JP2019507248A - Age hardening type Al-Mg-Si based aluminum alloy - Google Patents

Age hardening type Al-Mg-Si based aluminum alloy Download PDF

Info

Publication number
JP2019507248A
JP2019507248A JP2018537443A JP2018537443A JP2019507248A JP 2019507248 A JP2019507248 A JP 2019507248A JP 2018537443 A JP2018537443 A JP 2018537443A JP 2018537443 A JP2018537443 A JP 2018537443A JP 2019507248 A JP2019507248 A JP 2019507248A
Authority
JP
Japan
Prior art keywords
aluminum alloy
weight
aluminum
content
age hardening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018537443A
Other languages
Japanese (ja)
Other versions
JP7208005B2 (en
Inventor
アントレコヴィッチ,ヘルムート
エーブナー,トーマス
フラグナー,ヴェルナー
カオフマン,ヘルムート
ポガチャー,シュテファン
トゾーネ,ラモーナ
ヨット. ウゴヴィッツァー,ペーター
ヨット. ウゴヴィッツァー,ペーター
ヴェリノス,マリオン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amag rolling GmbH
Original Assignee
Amag rolling GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amag rolling GmbH filed Critical Amag rolling GmbH
Publication of JP2019507248A publication Critical patent/JP2019507248A/en
Application granted granted Critical
Publication of JP7208005B2 publication Critical patent/JP7208005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/02Alloys containing less than 50% by weight of each constituent containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/04Alloys containing less than 50% by weight of each constituent containing tin or lead
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • C22C30/06Alloys containing less than 50% by weight of each constituent containing zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Laminated Bodies (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Materials For Medical Uses (AREA)
  • Powder Metallurgy (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Continuous Casting (AREA)
  • Prevention Of Electric Corrosion (AREA)

Abstract

時効硬化型Al−Mg−Si系アルミニウム合金について示す。リサイクルしやすく、放置安定性のある、特に人工時効硬化型のアルミニウム合金を得るために、前記アルミニウム合金が、0.6〜1重量%のマグネシウム(Mg)、0.2〜0.7重量%のケイ素(Si)、0.16〜0.7重量%の鉄(Fe)、0.05〜0.4重量%の銅(Cu)、最大0.15重量%のマンガン(Mn)、最大0.35重量%のクロム(Cr)、最大0.2重量%のジルコン(Zr)、最大0.25重量%の亜鉛(Zn)、最大0.15重量%のチタン(Ti)、0.005〜0.075重量%のスズ(Sn)および/またはインジウム(In)、ならびに残部アルミニウム、ならびに製造上不可避の不純物を含有し、このとき、Si/Feの重量パーセント比が2.5未満であり、Siの含有量が、パラメータAが0.17〜0.4重量%の範囲にある下記の数式1【数1】に従って決定されることが提案される。【選択図】図2It shows about an age hardening type Al-Mg-Si type aluminum alloy. In order to obtain an aluminum alloy that is easy to recycle and is stable to stand, particularly an artificial age-hardening type aluminum alloy, the aluminum alloy contains 0.6 to 1% by weight of magnesium (Mg), 0.2 to 0.7% by weight. Silicon (Si), 0.16-0.7 wt% iron (Fe), 0.05-0.4 wt% copper (Cu), up to 0.15 wt% manganese (Mn), up to 0 .35 wt% chromium (Cr), up to 0.2 wt% zircon (Zr), up to 0.25 wt% zinc (Zn), up to 0.15 wt% titanium (Ti), 0.005- Containing 0.075 wt% tin (Sn) and / or indium (In), and the balance aluminum, as well as inevitable impurities in manufacture, wherein the weight percentage ratio of Si / Fe is less than 2.5; Si content is a parameter There is proposed to be determined according to Equation 1 Equation 1] below in the range of 0.17 to 0.4 wt%. [Selection] Figure 2

Description

本発明は時効硬化型Al−Mg−Si系アルミニウム合金に関する。   The present invention relates to an age-hardening Al—Mg—Si-based aluminum alloy.

室温で放置することによって自然時効させたA6061(Al−Mg−Si系)アルミニウム合金を改良するために、特許文献1は、アルミニウム合金の固溶体に空孔活性微量元素、すなわちスズ(Sn)および/またはインジウム(In)を添加することを提案している。   In order to improve the A6061 (Al-Mg-Si-based) aluminum alloy that has been naturally aged by being left at room temperature, Patent Document 1 discloses a vacancy-active trace element, ie, tin (Sn) and / or a solid solution of an aluminum alloy. Alternatively, it is proposed to add indium (In).

さらに、A6061アルミニウム合金の特定の主要合金元素と副合金元素は、アルミニウム合金中のスズまたはインジウムの溶解度を低下させ、これが6000系アルミニウム合金の室温での放置安定性に悪影響を及ぼすことが知られている(非特許文献1)。そのため、例えばMg、Si、Cu、またはZnの含有量が多い6000系アルミニウム合金は溶解度を低下させ、一方、Fe、Ti、およびMnは溶解度を向上させるとされる。さらに、例えばSiとMg間および/またはCuとMg間の相互作用効果も、アルミニウム合金中のSnの溶解度に重要な役割を果たしている。   Furthermore, certain major alloy elements and suballoy elements of the A6061 aluminum alloy reduce the solubility of tin or indium in the aluminum alloy, which is known to adversely affect the room temperature stability of the 6000 series aluminum alloy at room temperature. (Non-Patent Document 1). Therefore, for example, a 6000 series aluminum alloy with a high content of Mg, Si, Cu, or Zn decreases the solubility, while Fe, Ti, and Mn improve the solubility. Furthermore, for example, the interaction effect between Si and Mg and / or Cu and Mg also plays an important role in the solubility of Sn in the aluminum alloy.

