EP3189110A1 - Procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande - Google Patents

Procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande

Info

Publication number
EP3189110A1
EP3189110A1 EP15771515.2A EP15771515A EP3189110A1 EP 3189110 A1 EP3189110 A1 EP 3189110A1 EP 15771515 A EP15771515 A EP 15771515A EP 3189110 A1 EP3189110 A1 EP 3189110A1
Authority
EP
European Patent Office
Prior art keywords
web
plasma
laminating gap
sheet
shaped material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15771515.2A
Other languages
German (de)
English (en)
Inventor
Arne Koops
Marco Kupsky
Klaus KEITE-TELGENBÜSCHER
Stephan ZÖLLNER
Thomas Schubert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Publication of EP3189110A1 publication Critical patent/EP3189110A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/48Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
    • B29C65/4805Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding characterised by the type of adhesives
    • B29C65/483Reactive adhesives, e.g. chemically curing adhesives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/02Preparation of the material, in the area to be joined, prior to joining or welding
    • B29C66/028Non-mechanical surface pre-treatments, i.e. by flame treatment, electric discharge treatment, plasma treatment, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/11Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
    • B29C66/112Single lapped joints
    • B29C66/1122Single lap to lap joints, i.e. overlap joints
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/40General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
    • B29C66/41Joining substantially flat articles ; Making flat seams in tubular or hollow articles
    • B29C66/45Joining of substantially the whole surface of the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/72General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined
    • B29C66/723General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the structure of the material of the parts to be joined being multi-layered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81262Electrical and dielectric properties, e.g. electrical conductivity
    • B29C66/81263Dielectric properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/814General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps
    • B29C66/8141General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined
    • B29C66/81411General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat
    • B29C66/81421General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave
    • B29C66/81422General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the design of the pressing elements, e.g. of the welding jaws or clamps characterised by the surface geometry of the part of the pressing elements, e.g. welding jaws or clamps, coming into contact with the parts to be joined characterised by its cross-section, e.g. transversal or longitudinal, being non-flat being convex or concave being convex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/834General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools moving with the parts to be joined
    • B29C66/8341Roller, cylinder or drum types; Band or belt types; Ball types
    • B29C66/83411Roller, cylinder or drum types
    • B29C66/83413Roller, cylinder or drum types cooperating rollers, cylinders or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/836Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
    • B29C66/8362Rollers, cylinders or drums moving relative to and tangentially to the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/14Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers
    • B32B37/16Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating
    • B32B37/20Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the properties of the layers with all layers existing as coherent layers before laminating involving the assembly of continuous webs only
    • B32B37/203One or more of the layers being plastic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0008Electrical discharge treatment, e.g. corona, plasma treatment; wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J107/00Adhesives based on natural rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J121/00Adhesives based on unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/02Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/383Natural or synthetic rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8122General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the composition of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/08Copolymers of ethylene
    • B29K2023/086EVOH, i.e. ethylene vinyl alcohol copolymer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/10Polymers of propylene
    • B29K2023/12PP, i.e. polypropylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/08PVDC, i.e. polyvinylidene chloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/16PVDF, i.e. polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/18Polymers of nitriles
    • B29K2033/20PAN, i.e. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2069/00Use of PC, i.e. polycarbonates or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2079/00Use of polymers having nitrogen, with or without oxygen or carbon only, in the main chain, not provided for in groups B29K2061/00 - B29K2077/00, as moulding material
    • B29K2079/08PI, i.e. polyimides or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2081/00Use of polymers having sulfur, with or without nitrogen, oxygen or carbon only, in the main chain, as moulding material
    • B29K2081/06PSU, i.e. polysulfones; PES, i.e. polyethersulfones or derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2809/00Use of rubber derived from conjugated dienes as mould material
    • B29K2809/06SBR, i.e. butadiene-styrene rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2811/00Use of rubber derived from chloroprene as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2819/00Use of rubber not provided for in a single one of main groups B29K2807/00 - B29K2811/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2883/00Use of polymers having silicon, with or without sulfur, nitrogen, oxygen, or carbon only, in the main chain, as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2901/00Use of unspecified macromolecular compounds as mould material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/02Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2909/00Use of inorganic materials not provided for in groups B29K2803/00 - B29K2807/00, as mould material
    • B29K2909/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/416Additional features of adhesives in the form of films or foils characterized by the presence of essential components use of irradiation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2407/00Presence of natural rubber
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2407/00Presence of natural rubber
    • C09J2407/006Presence of natural rubber in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2407/00Presence of natural rubber
    • C09J2407/008Presence of natural rubber in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2421/00Presence of unspecified rubber
    • C09J2421/008Presence of unspecified rubber in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/006Presence of (meth)acrylic polymer in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • C09J2433/008Presence of (meth)acrylic polymer in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • C09J2475/006Presence of polyurethane in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2475/00Presence of polyurethane
    • C09J2475/008Presence of polyurethane in the pretreated surface to be joined

