EP3184152B1 - Installation de reduction d'oxygene et procede de fonctionnement d'une installation de reduction d'oxygene - Google Patents

Installation de reduction d'oxygene et procede de fonctionnement d'une installation de reduction d'oxygene Download PDF

Info

Publication number
EP3184152B1
EP3184152B1 EP15201906.3A EP15201906A EP3184152B1 EP 3184152 B1 EP3184152 B1 EP 3184152B1 EP 15201906 A EP15201906 A EP 15201906A EP 3184152 B1 EP3184152 B1 EP 3184152B1
Authority
EP
European Patent Office
Prior art keywords
compressed gas
gas
oxygen
outlet
separation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15201906.3A
Other languages
German (de)
English (en)
Other versions
EP3184152A1 (fr
Inventor
Ernst-Werner Wagner
Julian Eichhoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amrona AG
Original Assignee
Amrona AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP15201906.3A priority Critical patent/EP3184152B1/fr
Application filed by Amrona AG filed Critical Amrona AG
Priority to PL15201906T priority patent/PL3184152T3/pl
Priority to CN201680075358.8A priority patent/CN108430592A/zh
Priority to RU2018126588A priority patent/RU2712378C2/ru
Priority to CA3006864A priority patent/CA3006864C/fr
Priority to EP16825425.8A priority patent/EP3393606A1/fr
Priority to SG11201804790RA priority patent/SG11201804790RA/en
Priority to AU2016378491A priority patent/AU2016378491B2/en
Priority to PCT/EP2016/082373 priority patent/WO2017109069A1/fr
Priority to MX2018007071A priority patent/MX2018007071A/es
Publication of EP3184152A1 publication Critical patent/EP3184152A1/fr
Priority to ZA201804748A priority patent/ZA201804748B/en
Application granted granted Critical
Publication of EP3184152B1 publication Critical patent/EP3184152B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C99/00Subject matter not provided for in other groups of this subclass
    • A62C99/0009Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames
    • A62C99/0018Methods of extinguishing or preventing the spread of fire by cooling down or suffocating the flames using gases or vapours that do not support combustion, e.g. steam, carbon dioxide

