WO2013139689A1 - Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol - Google Patents

Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol Download PDF

Info

Publication number
WO2013139689A1
WO2013139689A1 PCT/EP2013/055328 EP2013055328W WO2013139689A1 WO 2013139689 A1 WO2013139689 A1 WO 2013139689A1 EP 2013055328 W EP2013055328 W EP 2013055328W WO 2013139689 A1 WO2013139689 A1 WO 2013139689A1
Authority
WO
WIPO (PCT)
Prior art keywords
wheel
vehicle
axis
wheels
traction
Prior art date
Application number
PCT/EP2013/055328
Other languages
English (en)
Inventor
Philippe Paumier
Roland MAIA
Original Assignee
Dcns
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dcns filed Critical Dcns
Publication of WO2013139689A1 publication Critical patent/WO2013139689A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F1/00Ground or aircraft-carrier-deck installations
    • B64F1/22Ground or aircraft-carrier-deck installations installed for handling aircraft
    • B64F1/225Towing trucks
    • B64F1/227Towing trucks adapted for directly connecting to aircraft, e.g. trucks without tow-bars

Definitions

  • the invention relates to a traction system for an aircraft or other vehicle comprising a chassis connected by a support device to at least one wheel of the vehicle adapted to rotate about a first axis and adapted to support the vehicle on the ground, the system comprising at least a first clean wheel to rotate about a second axis, the first wheel being motorized.
  • the present invention relates to a method for providing a secure traction of a vehicle on a floor, in particular on a deck of a boat, the vehicle having a chassis and a plurality of vehicle wheels adapted to support the vehicle on the ground, the vehicle wheels being respectively connected by a support device to a chassis of the vehicle.
  • Secure traction and aircraft handling systems on the ground exist in many variants, particularly for securing and handling on a deck of a ship.
  • aircraft such as helicopters include a nose wheel or tail wheel to steer the aircraft on the ground and a main gear comprising main wheels.
  • the main gear supports most of the weight of the aircraft.
  • some traction systems include a tractor that is secured at the same time in a rail on a deck of a ship and at a hub of the wheel. Such a tractor pulls the wheel without lifting it from the deck.
  • the main wheels of the main gear are connected by a cable to a winch system which is also fixed in rails on the bridge. The cables between the winches and the main wheels, cross the bridge, which must be released from any other object.
  • the control of such a system is difficult because it is necessary at the same time to adjust the length of the cables that are attached to the main wheels and the movement of the tractor.
  • these systems are not compatible with all types of aircraft, especially helicopters with a tail wheel.
  • traction systems include a single tractor that completely lifts the nose wheel of a light aircraft. But, generally, the nose wheel and its suspension are much less solid than the main gear. Thus, systems ensuring the holding only by the nose wheel can not ensure the security of an aircraft or the ground adhesion of the main gear.
  • the object of the invention is to provide a traction system and a method for providing secure traction which are inexpensive, compact and allow the handling and securing of an aircraft or other vehicle on board ships.
  • a traction system for a vehicle for a vehicle comprising a chassis connected by a support device to at least one wheel of the vehicle adapted to rotate about a first axis and clean to support the vehicle on the ground, the system comprising: at least a first wheel adapted to rotate about a second axis, the first wheel being motorized; fastening means for fixing the traction system to the support device and / or to a hub of the vehicle wheel so that the first axis and the second axis are parallel and offset in a rolling direction of the first wheel; and at least one lifting device for lifting the vehicle from a rest position, in which the traction system does not carry the weight of the vehicle, to an operating position in which the traction system carries part of the weight of the vehicle , the fastening means and the lifting device being adapted to
  • the system comprises at least one second wheel adapted to rotate about a third axis offset relative to the second axis in the rolling direction of the first wheel and the second wheel, the fixing means being adapted to fix the system of rotation. traction to the support device and / or the hub of the vehicle wheel so that the first axis and the third axis are respectively offset between them according to the rolling direction of the second wheel;
  • the second axis and the third axis are adapted to be arranged respectively before and after the first axis along the rolling direction of the first wheel and the second wheel;
  • the first and second wheels are mounted at the ends of a rudder adapted to be mounted oscillating on the hub of the wheel of the vehicle;
  • the traction system comprises two lifting devices respectively fixed to a hub of the first wheel and to a hub of the second wheel;
  • the traction system comprises an orientation bar for manually directing the first wheel, the second wheel and / or the wheel of the vehicle;
  • the first wheel is mounted on an intermediate point of the orientation bar, the latter comprising the fixing means at its distal end; and or
  • the intermediate point is closer to the distal end than to the proximal end of the orientation bar.
  • a method for ensuring a secure traction of a vehicle on a floor, especially on a deck of a boat, the vehicle having a frame and a plurality of vehicle wheels adapted to support the vehicle on the ground, the wheels of the vehicle being respectively connected by a support device to a chassis of the vehicle comprising the following steps: the attachment of at least one traction system according to one embodiment of the invention to the support device and / or a hub of a wheel of the vehicle, the traction system being in the rest position; lifting the vehicle from the rest position to the operating position by the or each traction system so that each wheel of the vehicle to the support device of which and / or the hub of which a traction system is fixed remains, in operating position, on the ground and the or each traction system partially supports the weight of the vehicle; and activating the one or more motors to drive the or each wheel of the traction system to move the vehicle into the operating position on the ground.
  • the wheels of the vehicle comprise at least one main gear, whose two main wheels are arranged parallel to each other on either side of a line of symmetry of the vehicle in a main direction of movement of the vehicle, the fixing step comprising the respectively fixing a traction system to the support device and / or the hub of each main wheel so that the distance between each main wheel and the line of symmetry of the vehicle is less than the distance between the line of symmetry and the or the wheels of the traction system;
  • the wheels of the vehicle comprise at least one steerable wheel arranged on the line of symmetry, the fixing step comprising the attachment of a traction system to the support device and / or to the hub of the steerable wheel;
  • the vehicle is an aircraft comprising a steerable wheel and two main wheels of a main gear; and or
  • the wheels of the vehicle are pneumatic wheels.
  • FIG. 1 is a schematic top view of a landing gear of a helicopter
  • FIG. 2 is a sectional view of a main gear of a helicopter
  • FIG. 3 is a top view of a traction system of an embodiment according to the invention.
  • Figure 4 is a side view of a traction system of the embodiment of Figure 3;
  • - Figure 5 is a schematic view of a landing gear of a helicopter with a traction system according to the same embodiment of the invention;
  • FIG. 6 is a sectional view of a wheel of the traction system according to the invention.
  • FIG. 7 is a schematic side view of a traction system according to another embodiment of the invention.
  • the traction system according to the invention will be described below with its application on a helicopter. Nevertheless, it can also be applied to other types of aircraft or vehicles.
  • Figure 1 shows a top view of a landing gear 1 of a helicopter.
  • the helicopter has a line of symmetry X according to the main direction of movement of the helicopter.
  • a projection of the general shape of the fuselage 3 of the helicopter is indicated in dashes.
  • the landing gear 1 comprises a main gear 5 and a wheel or nose or tail wheel 7.
  • the steerable wheel 7 makes it possible to steer the helicopter 3 on the ground.
  • the projection of the center of gravity 9 of the helicopter 3 vertically on the ground is closer to the main gear 5 than the steerable wheel 7.
  • the steerable wheel 7 supports a little less than a third of the weight of the helicopter 3.
  • the main gear 5 is provided with two main wheels 1 1, 13 located on either side of the line of symmetry X.
  • the two main wheels 1 1, 13 rotate substantially around the same axis Y and the swivel wheel 7 rotates around a Z axis which is steerable in a plane parallel to the ground or a platform on which the helicopter is placed.
  • each wheel 7, 1 1, 13 define a support polygon P1. If the ground is horizontal, the vertical projection of the center of gravity is inside the support polygon P1.
  • each wheel, in particular the steerable wheel 7 and the main wheels 11, 13, are pneumatic wheels.
  • the weight of the helicopter When the helicopter is on the deck of a ship, under the effect of the movements of the bridge, for example in case of strong sea, the weight of the helicopter combines with its inertia in a resultant force that is no longer vertical. In extreme cases, the resultant force may cause one or more wheels 7, 1 1, 13 to take off from the bridge or induce a tilting torque of the helicopter bearing on one or other of the wheels if it is aimed at a point the bridge outside the support polygon P1.
  • Figure 2 shows in sectional view a main wheel 1 1, 13 of the main gear 5 along the Y axis of the main gear placed on the ground S.
  • the main gear comprises a suspension 15 which connects an axis 17 of the wheel main 1 1, 13 to the fuselage 3 of the helicopter.
  • the shaft 17 comprises a hollow outer portion 19 provided with a thread female.
  • a bearing 21 is arranged around the outer portion 19 to rotate a rim 23 about the axis 17.
  • the inner portion of the rim 23, the bearing 21 and the outer portion 19 of the shaft 17 together form a hub 25 of the main wheel 1 1, 13.
  • a tire 27 is mounted on the rim.
  • Figure 2 further shows an interface 30 for coupling a traction system according to the invention to the hub 25 of a main wheel 11, 13.
  • the interface 30 comprises two parts 32, 34 adjacent to each other. another along the axis of the main gear Y when the interface 30 is mounted on the hub 25, in particular a first portion 32 having a clean external thread to cooperate with the internal thread of the outer portion 19 of the shaft 17, and a second outer portion 34 adapted to be connected to the traction system.
  • the interface 30 When mounting the interface 30 on the main gear 5, it is screwed into the hub 25 of the main wheel 1 1, 13. In one embodiment, the interface 30 can be permanently mounted in the hub 25.
  • the second portion 34 comprises two circumferential shoulders 36, 38 which are distant from each other.
