CN116039941B - 适用于海上作业直升机的全自动牵引校正入库系统及方法 - Google Patents

适用于海上作业直升机的全自动牵引校正入库系统及方法 Download PDF

Info

Publication number
CN116039941B
CN116039941B CN202211497580.0A CN202211497580A CN116039941B CN 116039941 B CN116039941 B CN 116039941B CN 202211497580 A CN202211497580 A CN 202211497580A CN 116039941 B CN116039941 B CN 116039941B
Authority
CN
China
Prior art keywords
helicopter
traction
steering wheel
wheel
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202211497580.0A
Other languages
English (en)
Other versions
CN116039941A (zh
Inventor
王立新
赵丁选
张祝新
刘谦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanshan University
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN202211497580.0A priority Critical patent/CN116039941B/zh
Publication of CN116039941A publication Critical patent/CN116039941A/zh
Application granted granted Critical
Publication of CN116039941B publication Critical patent/CN116039941B/zh
Priority to US18/388,255 priority patent/US11912436B1/en
Priority to JP2023194592A priority patent/JP7455449B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations installed for handling aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/12Anchoring
    • B64F1/125Mooring or ground handling devices for helicopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations installed for handling aircraft
    • B64F1/222Ground or aircraft-carrier-deck installations installed for handling aircraft for storing aircraft, e.g. in hangars
    • G05D1/437
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory

Abstract

本发明公开了一种适用于海上作业直升机的全自动牵引校正入库系统,其包括:快速系留装置及安装于其后壁的广角相机、纵向牵引装置、DSP控制单元、MCU控制单元、直升机及其系留杆,并基于此提供一种校正方法,其包括:采集直升机转向轮姿态图像,计算直升机偏航角和转向轮偏转角,计算直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标并与牵引指示线进行边界判断,提取适合直升机运动的最优路径,计算横向和纵向运动位置控制指令,驱动直升机运动,重复执行前述操作直至自动牵引校正入库完成。本发明所提方法全程无需人为干预,降低了操作难度,提升了转运效率,保障了舰面辅助人员及设备的安全,在船舶、军工等领域具有重要的实用价值。