Definitions

  • the invention relates to a method for increasing the adhesion between the first surface of a first sheet material and a first surface of a second sheet material.
  • the simple physical pretreatment techniques under atmospheric pressure are now used advantageously for the surface treatment of the joining part in order to achieve a higher anchoring force with a self-adhesive tape.
  • pretreatments of the surfaces may be performed. These pretreatments enable or strengthen the intermolecular forces of the joining partners.
  • pretreatments including chemical pretreatment by primer application or physical pretreatment by means of plasma or corona treatment.
  • G. Habenicht, 2009, Springer Verlag, Berlin / Heidelberg gives an introduction to surface treatment: The strength of adhesive bonds or the bond between surface and pressure-sensitive adhesive tape can be strengthened by chemical bridges.
  • organosilicon compounds silanes
  • the chemical primer is applied to the surface prior to application of the pressure-sensitive adhesive tape Since the intermolecular forces between the silane molecules are weak, the bifunctional adhesion promoter reacts below with the adherend surface (polycondensation reaction) and the adhesive molecules of the pressure-sensitive adhesive tape (polyaddition or polymerization reaction tion).
  • the reaction mechanism is shown schematically in the attached figure.
  • Plasma is called the 4th state of matter. It is a partial or fully ionized gas. By supplying energy, positive and negative ions, electrons, other excited states, radicals, electromagnetic radiation and chemical reaction products are generated. Many of these species can cause changes in the surface to be treated. In sum, this treatment leads to an activation of the adherend surface, specifically a higher reactivity.
  • This treatment can be carried out both on the surface of the adherend, as well as on the adhesive. Also, a combination of both treatments is possible. Likewise, this treatment is used to increase the adhesion between the first surface of a first sheet material (eg an adhesive) and a first surface of a second sheet material (eg a backing material).
  • the widespread corona treatment also called corona discharge or dielectric barrier discharge, represents a filamentary plasma and takes place mainly as a high-voltage discharge with direct contact to the surface to be treated by the discharge gas of the ambient air is converted into a reactive form. Due to the impact of the incident electrons, molecular cleavages occur at the adherend surface. The resulting free valences allow attachment of the reaction products of the corona discharge. These deposits allow for improved adherence properties of the adherend surface, but can also cause damage to the surface due to the immediate action of the discharge
  • the plasma treatment has a limited durability in terms of activation of the boundary layer, so that it is treated promptly or predominantly immediately before the lamination process.
  • Plasma and in particular corona pretreatments are described or mentioned, for example, in DE 10 2005 027 391 A1 and DE 103 47 025 A1.
  • DE 10 201 1075 470 A1 describes the physical pretreatment of adhesive and carrier / substrate.
  • the pretreatments are carried out separately before the joining step are designed differently.
  • the two-sided pretreatment achieves higher adhesion and anchoring forces than only substrate pretreatment.
  • DE 24 60 432 A two webs are to be joined by introducing a plastic plastic film, which serves as a primer, to form a laminate.
  • the plasma is formed between the two laminating rollers which are grounded and a high-voltage electrode which simultaneously has an opening for the bonding agent.
  • the air flowing around the roller should be influenced by the plasma in the mold, so that the adhesion promoter does not cool down too early and there are no air pockets in the laminate.
  • the surfaces to be treated are passed directly through the discharge zone.
  • DE 27 54 425 A reference is made to DE 24 60 432 A. New arrangements are described for the same task.
  • the plasma is formed between the two lamination rollers, one of which is dielectrically coated. It is described as well as in DE 24 60 432 A only the lamination of flat film webs by means of a thermoplastic melt plastic. Again, the surfaces to be treated are passed directly through the discharge zone.
  • the plasma is formed according to claim 2 between two laminating rollers.
  • the dielectric is formed by at least one moving belt. Again, the surfaces to be treated are passed directly through the discharge zone.
  • DE 41 27 723 A1 describes the production of multilayer laminates of plastic film webs and plastic plates, in which at least one joining side is treated with an aerosol corona directly before the joining step.
  • two corona discharges are generated by the electrodes 11 and 11 ' against the rollers 3 and 4, respectively.
  • the gas space in the roller winding is filled with an aerosol.
  • the introduced aerosol also passes through the pressure flow into the corona discharges.
  • monomers, dispersions, colloidal as aerosol Systems, emulsions or solutions into consideration. Both surfaces to be treated are each guided directly through the discharge zone.
  • the prior art is characterized in that the pretreatments predominantly relate to the carrier material or the joining part in order to build up a higher anchoring force to the adhesive or to the self-adhesive tape.
  • the treatment of adhesive and substrate is known. As a rule, the treatment is carried out with separate plasma discharge devices. With simultaneous treatment of the adhesive and the substrate, both are conducted directly through the discharge zone according to the known state of the art, which involves the risk of surface damage and thus reduced adhesion forces.
  • the object of the invention is to find the stated positive effects in the case of physical surface modification of pressure-sensitive adhesives and support materials in order to achieve high-strength compounds.