Definitions

  • the present invention relates to an oxygen reduction plant and a method for operating such a plant.
  • An oxygen reduction system of the type according to the invention is used in particular for the controlled reduction of the oxygen content in the atmosphere of an enclosed area.
  • the oxygen reduction system to a gas separation system for providing an oxygen-reduced gas mixture or an inert gas and a conduit system which is fluidly connected or connectable to the gas separation system and with the enclosed area, if necessary, at least a portion of the gas mixture or gas provided by the gas separation system enclosed area.
  • the inventive method or system of the invention is used, for example, to reduce the risk and extinguish fires in a protected space to be monitored, for fire prevention or fire fighting the enclosed space is permanently inertized at different levels of reduction or is permanently insurmountable.
  • the basic principle of the inertization technique for fire prevention is based on the knowledge that in enclosed spaces, which are only occasionally entered by humans or animals, and their installation is sensitive to the effects of water reacts, the risk of fire can be countered that the oxygen concentration is lowered in the affected area to a value of, for example, about 15 vol .-%. With such a (reduced) oxygen concentration, most flammable materials can no longer ignite. Accordingly, the main area of application of this inertization technique for fire prevention is also computerized areas, electrical control and distribution rooms, enclosed facilities and storage areas with particularly high-value assets.
  • fire prevention effect is based on the principle of oxygen displacement.
  • Normal ambient air is known to be 21% by volume of oxygen, 78% by volume of nitrogen and 1% by volume of other gases.
  • an oxygen-displacing gas such as nitrogen
  • the oxygen content in the room atmosphere of the enclosed space is reduced. It is known that a fire prevention effect already starts when the oxygen content falls below the oxygen content in the normal ambient air.
  • Another application example for the oxygen reduction system according to the invention or the method according to the invention is the provision of training conditions for hypoxia training in an enclosed space, in which the oxygen content is reduced.
  • training conditions for hypoxia training in an enclosed space in which the oxygen content is reduced.
  • such a room training under artificially created height conditions is possible, which is also called “normobaric Hypoxietraining”.
  • CA Controlled Atmosphere
  • An oxygen reduction system of the type mentioned above is known in principle from the prior art.
  • an inerting system which is designed to lower the oxygen content in an enclosed space to a certain basic inerting level and, in the event of a fire, to further reduce the oxygen content rapidly to a certain level of full inertisation.
  • Another oxygen reduction system is from the document EP 2 233 175 A1 known.
  • base inertization level a reduced oxygen level compared to the oxygen level of the normal ambient air, however, this reduced oxygen level does not pose any risk to persons or animals, so that they will still - at least for a short time - make the permanently inertized area easily, i. without special protective measures, such as oxygen masks.
  • the basic inertization level corresponds, for example, to an oxygen content in the enclosed range of 15 to 17% by volume.
  • full inertization level is to be understood as meaning a further reduced oxygen content in comparison to the oxygen content of the basic inertization level, in which the flammability of most materials has already been reduced to such an extent that they can no longer be ignited.
  • the full inertization level is generally about 12 to 14% by volume oxygen concentration.
  • a corresponding inert gas source In order to equip an enclosed area with an oxygen reduction system, on the one hand, a corresponding inert gas source must be provided in order to be able to provide the oxygen-reduced gas mixture or inert gas to be introduced into the enclosed space.
  • the output capacity of the inert gas source i. the quantity of inert gas which can be supplied per unit of time by the inert gas source should be designed for properties of the enclosed area, in particular the volume of space and / or the air-tightness of the enclosed area.
  • the oxygen reduction system is used as a (preventive) fire protection measure, it must be ensured in particular that, in the event of fire, a sufficient amount of inert gas can be introduced into the room atmosphere of the enclosed area within the shortest possible time, so that the extinguishing effect is as rapid as possible.
  • oxygen-reduced gas mixture or inert gas to be introduced in the enclosed area could be stored in a high-pressure gas cylinder or similar compressed gas storage, in practice it has become common practice to produce at least part of the oxygen-reduced gas mixture to be provided by the inert gas source ", in particular, because the storage of inert gas in gas cylinder batteries or the like compressed gas storage requires special structural measures.
  • the inert gas source In order to be able to "produce" at least a portion of the oxygen-reduced gas mixture or inert gas to be provided by the inert gas source, the inert gas source usually has a gas separation system in which at least a part of one in one, in addition to a high-pressure bottle or similar compressed gas storage oxygen, which is supplied to the gas separation system, is separated, so that an oxygen-reduced gas mixture is provided at an outlet of the gas separation system.
  • starting gas mixture is generally understood to mean a gas mixture which, in addition to the constituent oxygen, also has, in particular, nitrogen and optionally further gases (for example noble gases).
  • nitrogen and optionally further gases for example noble gases.
  • a starting gas mixture for example, normal ambient air comes into question, i. a gas mixture which consists of 21% by volume of oxygen and 78% by volume of nitrogen and 1% by volume of other gases.
  • this fresh air is preferably added to this proportion of room air.
  • the gas separation system serves, in particular, to keep an oxygen content reduced in the room atmosphere of an enclosed space at the appropriate level. Accordingly, the discharge capacity of the gas separation system, ie the amount of the oxygen-reduced gas mixture which can be provided per unit time at the outlet of the gas separation system, is adapted in particular to the tightness of the space envelope of the enclosed area, so that a corresponding retaining flooding can be realized via the gas separation system.
  • the usual oxygen reduction systems are usually provided in addition to the gas separation system with a compressed gas storage in which an oxygen-reduced gas mixture or inert gas is stored in compressed form.
  • the gas mixture or inert gas stored in this compressed gas reservoir serves, in particular, to rapidly reduce the oxygen content in the corresponding enclosed area in order to rapidly reduce the oxygen concentration in the event of a fire.
  • the present invention is based on the problem that after triggering a conventional oxygen reduction system, i. when the stored in the compressed gas storage in compressed form, oxygen-reduced gas mixture or inert gas for rapid or initial reduction was introduced into the enclosed space, an exchange of then emptied or partially emptied compressed gas storage with a full compressed gas storage is essential to ensure that with the oxygen reduction system again at a later time again a quick setback according to a predetermined event sequence is feasible.
  • the present invention has the object to further develop an oxygen reduction system of the type mentioned in that the running operating costs in operating the oxygen reduction system can be further reduced without the effectiveness or efficiency of the oxygen reduction system is impaired.
  • an oxygen reduction system which has at least one gas separation system for providing an oxygen-reduced gas mixture as needed at an outlet of the gas separation system and a compressed gas reservoir for storing an oxygen-reduced gas mixture or inert gas in compressed form.
  • the compressed gas storage is fluidly connected or connectable via a line system with at least one enclosed area in order to supply at least a portion of the gas mixture or inert gas stored in the compressed gas storage to the at least one enclosed area as required.
