EP3196324B1 - Curable aluminium alloy on an al-mg-si-basis - Google Patents

Curable aluminium alloy on an al-mg-si-basis Download PDF

Info

Publication number
EP3196324B1
EP3196324B1 EP16152467.3A EP16152467A EP3196324B1 EP 3196324 B1 EP3196324 B1 EP 3196324B1 EP 16152467 A EP16152467 A EP 16152467A EP 3196324 B1 EP3196324 B1 EP 3196324B1
Authority
EP
European Patent Office
Prior art keywords
weight
aluminum alloy
aluminum
content
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16152467.3A
Other languages
German (de)
French (fr)
Other versions
EP3196324A1 (en
Inventor
Peter Uggowitzer
Thomas Ebner
Werner FRAGNER
Helmut Kaufmann
Ramona PRILLHOFER
Helmut Antrekowitsch
Marion Werinos
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amag Rolling GmbH
Original Assignee
Amag Rolling GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP16152467.3A priority Critical patent/EP3196324B1/en
Application filed by Amag Rolling GmbH filed Critical Amag Rolling GmbH
Priority to PL16152467T priority patent/PL3196324T3/en
Priority to ES16152467T priority patent/ES2702729T3/en
Priority to SI201630138T priority patent/SI3196324T1/en
Priority to AU2017208641A priority patent/AU2017208641A1/en
Priority to SG11201806220YA priority patent/SG11201806220YA/en
Priority to KR1020187024165A priority patent/KR102649425B1/en
Priority to PCT/EP2017/051243 priority patent/WO2017125582A1/en
Priority to CN201780007533.4A priority patent/CN108779522B/en
Priority to EP17712414.6A priority patent/EP3443134A1/en
Priority to SG10202007019WA priority patent/SG10202007019WA/en
Priority to TR2018/14631A priority patent/TR201814631T1/en
Priority to MX2018008973A priority patent/MX2018008973A/en
Priority to RU2018130158A priority patent/RU2737646C2/en
Priority to JP2018537443A priority patent/JP7208005B2/en
Priority to US16/071,600 priority patent/US20190024219A1/en
Priority to BR112018014843-1A priority patent/BR112018014843B1/en
Priority to CA3011631A priority patent/CA3011631A1/en
Publication of EP3196324A1 publication Critical patent/EP3196324A1/en
Priority to ZA2018/04669A priority patent/ZA201804669B/en
Priority to CL2018001954A priority patent/CL2018001954A1/en
Priority to IL260680A priority patent/IL260680B/en
Application granted granted Critical
Publication of EP3196324B1 publication Critical patent/EP3196324B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Definitions

  • the invention relates to a hardenable aluminum alloy based on Al-Mg-Si.
  • Comparable alloys of the type 6xxx are moreover from the WO 2015/034024 A1 known.
  • main and minor alloying elements can not be arbitrarily varied in their content in the aluminum alloy, because in addition to a desirable high age hardening ability other mechanical and / or chemical requirements - such as formability, strength, ductility and / or corrosion resistance - are met. This requires, for example, high concentrations of main alloying elements in the aluminum alloy in order to form certain hot excretions.
  • the aluminum alloy should be particularly suitable for the use of secondary aluminum.
  • the aluminum alloy contains from 0.6 to 1% by weight of magnesium (Mg), from 0.2 to 0.7% by weight of silicon (Si), from 0.16 to 0, 7 wt .-% iron (Fe), from 0.05 to 0.4 wt .-% copper (Cu), at most 0.15 wt .-% (or from 0 to 0.15 wt .-%) manganese (Mn), at most 0.35 wt .-% (or from 0 to 0.35 wt .-%) chromium (Cr), at most 0.2 wt .-% (or from 0 to 0.2 wt.
  • Mg magnesium
  • Si silicon
  • Fe iron
  • Cu copper
  • Mn manganese
  • Cr chromium
  • zirconium Zr
  • Zn zirconium
  • Ti titanium
  • Sn tin
  • In indium
  • thermosetting 1 can be seen, namely, due to the upper limit of that provision for a sufficient solubility of tin and / or indium in the solid solution of the aluminum alloy, which slows the precipitation behavior during cold curing and thus the storage stability of the aluminum alloy is conducive.
  • a sufficient precipitation behavior in the thermosetting is to be expected - whereby high strength values can be achieved in the thermosetting and the aluminum alloy itself can achieve or improve those mechanical and chemical properties of 6xxx aluminum alloy with a higher content of main and Secondary alloy elements are known.
  • this method can be used to observe a much slower precipitation behavior at room temperature.
  • a comparatively low Si content may be responsible for delayed cold curing
  • the tuning of the Si content according to the invention leads far beyond these known effects and shows an unusually high storage stability of the aluminum alloys. According to the invention, therefore, the advantages of a particularly high storage stability at room temperature and good heat-setting ability of the aluminum alloy can be combined.
  • this composition of the invention can also be particularly suitable for the use of secondary aluminum for this purpose due to the comparatively high Fe content.
  • the storage stability and the thermosetting ability of the aluminum alloy can be further improved when the parameter A is in the range of 0.26 to 0.34 wt%.
  • the solubility of Sn can be relatively large and Si exercise only a small impact on cold curing. This allows an unexpectedly high stability at room temperature.
  • this alloy set in this way can attain surprisingly high strength after hot curing, for example by means of heat aging, although this alloy has a comparatively low Si content.
  • Ti can form phases with Si, which can have a positive influence on the solubility of Sn. The storage stability of the aluminum alloy is thus further improved.
  • the ratio of the weight percent of Si / Fe is less than 2, by increasing the setting of Si by Fe, the content of dissolved Si in the aluminum alloy can be significantly reduced.
  • the solubility of tin and / or indium in the solid solution of the Al-Mg-Si-aluminum alloy can be improved, which can further increase the storage stability.
  • a comparatively high solubility of tin and / or indium in the solid solution of the Al-Mg-Si-aluminum alloy can be achieved when the ratio of the weight percent of Si / Mg is in the range of 0.3 to 0.9.
  • the aluminum alloy has at least 0.25% by weight of copper (Cu), on the basis of this comparatively high content of Cu, it can compensate for the adverse effects of Mg and Si on the solubility of Sn in the solid solution of Al-Mg-Si Aluminum alloy are intervened.
  • Cu copper
  • solid solution may denote a state in which an alloying element is distributed in a solid matrix.
  • the aluminum alloy belongs to the 6xxx series.
  • the aluminum alloy is an EN AW-6061 aluminum alloy.
  • the aluminum alloy has at most 0.05% by weight of chromium (Cr) and more than 0.05% by weight of zirconium (Zr), the quenching sensitivity for Sn can be reduced and Sn can be kept in solid solution in the mixed aluminum crystal even at comparatively low quenching rates become. In addition, it is thus possible, even with heavy plates, to achieve optimum storage stability and heat-hardening capability.
  • the aluminum alloy may have at least 0.02 wt% chromium (Cr) to eventually improve the corrosion performance.
  • Table 1 Overview of the investigated alloys in% by weight alloys sn mg Si Cu Fe Mn Cr Zn Ti 1 0.04 0.8 0.64 0.22 0.47 0.11 0.16 0.05 0.05 2 0.04 0.78 0.43 0.36 0.46 0.11 0.14 0.05 0.06
  • the aluminum alloy 1 of Table 1 essentially corresponds to a standard alloy AA6061 after addition of the trace element Sn, it being conceivable instead of tin to use indium or a combination of Sn and In.
  • Alloy 2 represents the composition according to the invention of the 6xxx series and is relatively recycling-friendly due to the comparatively high Fe content.
  • the aluminum alloy 1 is well outside the inventively tuned Si / Fe content, this is for example in the Fig. 1 can be seen.
  • the aluminum alloy 2 is placed substantially centrally in this tuned Si / Fe content.
  • Both aluminum alloys 1 and 2 were solution-annealed in solid solution, quenched, and cold-cured by aging at room temperature and then thermoset. Solution heat treatment was carried out at a temperature greater than 530 degrees Celsius - quenching at a quench rate greater than 20 degrees Celsius / second. Both alloys 1 and 2 were subjected to a storage time or cold curing of 180 days [d] and a 30-minute thermosetting at different temperatures. Brinell hardness [HBW] was determined during cold aging and after hot aging.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Laminated Bodies (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
  • Powder Metallurgy (AREA)
  • Prevention Of Electric Corrosion (AREA)
  • Continuous Casting (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Materials For Medical Uses (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