  • the core of the task is to achieve a high anchorage between the pressure sensitive adhesive layer and the carrier material.
  • the invention relates to a method for increasing the adhesion between the first surface of a first sheet material and a first surface of a second sheet material, wherein
  • the first web-shaped material and the second web-shaped material are fed continuously and with the same web direction to a laminating nip in which the first web-shaped material and the second web-shaped material are laminated together with their respective first surface,
  • Both first surfaces of the first web-shaped material and the second web-shaped material simultaneously and preferably over the entire area with a single
  • Be treated plasma preferably in such a way that the plasma acts continuously before the laminating gap to the laminating gap on the first two surfaces
  • the laminating gap is formed by a pressure element and a counterpressure device, which builds up a back pressure
  • At least one of the lateral surfaces of the pressure element and the counter-pressure device or both are equipped with a dielectric, characterized in that
  • none of the first two surface / sheet materials are passed through the discharge zone of the plasma generating device.
  • the pressure element or the counter-pressure device are designed as a roller, more preferably, pressure element and counter-pressure device are simultaneously designed as a roller.
  • the pressure element can also be designed as a doctor blade or pressure plate.
  • the counter-pressure device can also be the background.
  • the plasma is blown out in the known plasma generating devices of a gas stream from the discharge zone, so that they are also called plasma nozzles.
  • the activated plasma separated from the discharge zone ("after glow") is carried, for example, by a gas flow in the direction of the laminating gap, and thus the laminating gusset opened by the roller and backing is filled with the excited gas.
  • atmospheric gas can be displaced, and undesirable reactions of the activated surfaces, especially with atmospheric oxygen, can be reduced.
  • the treatment of the first two surfaces preferably takes place in such a way that the plasma acts continuously on the first two surfaces beginning at the laminating gap up to the laminating gap, that is to say the line at which the first two surfaces touch.
  • Acting continuously means that the web movement of the substrate webs by the plasma zone remains continuous.
  • the plasma itself may also be pulsed, as in the frequency range of about 1 Hz to 10 MHz known to those skilled in the art.
  • the first sheet-like material has an adhesive compound view arranged in the first sheet-like material to form the first surface of the first sheet-like material.
  • the principle of the preferred plasma generating devices based on the fact that a gas flow (air, gas, gas mixtures) is passed through the discharge zone and only the activated gas flow is brought to the treatment site.
  • a gas flow air, gas, gas mixtures
  • the space is designated in the design can be ignited by sufficient strength of the electric field, a plasma.
  • Manufacturers of plasma generating devices offer suitable plasma jet geometries that can handle in a lamination gusset, but in the prior art are basically used only for a specific interface (gap, area, three-dimensional).
  • suitable nozzles from Plasmatreat include hole, slot and rotary nozzles. Such nozzles operate with an arc or corona discharge which is operated inside a nozzle.
  • the nozzle outlet is usually grounded so that this design operates floating with respect to a substrate. This type of nozzle is often referred to as a plasma jet.
  • FIG. 6 shows the following nozzles.
  • Punch nozzle Dot-shaped plasma jet with a small treatment width, but intensive treatment
  • FIG. 7 shows two rotary nozzles which have different outlet angles for the concentrically arranged hole nozzles. This can be used to adjust a nozzle for specific laminating angles (pointed, flat).
  • pendulum nozzles are known and suitable.
  • the nozzle head is deflected by a high-frequency pendulum motion.
  • a pendulum nozzle can be found in DE 20 2008 013 560 U1 and shown in FIG. 5:
  • nozzles Other types are known and suitable, for example the PlasmaCurtain from Acxys (see FIG. 8).
  • This is a linear nozzle or a multiple arrangement of hole nozzles (Plasmajets), which is brought by flow geometries as plasma curtain on the treatment area.
  • This can be applied with turbulent but also laminar flow, so that the surfaces are intensively pretreated and the ambient atmosphere is displaced more effectively.
  • the SpotTEC from Tantec looks like this (see Figure 9):
  • the principle of the unit is to bring the filamentary plasma (corona) between two ironing electrodes on the blowing out by means of compressed air or other gases / gas mixtures in the direction of the substrate. Proper flow of the gas ensures that the pre-treatment penetrates deep into the pretreatment gusset.
  • This type of plasma nozzle is called a "blown-out corona.” Compared to the substrate, a potential is built up so that arcing can easily occur on metallic substrates.
  • the plasma nozzles are predominantly suitable for a Kaschierzwickel.
  • a treatment of a wide laminating gap is possible if the multi-unit pretreatment unit is arranged side by side.
  • the treatment of the first surfaces preferably takes place over the entire surface.
  • a partial area treatment may also be expedient, for example in the form of strips in the web direction, which are produced by correspondingly spaced apart plasma nozzles. Stiffeners transverse to the web direction are also possible, for example, by pulsing the plasma or shutter masks.
  • the first and the second web-shaped material preferably run in the laminating gap with the same web direction.
  • the first sheet-like material and the second sheet-like material are laminated together with their respective first surface in the plasma.
