EP3172166B1 - Procédé pour la croissance de nanotubes de carbone monoparoi, orientés verticalement, à propriétés électroniques identiques, et pour la multiplication de nanotubes de carbone monoparoi, à propriétés électroniques identiques - Google Patents

Procédé pour la croissance de nanotubes de carbone monoparoi, orientés verticalement, à propriétés électroniques identiques, et pour la multiplication de nanotubes de carbone monoparoi, à propriétés électroniques identiques Download PDF

Info

Publication number
EP3172166B1
EP3172166B1 EP15732624.0A EP15732624A EP3172166B1 EP 3172166 B1 EP3172166 B1 EP 3172166B1 EP 15732624 A EP15732624 A EP 15732624A EP 3172166 B1 EP3172166 B1 EP 3172166B1
Authority
EP
European Patent Office
Prior art keywords
carbon nanotubes
fragments
carrier
walled carbon
dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15732624.0A
Other languages
German (de)
English (en)
Other versions
EP3172166A1 (fr
EP3172166C0 (fr
Inventor
Viktor Bezugly
Eugenia Bezugly
Vyacheslav Khavrus
Denis Krylov
Gianaurelio Cuniberti
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Smartnanotubes Technologies GmbH
Original Assignee
Smartnanotubes Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Smartnanotubes Technologies GmbH filed Critical Smartnanotubes Technologies GmbH
Publication of EP3172166A1 publication Critical patent/EP3172166A1/fr
Application granted granted Critical
Publication of EP3172166B1 publication Critical patent/EP3172166B1/fr
Publication of EP3172166C0 publication Critical patent/EP3172166C0/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/08Aligned nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/734Fullerenes, i.e. graphene-based structures, such as nanohorns, nanococoons, nanoscrolls or fullerene-like structures, e.g. WS2 or MoS2 chalcogenide nanotubes, planar C3N4, etc.
    • Y10S977/742Carbon nanotubes, CNTs
    • Y10S977/75Single-walled
    • Y10S977/751Single-walled with specified chirality and/or electrical conductivity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/842Manufacture, treatment, or detection of nanostructure for carbon nanotubes or fullerenes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to a method for growing vertically aligned single-walled carbon nanotubes with the same electronic properties and for replicating single-walled carbon nanotubes with the same electronic properties.
  • carbon nanotubes Due to their special properties, carbon nanotubes are promising candidates for future technical applications. Depending on their diameter and their helicity or chirality, carbon nanotubes can be metallic or semiconducting. However, production methods from the prior art lead to a mixture of carbon nanotubes of different types, i.e. multi-walled, single-walled, metallic and semiconducting Carbon nanotubes in a bundle, which then have to be laboriously separated from each other. It is therefore not yet possible to specifically determine the diameter and chirality of the carbon nanotubes produced during production.
  • WO 2006/117196 A2 discloses a method for producing carbon nanotubes of defined chirality by breaking originally existing carbon nanotubes and using their hulls to grow new tubes.
  • the present invention is therefore based on the object of developing a method for multiplying carbon nanotubes and corresponding carbon nanotubes with which the disadvantages mentioned can be avoided, i.e. carbon nanotubes with the same electronic properties can be produced.
  • the invention is described in the attached set of claims and relates in particular to a method for multiplying at least one single-walled carbon nanotube or several single-walled carbon nanotubes with the same electronic properties, comprising several steps.
  • a dispersion is produced from a liquid and the at least one single-walled carbon nanotube or the several single-walled carbon nanotubes that have the same electronic properties.
  • fragments of the at least one single-walled carbon nanotube or the several single-walled carbon nanotubes are formed, i.e. these carbon nanotubes are broken.
  • the fragments produced from the dispersion are applied to a surface of a support and, after application, serve as a starting layer for replication. At the same time, i.e.
  • the fragments are aligned on the surface so that the surface is intersected by a longitudinal axis of the fragments and the fragments are not parallel are aligned in a plane to the carrier or more precisely to the said surface of the carrier, the fragments being aligned by self-organization on a gold layer applied to the surface of the carrier or on the surface of the carrier on a layer formed from a surfactant contained in the dispersion Surfactant layer with a thickness that is less than a length of the fragments are applied, on which the fragments of the at least one single-walled carbon nanotube are applied and aligned after the surfactant layer has dried, and are fixed on the carrier by the surfactant layer.
  • the carrier with the fragments applied and aligned thereon is then introduced into a chemical vapor deposition device.
  • chemical vapor deposition single-walled carbon nanotubes with the same electronic properties are grown in the chemical vapor deposition device starting from the fragments serving as the starting layer in a carbon-containing gas atmosphere by extending the fragments.
  • carbon nanotubes with defined, predetermined properties can be produced and subsequent sorting is not necessary. Because a homogeneous majority of carbon nanotubes are already used and these are multiplied, carbon nanotubes with the same electronic and preferably the same optical properties are produced.
  • the one or more single-walled carbon nanotubes used as starting material for the process can be both metallic and semiconducting. By aligning them on the surface, the carbon nanotubes can be easily extended in one direction without interfering with each other, so that ideally single-walled carbon nanotubes arranged vertically to the surface and parallel to one another are formed on the support and a high packing density of carbon nanotubes per unit area results .
  • the longitudinal axis of one of the fragments should denote the axis around which the respective fragment of the carbon nanotubes is arranged rotationally symmetrically.
  • the process also has the advantage that typically no catalysts have to be used as in conventional production processes and the carbon nanotubes are therefore particularly pure, but it can of course also be envisaged to use catalysts in chemical vapor deposition.
  • the longitudinal axes of the carbon nanotubes are typically at an angle other than 0° to a plane parallel to the surface of the carrier.
  • the carbon nanotubes with which the process can be started can also only be a certain percentage, typically 80 percent, preferably 90 percent, particularly preferably 99 percent, of single-walled nanotubes with the same electronic properties, i.e. metallic or semiconducting, and/or one in each case the same Diameter and/or each have the same chirality.
  • the process uses a higher proportion of carbon nanotubes same properties, but a small proportion of carbon nanotubes with at least one different property can be tolerated.
  • the carbon nanotubes with the same properties, which serve as the starting material of the process are typically produced using a process known from the prior art and are separated by known separation processes, e.g. B. ultracentrifugation, chromatography or processes based on gels or polymers, sorted according to their properties.
  • the fragments are formed in the dispersion by introducing ultrasound. Ultrasound ensures a reliable division or cutting or breaking through of the carbon nanotubes into individual fragments or fragments.
  • the fragments preferably have a length between 30 nm and 100 nm. This allows a large aspect ratio, i.e. H. that a length is typically greater than a diameter of one of the carbon nanotubes.
  • single-walled carbon nanotubes have a diameter between 0.6 nm and 2 nm. Ultrasound is typically used with a power between 30 W and 100 W and a frequency between 20 kHz and 40 kHz.
  • the fragments can be aligned by applying an electric field to the surface of the support.
  • This allows a particularly simple vertical alignment in which the carbon nanotubes that form grow away from the surface.
  • field lines of the electric field preferably have an angle between 80° and 100° to the surface of the carrier in order to ensure vertical alignment.
  • the carbon nanotubes adhere to components of the dispersion remaining on the surface, such as surface-active substances.
  • the substrate can be used as an electrode and the electric field between the substrate and an electrode opposite the substrate can support the growth of the carbon nanotubes along the field lines.
  • the electric field also aligns the fragments accordingly during application to the substrate, so that the surface is separated from the longitudinal axis of the Fragments are cut and the fragments are not aligned parallel in a plane to the carrier.
  • the fragments can be aligned by self-assembly on a gold layer applied to the surface of the support.
  • SH(CH 2 ) n NH 2 molecules e.g. B. cysteamines, which ensure a vertical alignment of the carbon nanotubes.
  • the self-organization described can also be combined with the previously described alignment using the electric field.
  • a surface density of the fragments can be controlled when applying and aligning the fragments via the concentration of the fragments in the dispersion, i.e. H. the higher the proportion of fragments, the greater the surface density, i.e. the number of fragments per unit area.
  • the fragments can be applied, for example, by dipping the carrier into the dispersion, with the carrier and coating subsequently being dried, so that the fragments ultimately adhere to a dry surface.
  • the carrier can be a silicon oxide or glass substrate, since such substrates are often used in micro- and nanotechnology, are thermally stable at temperatures up to 1200 ° C and are easy to handle.
  • the longitudinal axis of the fragments applied to the support typically has an angle to the surface between 60° and 120°, preferably between 75° and 105°, particularly preferably between 80° and 100°.
  • the longitudinal axis along which the carbon nanotubes are extended is therefore as parallel as possible to a surface normal of the surface of the carrier. Only a certain percentage of the growing carbon nanotubes can have this angle, typically 60 percent, preferably 75 percent, particularly preferably 90 percent.
  • the support itself can be a planar support, that is, the surface on which the fragments are deposited is flat.
  • plasma-assisted chemical vapor deposition can be used, as this results in improved growth.
  • the dispersion is formed from water, preferably distilled water, and a surfactant, preferably a surfactant, in order to produce a homogeneous dispersion which enables uniform coverage of the surface of the support.
  • a surfactant preferably a surfactant
  • Sodium dodecyl sulfate sodium dodecyl sulfate, SDS
  • sodium dodecylbenzenesulfonate sodium dodecylbenzenesulfonate
  • SDBS sodium dodecylbenzenesulfonate
  • the surfactant preferably also serves as a binding agent and as a fixing agent; in particular, dried residues of the surfactant can be used to bind and fix the aligned fragments.
  • the surfactant is present in the dispersion at a concentration of between 0.02% and 2% by mass, preferably less than 1% by mass.
  • isopropanol or ethanol can also be added to the dispersion of distilled water, the surfactant and the at least one carbon nanotube.
  • a surfactant layer forms on the support and the fragments of the carbon nanotubes are applied and aligned on the surfactant layer.
  • concentration of the surfactant in the dispersion is chosen such that a desired thickness of the surfactant layer is achieved, with a higher proportion also increasing the thickness of the surfactant layer per unit area.
  • particles that are not fragments are removed from the dispersion. This is preferably done by ultracentrifugation or another of the techniques already mentioned. This ensures a high quality of the deposited fragments without disturbing foreign bodies.
  • the produced carbon nanotubes with the same electronic Properties can be removed from the carrier material and used as a starting material for carrying out the process again. This allows a cascading increase in the yield of carbon nanotubes with the same electronic properties. This allows the process to be scaled up, whereby a degree of purity, i.e. a proportion of carbon nanotubes produced with identical physical properties, can be systematically increased with each implementation.
  • the replicated carbon nanotubes can be measured for their properties. This is preferably done by optical absorption spectroscopy, Raman spectroscopy and/or a photoluminescence measurement. Carbon nanotubes that deviate from the desired properties are then separated from the remaining carbon nanotubes with the same electronic properties. The separation can in turn be carried out by means of centrifugation, in particular ultracentrifugation, chromatography or a gel or polymer-based technique. By centrifuging, dirt particles that were created during the creation of the fragments can also be removed from the dispersion in one process step by centrifuging the dispersion at different accelerations.
  • a packing density of the carbon nanotubes produced using the described method on the carrier can be up to 10,000 per ⁇ m 2 , preferably up to 20,000 carbon nanotubes per ⁇ m 2 , particularly preferably up to 40,000 carbon nanotubes per ⁇ m 2 .
  • a distance between the carbon nanotubes on the support or a distance between the fragments on the support is typically less than 0.5 ⁇ m.
  • nanotubes made of boron nitride, boron or silicon can also grow on the fragments as an alternative to the carbon nanotubes.
  • the growth takes place in a boron-containing, silicon-containing and/or nitrogen-containing atmosphere in the device for chemical vapor deposition.
  • doped To grow carbon nanotubes in which different atoms are inserted into a framework of the nanotube at individual locations of carbon atoms. Corresponding foreign atoms are provided during the growth of the nanotubes in the chemical vapor deposition device.
  • a carrier can be produced, typically using the method described, with single-walled carbon nanotubes of the same diameter and chirality arranged on a surface of the carrier, in which the carbon nanotubes are arranged on the surface in such a way that a longitudinal axis of the carbon nanotubes intersects the surface and the carbon nanotubes do not are aligned parallel in a plane to the carrier and a dried surfactant layer with a thickness that is less than a length of the fragments is applied to the surface, on which the fragments of the at least one single-walled carbon nanotube are applied and aligned.
  • a carrier with carbon nanotubes applied to the carrier that are aligned vertically to the carrier and can be installed in components.
  • a carrier with fragments arranged thereon and aligned on the carrier, but not yet growing on it or carbon nanotubes that have already grown can be produced, preferably using the method described.
  • the carrier is therefore typically in the state in which it is introduced into the chemical vapor deposition device according to the method already described.
  • a carrier prepared in this way can be stored and further processed later.
  • a surfactant layer deposited from the dispersion containing the surfactant is present on the carrier after drying.
  • the fragments are arranged on this surfactant layer and their orientation is stabilized by the surfactant layer.
  • This surfactant layer may have a thickness that is less than a length of the fragments. This thickness is typically between 0.3 ⁇ m and 1 ⁇ m, preferably between 0.5 ⁇ m and 0.8 ⁇ m. On the one hand, this allows the fragments to reliably adhere to the surfactant layer without hindering subsequent growth.
  • a surface of the carrier on which the fragments are aligned can be completely covered with the surfactant layer in order to enable the fragments to adhere to as large an area as possible.
  • the surface of the support can also be provided with a gold layer on which the fragments are applied and aligned, the surface preferably being provided with a layer of SH(CH 2 ) n NH 2 molecules for alignment.
  • a vessel 1 in which a homogeneous dispersion 2 made of a liquid with a surfactant and several carbon nanotubes 3 is contained.
  • a liquid is distilled water, but general deionized water can also be used.
  • the surfactant in the exemplary embodiment shown sodium dodecyl sulfate, SDS, is present in the dispersion in a concentration of 0.1 percent by mass.
  • isopropanol is added to the dispersion, but this can also be dispensed with in other exemplary embodiments.
  • One of the carbon nanotubes 3 is shown as an example in an enlarged view. At least 90 percent of the carbon nanotubes 3 contained in the dispersion 2 have the same electronic properties, i.e. are semiconducting in the exemplary embodiment shown, and preferably have the same diameter and identical chirality. In addition, the carbon nanotubes 3 are all single-walled. In further exemplary embodiments, the carbon nanotubes 3 can also be metallic. The addition of the surfactant prevents the carbon nanotubes 3 from attaching to one another and forming bundles, but rather being present evenly distributed in the dispersion 2.
  • the carbon nanotubes 3 can also be oxidized by an acid and thus be hydrophilic instead of hydrophobic, or organic solutions such as dimethylformamide (DMF) are used to produce a homogeneous dispersion.
  • DMF dimethylformamide
  • the vessel 1 with the dispersion 2 of the carbon nanotubes 3 causes the carbon nanotubes 3 to break into smaller fragments by the action of ultrasound.
  • Recurring features are provided with identical reference numbers in this figure as well as in the following figures.
  • a tip 4 of an ultrasonic sonicator is introduced into the dispersion 2 and ultrasound with a frequency of 30 kHz and a power of 30 W to 100 W is introduced into the dispersion 2 via the ultrasound device 5.
  • the vessel 1 with the dispersion 2 and the fragments 6 produced is in Fig. 3 shown.
  • the fragments 6 have a length of 30 nm to 100 nm with a diameter of approximately 1 nm. Since further particles such as bundles of carbon nanotubes 3, amorphous carbon or residues of catalysts can also have been formed as a result of the ultrasound input, these particles can be removed from the dispersion 2 by centrifugation in a further process step, for example the dispersion 2 is left at one for eight hours Centrifuged at 20,000 times the acceleration of gravity, i.e. 20,000 g.
  • Dispersion 2 shown is applied to a planar support 7, for example by a pipette, and the liquid is removed, for example by heating.
  • the planar carrier 7 is a silicon wafer, which is placed in an electric field during or after drying to remove liquid components of the dispersion 2 and, due to its temperature resistance up to 1200 ° C, also survives subsequent further treatment without damage.
  • Field lines of the electric field are perpendicular to a flat surface 8 of the carrier 7, so that the fragments 6 are parallel to these field lines on the surface 8 align, so a longitudinal axis of the fragments 6 is also at right angles to the surface 8. This results in a layer of fragments 6 aligned vertically on the carrier 7.
  • fragments 6 have the same orientation.
  • 80 percent of the fragments 6 are aligned parallel to a surface normal, while the rest have an angular offset of up to 20 ° to the surface normal.
  • a gold layer is applied flatly to the surface 8, on which, supported by cysteamines, namely SH(CH 2 ) 2 NH 2 , the fragments 6 align themselves through self-organization so that the longitudinal axis intersects the surface 8, the fragments 6 i.e. stand at right angles on the surface 8.
  • the dispersion 2 is applied to the carrier by dipping the carrier 7 into the dispersion 2.
  • the cysteamines used are contained in the dispersion 2 or are applied to the gold layer in a previous process step, for example by dipping into a liquid containing the cysteamines .
  • the carrier 7 prepared in this way with the fragments 6 of the single-walled carbon nanotubes with the same electronic properties aligned on the surface 8 can be temporarily stored in this form and only subsequently processed further in a further step.
  • the in Fig. 4 illustrated carrier 7 with fragments 6 of the single-walled carbon nanotubes 3 aligned on the surface 8 with the same electronic properties as in Fig. 5 shown introduced into a reactor 9 which is suitable for chemical vapor deposition (CVD).
  • a reactor 9 which is suitable for chemical vapor deposition (CVD).
  • tips of the fragments 6 are first chemically activated in a hydrogen-containing atmosphere and then, starting in a carbon-containing atmosphere, the fragments 6 are epitaxially formed by chemical vapor deposition to form carbon nanotubes 3 with the same electronic properties and, if the starting material is carbon nanotubes 3 with the same diameter and the same Chirality were used, even with the same diameter and grown with the same chirality until the desired length is reached.
  • plasma-assisted chemical vapor deposition can also be used for this purpose.
  • the epitaxial growth does not change the atomic structure of the fragments 6, in particular their diameter and their chirality.
  • doped carbon nanotubes, boron nitride nanotubes, bornano tubes or silicon nanotubes can also be grown in an appropriate atmosphere.
  • the carbon nanotubes 3 have grown on the surface 8 of the carrier 7, starting from the fragments 6 used as the starting layer, as in Fig. 6 shown.
  • these carbon nanotubes are single-walled, semiconducting and typically each have the same diameter and the same chirality if carbon nanotubes with the same diameter and the same chirality were used as the starting material.
  • they are all arranged vertically to the surface 8, ie grown along a longitudinal axis of the fragments 6 and form a layer of vertically arranged carbon nanotubes 3.
  • a packing density is 10,000 carbon nanotubes per ⁇ m 2 , while a distance between the carbon nanotubes is less than 0.5 ⁇ m is.
  • the grown carbon nanotubes 3 are measured with regard to their electrical and optical properties using Raman spectroscopy or another measuring method. Carbon nanotubes 3 whose physical properties differ from the majority can subsequently be removed from the bundle of carbon nanotubes 3 obtained, for example by ultracentrifugation, chromatography or a gel or polymer based method.
  • the carbon nanotubes 3 can be removed from the carrier 7 and used in applications, for example in transistors, for example field effect transistors, or other components such as sensors, photon detectors, optical modulators, light sources, solar cells or thermoelectric components can be installed.
  • transistors for example field effect transistors
  • other components such as sensors, photon detectors, optical modulators, light sources, solar cells or thermoelectric components can be installed.
  • the carbon nanotubes 3 can be removed from the support 7 and a further dispersion 2 can be formed, as in Fig. 1 shown.
  • the process can then be repeated for cascading multiplication of the carbon nanotubes 3, i.e. fragments 6 can also be generated by ultrasound and these fragments 6 can be deposited on a further carrier 7 and extended.
  • Fig. 8 shows in one Figure 4
  • Corresponding view shows the carrier 7 with a hatched surfactant layer 9 made of SDS deposited thereon, which has a thickness of 200 nm and, as an intermediate layer, a surface 8 of the carrier 7 on which the fragments 6 are deposited, completely, i.e. without recesses or holes, covered.
  • the fragments 6 have a length that is greater than the thickness of the surfactant layer 9, so that the fragments 6 are deposited and aligned on the surfactant layer 9 and are stabilized in their alignment by the dried surfactant layer 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Claims (12)

  1. Procédé pour la multiplication d'au moins un nanotube de carbone (3) à paroi unique avec des propriétés électroniques prédéterminées ou de plusieurs nanotubes de carbone (3) à paroi unique avec les mêmes propriétés électroniques, avec les étapes de :
    a) fabrication d'une dispersion (2) à partir d'un liquide et du au moins un nanotube de carbone (3) à paroi unique avec des propriétés électroniques prédéterminées ou des plusieurs nanotubes de carbone (3) à paroi unique avec les mêmes propriétés électroniques ;
    b) formation de fragments (6) du au moins un nanotube de carbone (3) à paroi unique ou des plusieurs nanotubes de carbone (3) à paroi unique par un apport d'énergie dans la dispersion (2) ;
    c) dépôt des fragments (6) du au moins un nanotube de carbone (3) à paroi unique ou des plusieurs nanotubes de carbone (3) à paroi unique à partir de la dispersion (2) sur une surface (8) d'un support (7) en tant que couche de départ pour multiplier et orienter les fragments (6) sur la surface (8) pendant le dépôt à partir de la dispersion (2), de sorte que la surface (8) est coupée par un axe longitudinal des fragments (6) et les fragments (6) ne sont pas orientés parallèlement dans un plan à la surface (8) du support (7), dans lequel les fragments (6) sont orientés par auto-organisation sur une couche d'or déposée sur la surface (8) du support (7) ou sont déposés sur la surface (8) du support (7) sur une couche de tensioactif (9) formée d'un tensioactif contenu dans la dispersion (2) avec une épaisseur qui est inférieure à une longueur des fragments (6), sur laquelle les fragments du au moins un nanotube de carbone à paroi unique sont déposés et orientés après le séchage de la couche de tensioactif (9) et sont fixés sur le support (7) par la couche de tensioactif (9) ;
    d) introduction des fragments (6) déposés et orientés sur le support (7) dans un dispositif de dépôt chimique en phase vapeur (9), dans lequel des nanotubes de carbone (3) à paroi unique avec les mêmes propriétés électroniques sont allongés au moyen d'un dépôt chimique en phase vapeur (9) dans une atmosphère gazeuse contenant du carbone, à partir des fragments (6) servant de couche de départ.
  2. Procédé selon la revendication 1, caractérisé en ce que les fragments (6) sont formés par introduction d'ultrasons dans la dispersion (2), dans lequel de préférence des fragments (6) avec une longueur comprise entre 30 nm et 100 nm sont obtenus, dans lequel de manière particulièrement préférée des ultrasons avec une puissance de 30 W à 100 W à une fréquence comprise entre 20 kHz et 40 kHz sont utilisés.
  3. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les fragments (6) sont orientés par application d'un champ électrique sur la surface (8).
  4. Procédé selon l'une quelconque des revendications 1 à 2, caractérisé en ce que des molécules SH(CH2)nNH2 sont utilisées pour orienter les fragments (6) sur la couche d'or déposée sur le support (7).
  5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que l'axe longitudinal des fragments (6) déposés présente un angle par rapport à la surface compris entre 60° et 120°, de préférence entre 75° et 105°, plus préférentiellement entre 80° et 100°, dans lequel le support (7) est de préférence un substrat d'oxyde de silicium.
  6. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que le dépôt chimique en phase vapeur assisté par plasma est utilisé pour allonger les nanotubes de carbone (6).
  7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanotubes de carbone (3) utilisés pour la multiplication ont un même diamètre et une même chiralité, et/ou la dispersion (2) est préparée à partir d'eau, de préférence de l'eau distillée, et d'une substance tensioactive, de préférence un tensioactif, pour produire une dispersion homogène.
  8. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanotubes de carbone (3) produits avec les mêmes propriétés électroniques sont retirés du support (7) et le procédé est à nouveau mis en oeuvre avec ces nanotubes de carbone (3) retirés pour multiplier davantage les nanotubes de carbone (3).
  9. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanotubes de carbone à paroi unique sont réalisés avec un diamètre compris entre 0,6 nm et 2 nm.
  10. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'après la croissance par dépôt chimique en phase vapeur, les nanotubes de carbone (3) multipliés sont mesurés quant à leurs propriétés, de préférence par spectroscopie d'absorption optique, spectroscopie Raman et/ou une mesure de photoluminescence, et les nanotubes de carbone (3), qui s'écartent des propriétés souhaitées, sont séparés.
  11. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanotubes de carbone (3) sont fabriqués avec une densité de tassement allant jusqu'à 10 000 nanotubes de carbone par µm2, de préférence jusqu'à 20000 nanotubes de carbone par µm2, de préférence jusqu'à 40 000 nanotubes de carbone par µm2 et/ou les nanotubes de carbone (3) et/ou les fragments (6) des nanotubes de carbone (3) sont disposés sur le support (7) à une distance inférieure à 0,5 µm les uns des autres.
  12. Support (7) avec une surface (8) sur laquelle sont déposés des nanotubes de carbone (3) à paroi unique avec les mêmes propriétés électroniques, de telle sorte qu'un axe longitudinal des nanotubes de carbone (3) coupe la surface (8) et les nanotubes de carbone (3) ne sont pas orientés parallèlement dans un plan à la surface (8) du support (7) et
    une couche de tensioactif (9) séchée avec une épaisseur qui est inférieure à une longueur des fragments (6) est déposée sur la surface (8), sur laquelle les fragments (6) du au moins un nanotube de carbone (3) à paroi unique sont déposés et orientés.
EP15732624.0A 2014-06-24 2015-06-24 Procédé pour la croissance de nanotubes de carbone monoparoi, orientés verticalement, à propriétés électroniques identiques, et pour la multiplication de nanotubes de carbone monoparoi, à propriétés électroniques identiques Active EP3172166B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014212077.2A DE102014212077A1 (de) 2014-06-24 2014-06-24 Verfahren zum Wachstum von vertikal ausgerichteten einwandigen Kohlenstoffnanoröhren mit gleichen elektronischen Eigenschaften sowie zum Vervielfältigen von einwandigen Kohlenstoffnanoröhren mit gleichen elektronischen Eigenschaften
PCT/EP2015/064311 WO2015197729A1 (fr) 2014-06-24 2015-06-24 Procédé pour la croissance de nanotubes de carbone monoparoi, orientés verticalement, à propriétés électroniques identiques, et pour la multiplication de nanotubes de carbone monoparoi, à propriétés électroniques identiques

Publications (3)

Publication Number Publication Date
EP3172166A1 EP3172166A1 (fr) 2017-05-31
EP3172166B1 true EP3172166B1 (fr) 2024-01-31
EP3172166C0 EP3172166C0 (fr) 2024-01-31

Family

ID=53496665

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15732624.0A Active EP3172166B1 (fr) 2014-06-24 2015-06-24 Procédé pour la croissance de nanotubes de carbone monoparoi, orientés verticalement, à propriétés électroniques identiques, et pour la multiplication de nanotubes de carbone monoparoi, à propriétés électroniques identiques

Country Status (9)

Country Link
US (1) US11649167B2 (fr)
EP (1) EP3172166B1 (fr)
JP (1) JP6680776B2 (fr)
KR (1) KR102397596B1 (fr)
CN (1) CN106458598B (fr)
CA (1) CA2953197C (fr)
DE (1) DE102014212077A1 (fr)
SG (1) SG11201805134QA (fr)
WO (1) WO2015197729A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114538419B (zh) * 2020-11-26 2023-08-18 江苏天奈科技股份有限公司 一种分散性碳纳米管粉末的制备方法及设备

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008123B2 (ja) * 1998-06-04 2007-11-14 株式会社アルバック 炭素系超微細冷陰極及びその作製方法
US7022541B1 (en) * 2001-11-19 2006-04-04 The Board Of Trustees Of The Leland Stanford Junior University Patterned growth of single-walled carbon nanotubes from elevated wafer structures
JP2004083293A (ja) 2002-08-22 2004-03-18 Fujitsu Ltd フラーレンを用いたカーボンナノチューブの製造方法
KR100937085B1 (ko) * 2002-10-26 2010-01-15 삼성전자주식회사 화학적 자기조립 방법을 이용한 탄소나노튜브 적층 및패턴 형성 방법
KR20060013379A (ko) * 2003-04-28 2006-02-09 코닌클리케 필립스 일렉트로닉스 엔.브이. 전계 방출 전극의 제조방법
WO2005085132A2 (fr) * 2003-10-14 2005-09-15 William Marsh Rice University Amplification de nanotubes de carbone par la mise en oeuvre de procedes de croissance par germes
ITMI20050797A1 (it) * 2005-05-03 2006-11-04 St Microelectronics Srl Metodo per crescere nanotubi di carbonio aventi predefinita chiralita'
US7612424B1 (en) * 2005-07-22 2009-11-03 Northwestern University Nanoelectromechanical bistable cantilever device
US20100081568A1 (en) * 2008-04-21 2010-04-01 Lockheed Martin Corporation Methods for producing carbon nanotubes with controlled chirality and diameter and products therefrom
CN102205957B (zh) * 2011-04-07 2012-10-31 上海大学 一种在多壁碳纳米管中生成碳链的方法
US20120263951A1 (en) * 2011-04-15 2012-10-18 Los Alamos National Security, Llc. Electrically conducting nanocomposite wire comprising tow of multiwalled carbon nanotubes and transverse metal bridges
JP5870604B2 (ja) 2011-10-13 2016-03-01 国立大学法人東北大学 単層カーボンナノチューブの製造方法

Also Published As

Publication number Publication date
CN106458598B (zh) 2020-10-16
CA2953197A1 (fr) 2015-12-30
EP3172166A1 (fr) 2017-05-31
JP2017528413A (ja) 2017-09-28
US20170137935A1 (en) 2017-05-18
KR102397596B1 (ko) 2022-05-13
CA2953197C (fr) 2022-07-05
DE102014212077A1 (de) 2015-12-24
EP3172166C0 (fr) 2024-01-31
KR20170020909A (ko) 2017-02-24
JP6680776B2 (ja) 2020-04-15
US11649167B2 (en) 2023-05-16
SG11201805134QA (en) 2018-07-30
CN106458598A (zh) 2017-02-22
WO2015197729A1 (fr) 2015-12-30

Similar Documents

Publication Publication Date Title
DE112012001217B4 (de) Graphen-Nanostreifen, Verfahren zum Herstellen von Graphen-Nanostreifen, Feldeffekttransistor(FET)-Struktur und Verfahren zum Herstellen eines Feldeffekttransistors (FET)
DE2824564C2 (de) Verfahren zum Herstellen von Halbleiterelementen wie Photodioden
DE102008060644B4 (de) Verfahren zur Herstellung einer Graphennanostruktur
DE60305138T2 (de) System mit nanoskaligen Leiter und Öffnung
DE69434928T2 (de) Verfahren zur Herstellung eines porösen Faservlieses, poröses Faservlies, und poröser Faserstopfen
DE69720249T2 (de) Atomare drähte von grosser länge und stabilität und verfahren zum herstellen dieser drähte
EP1825534B1 (fr) Procede pour l'application structuree de molecules sur un trace conducteur et matrice de memoire moleculaire
DE2850805C2 (de) Verfahren zum Herstellen von scheiben- oder bandförmigen Siliziumkristallen mit Kolumnarstruktur für Solarzellen
EP1468961A2 (fr) Procédé, appareil et utilisation d'un appareil pour séparer les nanotubes de carbone metalliques de ces semiconducteurs
DE102006007431A1 (de) Durch Halbleitersilizium-Verfahrenstechnik gebildeter Probenträger
DE1489258B1 (de) Verfahren zum Herstellen einer duennen leitenden Zone unter der Oberflaeche eines Siliciumkoerpers
EP3172166B1 (fr) Procédé pour la croissance de nanotubes de carbone monoparoi, orientés verticalement, à propriétés électroniques identiques, et pour la multiplication de nanotubes de carbone monoparoi, à propriétés électroniques identiques
WO2005076679A2 (fr) Procede pour disposer une structure de puissance sur un substrat et substrat muni de ladite structure de puissance
EP1960309B1 (fr) Procédé de fabrication de nanostructures sur un substrat
DE10118200A1 (de) Gas-Sensorelement, Verfahren zum Herstellen eines Gas-Sensorelements und Verfahren zur Detektion von Gasen
EP2172416A1 (fr) Structure nano-électromécanique et procédé de sa fabrication
DE60317489T2 (de) Herstellung von Nanostrukturen mittels eines mikrobiellen Dornes
EP1642120B1 (fr) Dispositif d'enrichissement miniaturise
DE102008051159B4 (de) Herstellung von Kreuzstrukturen von Nanostrukturen
DE19728321A1 (de) Verfahren und Vorrichtung zur Herstellung von stabilen endohedralen Fullerenen der Struktur ZaC¶x¶ mit x >= 60
DE10026911B4 (de) Verfahren zur Herstellung eines Halbleiter-Superatoms und eines Aggregats davon
DE102007053157B4 (de) Verfahren zur Nanostrukturerzeugung mittels spinodaler Entnetzung
DE102015201048A1 (de) Verfahren zum Erzeugen einer Kohlenstoffschicht auf einer Ausgangsstruktur und Mikroelektromechanische oder Halbleiter-Struktur
DE102013222931B4 (de) Verfahren zur Herstellung eines Fluoreszenzfarbstoffes
WO2017182329A1 (fr) Plaquette de silicium pour un composant electronique, et son procédé de production

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170105

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180907

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMARTNANOTUBES TECHNOLOGIES GMBH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015016745

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C01B0032050000

Ipc: C01B0032174000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C01B0032050000

Ipc: C01B0032174000

RIC1 Information provided on ipc code assigned before grant

Ipc: C01B 32/159 20170101ALI20230629BHEP

Ipc: C01B 32/174 20170101AFI20230629BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230908

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015016745

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240213

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240430

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240430

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240531

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240501

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240131

U20 Renewal fee paid [unitary effect]

Year of fee payment: 10

Effective date: 20240627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240131