  • a shoulder 36 is adjacent to the first portion 32 and the second shoulder 38 is arranged at the free end of the second portion 34.
  • the second portion 34 comprises a cylindrical support section 40 having a diameter less than the diameter of the shoulders 36, 38.
  • the first portion 32 and the second portion 34 of the interface 30 are arranged on the same axis. In other embodiments, they may be arranged on different axes vertically offset from each other. Different vehicles may have different heights of the Y axis relative to the ground S. Thus, a difference in level between the first portion 32 and the second portion 34 makes it possible to have a standard height relative to the ground S of the second portion 34 for all the vehicles to which the traction system is to be attached.
  • the steerable wheel 7 is also provided with an interface 30.
  • Figure 3 shows a top view of a traction system 50 according to an embodiment attached to a main wheel 1 1, 13.
  • Figure 4 shows schematically a side view of the same traction system 50.
  • the main wheel 1 1, 13 rolls in a rolling direction R1 on the ground S when it rotates about the axis of the main gear Y.
  • the traction system 50 comprises a portable support 52 having a longitudinal extension which extends parallel to the running direction R1.
  • the portable support 52 is fixed by quick coupling means 54 to the interface 30, in particular to the support section 40 between the two shoulders 36, 38.
  • the means quick coupling 54 comprises a bearing 56 that can be opened and closed on its upper part 58 to accommodate the support section 40.
  • the bearing 56 has a cylindrical shape with substantially the same diameter as the support section 40. rapid coupling means 54 makes it possible to fix the portable support 52 to the interface 30.
  • the traction system 50 further comprises two wheels 60, 62 fixed respectively by a height adjustment system 64, 66 to the portable support 52.
  • the wheels 60, 62 have a common running direction R2 which is parallel to the longitudinal extension of the portable support 52 and to the running direction R1 of the main wheel 1 1, 13.
  • the wheels 60, 62 are fixed respectively to the front and rear ends of the portable support 52, so that their axes of rotation A, B are respectively arranged before and after the axis of the main gear Y according to the running direction R1.
  • the wheels 60, 62 have the same running direction as the main wheel to which the traction system 50 is attached. In the embodiment of FIG.
  • the axes of rotation A, B have a height relative to the ground S less than the axis of the main gear Y.
  • At least one of the wheels 60, 62 comprises a motor, for example a hub motor.
  • the traction system 50 according to the embodiment of Figures 3 and 4 comprises two wheels 60, 62 to be stable. Typically, the traction system 50 is attached to the outside of the main gear 5 so that, in plan view, the main wheels 11, 13 are located between the wheels 60, 62 of the traction system 50 and the main wheel. symmetry X.
  • the portable support can act as a rudder to compensate for the irregularities of the ground S. This is done by the support section 40 cylindrical circular section.
  • the portable support 52 of the traction system 50 is able to act as a suspension bending bar in order to limit the stress on the axes A, B in the event of partial lifting of the helicopter on one side.
  • the height adjustment device 64, 66 makes it possible to lift the portable support 52, without taking off from the ground the main wheel 11, 13 of the helicopter.
  • the height adjustment devices 64, 66 are adapted to adapt to the inflation of the tires 27 of a given helicopter.
  • a set of parts makes it possible to adapt quickly to a whole range of wheel diameters 1 1, 13 of a helicopter.
  • the height adjustment device 64, 66 is, in one embodiment, a screw / nut system operated by means of a portable, manual or electrical key.
  • Figure 5 shows a top view of a landing gear 1 of a helicopter with the traction system 50 attached to each main wheel 1 1, 13 of the helicopter.
  • the levitation polygon P2 is now defined by the wheels 60, 62 of the system of traction 50 and the steerable wheel 7.
  • the lift polygon P2 of the helicopter with traction systems 50 attached to the main wheels 1 1, 13 is larger than the lift polygon P1 of the helicopter without traction system 50
  • the width of the lift polygon P2 along the axis of the main gear Y is greater than the width of the lift polygon P1.
  • Figure 6 shows a section of a wheel 60, 62 equipped with a motor 74 internal or external hub 70.
  • the engine is associated with batteries 72 internal or external hub.
  • An electronic control and control system 78 is associated with the motor 74 and the batteries 72.
  • a tire 80 is arranged around the hub.
  • each wheel of the traction system 50 comprises a current-canceling brake arranged so as to protect it against shocks.
  • This brake can be loosened electrically and / or manually.
  • the brake and the motor are adapted to be remotely controlled in a wireless embodiment.
  • the traction systems 50 can be controlled so that the wheels 60, 62 of the traction system 50 associated with the first main wheel 1 1 have a different speed with respect to the wheels 60, 62 of the traction system 50 associated with the second main wheel 13, to facilitate the operation of the helicopter.
  • a second traction system 50 on the outside of a traction system 50 directly coupled to the main wheel January 1, 13 to double the traction.
  • the motors of the wheels 60, 62 of the coupled traction systems 50 will receive the same effort instructions.
  • the traction system 50 is adapted to be attached to a strong point located under the helicopter. This strong point is called probe.
  • Figure 7 shows a side of a traction system 100 according to another embodiment.
  • the traction system 100 is attached to a steerable wheel 7 of a helicopter which rolls in a rolling direction R3.
  • the steerable wheel comprises an interface identical to the interface 30 for the main wheels 11, 13.
  • the traction system 100 comprises an orientation bar 102 having a longitudinal extension which comprises a first end 104 or a distal end 104 which is The second end 106 or the proximal end is provided for manipulation by an operator.
  • the orientation bar 102 is fixed by means of fast hooking means 107 to the interface 30, in particular to the support section 40 between the two shoulders 36, 38.
  • the quick coupling means 107 comprises a bearing 108 may be opened and closed on its upper part 1 10 to accommodate the support section 40.
  • the bearing 108 has a cylindrical shape with substantially the same diameter as the support section 40.
  • the quick coupling means 107 allows attachment of the orientation bar 102 to the interface 30.
  • a wheel 1 12 which rotates about an axis C is fixed to the steering bar 102.
  • the wheel has a running direction R4 which is parallel to the longitudinal extension of the steering bar 102 and parallel to the direction R3 when the traction system 100 is attached to the steerable wheel 7.
  • the wheel 1 12 may be a motorized wheel as the wheels 60, 62 shown in Figure 6.
  • the wheel 1 12 of the traction system 100 is fixed to the orientation bar 102 between the first end 104 and the second end 106 so that a first portion 1 14, between the point of attachment to the interface 30 and the axis C of the wheel 1 12, the system of traction 100 has a length less than that of a second portion 1 16, between the second end 106 and the axis C of the wheel 1 12.
  • the orientation bar 102 serves as a lever for lifting the steerable wheel 7 of the helicopter by the force of a man.
  • the first part 14 and the second part 16 form an angle between them, the center of rotation being substantially on the axis C of the wheel 1 12.
  • the axis C of the wheel 1 12 is arranged before the Z axis of the steerable wheel 7 according to the rolling direction thereof.
  • the orientation bar 102 is used to orient the steerable wheel 7 manually. For example, a man can easily rotate the steerable wheel 7 by lifting the bar to take off the wheel January 12 above the ground S.
  • the wheel 1 12, in particular the motor and / or the brake wheel 1 12, can be controlled from the second end 106 of the orientation bar 102.
  • the operation of the traction systems 50 and 100 is described with the example of a helicopter that landed on a deck of a ship. During the landing, the helicopter secured itself to a deck landing deck to keep it on the ground.
  • each traction system 50 supports at least 10% of the weight of the helicopter. But each traction system does not fully support the part of the weight of the helicopter acting in the rest position on the wheel to which the traction system is attached.
  • the main wheels 1 1, 13 can still rotate about their Y axis and support a portion of the weight of the helicopter.
  • This makes it possible to create the adhesion force necessary for traction and / or securing drift, which is substantially proportional to the application force on the ground or, in this case, on the bridge.
  • the principle of friction on a hard body, wherein the force is independent of the contact surface does not apply to a soft body, such as a tire. The large tire surface in contact with the ground thus ensures a strong adhesion.
  • the operator fixes the orientation bar 102 of the traction system 100 to the steerable wheel 7 of the helicopter.
  • the helicopter is then released from the deck and, from a remote control hooked to the second end 106 of the steering bar 102, the motors and brakes arranged in the wheels 60, 62, 1 12 of the systems Traction 50 are ordered.
  • the operator orients the steerable wheel 7 to steer the helicopter.
  • the 50,100 traction systems use the mass of what they cause to increase the pressure of the driving wheel 60, 62, 1 12 on the ground.
  • the principle of accumulated adhesion to a large support polygon P2 makes it possible to avoid the reversal of a helicopter to a certain high limit.
  • the traction system 100 shown in Figure 6 for the steerable wheel 7, or both traction systems 50 shown in Figures 3 and 4 attached to the wheels 1 1, 13 of the main gear 5 with a single non-motorized bar, or a combination of these devices.
  • the traction systems 50 are doubled for each main wheel 1 1, 13 to increase the torque.
  • the traction system 50 or the traction system 100 is fixed in an integrated rail on a deck of a ship.
  • an additional carriage may be used to secure a helicopter strong point, for example the probe located beneath its fuselage, to a rail integrated with the deck of the ship. In this case, the carriage is left free from its movements in the rail or may be provided with an electric wheel, for example as described with respect to the wheels 60, 62, 1 12 of the traction systems 50, 100.
  • the traction system 50 can be used to motorize a trolley for transporting various loads, for example ammunition, by attaching the traction system to the wheels of this trolley or by replacing a wheel. of the cart.
  • the system is modular and that the traction system is attached to a strong point of an aircraft that are the wheels of the landing gear.
  • the traction system allows multiplication and spacing of traction points to increase the maneuverability and allows, in case of strong sea, the preservation of the subjection of the aircraft to a rail for securing.