  • a third web-shaped material is supplied to the laminating gap so that the second web-like material between the first and third web-shaped material lies. It is advantageous in this case to treat a pair of webs with a plasma nozzle. It is particularly advantageous to treat all four surfaces to be treated with a single plasma nozzle, which can be realized by means of an arrangement of the plasma nozzle laterally of the web. In addition, a further plasma nozzle can be arranged on the other side of the web.
  • the web direction of the third sheet material is the same as that showing the first and second sheet materials.
  • a multiplicity of further sheet-like materials are fed to the laminating gap in addition to the first and the second sheet-like material, wherein feeding takes place in such a way that the individual sheet-like materials enter the laminating gap between the first and the second sheet-like material.
  • the individual further sheet-like materials are selected so that a non-adhesive carrier layer and a second non-adhesive carrier layer are never laminated directly to one another in the laminating gap.
  • the laminating gap is formed by a pressure element, preferably a pressure roller, and by a counterpressure device which builds up the counterpressure desired for lamination.
  • a pressure element preferably a pressure roller
  • a counterpressure device which builds up the counterpressure desired for lamination.
  • This is preferably a counterpressure roller.
  • the rollers run in opposite directions, more preferably with the same peripheral speed.
  • the circumferential speed and the direction of rotation of the rollers are identical to the path speed and path direction of the first and second sheet-like material.
  • existing further webs further preferably also have identical web speed and web direction.
  • the rolls preferably have the same diameter, more preferably the diameter is between 50 to 500 mm.
  • the lateral surface of the rollers is smooth, in particular ground.
  • the surface roughness of the rollers R a is preferably less than 50 ⁇ , preferably less than 10 ⁇ .
  • R a is an industry standard unit for surface finishing quality and represents the average height of the roughness in particular, the average absolute distance from the centerline of the roughness profile within the evaluation range.
  • At least one of the lateral surfaces of the pressure element or the counter-pressure device is covered with a dielectric.
  • a dielectric The choice depends on the selection and removal of the plasma nozzle.
  • potential-free plasma generation devices also unoccupied lateral surfaces, in particular rollers, can be selected; for non-potential-free devices, lateral surfaces (rolls) coated with a dielectric are advantageous. Whether such are even necessary, depends on the distance of the device from the lateral surface (roller).
  • the jacket surface of the device or element not covered by a dielectric, in particular a roller can be made of steel, stainless steel or chromium-plated steel.
  • the surface can also be nickel plated or gold plated.
  • the surface should show no corrosion under plasma action.
  • both rolls it is possible to cool or to heat one or both rolls with oil, water, steam, electrical or other tempering media in a preferred range of -40 ° C to 200 ° C. Preferably, both rolls are unheated.
  • the layer of the dielectric which covers the entire lateral surface for example the entire circumference of the roller (s)
  • the dielectric encloses the roller (s) firmly, but may be removable, for example in the form of two half-shells.
  • the thickness of the layer of the dielectric on the lateral surfaces or surfaces (rolls) is preferably between 1 and 5 mm.
  • the dielectric is not a traveling web, which covers the lateral surface only in sections (or two adjacent webs, which only partially cover the lateral surfaces of, for example, two rolls).
  • only one roller of the roller pair, which forms the laminating gap, is covered with a dielectric.
  • both rolls of the roll pair, which forms the laminating gap are covered with a dielectric.
  • the plasma treatment takes place at a pressure which is close to (+/- 0.05 bar) or at atmospheric pressure.
  • the plasma treatment can take place in different atmospheres, wherein the atmosphere can also include air.
  • the treatment atmosphere may be a mixture of various gases selected from, inter alia, N 2 , O 2 , H 2 , CO 2 , Ar, He, ammonia, forming gases, gas mixtures with O 2 and H 2 , in which case water vapor or other constituents may also be added , No limitation is made by this sample listing.
  • the following pure or mixtures of process gases form a treatment atmosphere: N 2 , compressed air, O 2 , H 2 , C0 2 , Ar, He, ammonia, ethylene, siloxanes, acrylic acids and / or solvents, wherein in addition water vapor or other volatiles may be added.
  • N 2 and compressed air.
  • the atmospheric pressure plasma can be formed with a mixture of process gases, the mixture preferably containing at least 90% by volume of nitrogen and at least one noble gas, preferably argon.
  • the mixture consists of nitrogen and at least one noble gas, more preferably the mixture consists of nitrogen and argon.
  • all the types of nozzles mentioned are basically suitable, provided that both first surfaces are treated simultaneously.
  • a possible variant of the plasma treatment is the use of a fixed plasma jet.
  • An equally possible plasma treatment uses an arrangement of several nozzles, offset if necessary, for gapless, partially overlapping treatment in a sufficient width.
  • rotating or non-rotating nozzles can be used.
  • Linear nozzles are particularly suitable, which advantageously extend along the entire length of the laminating gap.
  • these have a constant distance to the laminating gap over the entire length of the laminating gap.
  • the distance of the plasma generating device to the laminating gap is 1 to 100 mm, preferably 3 to 50 mm, particularly preferably 4 to 20 mm.
  • the plasma generator perpendicular to the plane which in turn is perpendicular to the plane spanned by the roll axes plane, are shifted in height, preferably simultaneously in height and at a distance from the laminating gap.