Die Erfindung betrifft eine aushärtbare Aluminiumlegierung auf Al-Mg-Si-Basis.The invention relates to a hardenable aluminum alloy based on Al-Mg-Si.

Um die Warmaushärtungsfähigkeit einer durch Lagerung bei Raumtemperatur kaltausgehärteten A6061 Aluminiumlegierung auf Al-Mg-Si-Basis zu verbessern, schlägt die WO2013/124472A1 vor, der festen Lösung der Aluminiumlegierung ein Leerstellen aktives Spurenelement, nämlich Zinn (Sn) und/oder Indium (In), zuzugeben.In order to improve the thermosetting ability of a room-temperature cold-cured A6061 Al-Mg-Si based aluminum alloy, U.S. Pat WO2013 / 124472A1 to add to the solid solution of the aluminum alloy a vacancy active trace element, namely tin (Sn) and / or indium (In).

Vergleichbare Legierungen vom Typ 6xxx sind darüber hinaus aus der WO 2015/034024 A1 bekannt.Comparable alloys of the type 6xxx are moreover from the WO 2015/034024 A1 known.

Zudem ist es bekannt ("Statistical and thermodynamic optimization of trace-element modified Al-Mg-Si-Cu Alloys", Stefan Pogatscher et. al.), dass bestimmte Haupt- und Nebenlegierungselemente der A6061-Aluminiumlegierung die Löslichkeit von Zinn oder Indium in der Aluminiumlegierung reduzieren, was negative Auswirkungen auf die Lagerstabilität bei Raumtemperatur der 6xxx-Aluminiumlegierungen hat. So soll beispielsweise ein erhöhter Gehalt von Mg, Si, Cu oder Zn in der 6xxx-Aluminiumlegierung die Löslichkeit verringern, wohingegen ein erhöhter Gehalt von Fe, Ti und Mn die Löslichkeit erhöht. Zudem haben auch Interaktionseffekte, beispielsweise zwischen Si und Mg und/oder zwischen Cu und Mg, bei der Löslichkeit von Sn in der Aluminiumlegierung eine bedeutende Rolle.In addition, it is known ("Statistical and thermodynamic optimization of trace-element modified Al-Mg-Si-Cu Alloys", Stefan Pogatscher et al.) That certain main and minor alloying elements of the A6061 aluminum alloy solubility of tin or indium in of the aluminum alloy, which negatively affects the storage stability at room temperature of the 6xxx aluminum alloys. For example, an increased content of Mg, Si, Cu or Zn in the 6xxx aluminum alloy is believed to reduce solubility, whereas an increased content of Fe, Ti and Mn increases solubility. In addition, interaction effects, for example, between Si and Mg and / or between Cu and Mg, also play an important role in the solubility of Sn in the aluminum alloy.

Allerdings können die Haupt- und Nebenlegierungselemente in ihrem Gehalt in der Aluminiumlegierung nicht beliebig variiert werden, weil neben einer wünschenswert hohen Warmaushärtungsfähigkeit auch andere mechanische und/oder chemische Anforderungen - wie beispielsweise Umformbarkeit, Festigkeit, Duktilität und/oder Korrosionsbeständigkeit - zu erfüllten sind. Dies bedarf beispielsweise hoher Konzentrationen von Hauptlegierungselementen in der Aluminiumlegierung, um bestimmte Warmausscheidungen bilden zu können.However, the main and minor alloying elements can not be arbitrarily varied in their content in the aluminum alloy, because in addition to a desirable high age hardening ability other mechanical and / or chemical requirements - such as formability, strength, ductility and / or corrosion resistance - are met. This requires, for example, high concentrations of main alloying elements in the aluminum alloy in order to form certain hot excretions.

In der Einstellung der Komposition einer Aluminiumlegierung auf Al-Mg-Si-Basis sind daher bei den Haupt- und Nebenlegierungselementen meist zueinander gegenläufige Mengenverhältnisse erforderlich - nämlich einerseits solche Mengenverhältnisse, die der Löslichkeit von Sn in der Aluminiumlegierung dienlich sind, um eine hohe Lagerstabilität bei Raumtemperatur zu ermöglichen, und andererseits jene Mengenverhältnisse, die für hohe mechanische und/oder chemische Kennwerte bzw. Eigenschaften der Aluminiumlegierung sorgen, meist jedoch auf die Löslichkeit von Sn nachteilig wirken.In the setting of the composition of an aluminum alloy based on Al-Mg-Si, countercurrent proportions are usually required in the case of the main and minor alloying elements - on the one hand, those proportions which are beneficial for the solubility of Sn in the aluminum alloy, ensuring a high storage stability Room temperature to allow, and on the other hand those proportions that provide high mechanical and / or chemical characteristics or properties of the aluminum alloy, but usually have a negative effect on the solubility of Sn.

Es ist daher die Aufgabe der Erfindung, eine aushärtbare Aluminiumlegierung auf Basis von Al-Mg-Si mit Sn als Spurenelement in der Komposition derart zu verändern, dass eine hohe mechanische und chemische Eigenschaft der Aluminiumlegierung nach der Warmaushärtung mit einer hohen Lagerstabilität bei Raumtemperatur kombiniert werden kann. Zudem soll die Aluminiumlegierung besonders geeignet für die Verwendung von Sekundäraluminium sein.It is therefore an object of the invention to modify a curable aluminum alloy based on Al-Mg-Si with Sn as a trace element in the composition such that a high mechanical and chemical properties of the aluminum alloy are combined after hot curing with a high storage stability at room temperature can. In addition, the aluminum alloy should be particularly suitable for the use of secondary aluminum.

Die Erfindung löst die gestellte Aufgabe dadurch, dass die Aluminiumlegierung von 0,6 bis 1 Gew.-% Magnesium (Mg), von 0,2 bis 0,7 Gew.-% Silizium (Si), von 0,16 bis 0,7 Gew.-% Eisen (Fe), von 0,05 bis 0,4 Gew.-% Kupfer (Cu), maximal 0,15 Gew.-% (bzw. von 0 bis 0,15 Gew.-%) Mangan (Mn), maximal 0,35 Gew.-% (bzw. von 0 bis 0,35 Gew.-%) Chrom (Cr), maximal 0,2 Gew.-% (bzw. von 0 bis 0,2 Gew.-%) Zirkon (Zr), maximal 0,25 Gew.-% (bzw. von 0 bis 0,25 Gew.-%) Zink (Zn), maximal 0,15 Gew.-% (bzw. von 0 bis 0,15 Gew.-%) Titan (Ti), 0,005 bis 0,075 Gew.-% Zinn (Sn) und/oder Indium (In) und als Rest Aluminium sowie herstellungsbedingt unvermeidbare Verunreinigungen, wobei das Verhältnis der Gewichtsprozente von Si/Fe kleiner 2,5 ist und sich der Gehalt von Si nach der Gleichung Gew.-% Si = A + [0,3 * (Gew.-% Fe)] mit dem Parameter A im Bereich von 0,17 bis 0,4 Gew.-% bestimmt.The invention achieves the stated object in that the aluminum alloy contains from 0.6 to 1% by weight of magnesium (Mg), from 0.2 to 0.7% by weight of silicon (Si), from 0.16 to 0, 7 wt .-% iron (Fe), from 0.05 to 0.4 wt .-% copper (Cu), at most 0.15 wt .-% (or from 0 to 0.15 wt .-%) manganese (Mn), at most 0.35 wt .-% (or from 0 to 0.35 wt .-%) chromium (Cr), at most 0.2 wt .-% (or from 0 to 0.2 wt. -%) zirconium (Zr), at most 0.25 wt .-% (or from 0 to 0.25 wt .-%) zinc (Zn), at most 0.15 wt .-% (or from 0 to 0 , 15% by weight) of titanium (Ti), 0.005 to 0.075% by weight of tin (Sn) and / or indium (In) and the remainder being aluminum as well as unavoidable impurities due to production, the ratio of the weight percent of Si / Fe being less than 2 , 5 and the content of Si is in accordance with the equation wt .-% Si = A + [0.3 * (wt .-% Fe)] with the parameter A in the range of 0.17 to 0.4 wt. % certainly.

Durch die Vorschrift des Beschränkens des Si-Gehalts auf 0,2 bis 0,7 Gew.-% und des Fe-Gehalts auf 0,16 bis 0,7 Gew.-% sowie der Abstimmung des Si-Gehalts mit dem Fe-Gehalt kann auf die Lagerstabilität und Warmaushärtungsfähigkeit der Al-Mg-Si-Aluminiumlegierung in besonders hohem Maße vorteilhaft Einfluss genommen werden, wenn diese Abstimmung sowohl dem Verhältnis der Gewichtsprozente von Si/Fe kleiner 2,5 als auch der Gleichung Gew.-% Si = A + [0,3 * (Gew.-% Fe)] mit dem Parameter A im Bereich von 0,17 bis 0,4 Gew.-% genügt.
Eine derart eng in Si- und Fe-Gehalt abgestimmte Aluminiumlegierung, welche Abstimmung beispielsweise am schraffierten Bereich in Fig. 1 zu erkennen ist, kann nämlich aufgrund der Obergrenze der genannten Vorschrift für eine ausreichende Löslichkeit von Zinn und/oder Indium in der festen Lösung der Aluminiumlegierung gewährleisten, was das Ausscheidungsverhalten beim Kaltaushärten verlangsamt und damit der Lagerstabilität der Aluminiumlegierung förderlich ist. Aufgrund der Untergrenze in der Abstimmung ist zudem mit einem ausreichenden Ausscheidungsverhalten beim Warmaushärten zu rechnen - wodurch hohe Festigkeitswerte beim Warmaushärten erreichbar sind und die Aluminiumlegierung selbst jene mechanischen und chemischen Eigenschaften erreichen oder verbessern kann, welche von 6xxx-Aluminiumlegierungeinem mit höherem Gehalt an Haupt- und Nebenlegierungselementen bekannt sind.
Überraschend hat sich jedoch herausgestellt, dass mit diese Vorschrift im Vergleich mit bekannten 6xxx-Aluminiumlegierungen, aufweisend Sn zur Unterdrückung der Kaltaushärtung, ein um ein Vielfaches verlangsamtes Ausscheidungsverhalten bei Raumtemperatur beobachtet werden kann. Zwar ist bekannt, dass ein vergleichsweise niedriger Si-Gehalt für ein verzögertes Kaltaushärtung verantwortlich sein kann, die erfindunsgemäße Abstimmung des Si-Gehalts führt jedoch weit über diese bekannten Effekte hinaus und zeigt eine ungewöhnlich hohe Lagerstabilität an der Aluminiumlegierungen.
Erfindungsgemäß können daher die Vorteile einer besonders hohen Lagerstabilität bei Raumtemperatur sowie guter Warmaushärtungsfähigkeit der Aluminiumlegierung kombiniert werden.
Zudem kann sich diese erfindungsgemäße Komposition durch den vergleichsweise hohen Fe Gehalt auch besonders gut für die Verwendung von Sekundäraluminium hierfür eignen.
By the rule of restricting the Si content to 0.2 to 0.7 wt .-% and the Fe content to 0.16 to 0.7 wt .-% and the vote of the Si content with The Fe content can be influenced to a particularly great extent on the storage stability and heat-hardening ability of the Al-Mg-Si-aluminum alloy if this coordination both the ratio of the weight percent of Si / Fe less than 2.5 and the equation wt. % Si = A + [0.3 * (wt% Fe)] satisfies the parameter A in the range of 0.17 to 0.4 wt%.
Such a closely matched in Si and Fe content aluminum alloy, which vote, for example, the hatched area in Fig. 1 can be seen, namely, due to the upper limit of that provision for a sufficient solubility of tin and / or indium in the solid solution of the aluminum alloy, which slows the precipitation behavior during cold curing and thus the storage stability of the aluminum alloy is conducive. In addition, due to the lower limit in the tuning, a sufficient precipitation behavior in the thermosetting is to be expected - whereby high strength values can be achieved in the thermosetting and the aluminum alloy itself can achieve or improve those mechanical and chemical properties of 6xxx aluminum alloy with a higher content of main and Secondary alloy elements are known.
Surprisingly, however, it has been found that, compared with known 6xxx aluminum alloys, comprising Sn to suppress cold hardening, this method can be used to observe a much slower precipitation behavior at room temperature. Although it is known that a comparatively low Si content may be responsible for delayed cold curing, the tuning of the Si content according to the invention, however, leads far beyond these known effects and shows an unusually high storage stability of the aluminum alloys.
According to the invention, therefore, the advantages of a particularly high storage stability at room temperature and good heat-setting ability of the aluminum alloy can be combined.
In addition, this composition of the invention can also be particularly suitable for the use of secondary aluminum for this purpose due to the comparatively high Fe content.

Im Allgemeinen wird erwähnt, dass in der Al-Mg-Si-Aluminiumlegierung Verunreinigungen mit jeweils maximal 0,05 Gew.-% und gesamt höchstens 0,15 Gew.-% vorkommen können. Zudem wird im Allgemeinen erwähnt, dass maximale Gew.-% Angaben, wie diese bei Mn, Cr, Zr, Zn oder Titan beispielsweise zu finden sind, als von 0 ausgehend betrachtet werden können.
Der Vollständigkeit halber wird weiter erwähnt, dass als Sekundaraluminium Aluminium bzw. eine Aluminiumlegierung, gewonnen aus Aluminiumschrott, verstanden werden kann.
In general, it is mentioned that in the Al-Mg-Si-aluminum alloy, impurities each having a maximum of 0.05 wt% and a total of at most 0.15 wt% may occur. In addition, it is generally mentioned that maximum weight percentages, such as those found with Mn, Cr, Zr, Zn or titanium, for example, can be considered as starting from 0.
For the sake of completeness, it is further mentioned that aluminum or an aluminum alloy, obtained from aluminum scrap, can be understood as the secondary aluminum.

Die Lagerstabilität und die Warmaushärtungsfähigkeit der Aluminiumlegierung können weiter verbessert werden, wenn der Parameter A im Bereich von 0,26 bis 0,34 Gew.-% liegt. Durch diese Vorschrift, kann nämlich die Löslichkeit von Sn verhältnismäßig groß werden und Si nur mehr einen geringen Einfluss auf eine Kaltaushärtung ausüben. Damit kann eine unerwartet hohe Stabilität bei Raumtemperatur ermöglicht werden. Zudem kann sich zeigen, dass diese derart eingestellte Legierung nach einer Warmaushärtung - beispielsweise durch Warmauslagerung - eine überraschend hohe Festigkeit erreichen kann, obwohl diese Legierung einen vergleichsweise niedrigen Si-Gehalt aufweist.The storage stability and the thermosetting ability of the aluminum alloy can be further improved when the parameter A is in the range of 0.26 to 0.34 wt%. By this rule, namely, the solubility of Sn can be relatively large and Si exercise only a small impact on cold curing. This allows an unexpectedly high stability at room temperature. In addition, it can be shown that this alloy set in this way can attain surprisingly high strength after hot curing, for example by means of heat aging, although this alloy has a comparatively low Si content.

Ein Optimum an Lagerstabilität und Warmaushärtungsfähigkeit kann sich zeigen, wenn der Parameter A 0,3 Gew. -% ist.An optimum of storage stability and thermosetting ability may be exhibited when the parameter A is 0.3% by weight.

Bestimmt sich der Gehalt von Si nach der Gleichung Gew.-% Si = A + [0,3 * (Gew.-% Fe)] - Gew.-% Ti, können die, die Löslichkeit von Sn beeinfussenden Komponenten noch weiter verbessert aufeinander abgestimmt werden. Insbesondere kann Ti Phasen mit Si ausbilden, was einen positiven Einfluss auf die Löslichkeit von Sn haben kann. Die Lagerstabilität der Aluminiumlegierung ist damit weiter verbesserbar.If the content of Si is determined by the equation wt% Si = A + [0.3 * (wt% Fe)] -% by weight of Ti, the components affecting the solubility of Sn can be further improved on each other be matched. In particular, Ti can form phases with Si, which can have a positive influence on the solubility of Sn. The storage stability of the aluminum alloy is thus further improved.

Ist das Verhältnis der Gewichtsprozente von Si/Fe kleiner 2, kann durch erhöhtes Abbinden von Si durch Fe der Anteil an gelöstem Si in der Aluminiumlegierung erheblich verringert werden. Damit kann die Löslichkeit von Zinn und/oder Indium in der festen Lösung der Al-Mg-Si-Aluminiumlegierung verbessert werden, was die Lagerstabilität weiter erhöhen kann.If the ratio of the weight percent of Si / Fe is less than 2, by increasing the setting of Si by Fe, the content of dissolved Si in the aluminum alloy can be significantly reduced. Thus, the solubility of tin and / or indium in the solid solution of the Al-Mg-Si-aluminum alloy can be improved, which can further increase the storage stability.

Eine vergleichsweise hohe Löslichkeit von Zinn und/oder Indium in der festen Lösung der Al-Mg-Si-Aluminiumlegierung kann erreicht werden, wenn das Verhältnis der Gewichtsprozente von Si/Mg im Bereich von 0,3 bis 0,9 liegt.A comparatively high solubility of tin and / or indium in the solid solution of the Al-Mg-Si-aluminum alloy can be achieved when the ratio of the weight percent of Si / Mg is in the range of 0.3 to 0.9.

Weist die Aluminiumlegierung mindestens 0,25 Gew.-% Kupfer (Cu) auf, kann auf Basis dieses vergleichsweise hohen Gehalts an Cu kompensierend auf die nachteiligen Effekte von Mg und Si hinsichtlich der Löslichkeit von Sn in der festen Lösung der Al-Mg-Si-Aluminiumlegierung eingegriffen werden.If the aluminum alloy has at least 0.25% by weight of copper (Cu), on the basis of this comparatively high content of Cu, it can compensate for the adverse effects of Mg and Si on the solubility of Sn in the solid solution of Al-Mg-Si Aluminum alloy are intervened.

Eine hervorragende Lagerstabilität der Aluminiumlegierung kann erreicht werden, wenn diese im Bereich von 0,005 bis 0,05 Gew.-% Zinn (Sn) in fester Lösung im Aluminiummischkristall aufweist. Im Allgemeinen wird erwähnt, dass der Begriff "fester Lösung" einen Zustand bezeichnen kann, in welchem ein Legierungselement in einer festen Matrix verteilt ist.An excellent storage stability of the aluminum alloy can be achieved if it has in the range of 0.005 to 0.05 wt .-% tin (Sn) in solid solution in the aluminum mixed crystal. In general, it is mentioned that the term "solid solution" may denote a state in which an alloying element is distributed in a solid matrix.

Vorzugsweise gehört die Aluminiumlegierung der 6xxx Reihe an. Vorzugsweise ist die Aluminiumlegierung eine EN AW-6061 Aluminiumlegierung.Preferably, the aluminum alloy belongs to the 6xxx series. Preferably, the aluminum alloy is an EN AW-6061 aluminum alloy.

Weist die Aluminiumlegierung maximal 0,05 Gew.-% Chrom (Cr) und mehr als 0,05 Gew.-% Zirkon (Zr) auf, kann die Abschreckempfindlichkeit für Sn reduzieren und Sn auch bei vergleichsweise niedrigen Abschreckraten in fester Lösung im Aluminiummischkristall gehalten werden. Außerdem ist damit ermöglichbar, selbst bei Grobblechen ein Optimum an Lagerstabilität und Warmaushärtungsfähigkeit zu erreichen.If the aluminum alloy has at most 0.05% by weight of chromium (Cr) and more than 0.05% by weight of zirconium (Zr), the quenching sensitivity for Sn can be reduced and Sn can be kept in solid solution in the mixed aluminum crystal even at comparatively low quenching rates become. In addition, it is thus possible, even with heavy plates, to achieve optimum storage stability and heat-hardening capability.

Die Aluminiumlegierung kann mindestens 0,02 Gew.-% Chrom (Cr) aufweisen, um damit eventuell das Korrosionsverhalten zu verbessern.The aluminum alloy may have at least 0.02 wt% chromium (Cr) to eventually improve the corrosion performance.

Zum Nachweis der erzielten Effekte wurden Feinbleche aus verschiedenen Aluminiumlegierungen auf Al-Mg-Si-Basis (6xxx-Reihe) hergestellt. Die Zusammensetzungen der untersuchten Legierungen sind in der Tabelle 1 angeführt. Tabelle 1: Übersicht zu den untersuchten Legierungen in Gew.% Legierungen Sn Mg Si Cu Fe Mn Cr Zn Ti 1 0,04 0,8 0,64 0,22 0,47 0,11 0,16 0,05 0,05 2 0,04 0,78 0,43 0,36 0,46 0,11 0,14 0,05 0,06 To demonstrate the effects achieved, thin sheets of various aluminum alloys based on Al-Mg-Si (6xxx series) were produced. The compositions of the alloys studied are listed in Table 1. Table 1: Overview of the investigated alloys in% by weight alloys sn mg Si Cu Fe Mn Cr Zn Ti 1 0.04 0.8 0.64 0.22 0.47 0.11 0.16 0.05 0.05 2 0.04 0.78 0.43 0.36 0.46 0.11 0.14 0.05 0.06

Die Aluminiumlegierung 1 der Tabelle 1 entspricht im Wesentlichen einer Standard-Legierung AA6061 nach Zugabe des Spurenelements Sn, wobei vorstellbar ist anstatt von Zinn Indium oder eine Kombination von Sn und In zu verwenden. Legierung 2 stellt die erfindungsgemäße Komposition der 6xxx-Reihe dar und ist durch den vergleichsweise hohen Fe Gehalt vergleichsweise recyclingfreundlich.
Die Aluminiumlegierung 1 liegt deutlich außerhalb des erfindungsgemäß abgestimmten Si/Fe-Gehalts, wir dies beispielsweise in der Fig. 1 zu erkennen ist. Die Aluminiumlegierung 2 liegt in diesem abgestimmten Si/Fe Gehalt im Wesentlichen mittig platziert.
The aluminum alloy 1 of Table 1 essentially corresponds to a standard alloy AA6061 after addition of the trace element Sn, it being conceivable instead of tin to use indium or a combination of Sn and In. Alloy 2 represents the composition according to the invention of the 6xxx series and is relatively recycling-friendly due to the comparatively high Fe content.
The aluminum alloy 1 is well outside the inventively tuned Si / Fe content, this is for example in the Fig. 1 can be seen. The aluminum alloy 2 is placed substantially centrally in this tuned Si / Fe content.

Beide Aluminiumlegierungen 1 und 2 wurden in feste Lösung durch Lösungsglühen gebracht, abgeschreckt und durch Auslagern bei Raumtemperatur kalt- sowie anschließend warmausgehärtet. Das Lösungsglühen erfolgte bei einer Temperatur größer 530 Grad Celsius - das Abschrecken mit einer Abschreckrate größer 20 Grad Celsius/Sekunde. Beide Legierungen 1 und 2 wurden einer Lagerzeit bzw. einer Kaltaushärtung von 180 Tagen [d] und einer Warmaushärtung von 30 Minuten bei unterschiedlichen Temperaturen unterworfen. Während der Kalt- bzw. nach der Warmauslagerung wurden Brinellhärten [HBW] bestimmt.Both aluminum alloys 1 and 2 were solution-annealed in solid solution, quenched, and cold-cured by aging at room temperature and then thermoset. Solution heat treatment was carried out at a temperature greater than 530 degrees Celsius - quenching at a quench rate greater than 20 degrees Celsius / second. Both alloys 1 and 2 were subjected to a storage time or cold curing of 180 days [d] and a 30-minute thermosetting at different temperatures. Brinell hardness [HBW] was determined during cold aging and after hot aging.

In Bezug auf die Lagerstabilität ist nach Fig. 2 zu erkennen, dass die Legierung 1 bereits nach 14 Tagen einer vergleichsweise stark ansteigenden Kaltaushärtung bei Lagerung bei Raumtemperatur unterliegt - was über eine längere Lagerzeit gesehen nachteilig zu vergleichsweise hoher und steigender Brinellhärte führt und sich nachteilig auf ein Umformen vor der Warmaushärtung auswirkt.
Im Gegensatz dazu zeichnet sich bei der Legierung 2 erst nach ca. 180 Tagen eine beginnende Kaltaushärtung ab, wodurch die erfindungsgemäße Legierung 2 als besonders lagerbeständig gilt. Eine derart überraschend hohe Lagerbeständigkeit wurde bis dato noch bei keiner 6xxx-Legierung beobachtet. Dies führt zu einem unerwarteten, enormen Gewinn in der Manipulationszeit der Legierung nach dem Abschrecken in weichem Zustand.
In terms of storage stability is after Fig. 2 to recognize that the Alloy 1 already after 14 days of a comparatively strong rising cold curing under storage at room temperature - which over a longer storage time disadvantageously leads to comparatively high and increasing Brinellhärte and adversely affects forming before hot curing.
In contrast, in the case of alloy 2, initial cold hardening does not become apparent until after about 180 days, as a result of which alloy 2 according to the invention is considered to be particularly stable in storage. Such a surprisingly high storage stability has not yet been observed with any 6xxx alloy. This leads to an unexpected, enormous gain in the manipulation time of the alloy after quenching in the soft state.

Bei der anschließenden Warmaushärtung ist im Vergleich der beiden Legierungen nach Fig. 3 zu erkennen, dass die Legierung 2 bei niedrigeren Auslagerungstemperaturen in der Brinellhärte zunächst der Legierung 1 nachhinkt. Bei höheren Auslagerungstemperaturen kann die Brinellhärte der Legierung 1 deutlich übertroffen werden.In the subsequent hot curing is in comparison of the two alloys after Fig. 3 to recognize that the alloy 2 lags at lower Auslagerungstemperaturen in the Brinellhärte first alloy 1. At higher aging temperatures, the Brinell hardness of the alloy 1 can be significantly exceeded.

Claims (10)

  1. A hardenable AI-Mg-Si-based aluminum alloy, comprising
    from 0.6 to 1% by weight of magnesium (Mg),
    from 0.2 to 0.7% by weight of silicon (Si),
    from 0.16 to 0.7% by weight of iron (Fe),
    from 0.05 to 0.4% by weight of copper (Cu),
    a maximum of 0.15% by weight of manganese (Mn),
    a maximum of 0.35% by weight of chromium (Cr),
    a maximum of 0.2% by weight of zirconium (Zr),
    a maximum of 0.25% by weight of zinc (Zn),
    a maximum of 0.15% by weight of titanium (Ti),
    0.005 to 0.075% by weight of tin (Sn) and/or indium (In),
    and the aluminum as the remainder as well as production-related unavoidable impurities, wherein
    the ratio of the weight percentages of Si/Fe is less than 2.5
    and the content of Si is determined according to the equation wt . % Si = A + 0.3 * wt . % Fe ,
    Figure imgb0003
    with the parameter A being in the range of 0.17 to 0.4% by weight.
  2. Aluminum alloy according to claim 1, characterized in that the parameter A is in the range of 0.26 to 0.34% by weight.
  3. Aluminum alloy according to claim 1 or 2, characterized in that the parameter A is 0.3% by weight.
  4. Aluminum alloy according to claim 1, 2 or 3, characterized in that the content of Si is determined according to the equation wt . % Si = A + 0.3 * wt . % Fe wt . % Ti .
    Figure imgb0004
  5. Aluminum alloy according to one of claims 1 to 4, characterized in that the ratio of the weight percent of Si/Fe is less than 2.
  6. Aluminum alloy according to one of claims 1 to 5, characterized in that the ratio of the weight percentages of Si/Mg is in the range of 0.3 to 0.9.
  7. Aluminum alloy according to one of claims 1 to 6, characterized in that the aluminum alloy has at least 0.25% by weight of copper (Cu).
  8. Aluminum alloy according to one of claims 1 to 7, characterized in that the aluminum alloy comprises tin (Sn) in the range of 0.005 to 0.05% by weight in solid solution in the aluminum mixed crystal.
  9. Aluminum alloy according to one of claims 1 to 8, characterized in that the aluminum alloy has a maximum of 0.05% by weight of chromium (Cr) and more than 0.05% by weight of zirconium (Zr).
  10. Aluminum alloy according to one of claims 1 to 9, characterized in that the aluminum alloy has at least 0.02% by weight of chromium (Cr).
EP16152467.3A 2016-01-22 2016-01-22 Curable aluminium alloy on an al-mg-si-basis Active EP3196324B1 (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
PL16152467T PL3196324T3 (en) 2016-01-22 2016-01-22 Curable aluminium alloy on an al-mg-si-basis
ES16152467T ES2702729T3 (en) 2016-01-22 2016-01-22 Hardenable aluminum alloy based on Al-Mg-Si
SI201630138T SI3196324T1 (en) 2016-01-22 2016-01-22 Curable aluminium alloy on an al-mg-si-basis
EP16152467.3A EP3196324B1 (en) 2016-01-22 2016-01-22 Curable aluminium alloy on an al-mg-si-basis
US16/071,600 US20190024219A1 (en) 2016-01-22 2017-01-20 HARDENABLE Al-Mg-Si-BASED ALUMINUM ALLOY
KR1020187024165A KR102649425B1 (en) 2016-01-22 2017-01-20 Al-Mg-Si hardenable aluminum alloy
PCT/EP2017/051243 WO2017125582A1 (en) 2016-01-22 2017-01-20 Hardenable almgsi-based aluminum alloy
CN201780007533.4A CN108779522B (en) 2016-01-22 2017-01-20 Age-hardenable aluminium alloys based on Al-Mg-Si
EP17712414.6A EP3443134A1 (en) 2016-01-22 2017-01-20 Hardenable almgsi-based aluminum alloy
SG10202007019WA SG10202007019WA (en) 2016-01-22 2017-01-20 Hardenable al-mg-si-based aluminum alloy
AU2017208641A AU2017208641A1 (en) 2016-01-22 2017-01-20 Hardenable AlMgSi-based aluminum alloy
MX2018008973A MX2018008973A (en) 2016-01-22 2017-01-20 Hardenable almgsi-based aluminum alloy.
RU2018130158A RU2737646C2 (en) 2016-01-22 2017-01-20 THERMALLY HARDENED ALUMINIUM ALLOY BASED ON Al-Mg-Si
JP2018537443A JP7208005B2 (en) 2016-01-22 2017-01-20 Age hardening type Al-Mg-Si based aluminum alloy
SG11201806220YA SG11201806220YA (en) 2016-01-22 2017-01-20 Hardenable al-mg-si-based aluminum alloy
BR112018014843-1A BR112018014843B1 (en) 2016-01-22 2017-01-20 AL-MG-SI-BASED CURABLE ALUMINUM ALLOY
CA3011631A CA3011631A1 (en) 2016-01-22 2017-01-20 Hardenable al-mg-si-based aluminum alloy
TR2018/14631A TR201814631T1 (en) 2016-01-22 2017-01-20 Al-mg-si-based hardenable aluminum alloy.
ZA2018/04669A ZA201804669B (en) 2016-01-22 2018-07-12 Hardenable almgsi-based aluminum alloy
CL2018001954A CL2018001954A1 (en) 2016-01-22 2018-07-19 Hardenable aluminum alloy based on al-mg-si.
IL260680A IL260680B (en) 2016-01-22 2018-07-19 Hardenable almgsi-based aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP16152467.3A EP3196324B1 (en) 2016-01-22 2016-01-22 Curable aluminium alloy on an al-mg-si-basis

Publications (2)

Publication Number Publication Date
EP3196324A1 EP3196324A1 (en) 2017-07-26
EP3196324B1 true EP3196324B1 (en) 2018-09-19

Family

ID=55229588

Family Applications (2)

Application Number Title Priority Date Filing Date
EP16152467.3A Active EP3196324B1 (en) 2016-01-22 2016-01-22 Curable aluminium alloy on an al-mg-si-basis
EP17712414.6A Withdrawn EP3443134A1 (en) 2016-01-22 2017-01-20 Hardenable almgsi-based aluminum alloy

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP17712414.6A Withdrawn EP3443134A1 (en) 2016-01-22 2017-01-20 Hardenable almgsi-based aluminum alloy

Country Status (19)

Country Link
US (1) US20190024219A1 (en)
EP (2) EP3196324B1 (en)
JP (1) JP7208005B2 (en)
KR (1) KR102649425B1 (en)
CN (1) CN108779522B (en)
AU (1) AU2017208641A1 (en)
BR (1) BR112018014843B1 (en)
CA (1) CA3011631A1 (en)
CL (1) CL2018001954A1 (en)
ES (1) ES2702729T3 (en)
IL (1) IL260680B (en)
MX (1) MX2018008973A (en)
PL (1) PL3196324T3 (en)
RU (1) RU2737646C2 (en)
SG (2) SG11201806220YA (en)
SI (1) SI3196324T1 (en)
TR (1) TR201814631T1 (en)
WO (1) WO2017125582A1 (en)
ZA (1) ZA201804669B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706351A (en) * 2017-10-26 2019-05-03 遵义市吉祥富康门窗有限公司 A kind of aluminium alloy and preparation method thereof
CN108977700B (en) * 2018-08-20 2020-04-17 广东润盛科技材料有限公司 Aluminum alloy plate and preparation method thereof
CN113574192A (en) 2019-03-13 2021-10-29 诺维尔里斯公司 Age-hardenable, highly formable aluminium alloy and method for producing the same
CN110951998B (en) * 2019-11-28 2020-12-08 辽宁忠旺集团有限公司 Production process of high-temperature stable 6-series aluminum alloy section
CN113737064B (en) * 2021-08-31 2022-04-08 华中科技大学 Al-Mg-Si alloy for high-performance forge piece and preparation method thereof
WO2024086068A1 (en) * 2022-10-20 2024-04-25 Arconic Technologies, Llc New 6xxx aluminum alloys

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230952A (en) * 1984-04-27 1985-11-16 Daido Metal Kogyo Kk Sliding aluminum alloy
JP3684245B2 (en) * 1993-11-24 2005-08-17 昭和電工株式会社 Aluminum alloy for cold forging
JPH07207396A (en) * 1994-01-20 1995-08-08 Nippon Steel Corp Aluminum alloy sheet excellent in press formability and baking hardenability for coating
US5587029A (en) * 1994-10-27 1996-12-24 Reynolds Metals Company Machineable aluminum alloys containing In and Sn and process for producing the same
JPH08199276A (en) * 1995-01-25 1996-08-06 Showa Denko Kk Aluminum alloy for cold forging
US6231809B1 (en) * 1998-02-20 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Al-Mg-Si aluminum alloy sheet for forming having good surface properties with controlled texture
JP4328996B2 (en) 1999-06-16 2009-09-09 日本軽金属株式会社 Al-Mg-Si aluminum alloy cold forging manufacturing method
JP5088703B2 (en) 1999-06-16 2012-12-05 日本軽金属株式会社 Al-Mg-Si aluminum alloy cold forging with excellent appearance quality
JP2002235158A (en) * 2001-02-05 2002-08-23 Nippon Steel Corp Method for producing high strength aluminum alloy extrusion shape material having excellent bending workability
RU2221891C1 (en) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Aluminum-based alloy, article made from such alloy and method of manufacture of such article
JP2004277786A (en) 2003-03-14 2004-10-07 Nippon Light Metal Co Ltd Method for manufacturing heat treatment type aluminum alloy material for cold working superior in machinability
FR2862894B1 (en) * 2003-11-28 2007-02-16 Pechiney Rhenalu ALLUMINIUM ALLOY BAND FOR BRAZING
RU2394113C1 (en) * 2008-11-13 2010-07-10 Общество с ограниченной ответственностью "ИНТЕЛЛ-СЕРВИС" High-tensile deformed alloy on base of aluminium and item out of this alloy
EP2631317A1 (en) 2012-02-23 2013-08-28 AMAG rolling GmbH Annealable aluminium alloy and method for improving artificial ageing ability
JP5918187B2 (en) 2013-09-06 2016-05-18 株式会社神戸製鋼所 Aluminum alloy sheet with excellent bake hardenability
JP6005613B2 (en) 2013-09-06 2016-10-12 株式会社神戸製鋼所 Aluminum alloy sheet with excellent bake hardenability
KR101802677B1 (en) * 2013-09-06 2017-11-28 가부시키가이샤 고베 세이코쇼 Aluminum alloy plate having excellent bake hardening properties
CN104532089B (en) * 2014-12-26 2016-08-24 中国石油天然气股份有限公司 Anticorrosive alloy composition and device, preparation and application thereof
CN104975209A (en) * 2015-03-13 2015-10-14 宝山钢铁股份有限公司 6000 series aluminum alloy material with high natural aging stability, aluminum alloy plate and preparing method of aluminum alloy plate
CN104975208A (en) * 2015-03-13 2015-10-14 宝山钢铁股份有限公司 6000-series aluminum alloy material with high strength and elongation, aluminum alloy plate and manufacturing method thereof
CN105207596B (en) * 2015-10-26 2018-05-04 阿特斯阳光电力集团有限公司 Novel photovoltaic module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2019507248A (en) 2019-03-14
SI3196324T1 (en) 2019-03-29
KR20180136434A (en) 2018-12-24
AU2017208641A1 (en) 2018-08-02
EP3196324A1 (en) 2017-07-26
US20190024219A1 (en) 2019-01-24
JP7208005B2 (en) 2023-01-18
RU2018130158A3 (en) 2020-02-25
CL2018001954A1 (en) 2019-01-25
BR112018014843A2 (en) 2020-10-27
WO2017125582A1 (en) 2017-07-27
IL260680B (en) 2021-08-31
RU2018130158A (en) 2020-02-25
RU2737646C2 (en) 2020-12-02
CN108779522B (en) 2020-12-11
KR102649425B1 (en) 2024-03-19
MX2018008973A (en) 2019-01-21
TR201814631T1 (en) 2018-11-21
SG11201806220YA (en) 2018-08-30
EP3443134A1 (en) 2019-02-20
CN108779522A (en) 2018-11-09
BR112018014843B1 (en) 2022-11-29
ES2702729T3 (en) 2019-03-05
ZA201804669B (en) 2021-03-31
CA3011631A1 (en) 2017-07-27
PL3196324T3 (en) 2019-04-30
SG10202007019WA (en) 2020-08-28

Similar Documents

Publication Publication Date Title
EP3196324B1 (en) Curable aluminium alloy on an al-mg-si-basis
EP1683882B1 (en) Aluminium alloy with low quench sensitivity and process for the manufacture of a semi-finished product of this alloy
DE69212602T2 (en) HIGH-STRENGTH AL-CI ALLOY WITH LOW DENSITY
AT502294B1 (en) AL-ZN KNET ALLOY AND USE OF SUCH ALLOY
AT413035B (en) ALUMINUM ALLOY
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE2264997A1 (en) PRECIPITABLE NICKEL, IRON ALLOY
DE69330679T2 (en) STRENGTH ANISOTROPY REDUCTION IN AL-LI ALLOYS BY COLD WORKING AND AGING
DE112016005830B4 (en) Metal gasket and process for its manufacture
DE112014000563T5 (en) A method of designing an Al-Mg alloy plate product
DE2606632A1 (en) VERY HIGH CARBON STEEL AND METHOD OF MANUFACTURING THE SAME
EP2449145A1 (en) Almgsi strip for applications having high plasticity requirements
WO2004003244A1 (en) Al/cu/mg/ag alloy with si, semi-finished product made from such an alloy and method for production of such a semi-finished product
EP1017867B1 (en) Aluminium based alloy and method for subjecting it to heat treatment
DE102015111866A1 (en) Formable lightweight structural steel with improved mechanical properties and process for the production of semi-finished products from this steel
DE10163039C1 (en) Hot and cold formable component made of an aluminum alloy and process for its production
DE2704765A1 (en) COPPER ALLOY, METHOD OF MANUFACTURING IT AND ITS USE FOR ELECTRIC CONTACT SPRINGS
DE2450607A1 (en) HIGHLY EFFECTIVE ALLOY AND PROCESS FOR MANUFACTURING WORKPIECES FROM THIS ALLOY
EP2976441B1 (en) Iron-based shape memory alloy
DE1284095B (en) Process for producing aluminum alloy sheets with high creep rupture strength
DE2335113A1 (en) ALUMINUM WICKED ALLOYS
DE3486352T2 (en) Aluminum-lithium alloy.
WO2018033537A2 (en) Aluminum alloy and aluminum alloy strip for pedestrian impact protection
EP0035069A1 (en) Memory alloy based on Cu-Al or on Cu-Al-Ni and process for the stabilisation of the two-way effect
DE2129473B2 (en) Use of a titanium alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170713

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PRILLHOFER, RAMONA

Inventor name: KAUFMANN, HELMUT

Inventor name: ANTREKOWITSCH, HELMUT

Inventor name: WERINOS, MARION

Inventor name: EBNER, THOMAS

Inventor name: UGGOWITZER, PETER

Inventor name: FRAGNER, WERNER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180403

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1043357

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016001981

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181220

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2702729

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190305

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 29382

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190119

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016001981

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

26N No opposition filed

Effective date: 20190620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190122

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180919

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221219

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20230119

Year of fee payment: 8

Ref country code: ES

Payment date: 20230216

Year of fee payment: 8

Ref country code: CZ

Payment date: 20230112

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230119

Year of fee payment: 8

Ref country code: SK

Payment date: 20230113

Year of fee payment: 8

Ref country code: SI

Payment date: 20230112

Year of fee payment: 8

Ref country code: HU

Payment date: 20230117

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230124

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240118

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 9

Ref country code: GB

Payment date: 20240124

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240131

Year of fee payment: 9

Ref country code: FR

Payment date: 20240123

Year of fee payment: 9