とはいえ、アルミニウム合金中の主要合金元素と副合金元素の含有量を任意に変化させることはできない。人工時効硬化能の望ましい高さ以外に、例えば成形性、強度、延性および/または耐食性といったその他の機械的および/または化学的要件を満たさなければならないからだ。これには、例えばアルミニウム合金中の主要合金元素を高濃度にして、特定の高温析出物を形成できるようにする必要がある。   However, the contents of the main alloy element and suballoy element in the aluminum alloy cannot be arbitrarily changed. In addition to the desired height of artificial age hardening, other mechanical and / or chemical requirements such as formability, strength, ductility and / or corrosion resistance must be met. For this purpose, for example, it is necessary to increase the concentration of the main alloy element in the aluminum alloy so that a specific high-temperature precipitate can be formed.

そのため、アルミニウム合金の組成の調整では、主要合金元素と副合金元素において、たいていは相対する分量比が必要となる。すなわち、一方で、アルミニウム合金中のSnの溶解度に有利で、室温での高い放置安定性を実現する分量比、他方で、アルミニウム合金の機械的および/または化学的特性値、すなわち性質に配慮しているものの、Snの溶解度にマイナスに作用することの多い分量比だ。   For this reason, adjustment of the composition of the aluminum alloy usually requires a relative proportion ratio between the main alloy element and the suballoy element. That is, on the one hand, it is advantageous for the solubility of Sn in the aluminum alloy, and on the other hand, it takes into account the mechanical and / or chemical characteristic value of the aluminum alloy, that is, the property, which realizes high standing stability at room temperature. However, it is a quantity ratio that often negatively affects the solubility of Sn.

国際公開第2013/124472号International Publication No. 2013/124472

Stefan Pogatscher et. al, “Statistical and thermodynamic optimization of trace−element modified Al−Mg−Si−Cu Alloys”, Light Metals 2015, p.265−270Stefan Pogatscher et. al, "Statistical and thermal optimization of trace-element modified Al-Mg-Si-Cu Alloys", Light Metals 2015, p. 265-270

そのため本発明の課題は、微量元素としてSnを含有するAl−Mg−Si系の時効硬化型アルミニウム合金の組成を変え、人工時効硬化のアルミニウム合金が、高い機械的および/または化学的性質と、室温での高い放置安定性とを兼ね備えられるようにすることである。さらに、このアルミニウム合金はとりわけ二次アルミニウムの使用に適しているとされる。   Therefore, the object of the present invention is to change the composition of an Al—Mg—Si age-hardening aluminum alloy containing Sn as a trace element, so that an artificial age-hardening aluminum alloy has high mechanical and / or chemical properties, It is to be able to combine high standing stability at room temperature. Furthermore, this aluminum alloy is particularly suitable for the use of secondary aluminum.

本発明は、アルミニウム合金が、0.6〜1重量%のマグネシウム(Mg)、0.2〜0.7重量%のケイ素(Si)、0.16〜0.7重量%の鉄(Fe)、0.05〜0.4重量%の銅(Cu)、最大0.15重量%(すなわち0〜0.15重量%)のマンガン(Mn)、最大0.35重量%(すなわち0〜0.35重量%)のクロム(Cr)、最大0.2重量%(すなわち0〜0.2重量%)のジルコン(Zr)、最大0.25重量%(すなわち0〜0.25重量%)の亜鉛(Zn)、最大0.15重量%(すなわち0〜0.15重量%)のチタン(Ti)、0.005〜0.075重量%のスズ(Sn)および/またはインジウム(In)、ならびに残部アルミニウム、ならびに製造上不可避の不純物を含有し、このとき、Si/Feの重量パーセント比が2.5未満であり、Siの含有量が、パラメータAが0.17〜0.4重量%の範囲にある下記の数式1に従って決定されることによって、上記課題を解決する。   In the present invention, the aluminum alloy is composed of 0.6 to 1% by weight of magnesium (Mg), 0.2 to 0.7% by weight of silicon (Si), 0.16 to 0.7% by weight of iron (Fe). 0.05 to 0.4 weight percent copper (Cu), up to 0.15 weight percent (ie, 0 to 0.15 weight percent) manganese (Mn), up to 0.35 weight percent (ie, 0 to 0.0. 35 wt%) chromium (Cr), up to 0.2 wt% (ie 0-0.2 wt%) zircon (Zr), up to 0.25 wt% (ie 0-0.25 wt%) zinc (Zn), up to 0.15 wt% (ie 0-0.15 wt%) titanium (Ti), 0.005-0.075 wt% tin (Sn) and / or indium (In), and the balance Contains aluminum and impurities inevitable in production, and at this time, Si / F The weight percentage ratio is less than 2.5, and the content of Si is determined according to the following formula 1 in which the parameter A is in the range of 0.17 to 0.4% by weight, thereby solving the above problem. .