  • the speed at which the webs are guided into the laminating gap between 0.5 to 200 m / min, preferably 1 to 50 m / min, especially preferably 2 to 20 m / min (each including the specified boundary values of the ranges).
  • the web speeds of the first, second, third or other web are the same.
  • the first sheet-like material has an adhesive compound view arranged in the first sheet-like material to form the first surface of the first sheet-like material.
  • the first sheet-like material may be a double-sided adhesive tape consisting of a first adhesive layer, a substrate and a second layer of adhesive, which is optionally covered with a so-called liner for protection.
  • a liner (release paper, release film) is not part of an adhesive tape or label, but only an aid for their production, storage or for further processing by punching.
  • a liner is not firmly bonded to an adhesive layer.
  • the first sheet-like material comprises or consists of a pressure-sensitive adhesive which, even under relatively weak pressure, allows a permanent bond with almost all adhesive grounds and, after use, is detached again from the primer without residue
  • a PSA is permanently tacky at room temperature, so it has a sufficiently low viscosity and a high tack, so that it wets the surface of the respective Klebegrunds already at low pressure
  • the adhesiveness of the adhesive is based on its adhesive properties and its removability on its cohesive properties.
  • the PSA layer is preferably based on natural rubber, synthetic rubber or polyurethanes, wherein the PSA layer preferably consists of pure acrylate or, in the majority, of acrylate.
  • the PSA may be blended with tackifiers to improve adhesive properties.
  • Tackifiers are, for example, hydrocarbon resins (for example polymers based on unsaturated C 5 or C 9 monomers), terpene-phenolic resins, polyterpene resins based on raw materials such as, for example, Oc- or ⁇ -pinene, aromatic resins such as coumarone-indene resins or resins based on Styrene or oc-methylstyrene such as rosin and its derivatives, for example, disproportionated, dimerized or esterified rosin, for example reaction products with glycol, glycerol or pentaerythritol, to name but a few.
  • hydrocarbon resins for example polymers based on unsaturated C 5 or C 9 monomers
  • terpene-phenolic resins polyterpene resins based on raw materials such as, for example, Oc- or ⁇ -pinene
  • aromatic resins such as coumarone-indene resins or resins based on Styrene or
  • resins without readily oxidizable double bonds such as terpene-phenolic resins, aromatic resins and particularly preferably resins which are prepared by hydrogenation, for example hydrogenated aromatic resins, hydrogenated polycyclopentadiene resins, hydrogenated rosin derivatives or hydrogenated polyterpene resins.
  • resins based on terpene phenols and rosin esters Preference is given to resins based on terpene phenols and rosin esters. Also preferred are tackifier resins having a softening point above 80 ° C according to ASTM E28-99 (2009). Particular preference is given to resins based on terpene phenols and rosin esters having a softening point above 90 ° C. according to ASTM E28-99 (2009). Typical amounts used are 10 to 100 parts by weight based on polymers of the adhesive.
  • the adhesive formulation may optionally be blended with sunscreen or primary and / or secondary anti-aging agents.
  • the adhesive composition may also be blended with conventional processing aids such as defoamers, deaerators, wetting agents or leveling agents. Suitable concentrations are in the range of 0.1 to 5 parts by weight based on the solids.
  • Web-shaped materials are limited in width and height in their extent and not defined in their length. The length is a multiple of width and height, usually at least a tenfold of the broader of both. Also, webs of large thickness or three-dimensional geometry, such as are extruded profiles are included.
  • the second sheet-like material is a carrier material.
  • the carrier material used in the present case are preferably polymer films or film composites.
  • Such films / film composites can consist of all common plastics used for film production, but are not to be mentioned as examples by way of non-limiting example:
  • Polyethylene polypropylene - especially the oriented polypropylene (OPP) produced by mono- or biaxial stretching, cyclic olefin copolymers (COC), polyvinyl chloride (PVC), polyesters - in particular polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), ethylene vinyl alcohol (EVOH), polyvinylidene chloride (PVDC), polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polycarbonate (PC), polyamide (PA), polyethersulfone (PES) or polyimide (PI).
  • OPP oriented polypropylene
  • COC cyclic olefin copolymers
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • EVOH ethylene vinyl alcohol
  • PVDC polyvinylidene chloride
  • PVDF polyvinylidene fluoride
  • PAN polyacrylonit
  • These materials are also preferably used as a carrier layer in the first sheet-like material, if in this a carrier is present.
  • Support material according to the invention comprises in particular all flat structures, for example, in two dimensions expanded films or film sections, tapes with extended length and limited width
  • the second sheet-like material is viscoelastic.
  • a viscoelastic polymer layer can be considered to be a very high viscosity liquid which under pressure loading exhibits the flow behavior (also called “creep") .
  • Such viscoelastic polymers or such a polymer layer have in particular the ability to with slow force acting on the forces acting on them They are capable of dissipating the forces into vibrations and / or deformations (which in particular can also be - at least in part - reversible), thus “buffering" the forces acting on them, and preferably avoid a mechanical destruction by the acting forces, but advantageously at least reduce or at least delay the time of the occurrence of the destruction.