  • the outlet of the gas separation system is selectively fluidly connected or connectable to an inlet of the compressed gas reservoir or to the at least one enclosed space to supply the gas mixture provided at the outlet of the gas separation system to the compressed gas reservoir and / or the at least one enclosed region as required.
  • the outlet of the gas separation system can optionally be fluidly connected to an inlet of the compressed gas reservoir and / or to the at least one enclosed space
  • the gas separation system has a double function.
  • the gas separation system serves to refill the compressed gas storage.
  • the solution according to the invention is also suitable for enclosed areas that are difficult to access, such as in remote areas.
  • the gas separation system is preceded by a compressor system via which an initial gas mixture to be supplied to the gas separation system is compressed accordingly.
  • the degree of compression of the starting gas mixture is 1 to 2 bar or 8 to 10 bar. Of course, other compressions are conceivable.
  • the gas separation system is designed to separate off at least part of the oxygen contained in this gas mixture from the starting gas mixture fed in.
  • the gas separation system is designed to operate in either a VPSA mode or a PSA mode.
  • the term "initial gas mixture” as used herein generally refers to a gas mixture which, in addition to the constituent oxygen, also has, in particular, nitrogen and possibly further gases, such as, for example, noble gases.
  • a starting gas mixture for example, normal ambient air comes into question, i. a gas mixture which consists of 21% by volume of oxygen, 78% by volume of nitrogen and 1% by volume of other gases.
  • this room air content is preferably still added fresh air.
  • a gas separation system operating in a VPSA mode is generally a vacuum pressure swing absorption (VPSA) system for providing nitrogen enriched air.
  • VPSA vacuum pressure swing absorption
  • such a VPSA system is preferably used in the oxygen reduction system as a gas separation system, which, however, is operated in a PSA operating mode if required.
  • PSA pressure swing absorption
  • pressure swing absorption technique which is commonly referred to as pressure swing absorption technique.
  • the degree of compression of the starting gas mixture effected by the compressor system upstream of the gas separation system is correspondingly increased.
  • the degree of compression is increased, in particular to a value that depends on the amount of the oxygen-reduced gas mixture to be provided per unit time.
  • the increase in the compression of the starting gas mixture carried out by the compressor system is carried out in particular in a fire, ie when, for example, in the room atmosphere of the enclosed area a fire characteristic is detected, or if for another reason in the short term, the oxygen content in the room atmosphere of the enclosed area compared is to be further reduced to a previously set or held oxygen content.
  • the increase is due to the compressor system carried out compression, for example, even if the compressed gas storage must be refilled with an oxygen-reduced gas mixture.
  • a compressor system is provided between the outlet of the gas separation system and the inlet of the compressed gas reservoir to, if necessary, to compress the oxygen-reduced gas mixture provided at the outlet of the gas separation system and to be supplied to the compressed gas reservoir.
  • Such a compression is required, for example, when the pressure of the gas mixture provided at the outlet of the gas separation system is insufficient to achieve the desired compression for the storage of the gas mixture in the compressed gas storage.
  • the compressor system which is provided as needed, in order to further compress the oxygen-reduced gas mixture supplied at the outlet of the gas separation system and to be supplied to the compressed gas reservoir, is preferably designed as a mobile system, which is required and in particular if filling of the compressed gas reservoir is not required. is not carried out, can also be completely removed from the oxygen reduction plant.
  • the compressor system embodied as a mobile system could be mounted on a transport pallet or the like with a material handling device, e.g. Lift trucks or forklifts, movable and / or transportable construction is mounted or mounted to allow the simplest possible removal of the compressor from the oxygen reduction system. Since in practice often a filling of the compressed gas storage is required only occasionally, it allows the execution of the compressor system as a mobile system that this compressor system is used in different, possibly even remotely located oxygen reduction systems to there, if necessary, the one to be filled compressed gas storage supplied oxygen-reduced Compress gas mixture accordingly.
  • a material handling device e.g. Lift trucks or forklifts, movable and / or transportable construction is mounted or mounted to allow the simplest possible removal of the compressor from the oxygen reduction system. Since in practice often a filling of the compressed gas storage is required only occasionally, it allows the execution of the compressor system as a mobile system that this compressor system is used in different, possibly even remotely located oxygen reduction systems to there, if necessary, the one to be
  • the oxygen-reduced gas mixture in particular of a gas separation system is provided, wherein it is in the compressed gas storage in particular is a compressed gas cylinder or a compressed gas cylinder.
  • the compressed gas storage has any external shape taking into account the spatial conditions on site and thus ensures optimum utilization of the available volume of space.
  • the gas separation system or only the gas separation system is designed as a mobile system, which can be removed from the oxygen reduction system (locally) as needed.
  • the term "mobile system” is understood to mean in particular a component which is integrated in the oxygen reduction system in such a way that this component can be removed from the system without much effort. In particular, it lends itself here to carry out the component such that it can be moved with a material handling device or the like.
  • the latter has a valve system with a first, a second and a third valve arrangement.
  • the first valve arrangement is designed to form or separate, as required, a fluid connection between the outlet of the gas separation system and the inlet of the compressed gas storage.
  • the second valve assembly of the valve system is configured to form and / or separate a fluid connection between the outlet of the compressed gas reservoir and the at least one enclosed region as needed, while the third valve assembly is configured to provide fluid communication between the outlet of the gas separation system and the at least one to form or separate an enclosed area.
  • the inlet of the compressed gas reservoir and the outlet of the compressed gas reservoir via a preferably common connector piece, in particular in the form of a T or Y piece, are connected to the interior of the compressed gas storage.
  • the oxygen reduction system preferably has a control device.
  • This control device is in particular designed to control the individual valve arrangements of the valve system in such a way that the outlet of the gas separation system is connected to the inlet of the compressed gas storage only if there is no fluid connection between the outlet of the compressed gas storage and the at least one enclosed area and / or there is no fluid connection between the outlet of the gas separation system and the at least one enclosed area.
  • the control device is assigned a sensor unit.
  • the sensor unit is formed with at least one pressure sensor and / or at least one temperature sensor.
  • the state, in particular the filling state or degree of filling, of the compressed gas reservoir can be measured.
  • a temperature increase in the compressed gas reservoir may occur, resulting in an incomplete filling of the compressed gas storage with oxygen-reduced gas mixture as a result of a subsequent decrease in temperature after refilling and a concomitant decrease in pressure.
  • the control device controls the draining of oxygen-reduced gas mixture from the compressed gas storage, so that damage to the compressed gas storage is prevented.
  • the at least one gas separation system and / or the upstream compressor system has a first operating mode and a second operating mode to supply, as required, oxygen-reduced gas mixture to the compressed gas reservoir and / or the at least one enclosed region.
  • the first and second operating modes are each individually or both operating modes simultaneously executable by means of a separate gas separation system.
  • the gas separation system or the operating mode of the at least one gas separation system and / or the upstream compressor system is preferably controllable by the control device, in particular automatically.
  • the filling of the compressed gas storage with oxygen-reduced gas mixture usually takes place with a higher nitrogen concentration of the oxygen-reduced gas mixture than is necessary for the oxygen-reduced gas mixture which is supplied to the enclosed area.
  • oxygen-reduced gas mixture with high nitrogen concentration preferably with a nitrogen concentration of 99.5 vol .-%
  • the control device offers the possibility to operate the gas separation system in a second operating mode, wherein oxygen-reduced gas mixture with a sufficient nitrogen concentration, preferably a nitrogen concentration of 95% by volume, is provided for the supply to the enclosed area.
  • the bypass preferably comprises a suitable orifice in order to reduce the nitrogen concentration of the oxygen-reduced gas mixture to be introduced into the enclosed region to a sufficient level, for example by mixing with starting gas mixture. Due to the advantageous control of the gas separation system, preferably automatically by the control device, the gas separation system can be operated efficiently and the oxygen-reduced gas mixture can be used optimally depending on the concentration provided.
  • a gas separation system in a first operating mode for refilling the compressed gas reservoirs and, in particular, to supply oxygen-reduced gas mixture, which has a suitable, sufficient nitrogen concentration, to an enclosed region in parallel by means of the other gas separation system in a second operating mode.
  • a common or in each case an upstream compressor system can if necessary be provided for several gas separation systems.
  • the compressed gas reservoir has a plurality of spatially separated, parallel to each other compressed gas containers with at least one, preferably in each case a container valve.
  • a first and a second manifold are provided.
  • the outlet of the gas separation system is connected or connectable via a valve to the first manifold, while for preferably each of the plurality of compressed gas containers, a first line section is provided, via which the respective container valve of the one or more compressed gas containers is fluidly connected to the first manifold.
  • the container valve of a preferably each of the plurality of compressed gas containers is further fluidly connected in each case via a second line section with the already mentioned second manifold.
  • the second manifold itself is connected via a valve, in particular area valve, with the at least one enclosed area fluidly connected or connectable.
  • the valve via which the outlet of the gas separation system is connected or connectable to the first manifold, forms the aforementioned first valve arrangement.
  • the valve via which the second manifold is fluidly connected or connectable to the at least one enclosed area is part of the second valve arrangement when the oxygen reduction system is associated with a plurality of enclosed areas.
  • the valve, via which the second manifold is fluidly connected or connectable to the at least one enclosed area forms the second valve arrangement.
  • a plurality of compressed gas containers in the form of compressed gas cylinders or with any geometric external shape, for example via flexible hose connections or rigid connections, such as. Pipe connections are fluidly connected to each other, wherein a common container valve is provided per connection of a plurality of compressed gas container to a unit.
  • this results in the possibility of optimal utilization of the individually available volume of space, the number of container valves to be controlled is reduced as needed.
  • the inventive oxygen reduction system is particularly suitable for reducing the oxygen content in the room atmosphere or keeping it at a reduced value in the case of a plurality of spatially separated regions. Therefore, according to a development of the present invention, the oxygen reduction system is associated with a plurality of spatially separated areas, wherein the already mentioned second valve arrangement for each of the plurality of areas an associated valve (in particular area valve), via which the second manifold with the corresponding area fluidly connected or connectable, if necessary, to supply an oxygen-reduced gas mixture or inert gas in this area.
  • the control device controls the individual valve arrangements in such a coordinated manner that the outlet of the at least one gas separation system can be fluidly connected to the inlet of at least one compressed gas container, if the outlet of at least one further, different compressed gas container with at least an enclosed area is fluidly connected. Consequently, the control device, in particular in connection with the sensor unit, is designed to selectively fill compressed gas containers with an oxygen-reduced gas mixture while at least one enclosed region can supply oxygen-reduced gas mixture from further compressed gas containers.
  • this can ensure a resource-friendly and time-optimized refilling of the compressed gas containers with oxygen-reduced gas mixture, while at the same time a concentration or a concentration control range of oxygen-reduced gas mixture in the enclosed area can be maintained. Furthermore, the selective filling and control of the pressurized gas containers by the control device also provides improved reliability of the oxygen reduction system.
  • the control device is designed such that upon detection of a previously determinable minimum pressure and / or falling below a previously determinable minimum pressure in at least one of the plurality of compressed gas tanks or the compressed gas storage selectively a fluid connection between the outlet of the gas separation system and the concerned compressed gas tank or the compressed gas storage is present or can be produced.
  • the minimum pressure is freely selectable and serves to mark the at least partial or complete emptying of a compressed gas tank.
  • the control device can determine a user-defined status or threshold value for refilling a compressed gas container or the compressed gas reservoir on the basis of the minimum pressure and, if appropriate, initiate a corresponding refilling.
  • the invention is not limited to an oxygen reduction system, but also relates to a method for operating an oxygen reduction system, in particular an oxygen reduction system of the type according to the invention described above.
  • a compressed gas storage an oxygen-reduced gas mixture or inert gas is stored in compressed form .
  • at least part of the gas mixture or inert gas stored in compressed gas storage in compressed form is then supplied to the enclosed area by fluidically connecting the compressed gas store to the enclosed area.
  • an oxygen-reduced gas mixture provided at an outlet of a gas separation system is supplied to the enclosed area in a controlled manner the outlet of the gas separation system is fluidly connected to the enclosed area.
  • a control device which is designed in particular to coordinate or regulate the filling of the compressed gas storage.
  • the at least partial refilling of the compressed gas reservoir can in particular also take place while keeping the reduced oxygen content in the enclosed area in parallel and / or the oxygen content in the enclosed area continuing is reduced.
  • this invention aspect is based on the knowledge that when filling the compressed gas storage, especially if this is designed in the form of a compressed gas cylinder battery, different conditions must be met in order to properly and safely fill the individual gas cylinders of the bottle battery with the gas provided by the gas separation system.
  • oxygen reduction system 100 is characterized in particular by the fact that it has a gas separation system 102 and in addition to a compressed gas storage 105.
  • the gas separation system 102 and the Compressed gas storage 105 together form the "inert gas source" of the oxygen reduction system 100.
  • the gas separation system 102 is preceded by a compressor system 101 for correspondingly compressing the initial gas mixture to be supplied to the gas separation system 102.
  • a compressor system 101 for correspondingly compressing the initial gas mixture to be supplied to the gas separation system 102.
  • the gas separation system 102 can be adjusted to a required nitrogen purity and required amount of oxygen-reduced gas.
  • the outlet of the gas separation system 102 i.
  • the outlet of the gas separation system 102 at which the oxygen-reduced gas mixture or nitrogen-enriched gas mixture is provided, is fluidly connected or connectable to an enclosed space 107 via a first conduit system and connected to the aforementioned compressed gas storage 105 via an additional, second conduit system connectable.
  • a first valve arrangement is provided in the second conduit system, i. in the piping system which connects the outlet of the gas separation system 102 with the compressed gas storage 105.
  • Another valve assembly 109 is provided in the conduit system which fluidly connects the outlet of the gas separation system 102 to the enclosed space 107.
  • Another valve arrangement 106 is arranged in a line system which connects the compressed gas storage 105 with the enclosed area 107. In this way, if necessary, the compressed gas storage 105 can be fluidly connected to the enclosed area 107.
  • the oxygen-reducing plant 100 is preferably associated with a control device 10 in order to be able to control the individual valve arrangements 104, 106 and 109 in a coordinated manner.
  • the control device 10 is preferably further associated with a sensor unit having at least one pressure sensor and / or at least one temperature sensor, in particular in and / or are provided on the compressed gas storage.
  • a sensor unit having at least one pressure sensor and / or at least one temperature sensor, in particular in and / or are provided on the compressed gas storage.
  • the representation of the sensor unit in the FIG. 1 to 4 waived.
  • the controller 10 is configured to drive the individual valve assemblies 104, 106, and 109 such that the outlet of the gas separation system 102 is preferably fluidly coupled to the inlet of the compressed gas reservoir 105 only, if there is no fluid connection between the outlet of the compressed gas reservoir 105 and the at least one enclosed region 107, ie when the third valve assembly 106 is closed.
  • the control device 10 is designed such that preferably only the outlet of the gas separation system 102 via the first valve assembly 104 with the compressed gas storage 105 is fluidly connected or connectable, if there is no fluid connection between the outlet of the gas separation system 102 and the enclosed area 107 , that is, when the second valve assembly 109 is closed.
  • the oxygen reduction system 100 in particular the control device 10, such that the outlet of the gas separation system 102 can be simultaneously connected with the inlet of the compressed gas reservoir 105 via the first valve arrangement 104 and the enclosed region 107 via the second valve arrangement 109 as required is.
  • a further compressor system 103 is provided, which is arranged in the conduit system which connects the outlet of the gas separation system 102 with the pressurized gas container 105.
  • the oxygen-reduced gas mixture provided at the outlet of the gas separation system 102 can, if required, be further compressed, so that it can then be stored in the compressed gas container 105 in the desired compressed form.
  • a compressed gas cylinder a compressed gas cylinder or bottle battery used, it is advantageous if the other compressor system 103 at the outlet the gas separation system 102 provided, oxygen-reduced gas mixture compressed to up to 300 bar.
  • FIG. 2 schematically illustrated oxygen reduction system 100 differs from the in FIG. 1 schematically illustrated embodiment, in particular, that the oxygen reduction system 100 according to the in FIG. 2 is associated with not only a single enclosed area 107, but a plurality of enclosed areas 107a, 107b.
  • the oxygen reduction system 100 is thus designed as a so-called multi-range system.
  • FIG. 2 schematically illustrated oxygen reduction system 100 of the compressed gas storage 105 has a plurality of spatially separated from each other, parallel to each other compressed gas tanks 105a, 105b, 105c, 105d.
  • These compressed gas containers are, for example, commercial high-pressure bottles (300 bar bottles).
  • the individual compressed gas containers 105a to 105d are connected in parallel with one another in order to be able to supply the gas mixture stored in these compressed gas containers 105a to 105d in compressed form as quickly as possible to the enclosed regions 107a, 107b.
  • a first manifold 110 and a second manifold 111 for use The first manifold 110 is fluidly connectable to the outlet of the gas separation system 102 via the first valve assembly 104.
  • the oxygen reduction system 100 shown in FIG. 1 uses a further valve arrangement to connect the outlet of the gas separation system 102 to the first enclosed area 107a and / or the second enclosed area 107b as required.
  • this valve assembly has a total of two valves 109a and 109b, each formed as a range valve and one of the respective enclosed areas 107a, 107b.
  • the aforementioned second manifold 111 is also fluidly connectable via respective area valves 106a, 106b to the respective enclosed areas 107a, 107b.
  • These valves 106a, 106b are preferably also designed as area valves.
  • each compressed gas container 105a to 105d with a corresponding container valve 108 is provided.
  • Each container valve 108 of the compressed gas containers 105a to 105d is connected via a first line section, on the one hand, to the first manifold 110 and, on the other hand, via a second line section to the second manifold 111.
  • each container valve 108 of the compressed gas tank 105a to 105d a connector piece 113, in particular in the form of a T or Y-piece associated with, via which the corresponding first line section on the one hand and the corresponding second line section on the other hand with the corresponding container valve 108 and the Inside the compressed gas tank 105a to 105d are fluidly connected.
  • the container valves 108 of the compressed gas containers 105a to 105d are each designed as a quick release valve arrangement, in particular as a pneumatically actuated quick release valve arrangement, to form a fluid connection between the corresponding compressed gas container 105a to 105d and the second manifold as needed.
  • the valve function of the quick-release valve arrangement can also be switched off if required, in particular if the outlet of the gas separation system 102 is connected to the inlet of the corresponding compressed gas container 105a to 105d is connected for the purpose of refilling.
  • At least one backflow preventer 112 is provided to a Gas flow from the second manifold 111 back to the pressurized gas containers 105a to 105d and / or from the pressurized gas containers 105a to 105d to the first manifold 110 to block.
  • the two backflow preventers 112 can be provided directly on a connector piece 113, in particular a T piece, and can be fluidly connected to the container valve 108 of the respective compressed gas container 105a to 105d.
  • the inlet of the compressed gas storage and the outlet of the compressed gas storage are connected via a preferably common connector piece 113 to the interior of the compressed gas storage.
  • FIG. 4 schematically illustrated embodiment differs from the embodiment in FIG. 2 in particular by further pressurized gas containers 105e to 105f, which can be connected via a further valve of the first valve arrangement 104 in terms of flow to the outlet of the gas separation system.
  • the control device according to the present invention is designed to control a plurality of valves of the first valve assembly 104 accordingly.
  • the further second manifold 111 is also fluidly connectable via respective area valves 106c, 106d to the respective enclosed areas 107a, 107b. These valves 106c, 106d are preferably also designed as area valves.
  • the further pressurized gas containers 105e to 105g and the pressurized gas containers 105a to 105d preferably independently, controlled or regulated by the control device 10, are used.
  • the refilling eg of the further compressed gas reservoirs 105e to 105g can be carried out after a rapid lowering and / or initial lowering, while at the same time the compressed gas reservoirs 105a to 105d are fluidly connected to the enclosed regions 107a, 107b, in order to allow a reduced oxygen content in the enclosed regions 107a, 107b hold or further reduce.
  • pressurized gas containers 105a to 105d can be refilled with an oxygen-reduced gas mixture from the gas separation system 102, wherein the other pressurized gas containers 105e to 105g are connected in parallel with the enclosed regions 107a, 107b in terms of flow.
  • further pressurized gas containers 105e to 105g not on the in FIG. 4 shown number of compressed gas containers limited, but may, if necessary, be supplemented by further compressed gas tank or more, independently controllable mergers of several compressed gas tanks.
  • the invention is not limited to the embodiments of the oxygen reduction system 100 shown schematically in the drawings, but results from a synopsis of all features disclosed herein.

Landscapes

  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Claims (14)

  1. Installation de réduction d'oxygène (100) qui comprend :
    - au moins un système de séparation de gaz (102) pour fournir en cas de besoin un mélange gazeux réduit en oxygène à une sortie du système de séparation de gaz (102) ; et
    - un réservoir de gaz comprimé (105 ; 105a - g), en particulier sous la forme d'un ou de plusieurs récipients de gaz comprimé pour stocker sous forme comprimée un mélange gazeux réduit en oxygène ou un gaz inerte, dans laquelle
    le réservoir de gaz comprimé (105 ; 105a - g) est relié ou susceptible d'être relié sur le plan fluidique à au moins une zone enfermée (107 ; 107a, 107b) par un système de conduite pour amener en cas de besoin au moins une partie du mélange gazeux ou du gaz inerte stocké dans le réservoir de gaz comprimé (105 ; 105a - g) jusqu'à ladite au moins une zone enfermée (107 ; 107a, 107b) ;
    dans laquelle
    la sortie du système de séparation de gaz (102) est reliée ou susceptible d'être reliée sur le plan fluidique au choix à l'entrée du réservoir de gaz comprimé (105 ; 105a - g) et/ou à ladite au moins une zone enfermée (107 ; 107a, 107b) pour amener en cas de besoin le mélange gazeux, fourni à la sortie du système de séparation de gaz (102), jusqu'au réservoir de gaz comprimé (105 ; 105a - g) et/ou jusqu'à ladite au moins une zone enfermée (107 ; 107a, 107b) ; et
    - le réservoir de gaz comprimé (105) comprend une pluralité de récipients de gaz comprimé (105a - g) séparés spatialement les uns des autres et branchés en parallèle, comportant au moins une, de préférence respectivement une vanne de récipient (108) ;
    - la sortie du système de séparation de gaz (102) est reliée ou susceptible d'être reliée à une première conduite de collecte (110) via une vanne (104) ;
    - de préférence il est prévu un premier tronçon de conduite pour chacun de la pluralité de récipients de gaz comprimé (105a - g), tronçon par lequel la vanne de récipient respective (108) du récipient de gaz comprimé (105a - g) est reliée sur le plan fluidique à la première conduite de collecte (110) ;
    caractérisée en ce que
    - la vanne de récipient (108) de préférence de chacun de la pluralité de récipients de gaz comprimé (105a - g) est reliée sur le plan fluidique respectivement à une seconde conduite de collecte (111) par un second tronçon de conduite ; et
    - la seconde conduite de collecte (111) est reliée ou susceptible d'être reliée sur le plan fluidique à ladite au moins une zone enfermée (107 ; 107a, 107b) par une vanne (106, 106a - d), de préférence une vanne de zone.
  2. Installation de réduction d'oxygène (100) selon la revendication 1,
    comprenant en outre un système compresseur (101) disposé en amont du système de séparation de gaz (102) pour comprimer un mélange gazeux initial à amener au système de séparation de gaz (102).
  3. Installation de réduction d'oxygène (100) selon la revendication 1 ou 2, dans laquelle
    un système compresseur (103) est prévu entre la sortie du système de séparation de gaz (102) et l'entrée du réservoir de gaz comprimé (105 ; 105a - g) pour comprimer en cas de besoin le mélange gazeux réduit en oxygène fourni à la sortie du système de séparation de gaz (102) et destiné à être amené au réservoir de gaz comprimé (105 ; 105a - g),
    le système compresseur (103) est réalisé de préférence sous forme de système mobile qui peut être enlevé en cas de besoin de l'installation de réduction d'oxygène (100).
  4. Installation de réduction d'oxygène (100) selon l'une des revendications 1 à 3,
    comprenant en outre
    un système de vanne ayant un premier ensemble de vanne (104), un second ensemble de vanne (106 ; 106a - d) et un troisième ensemble de vanne (109 ; 109a, 109b),
    dans laquelle
    - le premier ensemble de vanne (104) est réalisé pour établir et/ou séparer une liaison fluidique entre la sortie du système de séparation de gaz (102) et l'entrée du réservoir de gaz comprimé (105 ; 105a - g) ;
    - le second ensemble de vanne (106 ; 106a - d) est réalisé pour établir et/ou séparer une liaison fluidique entre une sortie du réservoir de gaz comprimé (105 ; 105a - g) et ladite au moins une zone enfermée (107 ; 107a, 107b) ;
    - le troisième ensemble de vanne (109 ; 109a, 109b) est réalisé pour établir et/ou séparer une liaison fluidique entre la sortie du système de séparation de gaz (102) et ladite au moins une zone enfermée (107 ; 107a, 107b).
  5. Installation de réduction d'oxygène (100) selon la revendication 4,
    dans laquelle
    l'entrée du réservoir de gaz comprimé (105 ; 105a - g) et la sortie du réservoir de gaz comprimé (105 ; 105a - g) sont reliées à l'intérieur du réservoir de gaz comprimé (105 ; 105a - g) de préférence par une pièce de liaison commune, en particulier une pièce en T ou en Y.
  6. Installation de réduction d'oxygène (100) selon la revendication 4 ou 5,
    comprenant en outre
    un moyen de commande (10) pour le pilotage de préférence coordonné des ensembles de vanne individuels (104, 106, 109) du système de vanne.
  7. Installation de réduction d'oxygène (100) selon la revendication 6,
    dans laquelle
    le moyen de commande (10) est réalisé pour piloter les ensembles de vanne individuels (104, 106, 109) du système de vanne de telle sorte que la sortie du système de séparation de gaz (102) est de préférence relié sur le plan fluidique à l'entrée du réservoir de gaz comprimé (105 ; 105a - g) uniquement lorsqu'il n'existe aucune liaison fluidique entre la sortie du réservoir de gaz comprimé (105 ; 105a - g) et ladite au moins une zone enfermée (107 ; 107a, 107b) et/ou aucune liaison fluidique entre la sortie du système de séparation de gaz (102) et ladite au moins une zone enfermée (107 ; 107a, 107b).
  8. Installation de réduction d'oxygène (100) selon la revendication 6 ou 7,
    dans laquelle
    une unité capteur est associée au moyen de commande (10), qui est pourvue en particulier d'au moins un capteur de pression et/ou d'au moins un capteur de température, de sorte que du mélange gazeux réduit en oxygène peut être amené au réservoir de gaz comprimé (105 ; 105a - g) de façon coordonnée, en particulier automatiquement par le moyen de commande (10).
  9. Installation de réduction d'oxygène (100) selon l'une des revendications 1 à 8,
    dans laquelle
    ledit au moins un système de séparation de gaz (102) et/ou un système compresseur (101) disposé en amont du système de séparation de gaz (102) présente un premier mode de fonctionnement pour amener en cas de besoin du mélange gazeux réduit en oxygène au réservoir de gaz comprimé (105 ; 105a - g), et un second mode de fonctionnement pour amener en cas de besoin du mélange gazeux réduit en oxygène à ladite au moins une zone enfermée (107 ; 107a, 107b), et cela de préférence sous la commande d'un moyen de commande (10).
  10. Installation de réduction d'oxygène (100) selon l'une des revendications 1 à 9,
    dans laquelle
    le moyen de commande (10) est réalisé pour piloter les ensembles de vanne individuels (104, 106, 109) de façon coordonnée de telle sorte que la sortie dudit au moins un système de séparation de gaz (102) est susceptible d'être reliée sur le plan fluidique à l'entrée d'au moins un réservoir de gaz comprimé (105a - g) lorsqu'une liaison fluidique existe entre la sortie d'au moins un autre réservoir de gaz comprimé (105a - g) et ladite au moins une zone enfermée (107 ;107a, 107b).
  11. Installation de réduction d'oxygène (100) selon l'une des revendications 1 à 10,
    dans laquelle
    le moyen de commande (10) est réalisé de telle sorte que lors de la détection d'une pression minimale prédéterminée et/ou lors du passage au-dessous de la pression minimale, il existe sélectivement une liaison fluidique entre l'entrée dudit au moins un réservoir de gaz comprimé (105a - g) et la sortie du système de séparation de gaz (102), dans l'un au moins de la pluralité de réservoirs de gaz comprimé (105a - g).
  12. Installation de réduction d'oxygène (100) selon l'une des revendications 1 à 11,
    dans laquelle
    au moins un moyen anti-reflux (112), en particulier sous la forme d'un clapet anti-retour, est prévu entre la vanne de récipient (108) de l'un au moins de la pluralité de récipients de gaz comprimé (105a - g) et la première et/ou la seconde conduite de collecte (111) et en particulier dans le premier et/ou dans le second tronçon de conduite de l'un au moins de la pluralité de récipients de gaz comprimé (105a - g) pour bloquer un flux de gaz de la seconde conduite de collecte (111) vers ledit au moins un de la pluralité de récipients de gaz comprimé (105a - g) et/ou pour bloquer un flux de gaz de l'un au moins de la pluralité de récipients de gaz comprimé (105a - d) vers la première conduite de collecte (110).
  13. Installation de réduction d'oxygène (100) selon l'une des revendications 1 à 12,
    dans laquelle
    l'un au moins de la pluralité de récipients de gaz comprimé (105a - g) comprend en tant que vanne de récipient (108) un ensemble de vanne à déclenchement rapide actionné de préférence par voie pneumatique pour réaliser en cas de besoin une liaison fluidique entre le récipient de gaz comprimé correspondant (105a - g) et la seconde conduite de collecte (111), la fonction de vanne de l'ensemble de vanne à déclenchement rapide pouvant être coupée en cas de besoin, en particulier lorsque la sortie du système de séparation de gaz (102) est reliée ou est à relier à l'entrée du récipient de gaz comprimé.
  14. Procédé pour faire fonctionner une installation de réduction d'oxygène (100) selon l'une des revendications 1 à 13, le procédé comprenant les étapes suivantes consistant à :
    i) stocker sous forme comprimée un mélange gazeux réduit en oxygène ou un gaz inerte dans un réservoir de gaz comprimé (105 ; 105a - g) ;
    ii) en vue de réduire rapidement la teneur en oxygène dans l'atmosphère d'une zone enfermée, amener une partie au moins du mélange gazeux ou du gaz inerte, stocké sous forme comprimée dans le réservoir de gaz comprimé (105 ; 105a - g), jusqu'à la zone enfermée (107 ; 107a, 107b), en reliant le réservoir de gaz comprimé (105 ; 105a - g) sur le plan fluidique à la zone enfermée (107 ; 107a, 107b) ;
    iii) pour maintenir une teneur réduite en oxygène et/ou pour réduire la teneur en oxygène dans l'atmosphère de la zone enfermée, amener un mélange gazeux réduit en oxygène, fourni à une sortie du système de séparation de gaz, de façon régulée jusqu'à la zone enfermée (107 ; 107a, 107b) en reliant sur le plan fluidique la sortie du système de séparation de gaz à la zone enfermée (107 ; 107a, 107b) ;
    dans lequel
    après l'étape de procédé ii) et de préférence parallèlement à l'étape de procédé iii), on effectue au moins partiellement un ré-remplissage du réservoir de gaz comprimé (105 ; 105a - g) en reliant sur le plan fluidique la sortie du système de séparation de gaz au réservoir de gaz comprimé (105 ; 105a - g).
EP15201906.3A 2015-12-22 2015-12-22 Installation de reduction d'oxygene et procede de fonctionnement d'une installation de reduction d'oxygene Active EP3184152B1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
PL15201906T PL3184152T3 (pl) 2015-12-22 2015-12-22 Instalacja do redukcji tlenu i sposób obsługi instalacji do redukcji tlenu
EP15201906.3A EP3184152B1 (fr) 2015-12-22 2015-12-22 Installation de reduction d'oxygene et procede de fonctionnement d'une installation de reduction d'oxygene
MX2018007071A MX2018007071A (es) 2015-12-22 2016-12-22 Sistema de reduccion de oxigeno y metodo para operar un sistema de reduccion de oxigeno.
CA3006864A CA3006864C (fr) 2015-12-22 2016-12-22 Installation de reduction d'oxygene et procede de fonctionnement d'une installation de reduction d'oxygene
EP16825425.8A EP3393606A1 (fr) 2015-12-22 2016-12-22 Installation de réduction d'oxygène et procédé de fonctionnement d'une installation de réduction d'oxygène
SG11201804790RA SG11201804790RA (en) 2015-12-22 2016-12-22 Oxygen Reduction System and Method for Operating an Oxygen Reduction System
CN201680075358.8A CN108430592A (zh) 2015-12-22 2016-12-22 氧气降低系统和用于操作氧气降低系统的方法
PCT/EP2016/082373 WO2017109069A1 (fr) 2015-12-22 2016-12-22 Installation de réduction d'oxygène et procédé de fonctionnement d'une installation de réduction d'oxygène
RU2018126588A RU2712378C2 (ru) 2015-12-22 2016-12-22 Система снижения кислорода и способ эксплуатации системы снижения кислорода
AU2016378491A AU2016378491B2 (en) 2015-12-22 2016-12-22 Oxygen reduction plant and method for operating an oxygen reduction plant
ZA201804748A ZA201804748B (en) 2015-12-22 2018-07-16 Oxygen reduction plant and method for operating an oxygen reduction plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15201906.3A EP3184152B1 (fr) 2015-12-22 2015-12-22 Installation de reduction d'oxygene et procede de fonctionnement d'une installation de reduction d'oxygene

Publications (2)

Publication Number Publication Date
EP3184152A1 EP3184152A1 (fr) 2017-06-28
EP3184152B1 true EP3184152B1 (fr) 2019-09-11

Family

ID=55221214

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15201906.3A Active EP3184152B1 (fr) 2015-12-22 2015-12-22 Installation de reduction d'oxygene et procede de fonctionnement d'une installation de reduction d'oxygene

Country Status (2)

Country Link
EP (1) EP3184152B1 (fr)
PL (1) PL3184152T3 (fr)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19811851C2 (de) 1998-03-18 2001-01-04 Wagner Alarm Sicherung Inertisierungsverfahren zur Brandverhütung und -löschung in geschlossenen Räumen
SI1913980T1 (sl) * 2006-10-19 2009-04-30 Amrona Ag Interzacijski sistem z varnostno napravo
ATE432113T1 (de) * 2006-10-19 2009-06-15 Amrona Ag Inertisierungsvorrichtung mit stickstoffgenerator
US9033061B2 (en) * 2009-03-23 2015-05-19 Kidde Technologies, Inc. Fire suppression system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP3184152A1 (fr) 2017-06-28
PL3184152T3 (pl) 2020-03-31

Similar Documents

Publication Publication Date Title
EP3141287B1 (fr) Procédé et dispositif de détermination et/ou de surveillance de l'étanchéité à l'air d'une pièce fermée
EP1913978B1 (fr) Dispositif pour inertiser avec un générateur d'azote
EP1062005B2 (fr) Procede d'inertisation pour la prevention et l'extinction des incendies dans des locaux fermes
EP2173440B1 (fr) Dispositif et procédé pour la prévention d'incendie et l'extinction d'un incendie déclenché dans une pièce fermée
EP1683548B1 (fr) Procédé d'inertisation pour éviter des incendies
EP2801392B1 (fr) Procédé d'inertisation et installation de réduction d'oxygène
EP2881149B1 (fr) Installation de réduction d'oxygène et procédé de fonctionnement d'une installation de réduction d'oxygène
DE10051662A1 (de) Verfahren zur Löschung eines innerhalb eines geschlossenen Raumes ausgebrochenen Feuers
EP1682232B1 (fr) Dispositif pour empecher et eteindre des incendies
WO2017109069A1 (fr) Installation de réduction d'oxygène et procédé de fonctionnement d'une installation de réduction d'oxygène
EP2594319A1 (fr) Installation d'extinction ou d'intertisation à l'aide d'un agent d'extinction liquide synthétique
EP1312392B1 (fr) Procédé et dispositif d'extinction d'incendies dans un tunnel
EP1913979B1 (fr) Dispositif pour inertiser avec un générateur d'azote
EP3184152B1 (fr) Installation de reduction d'oxygene et procede de fonctionnement d'une installation de reduction d'oxygene
AT504360A4 (de) Sprinkleranlage für schienenfahrzeuge
DE4320442C2 (de) Vorrichtung für eine stationäre Feuerlöschanlage und Verfahren zum Betreiben der Feuerlöschanlage
DE102008060207B3 (de) Verfahren und Vorrichtung zum volumen- und/oder flächenspezifischen Bekämpfen von Feuer in brandgefährdeten Bereichen von Bauten und Anlagen
EP2998002B1 (fr) Installation d'extinction à gaz inerte
CH700709B1 (de) Abdichtungssystem für tunnelartigen Durchgang, sowie Brandbekämpfungssystem.
DE10121550B4 (de) Inertisierungsverfahren mit Stickstoffpuffer
DE102014210032B4 (de) Brandschutzeinrichtung zum Absenken einer Luftsauerstoffkonzentration in einem Schutzbereich eines Gebäudes
DE102014013314A1 (de) Vorrichtung mit elektrischen und/oder elektronischen Komponenten in einem gekapselten Gehäuse für einen Betrieb in explosionsgefährdeten Umgebungen sowie Verfahren
EP2811229B1 (fr) Installation transportable destinée à la combustion de gaz indésirables
DE3900089A1 (de) Verfahren zum befuellen eines tanks fuer kohlensaeurehaltige getraenke, insbesondere bier, und vorrichtung zur durchfuehrung des verfahrens
DD160376A3 (de) Gasumfuelleinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170710

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190424

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1177705

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010308

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190911

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191212

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200113

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010308

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200112

26N No opposition filed

Effective date: 20200615

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191222

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20151222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20221209

Year of fee payment: 8

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20231220

Year of fee payment: 9

Ref country code: NO

Payment date: 20231222

Year of fee payment: 9

Ref country code: NL

Payment date: 20231220

Year of fee payment: 9

Ref country code: IT

Payment date: 20231228

Year of fee payment: 9

Ref country code: FR

Payment date: 20231221

Year of fee payment: 9

Ref country code: DE

Payment date: 20231214

Year of fee payment: 9

Ref country code: AT

Payment date: 20231221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240101

Year of fee payment: 9