Description

适用于海上作业直升机的全自动牵引校正入库系统及方法
技术领域
本发明属于海上作业直升机安全综合保障技术领域,特别是一种适用于海上作业直升机的全自动牵引校正入库系统及方法。
背景技术
海上作业直升机常在恶劣海况下执行作业任务,直升机回收和放飞技术为直升机起降安全提供了保障。如何在直升机完成任务后安全、快速地转运至机库内,对进一步提高直升机出勤率和安全性具有重要意义。目前,常用的直升机安全保障系统包括鱼叉-格栅装置、E系统、RAST系统、ASIST系统以及中国船舶工业系统工程研究院提出的一种海上作业直升机的安全快速回收和放飞系统,上述系统都无法完全实现自动牵引校正入库,多采用人工或牵引车导向的人工牵引方式,实施过程中需要多名舰面人员配合操作,且受到操作人员水平和经验的影响,无法可靠保证直升机可以快速、高效、安全地由降落点牵引至机库。为解决这一问题,需要发展一种适用于海上作业直升机的全自动牵引校正入库系统及方法,以有效提升海上作业直升机转运过程中的作业效率、保障舰面辅助人员及设备的安全。
发明内容
本发明针对上述现有直升机牵引校正技术的局限性,提出一种适用于海上作业直升机的全自动牵引校正入库系统及方法,该方法尤其适用于操作难度更高的弯轨道直升机转运系统,可有效解决人工牵引操作难度高、安全性差的问题,可提升直升机转运作业效率,充分保障舰面辅助人员及设备的安全,在船舶、军工等领域具有重要的实用价值。
本发明所采用的是一种全新的技术方案,包括系统和实施步骤两部分,具体方案如下:
一种适用于海上作业直升机全自动牵引校正入库系统包括:用于横向校正直升机运动的快速系留装置、用于采集直升机转向轮姿态图像且安装于快速系留装置后壁的广角相机、用于纵向牵引直升机运动的纵向牵引装置、由DSP控制单元和MCU控制单元组成控制系统、直升机及直升机系留杆。
一种适用于海上作业直升机全自动牵引校正入库方法实施步骤包括:由广角相机采集直升机转向轮姿态图,计算直升机偏航角和直升机转向轮偏转角,计算直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标,对直升机转向轮、第一机轮和第二机轮坐标与牵引指示线进行边界判断,提取适合直升机运动的最优运动路径,计算横向和纵向运动位置控制指令,由快速系留装置驱动直升机横向运动,牵引动力装置驱动直升机纵向运动,重复执行前述操作直至直升机自动牵引校正入库完成。本发明所提方法全程无需人为干预,具有安全性高、智能化的优点。
所述一种适用于海上作业直升机全自动牵引校正入库系统具有如下特征:
所述快速系留装置上安装有机械爪,所述机械爪与安装在直升机腹部的直升机系留杆为圆柱副连接,在快速系留装置横向校正直升机运动的过程中,机械爪始终垂直于牵引轨道跟随直升机运动;
所述广角相机安装于快速系留装置的后壁中央位置,并跟随快速系留装置运动,在快速系留装置与纵向牵引装置牵引直升机运动的过程中,广角相机能够始终实时拍摄直升机转向轮的姿态;
所述纵向牵引装置牵引直升机运动过程中,快速系留装置始终沿牵引轨道跟随直升机运动,所述纵向牵引装置包括记录快速系留装置在轨道上位置的编码器,所述牵引轨道分为五段,包括牵引轨道第一段、牵引轨道第二段、牵引轨道第三段、牵引轨道第四段和牵引轨道第五段;
所述控制系统包括DSP控制单元和MCU控制单元两部分,所述DSP控制单元用于处理直升机转向轮姿态图像、建立直升机坐标系和甲板坐标系、计算机轮位置坐标、进行牵引提示线边界判断、存储并提取直升机运动路径,所述MCU控制单元用于生成横向和纵向位置控制指令;
所述直升机包括三个机轮,分别为转向轮、第一机轮、第二机轮,所述转向轮安装在直升机尾部,为具有较大偏心距的万向轮;
所述一种适用于海上作业直升机全自动牵引校正入库方法包括以下步骤:
S1、采集直升机转向轮姿态图像:直升机转运系统进入自动控制模式,通过广角相机采集当前直升机转向轮姿态图像;
S2、计算直升机偏航角和转向轮偏转角:DSP控制单元对采集到的直升机转向轮姿态图像进行处理,提取特征信息,计算得到直升机偏航角和直升机转向轮偏转角;所述特征信息包括直升机转向轮轮圆、轮胎和转轴的轮廓像素矩阵,通过轮廓像素矩阵特征直接获得直升机转向轮偏转角;
S3、计算直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标:建立直升机坐标系和甲板坐标系,通过坐标变换关系和直升机偏航角计算直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标;
S31、建立直升机坐标系,并根据直升机尺寸参数和直升机偏航角,计算直升机转向轮、第一机轮和第二机轮在直升机坐标系中的位置坐标;所述直升机坐标系以直升机系留杆为原点,以直升机偏航角为0°时,直升机的中心轴线为y0轴,指向舰艏方向为y0轴正方向,以垂直于y0轴射线为x0轴,指向船体右舷方向为x0轴正方向;
S32、建立甲板坐标系,所述甲板坐标系以船舶甲板牵引轨道起点为坐标原点,以牵引轨道起始部分的中心轴线为y轴,指向舰艏方向为y轴正方向,以垂直于y轴射线为x轴,指向船体右舷为x轴正方向,并在甲板坐标系下建立牵引轨道的数学方程和牵引指示线的轨迹方程;
S33、直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标通过直升机坐标系到甲板坐标系的坐标变换关系计算获取;