Si含有量を0.2〜0.7重量%に、かつFe含有量を0.16〜0.7重量%に制限するのに加え、Si含有量とFe含有量を調整するよう規定することによって、この調整が、Si/Feの重量パーセント比が2.5未満であることと、パラメータAが0.17〜0.4重量%の範囲にある下記の数式2を満足した場合に、Al−Mg−Si系アルミニウム合金の放置安定性と人工時効硬化能に、とりわけ有利に影響を及ぼすことができる。   In addition to limiting the Si content to 0.2-0.7 wt% and the Fe content to 0.16-0.7 wt%, specify that the Si content and Fe content be adjusted Thus, when this adjustment satisfies the following formula 2 in which the weight percent ratio of Si / Fe is less than 2.5 and the parameter A is in the range of 0.17 to 0.4 wt%, Al -It can affect the standing stability and artificial age hardening ability of the Mg-Si based aluminum alloy particularly advantageously.

このようにSi含有量とFe含有量を厳密に調整したアルミニウム合金(そうした調整は、例えば図1の斜線部分で確認できる)は、すなわち上述の規定の上限により、アルミニウム合金の固溶体におけるスズおよび/またはインジウムの十分な溶解度を保証できる。そうすると、自然時効の際に析出挙動が遅延し、それによりアルミニウム合金の放置安定性が促進される。さらに調整の下限により、人工時効の際に十分な析出挙動を見込むことができ、それにより人工時効の際に高い強度値に達することができ、アルミニウム合金自体が、主要合金元素と副合金元素の含有量が高い6000系アルミニウム合金で知られているような機械的性質と化学的性質を実現または改善できる。   Thus, the aluminum alloy in which the Si content and the Fe content are strictly adjusted (such adjustment can be confirmed in, for example, the hatched portion in FIG. 1), that is, the tin and / or the solid solution of the aluminum alloy by the upper limit specified above. Or sufficient solubility of indium can be guaranteed. As a result, the precipitation behavior is delayed during natural aging, thereby promoting the standing stability of the aluminum alloy. Furthermore, the lower limit of the adjustment allows sufficient precipitation behavior to be expected during artificial aging, so that high strength values can be reached during artificial aging, and the aluminum alloy itself is composed of the main alloy elements and suballoy elements. Mechanical and chemical properties such as are known for high content 6000 series aluminum alloys can be realized or improved.

しかしながら驚いたことに、この規定を用いると、自然時効硬化を抑制するためにSnを含有する既知の6000系アルミニウム合金と比べて、室温で何倍も遅延した析出挙動が観察できることがわかった。確かに、Si含有量が比較的少ないと、自然時効硬化の遅延を引き起こせることは知られているが、本発明に従ってSi含有量を調整すると、この既知の効果をはるかに越え、アルミニウム合金は並外れて高い放置安定性を示す。   Surprisingly, however, it was found that when this rule is used, precipitation behavior delayed many times at room temperature can be observed as compared to known 6000 series aluminum alloys containing Sn in order to suppress spontaneous age hardening. Certainly, it is known that a relatively low Si content can cause a delay in natural age hardening, but adjusting the Si content according to the present invention far exceeds this known effect, and aluminum alloys It shows exceptionally high storage stability.

そのため本発明に従って、室温における放置安定性がとりわけ高く、人工時効硬化能に優れているというアルミニウム合金の利点を組み合わせることができる。   Therefore, according to the present invention, it is possible to combine the advantages of the aluminum alloy that the standing stability at room temperature is particularly high and the artificial age hardening ability is excellent.

さらに本発明によるこの組成は、Fe含有量が比較的多いことから、これについての二次アルミニウムの使用にもとりわけ適している可能性がある。   Furthermore, this composition according to the invention may be particularly suitable for the use of secondary aluminum for this because of the relatively high Fe content.

一般に、Al−Mg−Si系アルミニウム合金には、それぞれ最大0.05重量%、合わせて多くとも0.15重量%の不純物が存在する可能性があると言及される。さらに一般に、例えばMn、Cr、Zr、Zn、またはチタンで見られる最大重量%の指示は、0から始まると見なすことができると言及される。   In general, it is mentioned that Al-Mg-Si-based aluminum alloys may each contain up to 0.05% by weight of impurities, and at most 0.15% by weight in total. More generally, it is mentioned that the indication of the maximum weight percent found, for example, in Mn, Cr, Zr, Zn, or titanium can be regarded as starting from zero.

さらに完全を期すために、アルミニウムスクラップから得られたアルミニウムまたはアルミニウム合金は、二次アルミニウムと理解することができると言及される。   For the sake of completeness, it is mentioned that the aluminum or aluminum alloy obtained from aluminum scrap can be understood as secondary aluminum.

アルミニウム合金の放置安定性と人工時効硬化能は、パラメータAが0.26〜0.34重量%の範囲にある場合、さらに改善することができる。この規定により、すなわちSnの溶解度が比較的大きくなり、Siが、自然時効硬化にわずかな影響しか及ぼさないようにできる。それにより、室温において予想外に高い安定性を実現することができる。さらに、このように調整された合金は、この合金のSi含有量が比較的低いにもかかわらず、(例えば高温保持による)人工時効硬化後に、驚くほど高い強度に達することができる。   The standing stability and artificial age hardening ability of the aluminum alloy can be further improved when the parameter A is in the range of 0.26 to 0.34% by weight. This definition, that is, the solubility of Sn is relatively large, so that Si has a slight effect on natural age hardening. Thereby, unexpectedly high stability can be realized at room temperature. Furthermore, alloys prepared in this way can reach surprisingly high strength after artificial age hardening (eg by holding at elevated temperatures), despite the relatively low Si content of the alloy.

パラメータAが0.3重量%であるとき、最適な放置安定性と人工時効硬化能を示すことができる。   When the parameter A is 0.3% by weight, optimum standing stability and artificial age-hardening ability can be shown.

下記の数式3に従ってSiの含有量を決定すれば、Snの溶解度に影響を与える成分をさらに改善して互いに調整することができる。具体的には、TiはSiと相を形成することができ、これがSnの溶解度によい影響を及ぼすことができる。それにより、アルミニウム合金の放置安定性がさらに改善できる。   If the Si content is determined according to the following Equation 3, the components affecting the solubility of Sn can be further improved and adjusted to each other. Specifically, Ti can form a phase with Si, which can positively affect the solubility of Sn. Thereby, the standing stability of the aluminum alloy can be further improved.

Si/Feの重量パーセント比が2未満であれば、FeによってSiの凝固が進むことにより、アルミニウム合金中の溶解Siの含有量を大幅に減少させることができる。それにより、Al−Mg−Si系アルミニウム合金の固溶体におけるスズおよび/またはインジウムの溶解度を向上させることができ、放置安定性をさらに高めることができる。   If the weight percent ratio of Si / Fe is less than 2, solidification of Si proceeds by Fe, so that the content of dissolved Si in the aluminum alloy can be greatly reduced. Thereby, the solubility of tin and / or indium in the solid solution of the Al—Mg—Si based aluminum alloy can be improved, and the standing stability can be further enhanced.

Si/Mgの重量パーセント比が0.3〜0.9の範囲内にあるとき、Al−Mg−Si系アルミニウム合金の固溶体におけるスズおよび/またはインジウムの溶解度を比較的高くすることができる。   When the weight percentage ratio of Si / Mg is in the range of 0.3 to 0.9, the solubility of tin and / or indium in the solid solution of the Al—Mg—Si based aluminum alloy can be made relatively high.

アルミニウム合金が少なくとも0.25重量%の銅(Cu)を含有する場合、Cuの含有量がこのように比較的高いことにより、Al−Mg−Si系アルミニウム合金の固溶体におけるSnの溶解度に対するMgおよびSiの悪影響が相殺的に干渉され得る。   When the aluminum alloy contains at least 0.25 wt% copper (Cu), the relatively high Cu content results in Mg and Sn relative to the solubility of Sn in the solid solution of the Al-Mg-Si based aluminum alloy. The adverse effects of Si can be counterbalanced.

アルミニウム合金がアルミニウム混晶の固溶体中に0.005〜0.05重量%の範囲でスズ(Sn)を含有する場合、アルミニウム合金の優れた放置安定性を得ることができる。一般に、「固溶体」という用語は、合金元素が固体マトリックス中に分散している状態を指すことができると言及される。   When the aluminum alloy contains tin (Sn) in the aluminum mixed crystal solid solution in the range of 0.005 to 0.05% by weight, excellent standing stability of the aluminum alloy can be obtained. In general, the term “solid solution” is mentioned to be able to refer to a state in which alloying elements are dispersed in a solid matrix.

好ましくは、アルミニウム合金は6000系に属する。好ましくは、アルミニウム合金はEN AW−6061アルミニウム合金である。   Preferably, the aluminum alloy belongs to the 6000 series. Preferably, the aluminum alloy is EN AW-6061 aluminum alloy.

アルミニウム合金が最大0.05重量%のクロム(Cr)と0.05重量%超のジルコン(Zr)を含有する場合、Snの焼入れ感受性を低下させ、比較的遅い焼入れ速度でも、Snをアルミニウム混晶の固溶体中に保持することができる。さらにそれにより、厚板でも、最適な放置安定性と人工時効硬化能を得ることができる。   If the aluminum alloy contains up to 0.05 wt% chromium (Cr) and more than 0.05 wt% zircon (Zr), it reduces the Sn susceptibility to quenching, even at relatively slow quenching rates. It can be held in a solid solution of crystals. In addition, even with a thick plate, optimum standing stability and artificial age hardening can be obtained.

アルミニウム合金は、場合によっては腐食挙動を改善するために、少なくとも0.02重量%のクロム(Cr)を含有することができる。   The aluminum alloy can optionally contain at least 0.02 wt% chromium (Cr) to improve the corrosion behavior.

アルミニウム合金中のSiとFeの含有量を示す表である。It is a table | surface which shows content of Si and Fe in an aluminum alloy. アルミニウム合金の放置期間[d]とブリネル硬さ[HBW]を示す表である。It is a table | surface which shows the leaving period [d] and Brinell hardness [HBW] of an aluminum alloy. アルミニウム合金の人工時効温度[℃]とブリネル硬さ[HBW]を示す表である。It is a table | surface which shows the artificial aging temperature [degreeC] and Brinell hardness [HBW] of an aluminum alloy.

得られた効果を証明するために、さまざまなAl−Mg−Si系(6000系)アルミニウム合金からなる薄板を作製した。試験した合金の組成を表1に示す。   In order to prove the obtained effect, thin plates made of various Al—Mg—Si (6000) aluminum alloys were produced. The composition of the tested alloys is shown in Table 1.

表1のアルミニウム合金1は、基本的に微量元素Snを添加した後の標準合金AA6061に相当し、スズの代わりに、インジウムまたはSnとInとの組み合わせを使用することが考えられる。合金2は6000系の本発明による組成物であり、Fe含有量が比較的高いため、比較的リサイクルしやすい。   The aluminum alloy 1 in Table 1 basically corresponds to the standard alloy AA6061 after adding the trace element Sn, and it is conceivable to use indium or a combination of Sn and In instead of tin. Alloy 2 is a 6000-based composition according to the present invention and is relatively easy to recycle because of its relatively high Fe content.

アルミニウム合金1は、本発明に従って調整されたSi/Fe含有量から明らかに外れており、これは例えば図1で確認することができる。アルミニウム合金2は、この調整されたSi/Fe含有量のほぼ中央に位置している。   The aluminum alloy 1 is clearly deviated from the Si / Fe content adjusted according to the present invention, which can be confirmed, for example, in FIG. The aluminum alloy 2 is located approximately at the center of the adjusted Si / Fe content.

アルミニウム合金1と2の両方を、溶体化熱処理によって固溶化し、焼入れしたのち、室温で時効することで自然時効硬化処理を、次いで人工時効硬化処理を行った。溶体化熱処理は530℃超の温度で、焼入れは20℃/秒超の焼入れ速度で行った。合金1と2の両方に、180日間[d]の放置期間、すなわち自然時効硬化処理と、さまざまな温度での30分間の人工時効硬化処理を実施した。自然時効硬化処理中、または人工時効硬化処理後にブリネル硬さ[HBW]を測定した。   Both aluminum alloys 1 and 2 were solid-solubilized by solution heat treatment, quenched, and then subjected to natural age hardening treatment by aging at room temperature, and then artificial age hardening treatment. The solution heat treatment was performed at a temperature exceeding 530 ° C., and the quenching was performed at a quenching rate exceeding 20 ° C./second. Both alloys 1 and 2 were subjected to a standing period of 180 days [d], that is, a natural age hardening treatment and an artificial age hardening treatment for 30 minutes at various temperatures. Brinell hardness [HBW] was measured during the natural age hardening treatment or after the artificial age hardening treatment.

放置安定性については、室温での放置で、合金1がすでに14日後に比較的激しく時効硬化していることが図2で確認できる。これは、長い放置期間にわたって見てみると、不利なことに、ブリネル硬さが比較的高く上昇していることになり、かつ人工時効硬化前に変形に成形に不利に作用する。   With respect to the standing stability, it can be confirmed in FIG. 2 that the alloy 1 has been relatively hardened by aging after 14 days after standing at room temperature. This has the disadvantage that the Brinell hardness has risen relatively high when viewed over a long standing period and adversely affects the deformation before the artificial age hardening.

それとは対照的に、合金2では、およそ180日後にようやく自然時効硬化が始まっていることが明確になり、それにより本発明による合金2は、とりわけ放置安定性があると考えられる。このような驚くほど高い放置安定性は、これまで6000系合金ではまだ観察されていなかった。これは、焼入れ後の柔らかい状態における合金の処理時間に、想定外の著しい効用をもたらす。   In contrast, it becomes clear that alloy 2 finally begins spontaneous age hardening after approximately 180 days, so that alloy 2 according to the present invention is considered to be particularly stable. Such a surprisingly high storage stability has not been observed so far for 6000 series alloys. This results in an unexpected significant utility in the processing time of the alloy in the soft state after quenching.

それに続く人工時効硬化では、図3で2つの合金を比較すると、合金2は低めの時効温度では、ブリネル硬さにおいてさしあたり合金1に遅れを取っていることが確認できる。時効温度が高くなると、合金1のブリネル硬さを明らかに超えることができる。   In the subsequent artificial age hardening, when the two alloys are compared in FIG. 3, it can be confirmed that the alloy 2 is delayed from the alloy 1 for the time being in the Brinell hardness at a lower aging temperature. As the aging temperature increases, the Brinell hardness of Alloy 1 can be clearly exceeded.

Claims (11)

時効硬化型Al−Mg−Si系アルミニウム合金であって、
0.6〜1重量%のマグネシウム(Mg)、
0.2〜0.7重量%のケイ素(Si)、
0.16〜0.7重量%の鉄(Fe)、
0.05〜0.4重量%の銅(Cu)、
最大0.15重量%のマンガン(Mn)、
最大0.35重量%のクロム(Cr)、
最大0.2重量%のジルコン(Zr)、
最大0.25重量%の亜鉛(Zn)、
最大0.15重量%のチタン(Ti)、
0.005〜0.075重量%のスズ(Sn)および/またはインジウム(In)、
ならびに残部アルミニウム、ならびに製造上不可避の不純物を含有し、このとき、
Si/Feの重量パーセント比が2.5未満であり、
Siの含有量が、パラメータAが0.17〜0.4重量%の範囲にある下記の数式1
に従って決定されるアルミニウム合金。
Age-hardening Al-Mg-Si-based aluminum alloy,
0.6-1 wt% magnesium (Mg),
0.2-0.7 wt% silicon (Si),
0.16 to 0.7% by weight of iron (Fe),
0.05 to 0.4% by weight of copper (Cu),
Up to 0.15 wt% manganese (Mn),
Up to 0.35 wt% chromium (Cr),
Up to 0.2% by weight of zircon (Zr),
Up to 0.25 wt% zinc (Zn),
Up to 0.15 wt% titanium (Ti),
0.005 to 0.075 wt% tin (Sn) and / or indium (In),
As well as the balance aluminum, and impurities inevitable in production,
The weight percent ratio of Si / Fe is less than 2.5;
The following formula 1 in which the Si content is such that the parameter A is in the range of 0.17 to 0.4 wt%
Aluminum alloy determined according to.
前記パラメータAが0.26〜0.34重量%の範囲にあることを特徴とする、請求項1に記載のアルミニウム合金。   The aluminum alloy according to claim 1, wherein the parameter A is in the range of 0.26 to 0.34 wt%. 前記パラメータAが0.3重量%である、請求項1または2に記載のアルミニウム合金。   The aluminum alloy according to claim 1 or 2, wherein the parameter A is 0.3% by weight. Siの含有量が、下記の数式2
に従って決定されることを特徴とする、請求項1〜3のうちいずれか一項に記載のアルミニウム合金。
The content of Si is the following formula 2
The aluminum alloy according to claim 1, wherein the aluminum alloy is determined according to claim 1.
Si/Feの重量パーセント比が2未満であることを特徴とする、請求項1〜4のうちいずれか一項に記載のアルミニウム合金。   The aluminum alloy according to claim 1, wherein the weight percentage ratio of Si / Fe is less than 2. 5. Si/Mgの重量パーセント比が0.3〜0.9の範囲にあることを特徴とする、請求項1〜5のうちいずれか一項に記載のアルミニウム合金。   The aluminum alloy according to any one of claims 1 to 5, characterized in that the weight percentage ratio of Si / Mg is in the range of 0.3 to 0.9. 前記アルミニウム合金が、少なくとも0.25重量%の銅(Cu)を含有することを特徴とする、請求項1〜6のうちいずれか一項に記載のアルミニウム合金。   The aluminum alloy according to claim 1, wherein the aluminum alloy contains at least 0.25% by weight of copper (Cu). 前記アルミニウム合金が、アルミニウム混晶の固溶体中に0.005〜0.05重量%の範囲でスズ(Sn)を含有することを特徴とする、請求項1〜7のうちいずれか一項に記載のアルミニウム合金。   The said aluminum alloy contains tin (Sn) in the range of 0.005-0.05 weight% in the solid solution of an aluminum mixed crystal, It is any one of Claims 1-7 characterized by the above-mentioned. Aluminum alloy. 前記アルミニウム合金が6000系に属することを特徴とする、請求項1〜8のうちいずれか一項に記載のアルミニウム合金。   The aluminum alloy according to any one of claims 1 to 8, wherein the aluminum alloy belongs to the 6000 series. 前記アルミニウム合金が、最大0.05重量%のクロム(Cr)と0.05重量%超のジルコン(Zr)を含有することを特徴とする、請求項1〜9のうちいずれか一項に記載のアルミニウム合金。   10. The aluminum alloy according to any one of claims 1 to 9, characterized in that it contains up to 0.05 wt% chromium (Cr) and more than 0.05 wt% zircon (Zr). Aluminum alloy. 前記アルミニウム合金が少なくとも0.02重量%のクロム(Cr)を含有することを特徴とする、請求項1〜10のうちいずれか一項に記載のアルミニウム合金。   The aluminum alloy according to any one of claims 1 to 10, characterized in that the aluminum alloy contains at least 0.02 wt% chromium (Cr).
JP2018537443A 2016-01-22 2017-01-20 Age hardening type Al-Mg-Si based aluminum alloy Active JP7208005B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP16152467.3 2016-01-22
EP16152467.3A EP3196324B1 (en) 2016-01-22 2016-01-22 Curable aluminium alloy on an al-mg-si-basis
PCT/EP2017/051243 WO2017125582A1 (en) 2016-01-22 2017-01-20 Hardenable almgsi-based aluminum alloy

Publications (2)

Publication Number Publication Date
JP2019507248A true JP2019507248A (en) 2019-03-14
JP7208005B2 JP7208005B2 (en) 2023-01-18

Family

ID=55229588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018537443A Active JP7208005B2 (en) 2016-01-22 2017-01-20 Age hardening type Al-Mg-Si based aluminum alloy

Country Status (19)

Country Link
US (1) US20190024219A1 (en)
EP (2) EP3196324B1 (en)
JP (1) JP7208005B2 (en)
KR (1) KR102649425B1 (en)
CN (1) CN108779522B (en)
AU (1) AU2017208641A1 (en)
BR (1) BR112018014843B1 (en)
CA (1) CA3011631A1 (en)
CL (1) CL2018001954A1 (en)
ES (1) ES2702729T3 (en)
IL (1) IL260680B (en)
MX (1) MX2018008973A (en)
PL (1) PL3196324T3 (en)
RU (1) RU2737646C2 (en)
SG (2) SG11201806220YA (en)
SI (1) SI3196324T1 (en)
TR (1) TR201814631T1 (en)
WO (1) WO2017125582A1 (en)
ZA (1) ZA201804669B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109706351A (en) * 2017-10-26 2019-05-03 遵义市吉祥富康门窗有限公司 A kind of aluminium alloy and preparation method thereof
CN108977700B (en) * 2018-08-20 2020-04-17 广东润盛科技材料有限公司 Aluminum alloy plate and preparation method thereof
JP2022520362A (en) 2019-03-13 2022-03-30 ノベリス・インコーポレイテッド Age-hardening and highly moldable aluminum alloys, monolithic sheets made from them and aluminum alloy products containing them
CN110951998B (en) * 2019-11-28 2020-12-08 辽宁忠旺集团有限公司 Production process of high-temperature stable 6-series aluminum alloy section
CN113737064B (en) * 2021-08-31 2022-04-08 华中科技大学 Al-Mg-Si alloy for high-performance forge piece and preparation method thereof
WO2024086068A1 (en) * 2022-10-20 2024-04-25 Arconic Technologies, Llc New 6xxx aluminum alloys

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207396A (en) * 1994-01-20 1995-08-08 Nippon Steel Corp Aluminum alloy sheet excellent in press formability and baking hardenability for coating
JPH08199276A (en) * 1995-01-25 1996-08-06 Showa Denko Kk Aluminum alloy for cold forging
JPH11511806A (en) * 1994-10-27 1999-10-12 レイノルズ メタルズ カンパニー Machinable aluminum alloy containing In and Sn and method for producing the same
JP2001059124A (en) * 1999-06-16 2001-03-06 Nippon Light Metal Co Ltd Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
JP2009185388A (en) * 1999-06-16 2009-08-20 Nippon Light Metal Co Ltd COLD FORGED PRODUCT OF Al-Mg-Si-BASED ALUMINUM ALLOY WITH EXCELLENT APPEARANCE QUALITY
JP2015052140A (en) * 2013-09-06 2015-03-19 株式会社神戸製鋼所 Aluminum alloy sheet excellent in baking finish hardenability
JP2015052142A (en) * 2013-09-06 2015-03-19 株式会社神戸製鋼所 Aluminum alloy sheet excellent in baking finish hardenability
CN104975208A (en) * 2015-03-13 2015-10-14 宝山钢铁股份有限公司 6000-series aluminum alloy material with high strength and elongation, aluminum alloy plate and manufacturing method thereof

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60230952A (en) * 1984-04-27 1985-11-16 Daido Metal Kogyo Kk Sliding aluminum alloy
JP3684245B2 (en) * 1993-11-24 2005-08-17 昭和電工株式会社 Aluminum alloy for cold forging
US6231809B1 (en) * 1998-02-20 2001-05-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Al-Mg-Si aluminum alloy sheet for forming having good surface properties with controlled texture
JP2002235158A (en) * 2001-02-05 2002-08-23 Nippon Steel Corp Method for producing high strength aluminum alloy extrusion shape material having excellent bending workability
RU2221891C1 (en) * 2002-04-23 2004-01-20 Региональный общественный фонд содействия защите интеллектуальной собственности Aluminum-based alloy, article made from such alloy and method of manufacture of such article
JP2004277786A (en) * 2003-03-14 2004-10-07 Nippon Light Metal Co Ltd Method for manufacturing heat treatment type aluminum alloy material for cold working superior in machinability
FR2862894B1 (en) * 2003-11-28 2007-02-16 Pechiney Rhenalu ALLUMINIUM ALLOY BAND FOR BRAZING
RU2394113C1 (en) * 2008-11-13 2010-07-10 Общество с ограниченной ответственностью "ИНТЕЛЛ-СЕРВИС" High-tensile deformed alloy on base of aluminium and item out of this alloy
EP2631317A1 (en) 2012-02-23 2013-08-28 AMAG rolling GmbH Annealable aluminium alloy and method for improving artificial ageing ability
CN105518168B (en) * 2013-09-06 2017-07-18 株式会社神户制钢所 Toast the excellent aluminium alloy plate of application hardening
CN104532089B (en) * 2014-12-26 2016-08-24 中国石油天然气股份有限公司 Anticorrosive alloy composition and device, preparation and application thereof
CN104975209A (en) * 2015-03-13 2015-10-14 宝山钢铁股份有限公司 6000 series aluminum alloy material with high natural aging stability, aluminum alloy plate and preparing method of aluminum alloy plate
CN105207596B (en) * 2015-10-26 2018-05-04 阿特斯阳光电力集团有限公司 Novel photovoltaic module

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07207396A (en) * 1994-01-20 1995-08-08 Nippon Steel Corp Aluminum alloy sheet excellent in press formability and baking hardenability for coating
JPH11511806A (en) * 1994-10-27 1999-10-12 レイノルズ メタルズ カンパニー Machinable aluminum alloy containing In and Sn and method for producing the same
JPH08199276A (en) * 1995-01-25 1996-08-06 Showa Denko Kk Aluminum alloy for cold forging
JP2001059124A (en) * 1999-06-16 2001-03-06 Nippon Light Metal Co Ltd Al-Mg-Si ALUMINUM ALLOY COLD FORGED PART EXCELLENT IN APPEARANCE QUALITY AND ITS PRODUCTION
JP2009185388A (en) * 1999-06-16 2009-08-20 Nippon Light Metal Co Ltd COLD FORGED PRODUCT OF Al-Mg-Si-BASED ALUMINUM ALLOY WITH EXCELLENT APPEARANCE QUALITY
JP2015052140A (en) * 2013-09-06 2015-03-19 株式会社神戸製鋼所 Aluminum alloy sheet excellent in baking finish hardenability
JP2015052142A (en) * 2013-09-06 2015-03-19 株式会社神戸製鋼所 Aluminum alloy sheet excellent in baking finish hardenability
CN104975208A (en) * 2015-03-13 2015-10-14 宝山钢铁股份有限公司 6000-series aluminum alloy material with high strength and elongation, aluminum alloy plate and manufacturing method thereof

Also Published As

Publication number Publication date
WO2017125582A1 (en) 2017-07-27
EP3196324B1 (en) 2018-09-19
ZA201804669B (en) 2021-03-31
MX2018008973A (en) 2019-01-21
KR102649425B1 (en) 2024-03-19
PL3196324T3 (en) 2019-04-30
EP3196324A1 (en) 2017-07-26
SG10202007019WA (en) 2020-08-28
BR112018014843B1 (en) 2022-11-29
US20190024219A1 (en) 2019-01-24
ES2702729T3 (en) 2019-03-05
CA3011631A1 (en) 2017-07-27
TR201814631T1 (en) 2018-11-21
SI3196324T1 (en) 2019-03-29
BR112018014843A2 (en) 2020-10-27
CN108779522B (en) 2020-12-11
SG11201806220YA (en) 2018-08-30
CN108779522A (en) 2018-11-09
RU2018130158A (en) 2020-02-25
AU2017208641A1 (en) 2018-08-02
JP7208005B2 (en) 2023-01-18
RU2018130158A3 (en) 2020-02-25
IL260680B (en) 2021-08-31
RU2737646C2 (en) 2020-12-02
KR20180136434A (en) 2018-12-24
EP3443134A1 (en) 2019-02-20
CL2018001954A1 (en) 2019-01-25

Similar Documents

Publication Publication Date Title
JP2019507248A (en) Age hardening type Al-Mg-Si based aluminum alloy
CA2871260C (en) Diecasting alloy based on al-si, comprising particularly secondary aluminium
JP5327515B2 (en) Magnesium alloys for casting and magnesium alloy castings
JP5674136B2 (en) High thermal conductivity magnesium alloy for die casting
JP2012197491A (en) High strength magnesium alloy and method of manufacturing the same
US11549461B2 (en) High strength aluminum alloy, internal combustion engine piston comprising said alloy, and method for manufacturing internal combustion engine piston
JP2007277660A (en) Magnesium alloy and die cast product
JP2011162883A (en) High-strength aluminum alloy, method of manufacturing high-strength aluminum alloy casting, and method of manufacturing high-strength aluminum alloy member
JP7472318B2 (en) Aluminum alloys and aluminum alloy castings
CN107739943A (en) A kind of heat-resisting Mg Al systems magnesium alloy and preparation method thereof
JP2005298856A (en) Aluminum alloy casting material with excellent thermal conductivity
JP2014196525A (en) Heat-resistant magnesium alloy
WO2017168645A1 (en) Heat-resistant magnesium alloy
JP2012197490A (en) High thermal conductivity magnesium alloy
JP5251894B2 (en) Method for producing aluminum alloy cast material with excellent thermal conductivity
JP6122932B2 (en) High toughness aluminum alloy casting
JP2002226932A (en) Aluminum alloy for heat sink having excellent strength and thermal conductivity and production method therefor
JPH06172948A (en) Production of heat resistant magnesium alloy
Hossain et al. Effect of Cu and Ni on the mechanical properties and fracture behavior of Al–Si–Mg cast alloys
JPH0711371A (en) Heat resistant magnesium alloy
JP2010202977A (en) HEAT-RESISTANT Mg ALLOY
CN105821239A (en) Method of preparing casting material made of copper-based alloy
EP4101941A1 (en) Aluminium-silicon casting alloy, and castings made from said alloy
JP4238180B2 (en) High toughness Al alloy casting and method for producing the same
JP2020105545A (en) Aluminum alloy having low casting crack sensitivity, and aluminum alloy casting using the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20221013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221107

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230105

R150 Certificate of patent or registration of utility model

Ref document number: 7208005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150