtauscher mit drei gesonderten Wärmeübertragermedien eingesetzt werden.In addition to the structure described and its function, it is also possible to separate the gap spaces 14 and 30 from the anterooms 7, 7a and to assign them separate connection nipples separate from the inlet connections 11, 11a for the anterooms 7, 7a. As a result, the heat exchanger can be used as a tertiary exchanger with three separate heat transfer media.

Claims (14)

1. Heat transfer device for the transfer of heat between two flowing media which are separated from each other by heat transfer surfaces, in which the heat transfer surfaces are formed as at least two tubes (2) arranged in a tubular jacket (1) and through each of these tubes there extends at least one conduit tube (3) such that a clearance space (13) is formed between each conduit tube and the inner wall surface of the associated tube, and in which both the tubular jacket and also the conduit tubes are connected to each other by way of a distributing chamber (10) for a first medium on the one hand and a collector (15) for the first medium on the other hand, said distributing chamber and collector being separated respectively from a distributing chamber (5a) and collecting chamber (5) for a second medium connecting the tubes and the clearance spaces to each other, characterised in that the tubular jacket (1) and the tubes (2) which are arranged therein and which each surround a conduit tube (3) each have a rectangular cross-section and each conduit tube (3) has a circular cross-section, and, both in the clearance space (30) formed between the outer wall surfaces of the tubes (2) and also in the clearance space (14) formed between the outer wall surfaces of the tubes (2) and the inner wall surface of the tubular jacket (1), there are arranged flow-guiding devices (12) in the form of meander wires having a thickness corresponding to the effective width of the clearance spaces (14, 30).
2. Heat transfer device according to claim 1, characterised in that the tubular jacket (1) and the tubes (2) arranged therein and each surrounding a conduit tube have a square cross-section.
3. Heat transfer device according to claim 1 or 2, characterised in that the meander wires (12) are offset relative to one another by 90° in order to create a spiral flow effect.
4. Heat transfer device according to one of claims 1 to 3, characterised in that the distributing chamber (5a) and the collecting chamber (5) are arranged within the tubular jacket (1) and are defined on the side opposite the tube ends (4, 24, 25) by tube base members (6, 6a) closing off the tubular jacket cross-section.
5. Heat transfer device according to claim 4, characterised in that the distributing chamber (5a) and the collecting chamber (5) are separated by the tube base members (6, 6a) from prechambers (7, 7a), which are connected to a distributing chamber (10) and to a collector (15) for the other medium and into which the conduit tubes (3) issue.
6. Heat transfer device according to claim 5, characterised in that the distributing chamber (10) and the collector (15) are each connected to the clearance spaces (14, 30) between the tubes (2) and the tubular jacket (1).
7. Heat transfer device according to claim 5 or 6, characterised in that each prechamber (7, 7a) is formed within the tubular jacket (1) immediately next to the distributing or collecting chamber (5, 5a) and is separated from this chamber only by the tube base member (6, 6a).
8. Heat transfer device according to claim 5, 6 or 7, characterised in that the prechambers (7, 7a) are connected to each other by way of the conduit tubes (3) and the clearance spaces (14, 30) between the tubes (2) and the tubular jacket (1).
9. Heat transfer device according to one of claims 1 to 8, characterised in that the distributing chamber (5a) and the collecting chamber (5) are connected to each other by way of the clearance spaces (13) with small throughput cross-section between the tubes (2) and the conduit tubes (3).
10. Heat transfer device according to one of claims 1 to 9, characterised in that the tubular jacket (1), the tubes (2) and the conduit tubes (3) extend in the vertical direction between the distributing chamber (5a) and the collecting chamber (5).
11. Heat transfer device according to one of claims 1 to 10, characterised in that liquid flows in the conduit tubes (3) and in the clearance spaces (14, 30) between tubular jacket (1) and tubes (2) and gas flows in the clearance spaces (13) extending between the conduit tubes (3) and the tubes (2).
12. Heat transfer device according to claim 11, characterised in that there is provision for heat transfer from the liquid to the gas.
13. Heat transfer device according to claim 11, characterised in that there is provision for heat transfer from the gas to the liquid.
14. Heat transfer device according to one of claims 1 to 13, characterised in that it is constructed as a condenser.
EP81107194A 1980-09-26 1981-09-11 Heat transfer device Expired EP0048873B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT81107194T ATE7960T1 (en) 1980-09-26 1981-09-11 HEAT EXCHANGER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3036334A DE3036334C2 (en) 1980-09-26 1980-09-26 Heat exchanger
DE3036334 1980-09-26

Publications (3)