  • viscoelastic polymers In the case of a very rapidly acting force, viscoelastic polymers usually exhibit an elastic behavior, that is to say the behavior of a completely reversible deformation, whereby forces which go beyond the elasticity capacity of the polymers can lead to a break. In contrast, there are elastic materials that show the described elastic behavior even with slow force. By admixtures, fillers, foaming or the like, such viscoelastic compositions can still be widely varied in their properties.
  • expandable microballoons are used for foaming.
  • Microballoons are elastic hollow spheres which have a thermoplastic polymer shell. These balls are filled with low-boiling liquids or liquefied gas.
  • shell material find in particular polyacrylonitrile, PVDC, PVC or polyacrylates use.
  • Hydrocarbons of the lower alkanes, for example isobutane or isopentane, which are enclosed in the polymer shell as a liquefied gas under pressure, are particularly suitable as the low-boiling liquid
  • the second sheet material may also be or contain an adhesive.
  • the third sheet-like material has or consists of an adhesive composition, more preferably the adhesive is a pressure-sensitive adhesive.
  • adhesives all adhesives can be used, as they are mentioned above.
  • a three-layered product is laminated together.
  • an adhesive or non-adhesive foam carrier based on acrylate second sheet material
  • PSAs first and third sheet-like material
  • the afterglow separated from the discharge zone is carried, for example, by a flow of gas in the direction of the laminating gap, thus filling the laminating gusset opened by the roller and backing with the excited gas, thus displacing atmospheric gas and undesirable reactions
  • the laminating gap seals the zone filled with excited gas, so that the lamination takes place in the after-glow atmosphere.
  • the second sheet material is generally a substrate, for example in the form of the substrate, onto which the first sheet material is laminated.
  • the laminating gap is formed by a pressure element and the substrate, which builds up a back pressure.
  • the first sheet-like material is laminated to the substrate.
  • the first surfaces of the first sheet-like material and the surface of the substrate are simultaneously and preferably treated over the entire surface with a plasma, preferably in such a way that the plasma, starting in front of the laminating gap into the
  • the lateral surface of the pressure element is equipped with a dielectric, or the
  • Substrate is coated from a dielectric material or with a dielectric. Neither the first surface / the first sheet-like material nor the substrate are passed through the discharge zone of the plasma generating device.
  • FIG. 1 shows a method not according to the invention - the nozzle is not present. It is shown a laminating gap, which is formed by a pressure roller 1 1 and by a counter-pressure roller 12, the desired for lamination back pressure builds. The same size rollers 1 1, 12 run in opposite directions, with the identical peripheral speed.
  • a layer of a dielectric 1 1 1 is present on the pressure roller 1 1, a layer of a dielectric 1 1 1 is present. Due to the tension 32 between the rollers 11, 12, a plasma 31 is formed in the laminating gap.
  • the laminating gap is fed with a first sheet-like material 21 and a second sheet-like material 22 continuously and with the same web direction.
  • the first web-shaped material 21 and the second web-shaped material 22 are laminated together with their respective first surface, so that a laminate 23 is formed.
  • the first sheet-like material 21 is a layer of adhesive, the second sheet-like material 22 a carrier.
  • Both first surfaces of the first web-shaped material 21 and the second web-shaped material 22 are treated simultaneously with a plasma 31 in a plasma zone / with a plasma generating device, in such a way that the plasma 31, starting before the laminating gap up to the laminating gap zoom continuously on the two first surfaces acts.
  • Both first surfaces are not treated according to the invention within the discharge zone, so are within the electric field between the rollers, the strength of which is sufficient to ignite a plasma under atmospheric pressure. This direct plasma influence can lead to damage to the webs, for example due to breakdowns within the electric field. Also, an undesirable treatment of the second surfaces in gas inclusions between webs and rolls is possible.
  • FIG. 2 illustrates a method according to the invention, in which only one quarter of the rollers 1 1, 12 is shown. Both roll surfaces are each equipped with a dielectric 1 1 1, 121.
  • the plasma 31 is generated by the plasma nozzle 33 provided according to the invention due to the voltage 32 which ignites a plasma within the nozzle.
  • the plasma is forced out of the nozzle by a gas stream 34 and transported to the gusset area.
  • Neither of the first surface / sheet materials passes through the discharge zone of the plasma generating device located within the nozzle or at the nozzle tip.
  • FIG. 3 shows a laminating gap which is formed by a pressure roller 1 1, which builds up the pressure desired for lamination, and by the substrate 12.
  • a layer of a dielectric 1 1 1 is present.
  • a plasma 31 is formed in the nozzle, which is driven by the gas stream 34 from the nozzle and transported in the gusset region. Neither of the first two surfaces is passed through the discharge zone of the plasma generating device.
  • a sheet-like material 21 consisting of a layer of adhesive is laminated on the substrate 12.
  • Both first surfaces are treated over the entire surface with a plasma 31, in such a way that the plasma 31 continuously acts on the surfaces beginning at the nozzle up to the laminating gap.
  • the pressure roller 1 1 moves together with the plasma nozzle 33 at a continuous speed in the direction predetermined by the arrow along the substrate surface. Conversely, a movement of the substrate is possible.
  • FIG. 4 differs from FIG. 3 in that, instead of a pressure roller 11, a pressure element in the form of a pressure plate 11 with a semi-cylindrical, laminating surface is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Adhesive Tapes (AREA)

Abstract

L'invention concerne un procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande, le premier matériau en bande et le deuxième matériau en bande étant amenés en continu et dans le même sens de circulation à une fente de contrecollage dans laquelle le premier matériau en bande et le deuxième matériau en bande sont stratifiés l'un sur l'autre avec respectivement leur première surface, les deux premières surfaces du premier matériau en bande et du deuxième matériau en bande étant traitées en même temps et de préférence sur la totalité de leur aire avec un plasma, de préférence de telle manière que le plasma agisse en continu sur les deux premières surfaces avant le début de la fente de contrecollage et jusqu'à l'intérieur de la fente de contrecollage. La fente de contrecollage est formée par un élément d'application de pression et un dispositif de contre-pression, qui élève une contre-pression, de préférence au moins une des surfaces de gaine de l'élément d'application de pression et du dispositif de contre-pression, ou les deux, est dotée d'un diélectrique. Selon l'invention, aucune des deux premières surfaces/ aucun des deux premiers matériaux en forme de bande ne passe par la zone de décharge du dispositif de génération de plasma.
EP15771515.2A 2014-09-05 2015-09-07 Procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande Withdrawn EP3189110A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014217821.5A DE102014217821A1 (de) 2014-09-05 2014-09-05 Verfahren zur Erhöhung der Adhäsion zwischen der ersten Oberfläche eines ersten bahnförmigen Materials und einer ersten Oberfläche eines zweiten bahnförmigen Materials
PCT/EP2015/070353 WO2016034738A1 (fr) 2014-09-05 2015-09-07 Procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande

Publications (1)

Publication Number Publication Date
EP3189110A1 true EP3189110A1 (fr) 2017-07-12

Family

ID=54147143

Family Applications (2)

Application Number Title Priority Date Filing Date
EP15766070.5A Withdrawn EP3189109A1 (fr) 2014-09-05 2015-09-01 Procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande
EP15771515.2A Withdrawn EP3189110A1 (fr) 2014-09-05 2015-09-07 Procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP15766070.5A Withdrawn EP3189109A1 (fr) 2014-09-05 2015-09-01 Procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande

Country Status (7)

Country Link
US (2) US20170283656A1 (fr)
EP (2) EP3189109A1 (fr)
CN (2) CN106660276A (fr)
DE (1) DE102014217821A1 (fr)
MX (2) MX2017002353A (fr)
TW (1) TW201623499A (fr)
WO (2) WO2016034571A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016202424A1 (de) * 2016-02-17 2017-08-17 Tesa Se Verfahren zur Herstellung eines Klebebandes mittels Plasmalamination
DE102017200471A1 (de) * 2017-01-12 2018-07-12 Tesa Se Verfahren zur Verklebung von Profilen auf Substratoberflächen