S4、对直升机转向轮、第一机轮和第二机轮与牵引指示线进行边界判断:对直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标与牵引轨道数学方程、牵引指示线轨迹方程进行位置边界判断;根据点到线的距离计算获得直升机转向轮、第一机轮和第二机轮的位置坐标与相应牵引指示线轨迹方程的对应关系,所述对应关系包括在牵引指示线之内、之上和之外三种情况;
S5、提取适合直升机的最优运动路径:根据直升机转向轮、第一机轮和第二机轮边界判断结果和直升机转向轮偏转角,从知识库中提取适合当前姿态直升机的最优运动路径;所述知识库由大量手动操作实践组成,并通过C语言编制成DSP控制单元的执行语句;
S6、根据所提取到的适合直升机的最优运动路径,计算横向和纵向运动位置控制指令,驱动直升机运动:选取一个控制周期内的最优运动路径后,MCU控制单元向快速系留装置液压驱动系统发送横向校正位置控制指令,向纵向牵引装置液压驱动系统发送纵向牵引位置控制指令,由快速系留装置和纵向牵引装置驱动直升机运动;
S7、重复执行步骤S1至步骤S6,直至直升机自动牵引校正入库完成:在直升机实际运动过程中,根据上一个控制周期的直升机最新姿态对最优运动路径进行补偿与调整,保证直升机按照提取的最优运动路径向机库方向运动。
进一步,所述步骤S2具体包括以下步骤:
S21、基于直升机转向轮轮廓像素矩阵在整体图像中的位置,计算直升机机身相对于广角相机中心轴线的偏角θ;
S22、基于直升机转向轮轮廓像素矩阵,获取直升机转向轮在纵向上的垂直偏移距离h;
其中,L4表示直升机偏航角为0°时,快速系留装置后壁与直升机转向轮中轴线的垂直距离;m1,n1分别表示直升机偏航角为0°时,直升机转向轮在姿态图像中占据的轮廓像素矩阵横向和纵向的像素点个数;m2,n2分别表示直升机处于偏航状态时,直升机转向轮在姿态图像中占据的轮廓像素矩阵横向和纵向的像素点个数;
S23、计算直升机偏航角
其中,x1表示直升机坐标系原点相对于快速系留装置中心偏移的位置,由快速系留装置机械爪位置信号获得;L3表示直升机转向轮中轴与直升机系留杆之间的垂直距离。
可优选的,所述步骤S31中所述直升机转向轮在直升机坐标系中的位置坐标为:
其中,xA,yA分别表示直升机转向轮在直升机坐标系中的x0方向坐标和y0方向坐标;L5表示快速系留装置后壁与直升机系留杆中心距离;
所述第一机轮在直升机坐标系中的位置坐标为:
其中,xB,yB分别表示第一机轮在直升机坐标系中的x0方向坐标和y0方向坐标;L2表示直升机系留杆到直升机转向轮轮轴的垂直距离,所述直升机转向轮轮轴为第一机轮和第二机轮的中心轴线;W表示第一机轮和第二机轮的轮距;
所述第二机轮在直升机坐标系中的位置坐标为:
其中,xC,yC分别表示第二机轮在直升机坐标系中的x0方向坐标和y0方向坐标。
可优选的,所述步骤S33具体包括以下步骤:
S331、计算直升机坐标系到甲板坐标系的坐标变换关系,首先计算直升机坐标系原点在甲板坐标系中的坐标,即直升机系留杆在甲板坐标系中的坐标(xG,yG):
其中,y1表示快速系留装置沿牵引轨道的运动位置,由安装在牵引动力装置上的编码器获得;Y4,Y5,Y6,Y7,Y8分别表示牵引轨道的第一段、第二段、第三段、第四段和第五段y方向长度;Y表示牵引轨道第三段的长度;l表示牵引轨道的第二段及第四段的圆弧长度;X2表示牵引轨道的第四段的圆弧所对应圆心O2的x方向坐标;α表示牵引轨道的第二段及第四段的圆弧所对应的圆心角;
S332、计算直升机转向轮在甲板坐标系中的位置坐标(x′A,y′A)、第一机轮在甲板坐标系中的位置坐标(x′B,y′B)和第二机轮在甲板坐标系中的位置坐标(x′C,y′C),分别为:
可优选的,所述步骤S32中所述牵引指示线包括左牵引指示线和右牵引指示线,所述左牵引指示线和右牵引指示线的对称中线为所述牵引轨道,所述牵引轨道的数学方程为:
其中,X3表示y轴与牵引轨道的第五段之间的距离;
所述左牵引指示线的轨迹方程为:
其中,X1表示左牵引指示线与牵引轨道之间的距离;Y1,Y2,Y3分别表示左牵引指示线的第一段、第二段和第三段y方向长度;
所述右牵引指示线的轨迹方程为:
可优选的,当直升机机身偏航角为0°时,广角相机与直升机机身轴线重合,广角相机在以牵引轨道为中心线的±37.5°范围内获取直升机转向轮图像状态。
与现有技术相比,本发明的技术进步为:
1、本发明公开的一种适用于海上作业直升机的全自动牵引校正入库系统及方法,基于现有的直升机快速回收系统,仅在快速系留装置上安装了采集直升机转向轮图像的广角相机,与现有系统的兼容性极高。
2、原创性地提出适用于弯曲牵引轨道的直升机全自动牵引校正入库方法,具体包括:根据直升机转向轮图像可计算直升机偏航角及转向轮偏角进行计算;建立直升机坐标系、甲板坐标系,并通过坐标转换关系计算得到直升机各个机轮在甲板坐标系中的位置;与牵引指示线方程的边界判断,根据判断结果从操作经验知识库中提取适合当前姿态直升机运动的最优路径;在可调整的控制步长内对牵引校正过程进行实时补偿控制,不断重复前述操作,最终达到自动将直升机牵引校正至机库的目的。
3、本发明提出的一种适用于海上作业直升机的全自动牵引校正入库系统及方法,实施过程中无需人为干预,极大程度上降低了现有海上作业直升机转运的操作难度。同时,所提方法有效提升了直升机转运过程中的作业效率,极大程度上保障了舰面辅助人员及设备的安全。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显。
图1是本发明的适用于海上作业直升机的全自动牵引校正入库方法执行流程图;
图2是本发明的直升机转向轮图像识别原理示意图;
图3是本发明的直升机坐标系示意图;
图4是本发明的甲板坐标系示意图;
图5是本发明的适用于海上作业直升机的全自动牵引校正入库系统组成及工作过程示意图;
图6是本发明的直升机转运过程示意图。
图中:
2.1-直升机转向轮正位置;2.2-直升机转向轮转轴与广角相机中轴线;2.3-直升机转向轮偏转位置;2.4-广角相机采集的整体图像;2.5-直升机转向轮正位置图像像素矩阵;2.6-直升机偏航时转向轮位置图像像素矩阵;3.1-直升机转向轮;3.2-直升机中轴线;3.3-广角相机;3.4-快速系留装置;3.5-直升机系留杆;3.6-机械爪;3.7-第一机轮;3.8-第二机轮;3.9-直升机;4.1-甲板坐标系;4.2-左牵引指示线;4.3-右牵引指示线;4.4-牵引轨道第一段;4.5-牵引轨道第二段;4.6-牵引轨道第三段;4.7-牵引轨道第四段;4.8-牵引轨道第五段;4.9-牵引轨道;4.10-舰艏方向;4.11-纵向牵引装置;4.12-编码器;5.1-DSP控制单元;5.2-MCU控制单元;6.1-自动牵引校直过程直升机系留杆运动轨迹线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
结合图3、图4、图5,一种适用于海上作业的全自动牵引校正入库系统包括:包括用于横向校正直升机3.9运动的快速系留装置3.4、用于采集直升机转向轮3.1姿态的广角相机3.3、用于纵向牵引直升机3.9运动的纵向牵引装置4.11、由DSP控制单元5.1和MCU控制单元5.2组成的控制系统和直升机3.9及直升机系留杆3.5。
所述一种适用于海上作业直升机全自动牵引校正入库系统具有如下特征:
所述快速系留装置3.4上安装有机械爪3.6,所述机械爪3.6与安装在直升机3.9腹部的直升机系留杆3.5为圆柱副连接,在快速系留装置3.4横向校正直升机3.9运动的过程中,机械爪3.6始终垂直于牵引轨道4.9跟随直升机3.9运动。
所述广角相机3.3安装于快速系留装置3.4的后壁中央位置,并跟随快速系留装置3.4运动,在快速系留装置3.4与纵向牵引装置4.11牵引直升机3.9运动的过程中,广角相机3.3能够始终实时拍摄直升机3.9转向轮3.1的姿态。
所述纵向牵引装置4.11牵引直升机3.9运动过程中,快速系留装置3.4始终沿牵引轨道4.9跟随直升机3.9运动,所述纵向牵引装置4.11包括记录快速系留装置3.4在轨道上位置的编码器4.12,所述牵引轨道4.9分为五段,包括牵引轨道第一段4.4、牵引轨道第二段4.5、牵引轨道第三段4.6、牵引轨道第四段4.7和牵引轨道第五段4.8。
所述控制系统包括DSP控制单元5.1和MCU控制单元5.2两部分,所述DSP控制单元5.1用于处理直升机转向轮3.1姿态图像、建立直升机3.9坐标系和甲板坐标系4.1、计算机轮位置坐标、进行牵引提示线边界判断、存储并提取直升机3.9运动路径,所述MCU控制单元5.2用于生成横向和纵向位置控制指令。
所述直升机3.9包括三个机轮,分别为转向轮3.1、第一机轮3.7、第二机轮3.8,所述转向轮安装3.1在直升机3.9尾部,为具有较大偏心距的万向轮。
图1示出了本发明的适用于海上作业直升机的全自动牵引校正入库方法的执行流程,具体包括以下步骤:
S1、采集直升机转向轮3.1姿态图像:直升机3.9转运系统进入自动控制模式,通过广角相机3.3采集当前直升机转向轮3.1姿态图像。当直升机3.9偏航角为0°时,广角相机3.3与直升机中轴线3.2重合,广角相机3.3在以牵引轨道4.9为中心线的±37.5°范围内获取直升机转向轮3.1的姿态图像。
S2、如图2所示,计算直升机3.9偏航角和转向轮偏转角:DSP控制单元5.1对采集到的直升机转向轮3.1姿态图像进行处理,提取特征信息,计算得到直升机3.9偏航角和直升机转向轮3.1偏转角;特征信息包括直升机转向轮3.1轮圆、轮胎和转轴的轮廓像素矩阵,通过轮廓像素矩阵特征直接获得直升机转向轮3.1偏转角。
S21、如图2所示,广角相机3.3拍摄的直升机转向轮整体图像2.4中,直升机转向轮正位置2.1对应的像素矩阵为2.5,直升机转向轮偏转位置2.3对应的像素矩阵为2.6,据此可计算直升机3.9机身相对于直升机转向轮转轴与广角相机中轴线2.2的偏角θ。
S22、广角相机3.3采集直升机转向轮3.1整体姿态图像2.4的轮廓像素矩阵为M×N,基于直升机转向轮3.1轮廓像素矩阵2.5和2.6,获取直升机转向轮3.1在纵向上的垂直偏移距离h;
其中,L4表示直升机偏航角为0°时,快速系留装置3.4后壁与直升机转向轮3.1转轴的垂直距离;m1,n1分别表示直升机偏航角为0°时,直升机转向轮3.1在整体姿态图像2.4中占据的轮廓像素矩阵横向和纵向的像素点个数;m2,n2分别表示直升机处于偏航状态时,直升机转向轮3.1在整体姿态图像2.4中占据的轮廓像素矩阵横向和纵向的像素点个数。
S23、计算直升机偏航角
其中,x1表示直升机坐标系原点相对于快速系留装置3.4中心偏移的位置,由快速系留装置3.4机械爪3.6位置信号获得;L3表示直升机转向轮3.1中轴与直升机系留杆3.5之间的垂直距离。
S3、计算直升机转向轮3.1、第一机轮3.7和第二机轮3.8在甲板坐标系4.1中的位置坐标:建立直升机3.9坐标系和甲板坐标系4.1,通过坐标变换关系和直升机3.9偏航角计算直升机转向轮3.1、第一机轮3.7和第二机轮3.8在甲板坐标系4.1中的位置坐标。