Publication Number Publication Date
EP0048873A2 EP0048873A2 (en) 1982-04-07
EP0048873A3 EP0048873A3 (en) 1982-09-01
EP0048873B1 true EP0048873B1 (en) 1984-06-13

Family

ID=6112927

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81107194A Expired EP0048873B1 (en) 1980-09-26 1981-09-11 Heat transfer device

Country Status (3)

Country Link
EP (1) EP0048873B1 (en)
AT (1) ATE7960T1 (en)
DE (2) DE3036334C2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110608623B (en) * 2019-07-09 2024-04-09 广东焕能科技有限公司 Waste heat recoverer of oil-free screw air compressor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE44091C (en) *
GB260066A (en) * 1925-08-12 1926-10-28 Emilio Storoni Heat exchange apparatus
FR725413A (en) * 1931-02-12 1932-05-12 Improvements to heat exchanger devices
US2633338A (en) * 1947-02-19 1953-03-31 Continental Aviat & Engineerin Heat exchanger
DE814159C (en) * 1949-07-08 1951-09-20 Otto H Dr-Ing E H Hartmann Heat exchanger
DE1117148B (en) * 1958-01-04 1961-11-16 Gea Luftkuehler Happel Gmbh Heat exchangers, especially for liquid media that must not come into contact with one another
GB1140533A (en) * 1965-05-21 1969-01-22 English Electric Co Ltd Liquid-metal cooled nuclear reactors
CA946834A (en) * 1969-06-18 1974-05-07 Giuliano Rossi Heat transfer pipes
DE2143276A1 (en) * 1971-08-30 1973-03-15 Parca Waermeprodukte Gmbh Heat exchanger with bundle of tube-in-tube elements - - held between distribution and collection chambers
US4204573A (en) * 1977-05-09 1980-05-27 Pvi Industries, Inc. Heat exchanger with concentric flow tubes

Also Published As

Publication number Publication date
EP0048873A2 (en) 1982-04-07
EP0048873A3 (en) 1982-09-01
DE3036334C2 (en) 1985-09-12
DE3036334A1 (en) 1982-07-29
DE3164193D1 (en) 1984-07-19
ATE7960T1 (en) 1984-06-15

Similar Documents

Publication Publication Date Title
DE2725239A1 (en) HEAT EXCHANGE SYSTEM AND METAL PANEL FOR A HEAT EXCHANGE SYSTEM
DE1501620A1 (en) Improvements from heat exchangers
DE60023394T2 (en) heat exchangers
DE19709601A1 (en) Plate heat convector for especially oil/coolant coolers
DE3212727C2 (en) Heat exchanger
DE2536657C3 (en) Heat exchangers for preheating combustion air, in particular for oil-heated industrial furnaces
DE2722288A1 (en) PLATE-SHAPED EVAPORATOR
EP0180086A2 (en) Oil cooler
AT410370B (en) HEAT EXCHANGER AND METHOD FOR THE PRODUCTION THEREOF
DE4327213C2 (en) Recuperative heat exchangers, in particular coolers for motor vehicles
DE2742839A1 (en) HEAT TRANSFER FOR A GAS OR OIL-HEATED FLOW WATER HEATER
EP0048873B1 (en) Heat transfer device
EP0177904B1 (en) Device for exchange of heat between two gases conducted in cross-flow to each other
DE3906747A1 (en) Charge air cooler
EP2795638B1 (en) Cooling radiator having liquid cooling
DE4340506A1 (en) Heating or cooling heat exchanger
EP2035757A1 (en) Heating unit, particularly tube radiator
DE2126226C3 (en) Heat exchanger
DE2708377A1 (en) Tubular heat exchanger - with multistart helical ribs for heat releasing medium on core tube outside
DE966473C (en) Graphite heat exchanger
DE939996C (en) Heat exchanger
DE3026478C2 (en) Low temperature radiator
EP0209107B1 (en) Heat exchanger with a relieving rod for the heat exchange tubes
AT404756B (en) HEAT EXCHANGER
DE102008026074B3 (en) Heat exchanger i.e. assembly unit, for boiler building, has flow openings exhibiting cross-section, which is dimensioned smaller than slotted hole-like cross-section of one connection channel, and flow gap provided between openings

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LOROWERK K.H. VAHLBRAUK GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19830217

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19840613

Ref country code: BE

Effective date: 19840613

REF Corresponds to:

Ref document number: 7960

Country of ref document: AT

Date of ref document: 19840615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3164193

Country of ref document: DE

Date of ref document: 19840719

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840810

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840928

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19840930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19841217

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860930

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19880911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880930

Ref country code: CH

Effective date: 19880930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890401

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890911

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST