EP3196853A1 - Maschinensichtbasiertes verfahren und system zur flugzeugandockungsführung und identifizierung des flugzeugtyps - Google Patents
Maschinensichtbasiertes verfahren und system zur flugzeugandockungsführung und identifizierung des flugzeugtyps Download PDFInfo
- Publication number
- EP3196853A1 EP3196853A1 EP15828078.4A EP15828078A EP3196853A1 EP 3196853 A1 EP3196853 A1 EP 3196853A1 EP 15828078 A EP15828078 A EP 15828078A EP 3196853 A1 EP3196853 A1 EP 3196853A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- image
- aircraft
- region
- engine
- unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 67
- 238000003032 molecular docking Methods 0.000 title claims abstract description 38
- 238000007781 pre-processing Methods 0.000 claims abstract description 14
- 238000012545 processing Methods 0.000 claims description 74
- 238000005286 illumination Methods 0.000 claims description 66
- 238000012795 verification Methods 0.000 claims description 52
- 238000001514 detection method Methods 0.000 claims description 42
- 230000005484 gravity Effects 0.000 claims description 23
- 230000008569 process Effects 0.000 claims description 19
- 241001270131 Agaricus moelleri Species 0.000 claims description 18
- 230000008030 elimination Effects 0.000 claims description 15
- 238000003379 elimination reaction Methods 0.000 claims description 15
- 238000009826 distribution Methods 0.000 claims description 10
- 230000008859 change Effects 0.000 claims description 7
- 238000013139 quantization Methods 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 claims description 6
- 238000003702 image correction Methods 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000005192 partition Methods 0.000 claims 1
- 238000004148 unit process Methods 0.000 claims 1
- 238000012544 monitoring process Methods 0.000 abstract description 5
- 230000010365 information processing Effects 0.000 abstract description 4
- 230000006870 function Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 14
- 230000000007 visual effect Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 5
- 230000000877 morphologic effect Effects 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 238000004364 calculation method Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 230000016776 visual perception Effects 0.000 description 4
- 238000004422 calculation algorithm Methods 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 101100030351 Schizosaccharomyces pombe (strain 972 / ATCC 24843) dis2 gene Proteins 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- 241000533950 Leucojum Species 0.000 description 1
- 241000669298 Pseudaulacaspis pentagona Species 0.000 description 1
- 241000316887 Saissetia oleae Species 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000004873 anchoring Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000010339 dilation Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012634 optical imaging Methods 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/06—Traffic control systems for aircraft, e.g. air-traffic control [ATC] for control when on the ground
- G08G5/065—Navigation or guidance aids, e.g. for taxiing or rolling
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F1/00—Ground or aircraft-carrier-deck installations
- B64F1/002—Taxiing aids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F1/00—Ground or aircraft-carrier-deck installations
- B64F1/18—Visual or acoustic landing aids
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/11—Region-based segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/136—Segmentation; Edge detection involving thresholding
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/174—Segmentation; Edge detection involving the use of two or more images
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/10—Segmentation; Edge detection
- G06T7/194—Segmentation; Edge detection involving foreground-background segmentation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/70—Determining position or orientation of objects or cameras
- G06T7/73—Determining position or orientation of objects or cameras using feature-based methods
- G06T7/74—Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/90—Determination of colour characteristics
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/26—Segmentation of patterns in the image field; Cutting or merging of image elements to establish the pattern region, e.g. clustering-based techniques; Detection of occlusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/28—Quantising the image, e.g. histogram thresholding for discrimination between background and foreground patterns
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/42—Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
- G06V10/435—Computation of moments
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/50—Extraction of image or video features by performing operations within image blocks; by using histograms, e.g. histogram of oriented gradients [HoG]; by summing image-intensity values; Projection analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/60—Extraction of image or video features relating to illumination properties, e.g. using a reflectance or lighting model
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
- G06V10/7515—Shifting the patterns to accommodate for positional errors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
- G06V20/54—Surveillance or monitoring of activities, e.g. for recognising suspicious objects of traffic, e.g. cars on the road, trains or boats
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B5/00—Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied
- G08B5/06—Visible signalling systems, e.g. personal calling systems, remote indication of seats occupied using hydraulic transmission; using pneumatic transmission
-
- G—PHYSICS
- G08—SIGNALLING
- G08G—TRAFFIC CONTROL SYSTEMS
- G08G5/00—Traffic control systems for aircraft, e.g. air-traffic control [ATC]
- G08G5/0017—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information
- G08G5/0026—Arrangements for implementing traffic-related aircraft activities, e.g. arrangements for generating, displaying, acquiring or managing traffic information located on the ground
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30236—Traffic on road, railway or crossing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30248—Vehicle exterior or interior
- G06T2207/30252—Vehicle exterior; Vicinity of vehicle
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
Definitions
- the present disclosure relates to a method for aircraft docking guidance and aircraft type identification, and more particularly to a machine vision-based method and a machine vision-based system for aircraft docking guidance and aircraft type identification.
- Aircraft docking berth guidance refers to the process of bringing an arriving aircraft from the end of the taxiway to the parking position of the apron and accurately anchoring it.
- the aim of the berth guidance is to ensure the safe and accurate berthing of the docked aircraft, to facilitate the accurate docking of the airplane and various ground interfaces, and to make the boarding bridge to accurately abut to the aircraft door to improve the efficiency and safety of the airport.
- An automated aircraft berth guidance system according to the use of different types of sensors is mainly divided into:
- the two types of automatic aircraft berth guidance systems may be also known as visualization berth guidance systems.
- the buried induction coil type of automatic guidance system may determine the location of the docked aircraft by detecting whether there is a metal object passing through or staying at the buried induction coil.
- the buried induction coil has following advantages: fast response, low cost, no requirements on weather and illumination conditions.
- the buried induction coil suffers from large error, low anti-jamming capability.
- leads and electronic components buried in the ground tend to be crushed, have low reliability, low measurement accuracy, and cannot identify a model type and cannot be easily debugged or maintained.
- the laser-scan ranging type of automatic guidance system may determine information such as an aircraft position, speed and type model by laser ranging and laser scanning.
- the laser-scan ranging type of automatic guidance system does not tend to be influenced by environment illumination and weather condition.
- the laser-scan ranging type of automatic guidance system has a high accuracy and may be easily debugged or maintained.
- the visual perception type of automatic guidance system may acquire image information of an aircraft docketing process by optical imaging, and determine information such as an aircraft position, speed and type model by intelligent information processing technology.
- the system has a simple architecture, a low cost and a high intelligent level, and may be easily debugged or maintained. However, it has requirements on the weather and illumination conditions, and thus has poor adaptability.
- VDGS visual docking guidance system
- VDOCKS video docking guidance system
- the technical problem to be solved by the present disclosure is to realize aircraft docking guide in a visual way, which can effectively improve the accuracy of aircraft acquisition, tracking and positioning during an aircraft docking process.
- model identification and identity verification can be realized.
- the present disclosure provides a method for guiding an aircraft docking and recognizing an aircraft model based on machine vision, the method including:
- the image pre-processing step further includes:
- the step for processing a rain-or-snow image includes:
- the fog image processing step is performed by homomorphic filtering.
- the aircraft capturing step further includes:
- the feature verification step further includes:
- step S343 if no aircraft engine is detected, the detection in the steps S341-343 are performed iteratively, with the threshold for judging a blackest part, the threshold for determining a circle and the similarity threshold being increased; if after that, still no aircraft engine is detected, an open operation is performed for all the blackest regions using a circular template of 7*7, and the steps S341-343 are performed for another time; if still no aircraft engine is detected, the above detection steps are performed iteratively for another 2 times; and if still not aircraft engine is detected, it is determined that there is no engine in the image.
- the threshold for judging a blackest part, the threshold for determining a circle and the similarity threshold are increased respectively by 0.05, 0.5 and 20.
- the step S344 further includes:
- the aircraft tracking step further includes:
- the aircraft positioning step includes:
- the step S51 further includes:
- the step S52 further includes:
- the step S52 further includes:
- the step S53 further includes:
- step S7 is an aircraft identification and identity verification step and further includes:
- the step S71 further includes:
- the step S72 further includes:
- the present disclosure also discloses a system for guiding an aircraft docking and recognizing an aircraft model based on machine vision, the system including:
- the present disclosure can realize the acquisition, tracking, positioning and identity verification of the aircraft in the process of aircraft docking, and display the airplane berth guidance information to provide correct information and effective berth guidance for the aircraft pilot, co-pilot or other personnel, so that the aircraft may achieve safe and effective berth, improving the efficiency of airport operations to ensure safety.
- Fig. 1 is a block diagram of a machine vision-based system for aircraft docking guidance and aircraft type identification according to an embodiment of the present disclosure
- Fig. 2 is a schematic diagram of aircraft docking guidance according to the present disclosure.
- the machine vision-based system for aircraft docking guidance and aircraft type identification mainly consists of a photographing device 1, a central processing device 2 and a display device 3.
- the photographing device 1 is coupled to the central processing device 2, and the central processing device 2 is coupled to the display device 3.
- the photographing device 1 is configured to send a photographed image to the central processing device 2, and the central processing device 2 is configured to send contents to be displayed which contains guidance information to the display device 3.
- the photographing device 1 is installed behind a stop line 42 of an aircraft berth ground 4, preferably aiming at a guide line 41, with a height of the installation place higher than the body of an aircraft 5 for about 5-8m preferably.
- a dash line connected to the photographing device 1 represents that the photographing device 1 is installed right above the ground.
- the central processing device 2 may be a calculating device which is capable of receiving data, processing data, storing data, generating image data to be displayed and sending data, and include functional modules configured to perform aircraft berthing scenario configuration, video image pre-processing, aircraft capturing, aircraft tracking, aircraft positioning, aircraft identification and identity verification and information displaying, all of which are installed in the central processing device 2 as software.
- the display device 3 is a large-size information display screen installed in the airport, for aircraft drivers to watch.
- an airport staff may also carry a hand-held display device to watch a condition of an aircraft.
- Fig. 3 is a flowchart of aircraft docking guidance and aircraft type identification according to an embodiment of the present disclosure.
- the machine vision-based method for aircraft docking guidance and aircraft type identification of the present disclosure includes the following steps.
- Step S1 is to configure the aircraft berthing scenario.
- the aircraft docking guidance process may be divided into several phrases and each of the phrases has different monitoring content. That is to say, the aircraft berthing scenario requires to be configured in advance.
- a monitoring scenario of the aircraft berth ground 4 is divided into various information processing functional regions, in order to narrow a scope of a region for image processing and improve the processing efficiency.
- a scale with alternating black and white segments is placed adjacent to the guide line 41.
- Each black segment has a length identical to that of each white segment.
- Each segment may have a maximum length of 1m. However, the length of each segment may be smaller, such as 0.5m, 0.25m, and so on, depending on the resolution of the photographing device.
- a total length of the scale does not exceed a scope for calculating a distance of the position of the aircraft, generally is 50m.
- the monitoring scenario may be reproduced through the software executed in the central processing device 2.
- a picture of the aircraft berth ground 4 which is captured by the photographing device 1 may be displayed by running the software.
- a relevant region may be marked by manually drawing a line, a box and a dot and the marks in the relevant region may be stored and recorded.
- the photographing device 1 captures a scenario image of the aircraft berth ground 4 when no aircraft is parked, and transmits the image to the central processing device 2.
- the aircraft berthing scenario configuration is as shown in Fig. 4 .
- a box 40 represents a picture displayed for mark operation and a region used for depiction.
- Dash-line boxes in Fig. 4 represent positions for manual depiction. Lines may be manually drawn on the displayed image.
- a guide line 41 and a stop line 42 are respectively marked, and the position information of the guide line 41 and the stop line 42 in the image is stored and recorded.
- a capturing region 6, a tracking and positioning region 7 and a relevant ground-service device region 8 are marked.
- the position information of the capturing region 6 and the tracking and positioning region 7 in the image is stored and recorded.
- the aircraft type recognition and identity recognition region and the tracking and positioning region 7 may correspond to the same region.
- all dots 9 may be marked beside and adjacent to the guide line 41 with a maximum interval of 1m.
- the position information of all of the dots 9 in the image as well as a distance of each of the dots from a first dot 91 in the actual scenario are stored and recorded.
- the portion of the image to be marked may be enlarged to dozens of pixels wide, and then the manual marking may be conducted in the enlarged portion to improve the accuracy in marking.
- the marked capturing region 6 and the tracking and positioning region 7 do not strictly require accuracy. It will suffice that an upper edge of the capturing region 6 is positioned about 100m away from the stop line 42 in the actual scenario, and a lower edge of the capturing region 6 is positioned about 50m away from the stop line 42 in the actual scenario; and an upper edge of the tracking and positioning region 7 is positioned about 50m away from the stop line 42 in the actual scenario, and a lower edge of tracking and positioning region 7 is positioned just anywhere below the stop line 42.
- step S1 above the dash line is performed after the system is installed and before the docking guidance. Steps below the dash line are all performed during the docking guidance. Steps in the dash-line box are performed in real time and updated during the docking guidance.
- Step S2 is performed after step S1.
- Step S2 is an image pre-processing step.
- Figs. 5A and 5B illustrates a detailed flowchart of the image pre-processing step.
- the photographing device 1 captures images of the capture region 6 in real time. For each captured image, step S2 and steps subsequent to step S2 are performed.
- Step S2 further includes the following steps.
- step S21 gray scales of a captured image are acquired.
- step S22 an average of the gray scales and a variance of the gray scales are calculated, and it is determined whether the average of the gray scales of the image is smaller than a lower limit value. If the average of the gray scales of the image is smaller than the lower limit value, it means that the image is an image of a low illumination and step S25 of processing a low-illumination image is performed. If the average of the gray scales of the image is not smaller than the lower limit value, step S23 is performed.
- the lower limit value is set in advance, and may be a value between 50-60.
- step S23 it is determined whether the average of the gray scales of the image is larger than an upper limit value. If the average of the gray scales of the image is larger than the upper limit value, it means that the image is an image of a high illumination and step S24 of processing a high-illumination image is performed. If the average of the gray scales of the image is not larger than the upper limit value, it means that the image is an image of a normal illumination, and step S26 is performed.
- the upper limit value may be set in advance, and may be a value between 150-160.
- An image with an average gray scale between the upper limit and the lower limit is an image of a normal illumination.
- Step 24 is a step for processing a high-illumination image.
- a high-illumination image is processed to have a decreased illumination with gamma transformation.
- Step 25 is a step for processing a low-illumination image.
- a low-illumination image is processed with non-linear transformation.
- f ( x , y ) is the original image
- (x,y) is a coordinate of a pixel point in the image
- g ( x , y ) is the processed image
- a is a parameter for processing the low-illumination image
- a may be 0.01.
- step S26 for an image of a normal illumination, it is determined whether the variance of the normal-illumination image is larger than a variance standard value. If the variance of the normal-illumination image is larger than the variance standard value, it means that the normal-illumination image may be an image captured in rain, snow or fog, and step S27 is performed. If the variance of the normal-illumination image is not larger than the variance standard value, it means that the normal-illumination image is not an image captured in rain, snow or fog, but a normal image, and no processing is needed.
- step S27 it is determined whether an entropy of the normal-illumination image is larger than an entropy threshold value. If the entropy of the normal-illumination image is larger than the entropy threshold value, it means that the normal-illumination image may be an image captured in rain or snow, and step S28 of processing an image captured in rain or snow is performed. If the entropy of the normal-illumination image is not larger than the entropy threshold value, it means that the normal-illumination image may be an image captured in fog, and step S29 of processing an image captured in fog is performed.
- the entropy is a mathematical variable and generally represents an amount of information.
- the entropy represents an amount of details in the image, that is an amount of information contained in the image.
- the entropy may be used to distinguish an image captured in rain or snow from an image captured in fog.
- an average neighborhood gray scale of the image is taken as a spatial characteristic quantity of the distribution of the gray scales.
- Step S28 is a step for processing a rain-or-snow image.
- linear correlation of the luminance is determined by utilizing a photometric model of the pixels in an image sequence, in order to remove the influence of rain or snow to the image.
- An image captured in rain or snow may have the following photometric model.
- the corresponding pixel point P has luminance values of I n- 1 , I n , I n +1 which satisfies the following conditions.
- step S28 the method further includes the following steps.
- a pixel that is contaminated by rain or snow and to be processed is searched for by utilizing the photometric model.
- a pixel point P of a current image n it is determined whether I n- 1 equals to I n +1 , and whether ⁇ I is larger than or equals to c. If I n- 1 equals to I n +1 and ⁇ I is larger than or equals to c, it may be determined that the pixel point P of the image n is a pixel to be processed. The above determination is made for all pixels in the image n, until all of the pixels to be processed are searched out.
- step S282 luminance values of all of the pixels to be processed are adjusted.
- Step S282 may further include the following steps.
- step S2821 for a to-be-processed pixel P of the image n, it is extracted luminance values of the same pixel P in former two frames of images (n-1), (n-2) of the image n and in latter two frames of images (n+1), (n+2) of the image n. It is determined whether the pixel P in each of the extracted four frames of images is a pixel to be processed. If the pixel P in each of the frames is a pixel to be processed, step S2822 is performed, otherwise step S2823 is performed.
- an average value of luminance values of all of the pixels adjacent to the to-be-processed pixel P is calculated, and the luminance value of the to-be-processed pixel P is replaced with the average value, in order to eliminate the influence of the rain or snow to the luminance of the image.
- a to-be-processed pixel P of the image n it is extracted luminance values of the same pixel P in former two frames of images (n-1), (n-2) of the image n and in latter two frames of images (n+1), (n+2) of the image n. From the luminance values of the corresponding pixel point in the four frames of images, the smallest and the second smallest luminance values are selected. An average value of the smallest and the second smallest luminance values is calculated. The luminance value of the to-be-processed pixel P of the image n is replaced with the average value, to avoid the influence of the rain or snow to the luminance of the image. In another embodiment, the luminance value of the to-be-processed pixel P of the image n may be replaced with the smallest value of the luminance values of the corresponding pixel point in the four frames of images.
- luminance values of the corresponding pixel point in the former one, three or more frames and latter one, three or more frames of the image n may also be extracted.
- step S29 an image captured in frog is processed.
- the frog image process step of the step S29 may be performed with homomorphic filtering, to eliminate influence of frog to the luminance of the image.
- H u v ⁇ H ⁇ ⁇ L 1 ⁇ e ⁇ c D 2 u v / D 0 2 + ⁇ L
- Fig. 6 illustrates an exemplary diagram of a profile of a homomorphic filter function.
- g(x, y) is a result of the frog image process step.
- Each frame of image is pre-processed at step S3, and become a frame of image with high quality. Then, each frame of image may be processed in subsequent steps.
- Step S3 is performed after step S2.
- Step S3 is an aircraft capturing step.
- the images after pre-processing step S2 require further analysis, to accurately recognize whether an aircraft appears in these images.
- Step S3 further includes: Step S31, a background elimination step; Step S32, a shade elimination step; Step S33, a region classifying step; and Step S34, a feature verification step.
- the background of the image should be eliminated firstly to erase noise in the images.
- the background elimination step of step S31 is to use a single Gaussian background model to simulate the dynamic distribution of the background in the scene and to establish a background model, and then the current frame and the background model are differentiated to eliminate the background.
- the flowchart of the background elimination step is shown in Fig. 7A .
- Step S31 further includes a step S311: initialization of the background model.
- a single Gaussian background model is used.
- each pixel in the background model is considered as in a one-dimensional normal distribution, and the pixels are independent from each other.
- the distribution may be determined by an average value and a variance of a normal distribution.
- Training of the background model is performed using successive N-frame images that have been processed at step S2, to determine the average value and variance of the Gaussian distribution. If in the captured N-frame images, an aircraft does not appear in the capturing region 6, the scene of the capturing region 6, i.e. the N-frame images are the background images. The N-frame images are captured at the same position. The N-frame images may be for example 50 frames of images captured by a photographing device 1.
- an average gray value ⁇ 0 and a variance ⁇ 0 2 of gray scale of the pixel in the continuous N frame images f ( x,y ) are calculated.
- a Gaussian model ⁇ ( x i , ⁇ i , ⁇ i ) is established for each pixel in each image.
- the subscript i refers to an order number of the frame of the image
- x i is a current pixel value of the pixel point
- ⁇ i is the average value of the Gaussian model of the current pixel point
- ⁇ i is the mean squared error of the Gaussian model of the current pixel point.
- ⁇ ( x i , ⁇ i , ⁇ i ) determination is made according to ⁇ ( x i , ⁇ i , ⁇ i ). If ⁇ ( x i , ⁇ i , ⁇ i ) ⁇ Tp (where, Tp is a probability threshold, or may be referred to a foreground detection threshold), the pixel point may be determined as a foreground pixel point, otherwise the pixel point may be determined as a background pixel point (at this time, x i matches with ⁇ ( x i , ⁇ i , ⁇ i )) . All collected background pixel points form a background model. Then, the initialization of the background model is completed.
- the foreground detection threshold may be set according to a value of d i / ⁇ i . If d i / ⁇ i > T (the value of T is between 2 and 3), the pixel point may be determined as a foreground pixel point, otherwise may be determined as a background pixel point.
- the background model is updated.
- the background model needs to respond to these changes, and the background model should be updated.
- ⁇ is an updating rate and represents a speed of updating of the background model. If the pixel is a background pixel, the updating rate ⁇ may be 0.05. If the pixel is a foreground pixel, the updating rate ⁇ may generally be 0.0025.
- step S313 If the scene does not change after the completion of step S311, the process goes directly to perform step S313.
- step S313 after a current frame of image taken by the photographing device 1 is processed at step S2, the current frame and the background model are differentiated to obtain a foreground region of the current frame of image.
- the method also includes performing morphological corrosion and dilation operations on the obtained differentiation result, to obtain a more accurate boundary of the foreground region.
- This morphological corrosion and expansion operation is a step that is known to those skilled in the art in the prior art.
- the shadows in the image can be further eliminated for accurate capture of the aircraft.
- the gray values of the respective pixels in the foreground region obtained through the processing of step 31 are firstly computed to find the maximum gray value g max and the minimum gray value g min, and the shading elimination is performed on the regions with lower gray values.
- the region of the lower gray level value is a region of a gray value less than g min + ( g max - g min) *0.5.
- Each frame of image includes a foreground region and a background region, and the foreground region and the background region may overlap with each other, the pixels in the foreground region may have corresponding background pixels at the same position in the background region.
- the gray scale ratio between each pixel and the corresponding background pixel is obtained in the lower gray level region, and if the ratio is between 0.3 and 0.9, the pixel is regarded as a shadow point.
- the non-shaded regions in the set of shadow points are then removed by multiple morphological etch and expansion operations, resulting in a shaded region.
- the shadow region is removed from the foreground region, and the target region is obtained by eliminating the holes in the foreground region and connecting the regions by multiple morphological expansion and corrosion operations.
- the target region corresponds to the object appearing in the capturing region 6, possibly the aircraft, or other objects such as a vehicle.
- a template of a standard front view of an aircraft region is created in advance, and the template can be used for distinguishing an aircraft from a non-aircraft, since an aircraft has a feature of narrow at either side and wide in the middle.
- the target region is extracted through change detection, and a vertical projection curve of the target region is calculated. Subsequently, a vertical projection curve of the standard front view of an aircraft region is obtained. It may be determined whether a correlation coefficient between the vertical projection curve of the target region and the vertical projection curve of the standard front view of the aircraft region is greater than a classification threshold. If so, it means that the target region corresponds to an aircraft and the process is turned to perform step S34. Otherwise, it means that the target region corresponds to an object other than an aircraft.
- the classification threshold is, for example, 0.9.
- step S33 whether or not the target region is an aircraft is substantially determined only based on the external outline. Further, it is further determined through a feature verification step of step S34 whether the target region is indeed an aircraft.
- the feature verification step is to further verify whether the target is an aircraft by detecting the engine and the front wheel of the captured aircraft.
- the method may also include the following steps.
- a blackest image region is extracted.
- a gray scale histogram of the target region of the current frame of image is made.
- the maximum (gmax) gray value and the minimum value (gmin) are acquired in a gray level range of 1% to 99% (generally gray scales of 2 to 253), to obtain a ratio of the maximum (gmax) gray value / the minimum (gmin) gray value, which is not equal to 0. It may be determined whether it is day or night based on the ratio.
- a preset threshold for extracting the darkest region may be selected according to the ratio, to obtain the darkest region.
- a threshold BlackestJudge is used to extract a region in the image in which the gray value is between gmin and (gmax-gmin) * BlackestJudge + gmin, that is, the darkest part of the image, to obtain the darkest region.
- the threshold BlackestJudge may be selected as 0.05, for example. Otherwise, it is night, and the threshold BlackestJudge may be selected as 0.5, for example.
- a typical blackest region may be shown as in Fig. 7B , where each of the graphs is a darkest region.
- Step S342 Circular-like detection.
- the gravity center coordinate may be calculated using moments of the boundary.
- a distance from each pixel to the gravity center is calculated. If a ratio of the maximum value of the calculated distances and the minimum value of the calculated distances exceeds a preset value (preferably the threshold for determining a circle circleJudge may be 1.5), it may be determined that the boundary does not correspond to a circular region. Otherwise, if the ratio of the maximum value of the calculated distances and the minimum value of the calculated distances does not exceed the preset value, it may be determined that the boundary corresponds to a circular region. Determination on all of the boundaries may be made according to this rule.
- a preset value preferably the threshold for determining a circle circleJudge may be 1.5
- the gravity center coordinate and an average distance from the boundary to the gravity center may be recorded. Then, the process is turned to a similarity determination step S343.
- Step S343 is a similarity determination step.
- Fig. 7C shows a flow chart of the similarity determination step.
- Step S343 may also include the following steps.
- step S3431 it may be determined whether there is an engine in the like-circular regions by calculating the similarity of the like-circular regions. If so, step S4 is performed. Otherwise, step S3432 is performed.
- Height is a height of the gravity center
- Radius is an average distance from the boundary to the gravity center (i.e. radius).
- step S3432 is performed.
- step S3432 the threshold value is adjusted, and steps S341, 342, and 3431 may be performed again. If the engine region is not detected, step S3433 is performed.
- the thresholds BlackestJudge, circleJudge, and similarThresh are respectively increased, and the increased amounts are preferably set to 0.05, 0.5, and 20, respectively, and the steps of extracting the blackest regions, circle-like regions detection and engine detection are performed. If the engine region is still not detected, step S3433 is performed.
- step S3433 an open operation is performed for all the blackest regions using a circular template for morphological processing, and steps S342 and 3431 are repeated.
- the circular template may preferably be a circular template of 7 * 7.
- N may preferably be twice.
- step n-1 When detecting subsequent frames of images, if the number of iterations used in the previous frame is n, it is iterated directly from step n-1.
- step S344 the front wheel is detected.
- 256 levels of grayscale are quantized to 64 levels.
- An example of a grayscale histogram of 256 levels of grayscale is shown in Fig. 7D .
- a grayscale histogram of 64 levels of grayscale after the quantization is shown in Fig. 7E .
- a first peak 3001 and a first valley 3002 are searched out in the histogram of the 64 levels of grayscale after the quantization.
- hist 256 (i) represents a total number of pixels with a grayscale i in the histogram of the 256 levels of grayscale.
- the grayscales are partitioned according to the optimal valley BestValley. For portions smaller than the optimal valleys BestValley, trivial points with small areas are removed, a closing operation is performed on the image with a flat elliptical structure element. The effect may be shown in Fig. 7F .
- the Hu moment feature is a geometrical moment proposed by Hu (Visual pattern recognition by moment invariants) in 1962.
- the Hu moment feature has characteristics of translation, rotation and scale invariance.
- the Hu moment feature utilizes 7 invariant moments constituted with second order and third order central moments. Therefore, in a 7 th -order Hu moment feature, 7 th -order is the uniquely determined.
- a threshold value preferably 1
- step S4 is performed.
- Step S4 aircraft tracking step.
- the position and radius of the engine are extracted according to the great difference in brightness between the outer wall and the inner part of the engine and the circular structure of the engine, so as to realize the real-time positioning of the aircraft and accurately obtain the deviation degree of the aircraft with respect to the guide line.
- the front wheel of the aircraft may be found according to the spatial relationship, and the aircraft may be positioned.
- step S2 is performed after S2 and S3.
- the position of the engine in the current frame of image will only be slightly shifted. Therefore, there is no need to detect the engine in the entire map again, and the engine may be extracted from a smaller extended region in the current frame of image.
- the parameters (BlackestJudge, circleJudge) of the previous frame may be used for detecting the target in the current frame.
- the flow chart of the aircraft tracking step is shown in Fig. 8A .
- step S41 it is determined whether or not there is engine information from the previous frame. If so, step S42 is performed. Otherwise, step S46 is performed.
- the position of the engine is determined using the flood filling method.
- the engine Since the engine has a light-colored outer wall, the gray value thereof will be significantly higher than the black region inside the engine.
- a partial image of the aircraft engine is shown in Fig. 8B . Therefore, the center of the engine in the previous frame may be taken as a seed, to obtain the black region of the entire engine using the flood filling method.
- the gray value of the engine boundary may not be much higher than the center. Additionally with some noise points, overflow may occur using the flood filling method, resulting in invalid filling, so that the resulted engine region is significantly too large, and is not circular any longer. In this case, the process proceeds to step S43.
- step S43 it is determined whether or not the filling result at step S42 is valid. If so, step S46 is performed, otherwise, step S44 is performed.
- Step S44 a dark environment detection and tracking step.
- the parameters used in processing the previous frame of image may be readily used, and steps S341 and S342 are performed again to detect the engine region.
- step S45 it is determined whether or not the detection result is valid. If so, the information of the engine region is output. Otherwise, the engine information of the previous frame is blanked, and step S41 is performed.
- step S46 the feature verification step S34 is directly performed and the information of the engine region is output.
- Step S46 cannot be performed for more than twice for a series of images in one aircraft docking.
- the feature verification step S34 is performed.
- Step S47 a front wheel tracking step.
- the front wheel of the aircraft is detected using the front wheel detection method at step S344, for the subsequent aircraft positioning step.
- step S48 a front wheel tracking emergency processing step.
- the shift of the front wheel of the frame may be estimated using a shift of an engine in adjacent two frames.
- the estimated result is returned as a front wheel tracking result. If front wheel tracking results of more than N (N may be 20-30 frames) frames are significantly different from aircraft forward parameters, an error message may be outputted.
- Step S5 an aircraft positioning step. This step is used to generate correct docking guidance information.
- Step S5 further includes the following steps.
- Step S51 a photographing device calibration and image correction step.
- Step S52 an aircraft front wheel deviation degree calculating step.
- Step S53 an aircraft front wheel actual distance calculating step.
- the photographing device calibration process in the step S51 is to determine geometrical and optical parameters of the photographing device 1 and the orientation of the photographing device 1 with respect to the world coordinate system.
- Photographing device calibration may be performed based on OpenCV.
- the calibration process uses a black and white planer checkerboard as a calibration template.
- a plurality of pictures of the planer calibration template are captured from different angles to realize calibration of the photographing device 1.
- the calibration process requires images of at least 10 pieces of 7 * 8 checkerboards or larger.
- the calibration pictures should be captured as many as possible from different angles.
- the implementation process may be as follows:
- step S5 a number N of calibration pictures are read.
- a corner of the chessboard is found by using a function cvFindChessboardCorners () of OpenCV.
- the N calibration pictures read are respectively substituted to the function cvFindChessboardCorners (). If all the corners are successfully found, the function returns 1, and coordinates of the corners in the image coordinate system are acquired. If it is not successful, the function returns 0.
- step S513 if the corners are successfully searched out, the coordinates of the corners in the calibration template are substituted into the function cvCalibrateCamera2 ().
- the function returns a parameter matrix, a distortion coefficient, a rotation vector and a translation vector of the photographing device 1.
- a lens Since in practice, a lens has different degrees of distortion, mainly a radial distortion and a slight tangential distortion, the radial distortion coefficient and the tangential distortion coefficient is contained in the distortion coefficient returned by the function cvCalibrateCamera2 (). Therefore, the parameters are substituted into a function cvUndistort2 () of OpenCV, to remove the lens distortion in mathematics.
- the aircraft front wheel deviation degree calculation step S52 is to determine whether the front wheel of the aircraft is on the guide line, or left or right with respect to the guide line.
- the coordinates of the position of the front wheel may be obtained from the result of the front wheel tracking step S47. Then, relevant position information of the guide line, the stop line and the like may be obtained from the scenario definition. Based on the algebra knowledge of relationship between a midpoint and a straight line, the degree of deviation of the front wheel of the aircraft may be determined.
- the process may specifically include the following.
- the slope of the line is k 1 ⁇ ⁇ .
- the results obtained by this equation can be either positive or negative.
- d 2 ⁇ 0 means that the front wheel of the aircraft exceeds the stop line 41.
- d 2 ⁇ 0 means that the front wheel of the aircraft dose not reach the stop line 41.
- k 1 > 0 means that the aircraft is deviated to left
- d 1 ⁇ 0 means that the aircraft is deviated to right.
- k 1 > 0, d 1 ⁇ 0 means that the aircraft is deviated to left
- d 1 > 0 means that the aircraft is deviated to right.
- Deviation to left or to right is determined from a perspective of the pilot of the aircraft.
- > width /2 may be added.
- width represents a threshold
- the threshold may equal to a width of the front wheel of the aircraft.
- the deviation is determined from the parameters as shown in Table 1. Determination Condition Deviation d 2 ⁇ 0 exceeding stop line d 2 ⁇ 0 k 1 > 0(including k 1 ⁇ + ⁇ ) d 1 ⁇ 0 and
- the aircraft front wheel actual distance calculating step S53 is for real-time calculating the true distance of the aircraft from the stop line.
- the correspondence between image coordinates and geodetic coordinates is established.
- the black and white scale is placed next to the guide line in the scene.
- the mark points are drawn every 1m at the maximum interval, and the distance of each mark point from the first mark point in the actual scene is recorded.
- the coordinates of the mark points set in the scene at S 1 are image coordinates, for example, 20 points in a 1-meter interval, respectively ⁇ po int1, po int2,... po int20 ⁇ .
- a relative coordinate of each point from the endpoint point 1 on the stop line is calculated as ⁇ relativepoint 1 , relativepoint 2, ... , relativepo int20 ⁇ , where a coordinate of relativepoint1 is (0,0), a distance of each point from the end point relativepoint1 is ⁇ dis 1, dis 2,..., dis 20 ⁇ , d 1 and an actual distance of each point from the end point relativepoint1 is respectively ⁇ 0 m ,1 m ,... ,19 m ⁇ . Then, one-to-one corresponding relationship between ⁇ dis 1 ,dis 2,..., dis 20 ⁇ and ⁇ 0 m, 1 m ,... , 19 m ⁇ may be determined.
- Fig. 9 is an example of the correspondence between the actual distance and the image distance and the fitting curve.
- the horizontal axis represents the actual distance with a unit of m
- the vertical axis is a distance on the image with a unit of a pixel.
- the front wheel of the aircraft on the image is projected on the guide line along a direction of the stop line.
- An Euclidean distance from the projection point to the stop line is denoted by x.
- step S6 the aircraft identification and identity verification step is to verify the model information through image analysis. That is, steps S4, S5 may be performed in synchronization with step S6.
- Fig. 10A illustrates a flow chart of an aircraft identification and verification algorithm.
- Fig. 10B is a schematic diagram of a hierarchical image structure. It is preferable to use a method for detecting coarse-to-fine multi levels of visual features to detect a profile of an aircraft. The method includes the following steps.
- Fig. 10B is a schematic diagram of a hierarchical image structure. Under the environment with a high noise (such as under weather of rain, snow, fog or at night, etc.), a hierarchical image with relatively low resolution may be used. While in sunny weather conditions, using a hierarchical image with higher resolution may result in a higher accuracy. By acquiring the aircraft region in the low-resolution image and mapping the acquired aircraft region to the original image S0, a region divisional result with an mosaic edge effect may be obtained.
- the coarse-to-fine multi-level visual feature detection method is used for bad weather, such as rain, snow, fog, and night when the noise of the image is large, so that decrease of the resolution can improve the detection effect.
- the resolution may be increased to the maximum resolution through subsequent mapping, for identification and validation of the model type of the aircraft. This is a method for detecting features of an aircraft under bad weather.
- the system may automatically determine an optimal resolution according to the quality of the image, in order to extract the profile of the aircraft.
- Step S6 specifically includes the following steps.
- Step S61 parameter verification.
- Step S62 template matching.
- Step S63 comprehensive judgment.
- Step S61 further includes the following steps.
- parameters of the aircraft engine are extracted and compared with parameters of the aircraft engine of a corresponding model type preset in a database of the system.
- the step of extracting the parameters of the aircraft engine may be implemented through the above described steps S341-S343.
- the extracted parameters of the aircraft engine can be counted in pixels.
- the ratio (referred to as a first ratio) of the radii of the engine in the extracted parameters of the aircraft against a radii of an engine corresponding to the model information received by the system in a model parameter database in the airport is calculated.
- the aircraft wing parameters are extracted and compared to the aircraft wing parameters of the corresponding model preset in the database.
- the step of extracting the aircraft wing parameters includes:
- an edge of the aircraft image is extracted using a Canny operator.
- An example of an aircraft image edge is shown in Fig. 10C .
- an aircraft image edge pixel is extracted and the pixel points are enumerated axially in an aircraft engine away from the boarding bridge side (a left side in Fig. 10C ) of the aircraft, and for each pixel, a plurality of straight lines having an inclination angle of 0-20 degrees are drawn, the number of Canny edge pixels passed by each of said straight lines is counted;
- the edge of the aircraft wing is determined, and two lines passing through the largest number of edge pixels are taken as the edge of the aircraft wing.
- the tip of the aircraft wing is determined and the edge pixels of the region around the wing tip are taken as the wing tip feature.
- FIG. 10D An example of a wing profile and an engine profile is shown in Fig. 10D .
- step S6125 parameter comparison is performed.
- the length of the wing of the aircraft is measured by the position of the wing tip, and the ratio (referred to as a second ratio) of the length of the wing of the aircraft to the wing length data corresponding to the received model information in the airport model parameter database is calculated.
- characteristics parameters of the aircraft head are extracted and compared with parameters of aircraft head characteristic corresponding to the model preset in the database.
- Step S6131 the boundary of the aircraft head is determined.
- the center position of the aircraft is determined by the determined aircraft engine parameters.
- the points on the central axis are enumerated as the center of the circle.
- a radius that is 2 to 4 times of the radius length of the aircraft engine is enumerated to draw a circle.
- the circle passing through the largest number of Canny edge pixels is taken as the boundary of the aircraft head.
- the aircraft head window is determined.
- the depth priority search is used to find the longest edge of the upper semicircle of the boundary of the aircraft head which is not adhered to the edge of the aircraft head, to serve as the position of the aircraft head window.
- Step S6133 parameters are compared, aircraft head radius is measured, and the radio (referred to as a third ratio) of the radius of the aircraft head to the radius of the aircraft head corresponding to the received model information in the airport model parameter database is calculated.
- the measured radius of the aircraft head can be in pixels.
- the aircraft tail parameters are extracted and compared with the aircraft tail parameters preset to the corresponding model in the database.
- a portion of the protrusion is found along the upper edge of the boundary of the aircraft head by the method of depth-first search.
- Step S6142 the parameters are compared and the height of the aircraft tail is measured in the unit of pixel.
- the ratio of the aircraft tail height to the aircraft tail parameter corresponding to the model information received in the airport model parameter database is calculated. This ratio is called the fourth ratio.
- step S615 a minimum value and a maximum value among the first ratio, the second ratio, the third ratio, and the fourth ratio are taken, and the ratio of the minimum value / the maximum value is taken as the model similarity parameter as the coefficient 1.
- the template matching step S62 includes:
- Fig.10E is a schematic view of the searched image S, the subgraph S ij , and the template T.
- the global template matching calculation process is: the searched image S, the mark 6001 in the figure, and the width and height W * H.
- a template T, denoted as 6003 in the figure, has wide and height of n * m.
- M is the maximum value that the subgraph S ij can be obtained in the height direction
- N is the maximum value that the subgraph S ij can obtain in the width direction.
- the maximum value Rmax (im, jm) of R (i, j) is found in all the results R (i, j), the corresponding subgraph S ij is the matching target, Rmax (i m , j m ) is the global template similarity parameter of the subgraph S ij .
- the local template matching is performed, respectively, with the aircraft engine, the aircraft wings, the aircraft head, and the aircraft tail position extracted at step S61 as the searched image, respectively, with the engine, the wing, the head and the tail of the standard aircraft image corresponding to the received model information in the airport model parameter database as templates, using the calculation formula at step S621, 4 similarity parameters R of the aircraft engine, the aircraft wings, the aircraft head, and the aircraft tail are respectively calculated, a minimum value of the 4 similarity parameters is removed, and an average of the remaining 3 similarity parameters of the 4 similarity parameters is taken as a local template similarity parameter.
- the local template similarity parameter is used as the coefficient 3.
- step S63 it is judged synthetically that at least two of the coefficients 1, 2, 3 are equal to or greater than a first verification threshold, or when all of the coefficients 1, 2, 3 are greater than a second verification threshold, the currently captured aircraft is matched with the model information obtained in advance, the identity verification is passed, otherwise, the verification fails.
- a step S7 an information display step.
- the display device 3 is a large-sized display installed at an airport for viewing by an aircraft pilot during an aircraft docking process, and also for an airport operator to observe the aircraft.
- Fig. 11 is a diagram showing an example of a possible display mode displayed on the display device 3.
- 7000 denotes a region for displaying guidance information on the display device 3
- 7002 denotes a " T" shape formed by a guide line and a stop line to facilitate showing the relative positions of the aircraft and the guide line and the stop line.
- the berth guidance information such as the specific position of the aircraft determined by the aircraft positioning step S5, including deviation to left or right 7001 and the distance away from the stop line 7003, are displayed on the display device in real time.
- the aircraft type information 7004 verified by the aircraft identification and identity verification step S6 is also displayed on the display device in real time, for pilots to observe the aircraft's route, which improves the safety of aircraft docking.
- the present disclosure realizes the capture, tracking, positioning and identity verification of the aircraft accurately during the docking process of the aircraft, and displays the accurate and effective guidance information of the aircraft berth on the display device 3, so as to provide the aircraft pilot, the co-pilot or other personnel with correct and effective berth guidance, so that the aircraft may achieve safe and effective berth, improving airport efficiency and ensuring safety.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Multimedia (AREA)
- Aviation & Aerospace Engineering (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Mechanical Engineering (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Databases & Information Systems (AREA)
- Medical Informatics (AREA)
- General Health & Medical Sciences (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Health & Medical Sciences (AREA)
- Acoustics & Sound (AREA)
- Image Analysis (AREA)
- Image Processing (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410378566.8A CN105373135B (zh) | 2014-08-01 | 2014-08-01 | 一种基于机器视觉的飞机入坞引导和机型识别的方法及系统 |
PCT/CN2015/083206 WO2016015547A1 (zh) | 2014-08-01 | 2015-07-02 | 一种基于机器视觉的飞机入坞引导和机型识别的方法及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3196853A1 true EP3196853A1 (de) | 2017-07-26 |
EP3196853A4 EP3196853A4 (de) | 2018-07-11 |
Family
ID=55216748
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15828078.4A Withdrawn EP3196853A4 (de) | 2014-08-01 | 2015-07-02 | Maschinensichtbasiertes verfahren und system zur flugzeugandockungsführung und identifizierung des flugzeugtyps |
Country Status (4)
Country | Link |
---|---|
US (1) | US10290219B2 (de) |
EP (1) | EP3196853A4 (de) |
CN (1) | CN105373135B (de) |
WO (1) | WO2016015547A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4235627A1 (de) * | 2022-02-24 | 2023-08-30 | Honeywell International Inc. | Lernbasiertes system und verfahren zur visuellen andockanleitung zur erkennung neuer sich nähernder flugzeugtypen |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101556598B1 (ko) * | 2014-11-25 | 2015-10-13 | 연세대학교 산학협력단 | 주요 픽셀 정보에 기반한 물체 검출 장치 및 그 방법 |
CN107710278A (zh) * | 2015-06-18 | 2018-02-16 | 日本电气方案创新株式会社 | 图像处理设备,图像处理方法和计算机可读记录介质 |
CN106205217B (zh) * | 2016-06-24 | 2018-07-13 | 华中科技大学 | 基于机器视觉的无人机自动检测方法及无人机管制方法 |
EP3488259A4 (de) * | 2016-07-22 | 2020-03-18 | Commonwealth Scientific and Industrial Research Organisation | Niedrigauflösende adaptive entfernungsanzeige |
US20190096246A1 (en) * | 2017-09-25 | 2019-03-28 | Continental Automotive Systems, Inc. | Compact modular wireless sensing radar infrastructure device |
US11188800B1 (en) * | 2018-04-03 | 2021-11-30 | Robert Edwin Douglas | Method and apparatus for improved analysis of CT scans of bags |
FR3082329B1 (fr) * | 2018-06-06 | 2020-05-15 | Thales | Procede de securisation du fonctionnement d'un systeme de vision synthetique d'un aeronef, produit programme d'ordinateur et systeme associes |
EP3584172B1 (de) * | 2018-06-18 | 2020-10-07 | ADB Safegate Sweden AB | Verfahren und system zur führung eines piloten eines ankommenden flugzeugs zu einer stoppposition an einem standplatz |
CN108921844A (zh) * | 2018-07-06 | 2018-11-30 | 许继集团有限公司 | 一种绝缘子缺陷检测方法与装置 |
TWI684996B (zh) * | 2018-07-27 | 2020-02-11 | 台灣迅聯通信股份有限公司 | 智慧駐停輔具 |
EP3691277A1 (de) * | 2019-01-30 | 2020-08-05 | Ubimax GmbH | Computerimplementiertes verfahren und system zur erweiterung eines videostroms einer umgebung |
CN110110115B (zh) * | 2019-03-28 | 2023-05-23 | 西南电子技术研究所(中国电子科技集团公司第十研究所) | 人机交互筛选识别机载目标图像的方法 |
CN109887343B (zh) * | 2019-04-04 | 2020-08-25 | 中国民航科学技术研究院 | 一种航班地服保障节点自动采集监测系统及方法 |
CN110188601B (zh) * | 2019-04-16 | 2022-07-15 | 昆明理工大学 | 一种基于学习的机场遥感图像检测方法 |
PL3757968T3 (pl) * | 2019-06-28 | 2022-06-20 | Adb Safegate Sweden Ab | Układ stanowiska postojowego na lotnisku i sposób |
CN110569764B (zh) * | 2019-08-28 | 2023-12-22 | 北京工业大学 | 一种基于卷积神经网络的手机型号识别方法 |
CN110908387A (zh) * | 2019-12-13 | 2020-03-24 | 齐鲁工业大学 | 一种动态环境水面无人艇路径规划方法、介质及电子设备 |
US11308646B2 (en) * | 2020-05-13 | 2022-04-19 | Walmart Apollo, Llc | Extracting color from item images |
CN112139854B (zh) * | 2020-09-28 | 2022-04-19 | 深圳数马电子技术有限公司 | 一种钥匙齿识别方法以及装置 |
CN114547763B (zh) * | 2020-11-27 | 2024-10-22 | 北京理工大学 | 飞行器指挥控制计算机系统 |
CN112966636A (zh) * | 2021-03-19 | 2021-06-15 | 捻果科技(深圳)有限公司 | 一种用于民航机场飞行区客梯车靠接航空器的自动识别方法 |
KR102567249B1 (ko) * | 2021-04-21 | 2023-08-21 | (주)안세기술 | 3차원 레이저 스캐너를 이용한 항공기 주기유도 시스템 및 이를 이용한 항공기 주기 제어방법 |
CN113420693B (zh) * | 2021-06-30 | 2022-04-15 | 成都新潮传媒集团有限公司 | 一种门状态检测方法、装置、轿厢乘客流量统计方法及设备 |
CN114360296B (zh) * | 2021-12-15 | 2024-04-09 | 中国飞行试验研究院 | 基于地基光电设备的全自动飞机进近降落过程监视方法 |
CN114811339B (zh) * | 2022-03-14 | 2023-08-01 | 柳州工学院 | 一种计算机视觉识别装置 |
CN115661110B (zh) * | 2022-11-08 | 2023-08-01 | 西南交通大学 | 一种透明工件识别与定位的方法 |
CN116039941B (zh) * | 2022-11-27 | 2023-07-18 | 燕山大学 | 适用于海上作业直升机的全自动牵引校正入库系统及方法 |
CN115790610B (zh) * | 2023-02-06 | 2023-04-25 | 北京历正飞控科技有限公司 | 一种无人机精准定位系统及方法 |
CN116091488B (zh) * | 2023-03-07 | 2023-07-14 | 西安航天动力研究所 | 一种发动机摇摆试验的位移测试方法及位移测试系统 |
CN116503768B (zh) * | 2023-06-29 | 2023-11-07 | 中国科学院心理研究所 | 一种飞行设备空中对接方法及装置 |
CN116823808B (zh) * | 2023-08-23 | 2023-11-17 | 青岛豪迈电缆集团有限公司 | 基于机器视觉的电缆绞线智能检测方法 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6324489B1 (en) * | 1999-10-29 | 2001-11-27 | Safegate International Ab | Aircraft identification and docking guidance systems |
US5734736A (en) | 1994-06-17 | 1998-03-31 | Trw Inc. | Autonomous rendezvous and docking system and method therefor |
JP2713172B2 (ja) * | 1994-07-25 | 1998-02-16 | 日本電気株式会社 | 移動体の駐機誘導装置 |
US5675661A (en) * | 1995-10-12 | 1997-10-07 | Northrop Grumman Corporation | Aircraft docking system |
CN1103092C (zh) * | 1996-02-29 | 2003-03-12 | 西门子公司 | 机场导引系统,尤其是机场地面交通导引系统 |
FR2763727B1 (fr) * | 1997-05-20 | 1999-08-13 | Sagem | Procede et systeme de guidage d'un avion vers un poste d'accostage |
US6542086B2 (en) | 1997-09-22 | 2003-04-01 | Siemens Aktiengesellschaft | Docking system for airport terminals |
JP3015875B2 (ja) * | 1998-05-19 | 2000-03-06 | 工業技術院長 | 自動車運転時の車線逸脱検出方法及び検出装置 |
US6353793B1 (en) * | 1999-02-01 | 2002-03-05 | Aero Modifications & Consulting, Llc | System and apparatus for determining the center of gravity of an aircraft |
US6564142B2 (en) * | 1999-02-01 | 2003-05-13 | Aero Modifications & Consulting, L.L.C. | System and apparatus for determining the center of gravity of an aircraft |
EP1321916B1 (de) | 2001-12-20 | 2004-08-11 | Safegate International AB | Identifizierung der Mittelline bei einem Kopplungs-Führungssystem |
ES2206016B1 (es) * | 2002-04-04 | 2005-07-16 | Team Tecnologia Europea Aplicada Al Movimiento, S.L. | Procedimiento y aparato para el control de la posicion de aeronaves en maniobras en tierra despues del aterrizaje. |
CN1300750C (zh) | 2005-03-07 | 2007-02-14 | 张积洪 | 飞机泊位机型自动识别与指示系统 |
KR100933483B1 (ko) * | 2008-01-28 | 2009-12-23 | 국방과학연구소 | 영상 내의 표적 인식 방법 |
CN101739694B (zh) * | 2010-01-07 | 2011-10-05 | 北京智安邦科技有限公司 | 基于图像分析的高压输电线的超高检测的方法及装置 |
RU2014107102A (ru) * | 2011-07-27 | 2015-09-10 | Басф Се | Способ получения формамидов и сложных эфиров муравьиной кислоты |
US9280155B2 (en) * | 2011-12-02 | 2016-03-08 | Borealis Technical Limited | Aircraft ground travel traction control system and method |
WO2013141605A1 (ko) * | 2012-03-21 | 2013-09-26 | (주)안세기술 | 항공기의 기종판별 및 주기유도를 위한 시스템 및 방법 |
CN103049788B (zh) * | 2012-12-24 | 2015-11-18 | 南京航空航天大学 | 基于计算机视觉的待过行人数目的检测系统及方法 |
CN103177586A (zh) * | 2013-03-05 | 2013-06-26 | 天津工业大学 | 一种基于机器视觉的城市交叉路口多车道车流量检测方法 |
-
2014
- 2014-08-01 CN CN201410378566.8A patent/CN105373135B/zh active Active
-
2015
- 2015-07-02 EP EP15828078.4A patent/EP3196853A4/de not_active Withdrawn
- 2015-07-02 WO PCT/CN2015/083206 patent/WO2016015547A1/zh active Application Filing
- 2015-07-02 US US15/329,994 patent/US10290219B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4235627A1 (de) * | 2022-02-24 | 2023-08-30 | Honeywell International Inc. | Lernbasiertes system und verfahren zur visuellen andockanleitung zur erkennung neuer sich nähernder flugzeugtypen |
Also Published As
Publication number | Publication date |
---|---|
CN105373135B (zh) | 2019-01-01 |
US20170263139A1 (en) | 2017-09-14 |
US10290219B2 (en) | 2019-05-14 |
WO2016015547A1 (zh) | 2016-02-04 |
CN105373135A (zh) | 2016-03-02 |
EP3196853A4 (de) | 2018-07-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3196853A1 (de) | Maschinensichtbasiertes verfahren und system zur flugzeugandockungsführung und identifizierung des flugzeugtyps | |
EP3196863B1 (de) | System und verfahren zur flugzeugandockführung und zur flugzeugtypidentifizierung | |
US20230014874A1 (en) | Obstacle detection method and apparatus, computer device, and storage medium | |
US8634593B2 (en) | Pixel-based texture-less clear path detection | |
US8332134B2 (en) | Three-dimensional LIDAR-based clear path detection | |
US8890951B2 (en) | Clear path detection with patch smoothing approach | |
US7826666B2 (en) | Methods and apparatus for runway segmentation using sensor analysis | |
CN107463890B (zh) | 一种基于单目前视相机的前车检测与跟踪方法 | |
CN104899554A (zh) | 一种基于单目视觉的车辆测距方法 | |
CN110473221B (zh) | 一种目标物体自动扫描系统及方法 | |
CN103149939A (zh) | 一种基于视觉的无人机动态目标跟踪与定位方法 | |
CN111598952B (zh) | 一种多尺度合作靶标设计与在线检测识别方法及系统 | |
CN112348034A (zh) | 基于无人机图像识别的起重机缺陷检测系统和工作方法 | |
KR20150049529A (ko) | 차량의 위치 추정 장치 및 방법 | |
CN103324936A (zh) | 一种基于多传感器融合的车辆下边界检测方法 | |
CN105447431B (zh) | 一种基于机器视觉的入坞飞机跟踪定位方法及系统 | |
Yoneda et al. | Simultaneous state recognition for multiple traffic signals on urban road | |
JP2005157731A (ja) | 車線認識装置および車線認識方法 | |
CN115841633A (zh) | 一种电力塔和电力线关联矫正的电力塔和电力线检测方法 | |
Espino et al. | Rail and turnout detection using gradient information and template matching | |
CN105335985A (zh) | 一种基于机器视觉的入坞飞机实时捕获方法及系统 | |
CN107767366A (zh) | 一种输电线路拟合方法及装置 | |
Budzan | Fusion of visual and range images for object extraction | |
US10366278B2 (en) | Curvature-based face detector | |
CN105447496A (zh) | 一种基于机器视觉的入坞飞机机型识别验证方法和系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170301 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SHENZHEN CIMC-TIANDA AIRPORT SUPPORT LTD. Owner name: CHINA INTERNATIONAL MARINE CONTAINERS (GROUP) LTD. |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G06K 9/60 20060101ALI20180222BHEP Ipc: G06K 9/00 20060101ALI20180222BHEP Ipc: G06T 7/11 20170101ALI20180222BHEP Ipc: G06T 7/73 20170101ALI20180222BHEP Ipc: G06K 9/36 20060101ALI20180222BHEP Ipc: G08G 5/00 20060101ALI20180222BHEP Ipc: H04N 7/00 20110101ALI20180222BHEP Ipc: B64F 1/18 20060101ALI20180222BHEP Ipc: G06K 9/38 20060101ALI20180222BHEP Ipc: G06K 9/34 20060101ALI20180222BHEP Ipc: G06K 9/46 20060101ALI20180222BHEP Ipc: G06K 9/62 20060101ALI20180222BHEP Ipc: G06K 9/52 20060101ALI20180222BHEP Ipc: G08B 5/06 20060101AFI20180222BHEP Ipc: G06K 9/20 20060101ALI20180222BHEP Ipc: G06T 7/194 20170101ALI20180222BHEP Ipc: G08G 5/06 20060101ALI20180222BHEP Ipc: B64F 1/00 20060101ALI20180222BHEP |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20180607 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B64F 1/00 20060101ALI20180601BHEP Ipc: G06T 7/136 20170101ALI20180601BHEP Ipc: B64F 1/18 20060101ALI20180601BHEP Ipc: G06K 9/62 20060101ALI20180601BHEP Ipc: G06K 9/36 20060101ALI20180601BHEP Ipc: G08G 5/00 20060101ALI20180601BHEP Ipc: G06K 9/34 20060101ALI20180601BHEP Ipc: G06T 7/11 20170101ALI20180601BHEP Ipc: G06K 9/20 20060101ALI20180601BHEP Ipc: G06T 7/73 20170101ALI20180601BHEP Ipc: G06K 9/60 20060101ALI20180601BHEP Ipc: G08G 5/06 20060101ALI20180601BHEP Ipc: G08B 5/06 20060101AFI20180601BHEP Ipc: G06K 9/38 20060101ALI20180601BHEP Ipc: G06T 7/194 20170101ALI20180601BHEP Ipc: G06K 9/00 20060101ALI20180601BHEP Ipc: H04N 7/00 20110101ALI20180601BHEP Ipc: G06K 9/52 20060101ALI20180601BHEP Ipc: G06K 9/46 20060101ALI20180601BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20210422 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SHENZHEN CIMC-TIANDA AIRPORT SUPPORT LTD. |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Free format text: PREVIOUS MAIN CLASS: G08B0005060000 Ipc: G06V0020520000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G08G 5/00 20060101ALI20230228BHEP Ipc: B64F 1/00 20060101ALI20230228BHEP Ipc: G06T 7/136 20170101ALI20230228BHEP Ipc: G06T 7/194 20170101ALI20230228BHEP Ipc: G06T 7/11 20170101ALI20230228BHEP Ipc: G08G 5/06 20060101ALI20230228BHEP Ipc: G06V 20/54 20220101ALI20230228BHEP Ipc: G06V 10/75 20220101ALI20230228BHEP Ipc: G06V 10/60 20220101ALI20230228BHEP Ipc: G06V 10/50 20220101ALI20230228BHEP Ipc: G06V 10/42 20220101ALI20230228BHEP Ipc: G06V 10/28 20220101ALI20230228BHEP Ipc: G06V 10/26 20220101ALI20230228BHEP Ipc: G06V 10/20 20220101ALI20230228BHEP Ipc: G06V 20/52 20220101AFI20230228BHEP |
|
INTG | Intention to grant announced |
Effective date: 20230320 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20230801 |