S31、如图3所示,建立直升机3.9坐标系,并根据直升机3.9尺寸参数和直升机3.9偏航角,计算直升机转向轮3.1、第一机轮3.7和第二机轮3.8在直升机3.9坐标系中的位置坐标;直升机3.9坐标系以直升机系留杆3.5为原点,以直升机3.9偏航角为0°时,直升机中心轴线3.2为y0轴,指向舰艏方向4.10为y0轴正方向,以垂直于y0轴射线为x0轴,指向船体右舷方向为x0轴正方向。
直升机转向轮3.1在直升机坐标系中的位置坐标为:
其中,xA,yA分别表示直升机转向轮3.1在直升机坐标系中的x0方向坐标和y0方向坐标;L5表示快速系留装置3.4后壁与直升机系留杆3.5中心距离。
第一机轮3.7在直升机坐标系中的位置坐标为:
其中,xB,yB分别表示第一机轮3.7在直升机坐标系中的x0方向坐标和y0方向坐标;L2表示直升机系留杆3.5到直升机转向轮3.1轮轴的垂直距离,直升机转向轮3.1轮轴为第一机轮3.7和第二机轮3.8的中心轴线;W表示第一机轮3.7和第二机轮3.8的轮距。
第二机轮3.8在直升机坐标系中的位置坐标为:
其中,xC,yC分别表示第二机轮3.8在直升机坐标系中的x0方向坐标和y0方向坐标。
S32、如图4所示,建立甲板坐标系4.1,甲板坐标系4.1以船舶甲板牵引轨道4.9起点为坐标原点,以牵引轨道4.9起始部分的中心轴线为y轴,指向舰艏方向4.10为y轴正方向,以垂直于y轴射线为x轴,指向船体右舷为x轴正方向,并在甲板坐标系4.1下建立牵引轨道4.9的数学方程和牵引指示线的轨迹方程。
牵引指示线包括左牵引指示线4.2和右牵引指示线4.3,左牵引指示线4.2和右牵引指示线4.3的对称中线为牵引轨道4.9,牵引轨道4.9的数学方程为:
其中,X2表示牵引轨道4.9的第四段的圆弧所对应圆心O2的x方向坐标;X3表示y轴与牵引轨道4.9的第五段之间的距离;Y4,Y5,Y6,Y7,Y8分别表示牵引轨道4.9的第一段、第二段、第三段、第四段和第五段y方向长度;l表示牵引轨道4.9的第二段及第四段的圆弧长度;α表示牵引轨道4.9的第二段及第四段的圆弧所对应的圆心角。
左牵引指示线4.2的轨迹方程为:
其中,X1表示左牵引指示线4.2与牵引轨道4.9之间的距离;Y1,Y2,Y3分别表示左牵引指示线4.2的第一段、第二段和第三段y方向长度。
右牵引指示线4.3的轨迹方程为:
S33、直升机转向轮3.1、第一机轮3.7和第二机轮3.8在甲板坐标系4.1中的位置坐标通过直升机坐标系到甲板坐标系4.1的坐标变换关系计算获取。
S331、直升机坐标系原点的位置随着快速系留装置3.4的运动而不断变化,由于快速系留装置3.4沿牵引轨道4.9运动,因此通过安装在纵向牵引装置4.11上的编码器4.12可以获取快速系留装置3.4在牵引轨道4.9上的位置,同时通过机械爪3.6相对于快速系留装置3.4的位置可以获取直升机系留杆3.5相对于快速系留装置3.4的位置。计算直升机坐标系到甲板坐标系4.1的坐标变换关系,首先计算直升机坐标系原点在甲板坐标系4.1中的坐标,即直升机系留杆3.5在甲板坐标系4.1中的坐标(xG,yG):
其中,y1表示快速系留装置3.4沿牵引轨道4.9的运动位置,由安装在牵引动力装置上的编码器4.12获得;Y表示牵引轨道第三段4.6的长度。
S332、计算直升机转向轮3.1在甲板坐标系4.1中的位置坐标(x′A,y′A)、第一机轮3.7在甲板坐标系4.1中的位置坐标(x′B,y′B)和第二机轮3.8在甲板坐标系4.1中的位置坐标(x′C,yvC),分别为:
S4、对直升机转向轮3.1、第一机轮3.7和第二机轮3.8与牵引指示线进行边界判断:对直升机转向轮3.1、第一机轮3.7和第二机轮3.8在甲板坐标系4.1中的位置坐标与牵引轨道4.9数学方程、牵引指示线轨迹方程进行位置边界判断;根据点到线的距离计算获得直升机转向轮3.1、第一机轮3.7和第二机轮3.8的位置坐标与相应牵引指示线轨迹方程的对应关系,对应关系包括在牵引指示线之内、之上和之外三种情况,以确保直升机3.9在运动过程中处于牵引指示线之内,从而为直升机系留杆3.5运动路线选取提供依据。
S5、提取适合直升机3.9的最优运动路径:根据直升机转向轮3.1、第一机轮3.7和第二机轮3.8边界判断结果和直升机转向轮3.1偏转角,从知识库中提取适合当前姿态直升机3.9的最优运动路径;知识库由大量手动操作实践组成,并通过C语言编制成DSP控制单元5.1的执行语句。
S6、根据所提取到的适合直升机3.9的最优运动路径,计算横向和纵向运动位置控制指令,驱动直升机3.9运动:选取一个控制周期内的最优运动路径后,MCU控制单元5.2向快速系留装置3.4液压驱动系统发送横向校正位置控制指令,向纵向牵引装置4.11液压驱动系统发送纵向牵引位置控制指令,由快速系留装置3.4和纵向牵引装置4.11驱动直升机3.9运动。
S7、重复执行步骤S1至步骤S6,直至直升机3.9自动牵引校正入库完成:在直升机3.9实际运动过程中,根据上一个控制周期的直升机3.9最新姿态对最优运动路径进行补偿与调整,保证直升机3.9按照提取的最优运动路径向机库方向运动。
本发明根据大量实际操作建立完善知识库,具体为根据当前直升机3.9在甲板上的位置、偏航角及转向轮偏转角选择合适运动轨迹,生成横向校正、纵向牵引位置控制指令,从而控制直升机3.9的运动方向。如图5所示,依据横向、纵向的控制指令由快速系留装置3.4的MCU控制单元5.2控制快速系留装置3.4液压系统和纵向牵引装置4.11液压系统,然后驱动直升机3.9运动,完成一个控制周期内的循环,判断直升机3.9是否牵引至机库内,否则重复上述直升机转向轮3.1图像采集与处理、直升机3.9机轮位置计算、直升机3.9位置边界判断、运动路径选取等步骤,直至直升机3.9被自动校正牵引至机库内,直升机3.9转运过程示意图如图6所示,其中直升机系留杆3.5的运动轨迹线为自动牵引校直过程直升机系留杆运动轨迹线6.1。
综上所述,本发明提出的一种适用于海上作业直升机的全自动牵引校正入库系统及方法,基于现有的直升机快速回收系统,仅在快速系留装置上增加广角相机采集直升机转向轮图像,据此对直升机偏航角及转向轮偏角进行计算,建立直升机坐标系、甲板坐标系,并通过坐标转换关系计算得到直升机各个机轮在甲板坐标系中的位置,然后与牵引指示线方程的边界判断,根据判断结果从操作经验知识库中提取适合当前姿态直升机运动的最优路径,在可调整的控制步长内对牵引校正过程进行实时补偿控制,不断重复前述操作,最终达到自动将直升机牵引校正至机库的目的。所提方法实施过程中无需人为干预,极大程度上降低了海上作业直升机转运操作难度,提升了直升机转运作业效率,保障了舰面辅助人员及直升机的安全。所提方法具有智能、全自动、效率高、安全等显著特点,在船舶、军工等领域具有重要的实用价值,尤其对于海上作业直升机自动牵引领域具有重要意义。
最后所应说明的是:以上实施例仅以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种适用于海上作业直升机的全自动牵引校正入库系统的方法,其特征在于:所述全自动牵引校正入库系统包括用于横向校正直升机运动的快速系留装置、用于采集直升机转向轮姿态的广角相机、用于纵向牵引直升机运动的纵向牵引装置、控制系统和直升机及直升机系留杆,所述全自动牵引校正入库系统具有如下特征:
所述快速系留装置上安装有机械爪,所述机械爪与安装在直升机腹部的直升机系留杆为圆柱副连接,在快速系留装置横向校正直升机运动的过程中,机械爪始终垂直于牵引轨道跟随直升机运动;
所述广角相机安装于快速系留装置的后壁中央位置,并跟随快速系留装置运动,在快速系留装置与纵向牵引装置牵引直升机运动的过程中,广角相机能够始终实时拍摄直升机转向轮的姿态;
所述纵向牵引装置牵引直升机运动过程中,快速系留装置始终沿牵引轨道跟随直升机运动,所述纵向牵引装置包括记录快速系留装置在轨道上位置的编码器,所述牵引轨道分为五段,包括牵引轨道第一段、牵引轨道第二段、牵引轨道第三段、牵引轨道第四段和牵引轨道第五段;
所述控制系统包括DSP控制单元和MCU控制单元两部分,所述DSP控制单元用于处理直升机转向轮姿态图像、建立直升机坐标系和甲板坐标系、计算机轮位置坐标、进行牵引提示线边界判断、存储并提取直升机运动路径,所述MCU控制单元用于生成横向和纵向位置控制指令;
所述直升机包括三个机轮,分别为转向轮、第一机轮、第二机轮,所述转向轮安装在直升机尾部,为具有较大偏心距的万向轮;
所述一种适用于海上作业直升机全自动牵引校正入库方法包括以下步骤:
S1、采集直升机转向轮姿态图像:直升机转运系统进入自动控制模式,通过广角相机采集当前直升机转向轮姿态图像;
S2、计算直升机偏航角和转向轮偏转角:DSP控制单元对采集到的直升机转向轮姿态图像进行处理,提取特征信息,计算得到直升机偏航角和直升机转向轮偏转角;所述特征信息包括直升机转向轮轮圆、轮胎和转轴的轮廓像素矩阵,通过轮廓像素矩阵特征直接获得直升机转向轮偏转角;
S3、计算直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标:建立直升机坐标系和甲板坐标系,通过坐标变换关系和直升机偏航角计算直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标;
S31、建立直升机坐标系,并根据直升机尺寸参数和直升机偏航角,计算直升机转向轮、第一机轮和第二机轮在直升机坐标系中的位置坐标;所述直升机坐标系以直升机系留杆为原点,以直升机偏航角为0°时,直升机的中心轴线为y0轴,指向舰艏方向为y0轴正方向,以垂直于y0轴射线为x0轴,指向船体右舷方向为x0轴正方向;
S32、建立甲板坐标系,所述甲板坐标系以船舶甲板牵引轨道起点为坐标原点,以牵引轨道起始部分的中心轴线为y轴,指向舰艏方向为y轴正方向,以垂直于y轴射线为x轴,指向船体右舷为x轴正方向,并在甲板坐标系下建立牵引轨道的数学方程和牵引指示线的轨迹方程;
S33、直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标通过直升机坐标系到甲板坐标系的坐标变换关系计算获取;
S4、对直升机转向轮、第一机轮和第二机轮与牵引指示线进行边界判断:对直升机转向轮、第一机轮和第二机轮在甲板坐标系中的位置坐标与牵引轨道数学方程、牵引指示线轨迹方程进行位置边界判断;根据点到线的距离计算获得直升机转向轮、第一机轮和第二机轮的位置坐标与相应牵引指示线轨迹方程的对应关系,所述对应关系包括在牵引指示线之内、之上和之外三种情况;
S5、提取适合直升机的最优运动路径:根据直升机转向轮、第一机轮和第二机轮边界判断结果和直升机转向轮偏转角,从知识库中提取适合当前姿态直升机的最优运动路径;所述知识库由大量手动操作实践组成,并通过C语言编制成DSP控制单元的执行语句;