Abstract

La demande concerne un système de traction pour un véhicule pour un véhicule comprenant un châssis relié par un dispositif de support à au moins une roue (11, 13) du véhicule propre à tourner autour d'un premier axe (Y) et propre à supporter le véhicule sur le sol, le système comprenant : au moins une première roue (60, 62) propre à tourner autour d'un deuxième axe, la première roue étant motorisée; un moyen de fixation (30, 54) pour fixer le système de traction au dispositif de support et/ou à un moyeu de la roue du véhicule de façon que le premier axe (Y) et le deuxième axe soient parallèles et décalés suivant une direction de roulement (R2) de la première roue (60, 62); et au moins un dispositif de levage pour soulever le véhicule d'une position de repos, dans laquelle le système de traction ne porte pas le poids du véhicule, à une position de fonctionnement dans laquelle le système de traction porte une partie du poids du véhicule, le moyen de fixation et le dispositif de levage étant propres à permettre une rotation de la roue du véhicule sur le sol en position de fonctionnement. En outre, la demande concerne un procédé pour assurer une traction sécurisée d'un véhicule sur un sol, notamment sur un pont d'un bateau.

Description

Système de traction pour un véhicule et procédé pour assurer une traction sécurisée d'un véhicule sur un sol
L'invention concerne un système de traction pour un aéronef ou un autre véhicule comprenant un châssis relié par un dispositif de support à au moins une roue du véhicule propre à tourner autour d'un premier axe et propre à supporter le véhicule sur le sol, le système comprenant au moins une première roue propre à tourner autour d'un deuxième axe, la première roue étant motorisée.
En outre, la présente invention concerne un procédé pour assurer une traction sécurisée d'un véhicule sur un sol, notamment sur un pont d'un bateau, le véhicule ayant un châssis et une pluralité de roues de véhicule propres à supporter le véhicule sur le sol, les roues de véhicule étant respectivement reliées par un dispositif de support à un châssis du véhicule.
Des systèmes de traction sécurisée et de manutention d'un aéronef sur le sol existent dans de nombreuses variantes, en particulier pour la sécurisation et la manutention sur un pont d'un navire. Typiquement, les aéronefs comme des hélicoptères comprennent une roulette de nez ou de queue pour orienter l'aéronef sur le sol et un train principal comprenant des roues principales. Le train principal supporte la majorité du poids de l'aéronef.
Par exemple, quelques systèmes de traction comprennent un tracteur qui est fixé en même temps dans un rail sur un pont d'un navire et à un moyeu de la roulette. Un tel tracteur tire la roulette sans soulever celle-ci du pont. De plus, les roues principales du train principal sont reliées par un câble à un treuil du système qui est également fixé dans des rails sur le pont. Les câbles entre les treuils et les roues principales, traversent le pont, qui doit être libéré de tout autre objet. La commande d'un tel système est difficile car il faut en même temps régler la longueur des câbles qui sont fixés aux roues principales et le déplacement du tracteur. De plus, ces systèmes ne sont pas compatibles avec tous les types d'aéronefs, en particulier avec les hélicoptères dotés d'une roulette de queue.
D'autres systèmes de traction comprennent un seul tracteur qui soulève complètement la roulette de nez d'un aéronef léger. Mais, généralement, la roulette de nez et sa suspension sont beaucoup moins solides que le train principal. Donc, des systèmes assurant la tenue seulement par la roulette de nez ne peuvent pas assurer la sécurisation d'un aéronef ou l'adhérence au sol du train principal.
Le but de l'invention est de proposer un système de traction et un procédé pour assurer une traction sécurisée qui soient peu coûteux, compacts et permettent la manutention et la sécurisation d'un aéronef ou autre véhicule à bord des navires. Ces buts sont atteints, conformément à l'invention par un système de traction pour un véhicule pour un véhicule comprenant un châssis relié par un dispositif de support à au moins une roue du véhicule propre à tourner autour d'un premier axe et propre à supporter le véhicule sur le sol, le système comprenant : au moins une première roue propre à tourner autour d'un deuxième axe, la première roue étant motorisée ; un moyen de fixation pour fixer le système de traction au dispositif de support et/ou à un moyeu de la roue du véhicule de façon que le premier axe et le deuxième axe soient parallèles et décalés suivant une direction de roulement de la première roue ; et au moins un dispositif de levage pour soulever le véhicule d'une position de repos, dans laquelle le système de traction ne porte pas le poids du véhicule, à une position de fonctionnement dans laquelle le système de traction porte une partie du poids du véhicule, le moyen de fixation et le dispositif de levage étant propres à permettre une rotation de la roue du véhicule sur le sol en position de fonctionnement.
Selon des caractéristiques avantageuses :
- le système comprend au moins une deuxième roue propre à tourner autour d'un troisième axe décalé par rapport au deuxième axe suivant la direction de roulement de la première roue et de la deuxième roue, le moyen de fixation étant propre à fixer le système de traction au dispositif de support et/ou au moyeu de la roue du véhicule de façon que le premier axe et le troisième axe soient respectivement décalés entre eux suivant la direction de roulement de la deuxième roue ;
- le deuxième axe et le troisième axe sont propres à être agencés respectivement avant et après le premier axe suivant la direction de roulement de la première roue et de la deuxième roue ;
- les première et deuxième roues sont montées aux extrémités d'un palonnier propre à être monté oscillant sur le moyeu de la roue du véhicule ;
- le système de traction comprend deux dispositifs de levage respectivement fixés à un moyeu de la première roue et à un moyeu de la deuxième roue ;
- le système de traction comprend une barre d'orientation pour orienter manuellement la première roue, la deuxième roue et/ou la roue du véhicule ;
- la première roue est montée sur un point intermédiaire de la barre d'orientation, celle-ci comportant le moyen de fixation à son extrémité distale ; et/ou
- le point intermédiaire est plus proche de l'extrémité distale que de l'extrémité proximale de la barre d'orientation.
En outre, ces buts sont atteints par un procédé pour assurer une traction sécurisée d'un véhicule sur un sol, notamment sur un pont d'un bateau, le véhicule ayant un châssis et une pluralité de roues de véhicule propres à supporter le véhicule sur le sol, les roues de véhicule étant respectivement reliées par un dispositif de support à un châssis du véhicule, le procédé comprenant les étapes suivantes : la fixation d'au moins un système de traction selon un mode de réalisation de l'invention au dispositif de support et/ou à un moyeu d'une roue du véhicule, le système de traction étant en position de repos ; le levage du véhicule de la position de repos à la position de fonctionnement par le ou chaque système de traction de façon que chaque roue du véhicule au dispositif de support de laquelle et/ou au moyeu de laquelle un système de traction est fixé reste, en position de fonctionnement, sur le sol et le ou chaque système de traction supporte partiellement le poids du véhicule ; et l'activation du ou des moteurs pour entraîner la ou chaque roue du système de traction pour déplacer sur le sol le véhicule en position de fonctionnement.
Selon des caractéristiques avantageuses :
- les roues du véhicule comprennent au moins un train principal, dont les deux roues principales sont agencées parallèlement de part et d'autre d'une ligne de symétrie du véhicule suivant une direction principale de déplacement du véhicule, l'étape de fixation comprenant la fixation respectivement d'un système de traction au dispositif de support et/ou au moyeu de chaque roue principale de façon que la distance entre chaque roue principale et la ligne de symétrie du véhicule soit inférieure à la distance entre la ligne de symétrie et le ou les roues du système de traction ;
- les roues du véhicule comprennent au moins une roue orientable agencée sur la ligne de symétrie, l'étape de fixation comprenant la fixation d'un système de traction au dispositif de support et/ou au moyeu de la roue orientable ;
- le véhicule est un aéronef comprenant une roue orientable et deux roues principales d'un train principal ; et/ou
- les roues du véhicule sont des roues pneumatiques.
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins, qui illustrent des exemples de réalisation dépourvus de tout caractère limitatif et dans lequel :
- la Figure 1 est une vue schématique de dessus d'un train d'atterrissage d'un hélicoptère ;
- la Figure 2 est une vue en coupe d'un train principal d'un hélicoptère ;
- la Figure 3 est une vue de dessus d'un système de traction d'un mode de réalisation selon l'invention ;
- la Figure 4 est une vue de côté d'un système de traction du mode de réalisation de la Figure 3 ; - la Figure 5 est une vue schématique d'un train d'atterrissage d'un hélicoptère avec un système de traction selon le même mode de réalisation selon l'invention ;
- la Figure 6 est une vue en coupe d'une roue du système de traction selon l'invention ; et
- la Figure 7 est une vue de côté schématique d'un système de traction selon un autre mode de réalisation de l'invention.
Le système de traction selon l'invention va être décrit ci-dessous avec son application sur un hélicoptère. Néanmoins, il peut aussi être appliqué à d'autres types d'aéronefs ou de véhicules.
La Figure 1 montre une vue de dessus d'un train d'atterrissage 1 d'un hélicoptère.
L'hélicoptère présente une ligne de symétrie X suivant la direction principale de déplacement de l'hélicoptère. Une projection de la forme générale du fuselage 3 de l'hélicoptère est indiquée en tirets. Le train d'atterrissage 1 comprend un train principal 5 et une roulette ou roue orientable 7 de nez ou de queue. La roue orientable 7 permet de diriger l'hélicoptère 3 sur le sol.
La projection du centre de gravité 9 de l'hélicoptère 3 verticalement sur le sol est plus proche du train principal 5 que de la roue orientable 7. La roue orientable 7 supporte un peu moins d'un tiers du poids de l'hélicoptère 3.
Le train principal 5 est pourvu de deux roues principales 1 1 , 13 situées de part et d'autre de la ligne de symétrie X. Les deux roues principales 1 1 , 13 tournent sensiblement autour du même axe Y et la roue orientable 7 tourne autour d'un axe Z qui est orientable dans un plan parallèlement au sol ou à une plateforme sur laquelle l'hélicoptère est posé.
Les trois roues 7, 1 1 , 13 définissent un polygone de sustentation P1 . Si le sol est horizontal, la projection verticale du centre de gravité est à l'intérieur du polygone de sustentation P1 . Généralement, chaque roue, notamment la roue orientable 7 et les roues principales 1 1 , 13, sont des roues pneumatiques.
Quand l'hélicoptère est sur le pont d'un navire, sous l'effet des mouvements du pont, par exemple en cas de mer forte, le poids de l'hélicoptère se combine à son inertie selon une force résultante qui n'est plus verticale. Dans des cas extrêmes, la force résultante peut faire décoller une ou plusieurs roues 7, 1 1 , 13 du pont ou induire un couple de basculement de l'hélicoptère en appui sur l'une ou l'autre des roues si elle vise un point du pont situé à l'extérieur du polygone de sustentation P1 .
La Figure 2 montre en vue de coupe une roue principale 1 1 , 13 du train principal 5 le long de l'axe Y du train principal posé sur le sol S. Le train principal comprend une suspension 15 qui relie un axe 17 de la roue principale 1 1 , 13 au fuselage 3 de l'hélicoptère. L'axe 17 comprend une partie extérieure 19 creuse munie d'un filetage femelle. Un palier 21 est agencé autour de la partie extérieure 19 pour laisser tourner une jante 23 autour de l'axe 17. La partie intérieure de la jante 23, le palier 21 et la partie extérieure 19 de l'axe 17 forment ensemble un moyeu 25 de la roue principale 1 1 , 13. Un pneu 27 est monté sur la jante.
La Figure 2 montre, en outre, une interface 30 pour coupler un système de traction selon l'invention au moyeu 25 d'une roue principale 1 1 , 13. L'interface 30 comprend deux parties 32, 34 adjacentes l'une à l'autre suivant l'axe du train principal Y quand l'interface 30 est montée sur le moyeu 25, notamment une première partie 32 ayant un filetage extérieur propre à coopérer avec le filetage intérieur de la partie extérieure 19 de l'axe 17, et une deuxième partie extérieure 34 propre à être connectée au système de traction.
Lors du montage de l'interface 30 sur le train principal 5, celle-ci est vissée dans le moyeu 25 de la roue principale 1 1 , 13. Dans un mode de réalisation, l'interface 30 peut être montée en permanence dans le moyeu 25.
La deuxième partie 34 comprend deux épaulements circonférentiels 36, 38 qui sont distants l'un de l'autre. Un épaulement 36 est adjacent à la première partie 32 et le deuxième épaulement 38 est agencé à l'extrémité libre de la deuxième partie 34. Entre les deux épaulements 36, 38, la deuxième partie 34 comprend une section de support cylindrique 40 ayant un diamètre inférieur au diamètre des épaulements 36, 38.
Dans le mode de réalisation de la Figure 2, la première partie 32 et la deuxième partie 34 de l'interface 30 sont agencées sur le même axe. Dans d'autres modes de réalisation, elles peuvent être agencées sur des axes différents décalés verticalement entre eux. Différents véhicules peuvent avoir différentes hauteurs de l'axe Y par rapport au sol S. Donc, un dénivelé entre la première partie 32 et la deuxième partie 34 permet d'avoir une hauteur standard par rapport au sol S de la deuxième partie 34 pour tous les véhicules auquel le système de traction doit être fixé.
Dans un mode de réalisation, la roue orientable 7 est aussi pourvue d'une interface 30.
La Figure 3 montre une vue de dessus d'un système de traction 50 selon un mode de réalisation fixé à une roue principale 1 1 , 13. La Figure 4 montre schématiquement une vue de côté du même système de traction 50. La roue principale 1 1 , 13 roule dans une direction de roulement R1 sur le sol S quand elle tourne autour de l'axe du train principal Y.
Le système de traction 50 comprend un support portatif 52 ayant une extension longitudinale qui s'étend parallèlement à la direction de roulement R1 . Le support portatif 52 est fixé par des moyens d'accrochage rapide 54 à l'interface 30, en particulier à la section de support 40 entre les deux épaulements 36, 38. Par exemple, le moyen d'accrochage rapide 54 comprend un palier 56 susceptible d'être ouvert et fermé sur sa partie supérieure 58 pour y accueillir la section de support 40. Le palier 56 a une forme cylindrique avec sensiblement le même diamètre que la section de support 40. Le moyen d'accrochage rapide 54 permet de fixer le support portatif 52 à l'interface 30.
Le système de traction 50 comprend en outre deux roues 60, 62 fixées respectivement par un système de réglage en hauteur 64, 66 au support portatif 52. Les roues 60, 62 ont une direction de roulement R2 commune qui est parallèle à l'extension longitudinale du support portatif 52 et à la direction de roulement R1 de la roue principale 1 1 , 13. Les roues 60, 62 sont fixées respectivement aux extrémités avant et arrière du support portatif 52, de telle manière que leurs axes de rotation A, B sont agencés respectivement avant et après l'axe du train principal Y suivant la direction de roulement R1 . De plus, les roues 60, 62 ont la même direction de roulement que la roue principale à laquelle le système de traction 50 est fixé. Dans le mode de réalisation de la Figure 4, les axes de rotation A, B ont une hauteur par rapport au sol S moins important que l'axe du train principal Y. Au moins l'une des roues 60, 62 comprend un moteur, par exemple un moteur de moyeu. Le système de traction 50 selon le mode de réalisation des Figures 3 et 4 comporte deux roues 60, 62 afin d'être stable. Typiquement, le système de traction 50 est fixé à l'extérieur du train principal 5 de façon que, en vue en plan, les roues principales 1 1 , 13 se trouvent entre les roues 60, 62 du système de traction 50 et la ligne de symétrie X.
Le support portatif peut faire office de palonnier afin de compenser les irrégularités du sol S. Ceci est effectué par la section de support 40 cylindrique à section circulaire. En outre, le support portatif 52 du système de traction 50 est propre à agir comme une barre de flexion de suspension afin de limiter la contrainte sur les axes A, B en cas de soulèvement partiel de l'hélicoptère d'un côté.
Le dispositif de réglage en hauteur 64, 66 permet de soulever le support portatif 52, sans décoller du sol la roue principale 1 1 , 13 de l'hélicoptère. De plus, les dispositifs de réglage en hauteur 64, 66 sont propres à s'adapter au gonflage des pneus 27 d'un hélicoptère donné. Optionnellement, si la deuxième partie 34 de l'interface 30 n'a pas une hauteur utilisable pour le système de traction 50, un jeu de pièces permet de s'adapter rapidement à toute une gamme de diamètres de roue 1 1 , 13 d'un hélicoptère.
Le dispositif de réglage en hauteur 64, 66 est, dans un mode de réalisation, un système vis/écrou actionné à l'aide d'une clé portative, manuelle ou électrique.
La Figure 5 montre une vue de dessus d'un train d'atterrissage 1 d'un hélicoptère avec le système de traction 50 fixé à chaque roue principale 1 1 , 13 du hélicoptère. Le polygone de sustentation P2 est maintenant défini par les roues 60, 62 du système de traction 50 et par la roue orientable 7. Le polygone de sustentation P2 de l'hélicoptère avec des systèmes de traction 50 fixés au roues principales 1 1 , 13 est plus grand que le polygone de sustentation P1 de l'hélicoptère sans système de traction 50. En particulier, la largeur du polygone de sustentation P2 suivant l'axe du train principal Y est supérieure à la largeur du polygone de sustentation P1 .
La Figure 6 montre une coupe d'une roue 60, 62 équipée avec un moteur 74 interne ou externe au moyeu 70. Le moteur est associé à des batteries 72 internes ou externes au moyeu. Un système électronique de pilotage et de contrôle 78 est associé au moteur 74 et aux batteries 72. Un pneu 80 est agencé autour du moyeu.
Selon un mode de réalisation, chaque roue du système de traction 50 comprend un frein à manque de courant agencé de manière à le protéger des chocs. Ce frein peut être desserré électriquement et/ou manuellement.
De plus, le frein et le moteur sont propres à être télécommandés, dans un mode de réalisation sans fil. De plus, lors de l'utilisation, les systèmes de traction 50 peuvent être commandés de manière que les roues 60, 62 du système de traction 50 associé à la première roue principale 1 1 ont une vitesse différente par rapport aux roues 60, 62 du système de traction 50 associé à la deuxième roue principale 13, pour faciliter la manœuvre de l'hélicoptère.
Dans un mode de réalisation, il est possible d'accoupler un deuxième système de traction 50 sur l'extérieur d'un système de traction 50 directement accouplé à la roue principale 1 1 , 13 afin de doubler la traction. Dans ce cas, les moteurs des roues 60, 62 des systèmes de traction 50 accouplés recevront les mêmes consignes d'efforts.
Dans une variante, le système de traction 50 est propre à être fixé à un point fort situé sous l'hélicoptère. Ce point fort est appelé probe.
La Figure 7 montre de côté un système de traction 100 selon un autre mode de réalisation. Le système de traction 100 est fixé à une roue orientable 7 d'un hélicoptère qui roule dans une direction de roulement R3. La roue orientable comprend une interface identique à l'interface 30 pour les roues principales 1 1 , 13. Le système de traction 100 comprend une barre d'orientation 102 ayant une extension longitudinale qui comprend une première extrémité 104 ou une extrémité distale 104 qui est fixée à l'interface 30 de la roue orientable 7. La deuxième extrémité 106 ou l'extrémité proximale est prévue pour être manipulée par un opérateur.
La barre d'orientation 102 est fixée par des moyens d'accrochage rapides 107 à l'interface 30, en particulier à la section de support 40 entre les deux épaulements 36, 38. Par exemple, le moyen d'accrochage rapide 107 comprend un palier 108 susceptible d'être ouvert et fermé sur sa partie supérieure 1 10 pour y accueillir la section de support 40. Le palier 108 a une forme cylindrique avec sensiblement le même diamètre que la section de support 40. Le moyen d'accrochage rapide 107 permet une fixation de la barre d'orientation 102 à l'interface 30.
Une roue 1 12 qui tourne autour d'un axe C est fixée à la barre d'orientation 102. La roue a une direction de roulement R4 qui est parallèle à l'extension longitudinale de la barre d'orientation 102 et parallèle à la direction de roulement R3 quand le système de traction 100 est fixé à la roue orientable 7. La roue 1 12 peut être une roue motorisée comme les roues 60, 62 montrées dans la Figure 6. La roue 1 12 du système de traction 100 est fixée à la barre d'orientation 102 entre la première extrémité 104 et la deuxième extrémité 106 de manière qu'une première partie 1 14, entre le point de fixation à l'interface 30 et l'axe C de la roue 1 12, du système de traction 100 ait une longueur inférieure à celle d'une deuxième partie 1 16, entre la deuxième extrémité 106 et l'axe C de la roue 1 12. De cette façon, la barre d'orientation 102 fait office d'un levier pour soulever la roue orientable 7 de l'hélicoptère par la force d'un homme. Dans un mode de réalisation montré dans la Figure 7, la première partie 1 14 et la deuxième partie 1 16 forment un angle entre elles, le centre de rotation étant sensiblement sur l'axe C de la roue 1 12.
L'axe C de la roue 1 12 est agencé avant l'axe Z de la roue orientable 7 suivant le sens de roulement de celle-ci.
La barre d'orientation 102 est utilisée pour orienter la roue orientable 7 manuellement. Par exemple, un homme peut aisément faire tourner la roue orientable 7 en soulevant la barre afin de décoller la roue 1 12 au-dessus du sol S. Dans un mode de réalisation, la roue 1 12, en particulier le moteur et/ou le frein de la roue 1 12, peut être commandé à partir de la deuxième extrémité 106 de la barre d'orientation 102.
Dans la suite, le fonctionnement des systèmes de traction 50 et 100 est décrit avec l'exemple d'un hélicoptère qui s'est posé sur un pont d'un navire. Lors de l'atterrissage, l'hélicoptère s'est fixé à une grille d'appontage du pont pour le maintenir au sol.
Dans un premier temps, un opérateur fixe respectivement un système de traction 50 à chaque roue principale 1 1 , 13 du train principal 5 d'un hélicoptère. Avant que l'opérateur commence à commander les moteurs, les dispositifs de réglage en hauteur 58, 60 lèvent l'axe du train principal Y d'une position de repos à une position de fonctionnement de façon que chaque roue principale 1 1 , 13 reste, en position de fonctionnement du système de traction 50, sur le sol ou sur le pont. De cette manière, une partie du poids est supporté par les roues principales 1 1 , 13 et une autre partie du poids de l'hélicoptère est supporté par les roues 60, 62 du système de traction 50. Par exemple, chaque système de traction 50 supporte au moins 10% du poids de l'hélicoptère. Mais chaque système de traction ne supporte pas complètement la partie du poids de l'hélicoptère agissant, en position de repos, sur la roue à laquelle le système de traction est fixé. Donc, dans la position de fonctionnement, les roues principales 1 1 , 13 peuvent toujours tourner autour de leur axe Y et supportent une partie du poids de l'hélicoptère. Ceci permet de créer la force d'adhérence nécessaire à la traction et/ou la sécurisation en dérive, qui est sensiblement proportionnelle à l'effort d'application sur le sol ou, dans le cas présent, sur le pont. De plus, le principe du frottement sur un corps dur, selon lequel l'effort est indépendant de la surface de contact ne s'applique pas sur un corps mou, comme un pneu. La grande surface de pneumatique en contact avec le sol assure donc une forte adhérence.
Ensuite, l'opérateur fixe la barre d'orientation 102 du système de traction 100 à la roue orientable 7 de l'hélicoptère. L'hélicoptère est ensuite libéré de la grille d'appontage et, à partir d'une télécommande accrochée à la deuxième extrémité 106 de la barre d'orientation 102, les moteurs et freins agencés dans les roues 60, 62, 1 12 des systèmes de traction 50 sont commandés. En même temps, l'opérateur oriente la roue orientable 7 afin de diriger l'hélicoptère. Ainsi, les systèmes de traction 50,100 utilisent la masse de ce qu'ils entraînent pour augmenter la pression de la roue motrice 60, 62, 1 12 sur le sol.
Quand les systèmes de traction 50 sont fixés à l'extérieur des roues principales 1 1 , 13, la voie de l'hélicoptère est augmentée, par exemple de l'ordre d'un demi-mètre, ce qui apporte un gain appréciable de résistance au glissement sur le pont d'un navire sous deux aspects :
- l'élargissement du polygone de sustentation, qui est particulièrement utile lorsque l'hélicoptère commence à soulever une roue d'un côté, et
- l'accroissement de l'adhérence/frottement du fait de la multiplication de surface due à la multiplication des roues et de l'accentuation de la pression d'un bord lorsque l'hélicoptère se déleste de l'autre.
Selon l'invention, le principe d'adhérence cumulé à un grand polygone de sustentation P2 permet d'éviter le retournement d'un hélicoptère jusqu'à une certaine limite élevée.
Selon la masse de l'hélicoptère, l'état de la mer et la manœuvre à effectuer, il est possible d'utiliser uniquement le système de traction 100 montré dans la Figure 6 pour la roue orientable 7, ou les deux systèmes de traction 50 montrés dans les Figures 3 et 4 attachés aux roues 1 1 , 13 du train principal 5 avec une barre simple non motorisée, ou une combinaison de ces dispositifs. Dans un mode de réalisation, les systèmes de traction 50 sont doublés pour chaque roue principale 1 1 , 13 pour augmenter le couple. Dans une variante, le système de traction 50 ou le système de traction 100 est fixé dans un rail intégré sur un pont d'un navire. Dans un autre mode de réalisation, un chariot supplémentaire peut être utilisé pour fixer un point fort de hélicoptère, par exemple la probe située sous son fuselage, à un rail intégré au pont du navire. Dans ce cas, le chariot est laissé libre de ses mouvements dans le rail ou peut être doté d'une roue électrique, par exemple comme décrit par rapport aux roues 60, 62, 1 12 des systèmes de traction 50, 100.
Dans un autre mode de réalisation, le système de traction 50 selon l'invention peut être utilisé pour motoriser un chariot de transport de charges diverses, par exemple de munitions, en attachant le système de traction aux roues de ce chariot ou en remplaçant une roue du chariot.
Des avantages du système de traction selon l'invention sont que le système est modulaire et que le système de traction est fixé à un point fort d'un aéronef que sont les roues du train d'atterrissage. De plus, le système de traction permet une multiplication et l'écartement de points de traction afin d'augmenter la manœuvrabilité et permet, en cas de mer forte, la conservation de l'assujettissement de l'aéronef à un rail pour sa sécurisation.

Claims

REVENDICATIONS
1 . Système de traction (50 ; 100) pour un véhicule comprenant un châssis (3) relié par un dispositif de support (15, 17) à au moins une roue (7 ; 1 1 , 13) du véhicule propre à tourner autour d'un premier axe (Y ; Z) et propre à supporter le véhicule sur le sol (S), le système comprenant :
- au moins une première roue (60, 62 ; 1 12) propre à tourner autour d'un deuxième axe (A, B ; C), la première roue étant motorisée ;
- un moyen de fixation (30, 54 ; 107) pour fixer le système de traction au dispositif de support (15, 17) et/ou à un moyeu (25) de la roue du véhicule de façon que le premier axe (Y ; Z) et le deuxième axe (A, B ; C) soient parallèles et décalés suivant une direction de roulement (R2, R4) de la première roue (60, 62 ; 1 12) ; et
- au moins un dispositif de levage (64, 66 ; 102) pour soulever le véhicule d'une position de repos, dans laquelle le système de traction ne porte pas le poids du véhicule, à une position de fonctionnement dans laquelle le système de traction porte une partie du poids du véhicule, le moyen de fixation et le dispositif de levage étant propres à permettre une rotation de la roue du véhicule sur le sol (S) en position de fonctionnement.
2. Système selon la revendication 1 , caractérisé en ce que le système (50) comprend au moins une deuxième roue (62) propre à tourner autour d'un troisième axe (B) décalé par rapport au deuxième axe (A) suivant la direction de roulement (R2, R4) de la première roue (60) et de la deuxième roue (62), le moyen de fixation étant propre à fixer le système de traction (50) au dispositif de support (15, 17) et/ou au moyeu (25) de la roue du véhicule de façon que le premier axe (Y) et le troisième axe (B) soient respectivement décalés entre eux suivant la direction de roulement (R2, R4) de la deuxième roue (62).
3. Système selon la revendication 2, caractérisé en ce que le deuxième axe (A) et le troisième axe (B) sont propres à être agencés respectivement avant et après le premier axe (Y) suivant la direction de roulement (R2, R4) de la première roue (60) et de la deuxième roue (62).
4. Système selon la revendication 3, caractérisé en ce que les première et deuxième roues (60, 62) sont montées aux extrémités d'un palonnier (52) propre à être monté oscillant sur le moyeu (25) de la roue (7 ; 1 1 , 13) du véhicule.
5. Système selon l'une des revendications 2 à 4, caractérisé en ce que le système de traction comprend deux dispositifs de levage (64, 66) respectivement fixés à un moyeu (70) de la première roue (60) et à un moyeu (70) de la deuxième roue (62).
6. Système selon l'une des revendications précédentes, caractérisé en ce que le système de traction (100) comprend une barre d'orientation (102) pour orienter manuellement la première roue (1 12), la deuxième roue et/ou la roue du véhicule (7).
7. Système selon la revendication 6, caractérisé en ce que la première roue (1 12) est montée sur un point intermédiaire de la barre d'orientation (102), celle-ci comportant le moyen de fixation (107) à son extrémité distale (104).
8. Système selon la revendication 7, caractérisé en ce que le point intermédiaire est plus proche de l'extrémité distale (104) que de l'extrémité proximale (106) de la barre d'orientation (102).
9. Procédé pour assurer une traction sécurisée d'un véhicule sur un sol (S), notamment sur un pont d'un bateau, le véhicule ayant un châssis (3) et une pluralité de roues de véhicule (7, 1 1 , 13) propres à supporter le véhicule sur le sol, les roues de véhicule étant respectivement reliées par un dispositif de support (15, 17) à un châssis du véhicule, le procédé comprenant les étapes suivantes :
- la fixation d'au moins un système de traction (50, 100) selon l'une des revendications précédentes au dispositif de support (15, 17) et/ou à un moyeu (25) d'une roue du véhicule, le système de traction étant en position de repos ;
- le levage du véhicule de la position de repos à la position de fonctionnement par le ou chaque système de traction (50 ; 100) de façon que chaque roue du véhicule (7, 1 1 , 13) au dispositif de support de laquelle et/ou au moyeu de laquelle un système de traction est fixé reste, en position de fonctionnement, sur le sol (S) et le ou chaque système de traction (50, 100) supporte partiellement le poids du véhicule ; et
- l'activation du ou des moteurs (74) pour entraîner la ou chaque roue (60, 62 ; 1 12) du système de traction pour déplacer sur le sol le véhicule en position de fonctionnement.
10. Procédé selon la revendication 9, caractérisé en ce que les roues du véhicule comprennent au moins un train principal (1 1 , 13), dont les deux roues principales sont agencées parallèlement de part et d'autre d'une ligne de symétrie (X) du véhicule suivant une direction principale de déplacement du véhicule, l'étape de fixation comprenant la fixation respectivement d'un système de traction (50) au dispositif de support (15, 17) et/ou au moyeu (25) de chaque roue principale de façon que la distance entre chaque roue principale et la ligne de symétrie (X) du véhicule soit inférieure à la distance entre la ligne de symétrie et le ou les roues (60, 62) du système de traction (50).
1 1 . Procédé selon l'une des revendications 9 ou 10, caractérisé en ce que les roues du véhicule comprennent au moins une roue orientable (7) agencée sur la ligne de symétrie (X), l'étape de fixation comprenant la fixation d'un système de traction au dispositif de support et/ou au moyeu de la roue orientable.
12. Procédé selon l'une des revendications 9 à 1 1 , caractérisé en ce que le véhicule est un aéronef comprenant une roue orientable et deux roues principales d'un train principal.
13. Procédé selon l'une des revendications 9 à 12, caractérisé en ce que les roues du véhicule sont des roues pneumatiques.
PCT/EP2013/055328 2012-03-19 2013-03-15 Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol WO2013139689A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1252442A FR2988076B1 (fr) 2012-03-19 2012-03-19 Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol
FR1252442 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013139689A1 true WO2013139689A1 (fr) 2013-09-26

Family

ID=47882178

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/055328 WO2013139689A1 (fr) 2012-03-19 2013-03-15 Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol

Country Status (2)

Country Link
FR (1) FR2988076B1 (fr)
WO (1) WO2013139689A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039941A (zh) * 2022-11-27 2023-05-02 燕山大学 适用于海上作业直升机的全自动牵引校正入库系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL2022800B1 (nl) * 2019-03-25 2020-10-02 Vanderlande Ind Bv Systeem en werkwijze voor het intralogistiek transporteren van producten.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539010A (en) * 1946-07-09 1951-01-23 Homer M Cox Aircraft propelling device
US2957650A (en) * 1957-10-21 1960-10-25 Boeing Co Ground maneuvering system for jet airplanes
DE202005009573U1 (de) * 2005-02-10 2005-09-15 Schickling Hanns Schleppgerät für Flugzeuge
DE102006026649A1 (de) * 2006-06-08 2007-12-13 Berchtold, Gerd, Dr.-Ing. Integrierte Elektroschleppstange
US20100096494A1 (en) * 2007-05-16 2010-04-22 Israel Aerospace Industries Ltd. System and method for transferring airplanes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2539010A (en) * 1946-07-09 1951-01-23 Homer M Cox Aircraft propelling device
US2957650A (en) * 1957-10-21 1960-10-25 Boeing Co Ground maneuvering system for jet airplanes
DE202005009573U1 (de) * 2005-02-10 2005-09-15 Schickling Hanns Schleppgerät für Flugzeuge
DE102006026649A1 (de) * 2006-06-08 2007-12-13 Berchtold, Gerd, Dr.-Ing. Integrierte Elektroschleppstange
US20100096494A1 (en) * 2007-05-16 2010-04-22 Israel Aerospace Industries Ltd. System and method for transferring airplanes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116039941A (zh) * 2022-11-27 2023-05-02 燕山大学 适用于海上作业直升机的全自动牵引校正入库系统及方法
CN116039941B (zh) * 2022-11-27 2023-07-18 燕山大学 适用于海上作业直升机的全自动牵引校正入库系统及方法

Also Published As

Publication number Publication date
FR2988076A1 (fr) 2013-09-20
FR2988076B1 (fr) 2015-10-16

Similar Documents

Publication Publication Date Title
EP0755841A1 (fr) Chariot de manutention
EP2548764B1 (fr) Dispositif d'aide au chargement
EP3476727A1 (fr) Atterrisseur d'aéronef à roues freinées et roues motorisées
CA2039391C (fr) Dispositif de manoeuvre d'un engin supporte par un train principal et au moins une roue orientable, tel qu'un helicoptere, entre deux zones determinees sur une plateforme, telles qu'une aire d'appontage et une aire de garage sur un pont de navire
WO2013139689A1 (fr) Systeme de traction pour un vehicule et procede pour assurer une traction securisee d'un vehicule sur un sol
WO2020187517A1 (fr) Dispositif d'aide a la conduite de roue de systeme de propulsion electrique amovible pour un objet roulant
EP3347668B1 (fr) Dispositif de transport d'une torpille depuis un chariot d'acheminement vers un tube de lancement
WO2020187516A1 (fr) Dispositif de levage de roue de systeme de propulsion electrique amovible pour un objet roulant
EP3221184A1 (fr) Remorque pour la mise à l'eau et la manutention d'embarcation légères
WO2020126458A1 (fr) Systeme de propulsion electrique amovible pour un objet roulant, notamment un lit
EP2687420A1 (fr) Base roulante et pivotante horizontalement présentant une béquille verticalement escamotable
EP3949925B1 (fr) Systeme de propulsion electrique amovible pour un objet roulant - prehension et levage des roues silmultanes et combines dans la direction longitudinale
FR3059636A1 (fr) Plateforme navale equipee d'une zone d'appontage/decollage d'un aeronef et de moyens de manutention de cet aeronef
WO2020187499A1 (fr) Dispositif de prehension de roue de systeme de propulsion electrique amovible pour un objet roulant
WO2020187515A1 (fr) Dispositif d'immobilisation de roue de systeme de propulsion electrique amovible pour un objet roulant
FR2845639A1 (fr) Chariot pour la mise en place de roues sur un vehicule lourd, notamment poids lourd
BE1011735A3 (fr) Appareil transportable pour demonter et remonter une roue de vehicule.
WO2021239418A1 (fr) Systeme de propulsion electrique amovible pour un objet roulant avec un moyen de prehension et de levage combines et simultanes
EP4296159A1 (fr) Train d'atterrissage a patins et roulettes
EP2777961A1 (fr) Véhicule amphibie de type cycle pour le transport d'au moins une personne à mobilité réduite
FR2931445A1 (fr) Dispositif pour garer un vehicule deux roues motorise pour gain de place et de securite
FR2939399A1 (fr) Chariot autonome destine a tracter une charge roulante sur une plateforme en mouvement telle que le pont d'un navire.
EP0676320A1 (fr) Nacelle pouvant être associée à un ou deux véhicules ferroviaires
FR2959485A1 (fr) Ulm remorquable
FR3059637A1 (fr) Plateforme navale equipee d'une zone d'appontage/decollage d'un aeronef et de moyens de manutention

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13709222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13709222

Country of ref document: EP

Kind code of ref document: A1