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2460432C3 (de) 1974-12-20 1984-01-05 Klaus 4803 Steinhagen Kalwar Verfahren zum kontinuierlichen Herstellen einer Flachfolienbahn aus thermoplastischem Kunststoff oder von zwei- oder dreilagigen, bahnförmigen Verbundwerkstoffen und Vorrichtung zum Herstellen von zweilagigen, bahnförmigen Verbundwerkstoffen
DE2754425A1 (de) 1977-12-07 1979-06-13 Klaus Kalwar Verfahren und vorrichtung zum kontinuierlichen herstellen von zwei- oder mehrlagigen bahnfoermigen verbundwerkstoffen
US4511419A (en) * 1982-04-23 1985-04-16 Firma Erwin Kampf Gmbh & Co. Method and device for laminating foils
DE4127723A1 (de) 1991-08-03 1993-02-04 Hoechst Ag Verfahren und vorrichtung zur herstellung mehrschichtiger laminate
CH684831A5 (de) * 1991-12-11 1995-01-13 Alusuisse Lonza Services Ag Vorrichtung zur Herstellung von extrusionsbeschichteten Laminaten.
DE19802662A1 (de) 1998-01-24 1999-07-29 Kuesters Eduard Maschf Verfahren zur Herstellung von Verbundfolien
DE19846814C2 (de) 1998-10-10 2002-01-17 Kuesters Eduard Maschf Einrichtung zum Zusammenkaschieren von Bahnen
DE29921694U1 (de) 1999-12-09 2001-04-19 Agrodyn Hochspannungstechnik G Plasmadüse
DE10146295A1 (de) * 2001-09-19 2003-04-03 Wipak Walsrode Gmbh & Co Kg Verfahren zum Zusammenfügen von Materialien mittels atmosphärischen Plasma
KR20040070285A (ko) * 2001-12-27 2004-08-06 토요 보세키 가부시기가이샤 열가소성 수지 필름 및 그의 제조 방법
DE10347025A1 (de) 2003-10-07 2005-07-07 Tesa Ag Beiseitig klebend ausgerüstetes Klebeband zur Fixierung von Druckplatten, insbesondere von mehrschichtigen Fotopolymer-Druckplatten auf Druckzylindern oder Hülsen
DE102005027391A1 (de) 2005-06-13 2006-12-14 Tesa Ag Doppelseitige Haftklebebänder zur Herstellung bzw. Verklebung von LC-Displays mit lichtabsorbierenden Eigenschaften
DE102007063021A1 (de) 2007-12-21 2009-06-25 Tesa Ag Corona-behandelte Klebemassen
DE202008013560U1 (de) 2008-10-15 2010-03-04 Raantec Verpachtungen Gmbh & Co. Kg Vorrichtung zur Erzeugung eines Plasmastrahls
DE102010055532A1 (de) * 2010-03-02 2011-12-15 Plasma Treat Gmbh Verfahren zur Herstellung eines mehrschichtigen Verpackungsmaterials und Verfahren zum Auftragen eines Klebers sowie Vorrichtung dazu
EP2590802B1 (fr) * 2010-07-09 2014-07-02 Vito NV Procédé et dispositif pour le traitement par plasma à la pression atmosphérique
DE102011075470A1 (de) 2011-05-06 2012-11-08 Tesa Se Klebeband, bevorzugt Selbstklebeband, bestehend aus mindestens zwei direkt aufeinander laminierten Schichten A und B, wobei mindestens eine oder beide Schichten A oder B eine Klebmasse ist
ES2700519T3 (es) * 2011-05-06 2019-02-18 Tesa Se Procedimiento para el aumento de las propiedades adhesivas de masas adhesivas sensibles a la presión sobre sustratos por medio de tratamiento por plasma
DE102012220286A1 (de) * 2012-11-07 2014-05-08 Tesa Se Verfahren zur Erhöhung der adhäsiven Eigenschaften von Haftklebemassen auf Untergründen mittels Plasmabehandlung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2016034738A1 *

Also Published As

Publication number Publication date
CN107073922A (zh) 2017-08-18
EP3189109A1 (fr) 2017-07-12
WO2016034571A1 (fr) 2016-03-10
CN106660276A (zh) 2017-05-10
WO2016034738A1 (fr) 2016-03-10
US20170282445A1 (en) 2017-10-05
MX2017002353A (es) 2017-05-17
US20170283656A1 (en) 2017-10-05
TW201623499A (zh) 2016-07-01
DE102014217821A1 (de) 2016-03-10
MX2017002641A (es) 2017-05-30

Similar Documents

Publication Publication Date Title
TWI532810B (zh) 藉由使用電漿處理增進壓力敏感性黏著劑於基底之黏著效能的方法
EP3188892B1 (fr) Procédé d'augmentation de l'adhérence entre la première surface d'un premier matériau en forme de bande et une première surface d'un deuxième matériau en forme de bande
EP3328951B1 (fr) Système de films adhésifs réactifs pour coller des surfaces non polaires
EP2705102A2 (fr) Procédé pour augmenter le pouvoir adhésif d'une couche auto-adhésive présentant une surface supérieure et une surface inférieure
DE102012220286A1 (de) Verfahren zur Erhöhung der adhäsiven Eigenschaften von Haftklebemassen auf Untergründen mittels Plasmabehandlung
WO2012152712A1 (fr) Bande adhésive, de préférence bande autoadhésive, constituée d'au moins deux couches a et b stratifiées directement l'une sur l'autre, au moins l'une des couches a ou b ou les deux étant une composition adhésive
EP3188891A1 (fr) Procédé d'augmentation de l'adhérence entre la première surface d'un premier matériau en forme de bande et une première surface d'un deuxième matériau en forme de bande
EP3312252A1 (fr) Traitement par plasma d'un corps adhésif multicouche
EP3423538B1 (fr) Augmentation de la force d'arrachement par prétraitement sélectif au plasma
WO2016034738A1 (fr) Procédé pour augmenter l'adhésion entre la première surface d'un premier matériau en bande et une première surface d'un deuxième matériau en bande
EP3417027A1 (fr) Procédé de production d'une ruban adhésif par lamination plasma
WO2016146498A1 (fr) Traitement au plasma basse température
DE102016201565A1 (de) Verklebung mit verbesserter Feucht-Wärme-Beständigkeit
EP3215582A1 (fr) Traitement de couches anti-adhérentes par plasma
DE102016220682A1 (de) Physikalische Vorbehandlung zur Filamenteinbindung
EP3583179B1 (fr) Procédé pour augmenter la force d'adhérence de compositions adhésives de contact

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170405

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200708

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20201109