S6、根据所提取到的适合直升机的最优运动路径,计算横向和纵向运动位置控制指令,驱动直升机运动:选取一个控制周期内的最优运动路径后,MCU控制单元向快速系留装置液压驱动系统发送横向校正位置控制指令,向纵向牵引装置液压驱动系统发送纵向牵引位置控制指令,由快速系留装置和纵向牵引装置驱动直升机运动;
S7、重复执行步骤S1至步骤S6,直至直升机自动牵引校正入库完成:在直升机实际运动过程中,根据上一个控制周期的直升机最新姿态对最优运动路径进行补偿与调整,保证直升机按照提取的最优运动路径向机库方向运动。
2.根据权利要求1所述适用于海上作业直升机的全自动牵引校正入库系统的方法,其特征在于,所述步骤S2具体包括以下步骤:
S21、基于直升机转向轮轮廓像素矩阵在整体图像中的位置,计算直升机机身相对于广角相机中心轴线的偏角θ;
S22、基于直升机转向轮轮廓像素矩阵,获取直升机转向轮在纵向上的垂直偏移距离h;
其中,L4表示直升机偏航角为0°时,快速系留装置后壁与直升机转向轮中轴线的垂直距离;m1,n1分别表示直升机偏航角为0°时,直升机转向轮在姿态图像中占据的轮廓像素矩阵横向和纵向的像素点个数;m2,n2分别表示直升机处于偏航状态时,直升机转向轮在姿态图像中占据的轮廓像素矩阵横向和纵向的像素点个数;
S23、计算直升机偏航角
其中,x1表示直升机坐标系原点相对于快速系留装置中心偏移的位置,由快速系留装置机械爪位置信号获得;L3表示直升机转向轮中轴与直升机系留杆之间的垂直距离。
3.根据权利要求1所述适用于海上作业直升机的全自动牵引校正入库系统的方法,其特征在于,所述步骤S31中所述直升机转向轮在直升机坐标系中的位置坐标为:
其中,xA,yA分别表示直升机转向轮在直升机坐标系中的x0方向坐标和y0方向坐标;L5表示快速系留装置后壁与直升机系留杆中心距离;
所述第一机轮在直升机坐标系中的位置坐标为:
其中,xB,yB分别表示第一机轮在直升机坐标系中的x0方向坐标和y0方向坐标;L2表示直升机系留杆到直升机转向轮轮轴的垂直距离,所述直升机转向轮轮轴为第一机轮和第二机轮的中心轴线;W表示第一机轮和第二机轮的轮距;
所述第二机轮在直升机坐标系中的位置坐标为:
其中,xC,yC分别表示第二机轮在直升机坐标系中的x0方向坐标和y0方向坐标。
4.根据权利要求1所述适用于海上作业直升机的全自动牵引校正入库系统的方法,其特征在于,所述步骤S33具体包括以下步骤:
S331、计算直升机坐标系到甲板坐标系的坐标变换关系,首先计算直升机坐标系原点在甲板坐标系中的坐标,即直升机系留杆在甲板坐标系中的坐标(xG,yG):
其中,y1表示快速系留装置沿牵引轨道的运动位置,由安装在牵引动力装置上的编码器获得;Y4,Y5,Y6,Y7,Y8分别表示牵引轨道的第一段、第二段、第三段、第四段和第五段y方向长度;Y表示牵引轨道第三段的长度;l表示牵引轨道的第二段及第四段的圆弧长度;X2表示牵引轨道的第四段的圆弧所对应圆心O2的x方向坐标;α表示牵引轨道的第二段及第四段的圆弧所对应的圆心角;
S332、计算直升机转向轮在甲板坐标系中的位置坐标(x′A,y′A)、第一机轮在甲板坐标系中的位置坐标(x′B,y′B)和第二机轮在甲板坐标系中的位置坐标(x′C,y′C),分别为:
5.根据权利要求1所述适用于海上作业直升机的全自动牵引校正入库系统的方法,其特征在于,所述步骤S32中所述牵引指示线包括左牵引指示线和右牵引指示线,所述左牵引指示线和右牵引指示线的对称中线为所述牵引轨道,所述牵引轨道的数学方程为:
其中,X3表示y轴与牵引轨道的第五段之间的距离;
所述左牵引指示线的轨迹方程为:
其中,X1表示左牵引指示线与牵引轨道之间的距离;Y1,Y2,Y3分别表示左牵引指示线的第一段、第二段和第三段y方向长度;
所述右牵引指示线的轨迹方程为:
6.根据权利要求1所述适用于海上作业直升机的全自动牵引校正入库系统的方法,其特征在于,当直升机机身偏航角为0°时,广角相机与直升机机身轴线重合,广角相机在以牵引轨道为中心线的±37.5°范围内获取直升机转向轮图像状态。
CN202211497580.0A 2022-11-27 2022-11-27 适用于海上作业直升机的全自动牵引校正入库系统及方法 Active CN116039941B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202211497580.0A CN116039941B (zh) 2022-11-27 2022-11-27 适用于海上作业直升机的全自动牵引校正入库系统及方法
US18/388,255 US11912436B1 (en) 2022-11-27 2023-11-09 Fully automated towing, alignment and hangar system and method for offshore operation helicopter
JP2023194592A JP7455449B1 (ja) 2022-11-27 2023-11-15 海上で作業を行うヘリコプターに適用される牽引、校正及び入庫を全自動で行うシステム及びその方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211497580.0A CN116039941B (zh) 2022-11-27 2022-11-27 适用于海上作业直升机的全自动牵引校正入库系统及方法

Publications (2)

Publication Number Publication Date
CN116039941A CN116039941A (zh) 2023-05-02
CN116039941B true CN116039941B (zh) 2023-07-18

Family

ID=86124516

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211497580.0A Active CN116039941B (zh) 2022-11-27 2022-11-27 适用于海上作业直升机的全自动牵引校正入库系统及方法

Country Status (3)

Country Link
US (1) US11912436B1 (zh)
JP (1) JP7455449B1 (zh)
CN (1) CN116039941B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139689A1 (fr) * 2012-03-19 2013-09-26 Dcns Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol
EP2754613A1 (fr) * 2013-01-09 2014-07-16 Dcns Dispositif de manutention pour aéronef, notamment pour hélicoptère
CN109398735A (zh) * 2018-11-29 2019-03-01 中国船舶工业系统工程研究院 一种海上作业直升机的安全快速回收及放飞系统及方法
CN111571618A (zh) * 2020-06-11 2020-08-25 深圳款款科技有限公司 一种基于视觉算法的自主捡拾机器人及其捡拾方法
CN112340047A (zh) * 2020-10-20 2021-02-09 燕山大学 一种基于直轨道的舰载直升机自动牵引装置及方法
CN112435531A (zh) * 2020-10-29 2021-03-02 燕山大学 一种用于舰载直升机的牵引模拟平台

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4133435B2 (ja) 2003-02-26 2008-08-13 健蔵 野波 小型無人ヘリコプタの自律制御方法
US9975648B2 (en) 2015-12-04 2018-05-22 The Boeing Company Using radar derived location data in a GPS landing system
CN110794877B (zh) * 2019-11-22 2020-10-13 北京理工大学 一种车载摄像头云台伺服系统及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013139689A1 (fr) * 2012-03-19 2013-09-26 Dcns Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol
EP2754613A1 (fr) * 2013-01-09 2014-07-16 Dcns Dispositif de manutention pour aéronef, notamment pour hélicoptère
CN109398735A (zh) * 2018-11-29 2019-03-01 中国船舶工业系统工程研究院 一种海上作业直升机的安全快速回收及放飞系统及方法
CN111571618A (zh) * 2020-06-11 2020-08-25 深圳款款科技有限公司 一种基于视觉算法的自主捡拾机器人及其捡拾方法
CN112340047A (zh) * 2020-10-20 2021-02-09 燕山大学 一种基于直轨道的舰载直升机自动牵引装置及方法
CN112435531A (zh) * 2020-10-29 2021-03-02 燕山大学 一种用于舰载直升机的牵引模拟平台

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Research on Shipborne Helicopter Electric Rapid Secure Device System Design, Modeling, and Simulation;Zhuxin Zhang, Qian Liu, Dingxuan Zhao, Lixin Wang, Pengcheng Yang;《SENSORS》 *
国外舰载直升机助降与牵引装备综合性能对比分析;伍恒,谭大力,李启军;《舰船科学技术》;第43卷(第23期);185-189 *

Also Published As

Publication number Publication date
US11912436B1 (en) 2024-02-27
CN116039941A (zh) 2023-05-02
JP7455449B1 (ja) 2024-03-26

Similar Documents

Publication Publication Date Title
CN110580717B (zh) 一种针对电力杆塔的无人机自主巡检航线生成方法
CN105345264B (zh) 一种针对复杂曲面构件的激光焊接实时在线监控系统
CN104880176B (zh) 基于先验知识模型优化的运动物位姿测量方法
CN109693018B (zh) 自主移动机器人焊缝视觉跟踪系统及跟踪方法
DE102010056539A1 (de) Kopplungskopf, Kopplungseinrichtung mit Kopplungskopf, daran ankoppelbarer Rendezvouskopf, Rendevouseinrichtung mit Rendezvouskopf, Unterwasserfahrzeug damit, Kopplungssystem, Kopplungsverfahren und Einsatzverfahren für ein Unterwasserfahrzeug
CN105549614A (zh) 无人机目标跟踪方法
CN107150953A (zh) 一种基于机器视觉的起重机大车方向精确定位系统及方法
CN105353772A (zh) 一种无人机机动目标定位跟踪中的视觉伺服控制方法
CN104933718A (zh) 一种基于双目视觉的物理坐标定位方法
CN109115184B (zh) 基于非合作目标协同测量方法及系统
CN113460274B (zh) 一种auv自主回收/布放装置及其实现方法
CN108015764A (zh) 一种基于多源视觉信息融合的空间零先验目标捕获方法
CN109573037A (zh) 一种基于vr与多传感器的电力巡线无人机及巡线方法
CN110842918B (zh) 一种基于点云伺服的机器人移动加工自主寻位方法
CN105084285A (zh) 加油设备与受油机自动对接的控制方法及装置
CN116039941B (zh) 适用于海上作业直升机的全自动牵引校正入库系统及方法
CN111055282A (zh) 一种海洋颠簸环境下零件修造加工的自稳定辅助结构
CN107150954A (zh) 基于机器视觉的起重机大车方向精确定位系统及方法
CN109993788B (zh) 一种轮胎吊的纠偏方法、装置及系统
CN110322462B (zh) 基于5g网络的无人机视觉着陆方法及系统
CN114397900B (zh) 一种无人机航拍图片中心点经纬度误差优化方法
CN108648234A (zh) 一种用于目标抓捕的机械臂相对导航方法
CN106840137A (zh) 一种四点式掘进机自动定位定向方法
CN207622804U (zh) 一种有压输水隧洞智能探测装置
CN206913156U (zh) 一种无人机

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant