EP3164529B1 - Seitenisolationsbeschichtung für eine elektrolysezelle - Google Patents

Seitenisolationsbeschichtung für eine elektrolysezelle Download PDF

Info

Publication number
EP3164529B1
EP3164529B1 EP15814096.2A EP15814096A EP3164529B1 EP 3164529 B1 EP3164529 B1 EP 3164529B1 EP 15814096 A EP15814096 A EP 15814096A EP 3164529 B1 EP3164529 B1 EP 3164529B1
Authority
EP
European Patent Office
Prior art keywords
elements
thermally insulating
electrolytic cell
wedging
insulating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15814096.2A
Other languages
English (en)
French (fr)
Other versions
EP3164529A4 (de
EP3164529A1 (de
Inventor
Denis TINKA
Philippe Carpentier
Yves Caratini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Publication of EP3164529A1 publication Critical patent/EP3164529A1/de
Publication of EP3164529A4 publication Critical patent/EP3164529A4/de
Application granted granted Critical
Publication of EP3164529B1 publication Critical patent/EP3164529B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes
    • C25C3/085Cell construction, e.g. bottoms, walls, cathodes characterised by its non electrically conducting heat insulating parts
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the present invention relates to an electrolytic cell for the production of aluminum by electrolysis.
  • Aluminum is conventionally produced in aluminum smelters, by electrolysis, according to the Hall-Héroult process.
  • an electrolysis cell comprising a box and an inner lining of refractory material.
  • the electrolytic cell also comprises cathode blocks arranged at the bottom of the box, traversed by conductive bars intended to collect the electrolysis current and to lead it to a subsequent electrolysis cell.
  • the electrolytic cell also comprises at least one anode block suspended on an anode support, such as a rod and a cross member, the anode block being partially immersed in an electrolytic bath, above the cathode blocks.
  • a sheet of liquid aluminum is formed under the electrolytic bath by covering the cathode blocks as and when the reaction.
  • the flow of current is from the anode carrier to the cathode via the anode block, the electrolytic bath to a temperature of about 970 ° C in which the alumina is dissolved, and the metal sheet.
  • the electrolytic bath to a temperature of about 970 ° C in which the alumina is dissolved, and the metal sheet.
  • Patent publications CN201908138 , US2008 / 271996 , CN201793762 , CN101709486 , EP399786 , CA2893476 , US5560809 and CN1670257 include different designs of interior cladding and internal cladding blocks. However, despite the presence of these internal cladding blocks and the lining, the heat loss through the walls of the box remains very significant, which is detrimental to the overall energy efficiency, the life of the tank, and the good operation of the electrolysis process.
  • the wall of the box is partly covered with thermally insulating elements that can be compressible material, which greatly limit the heat losses and protect the wall of the box of high heat released by the electrolytic bath and liquid aluminum.
  • the refractory wedging elements interposed between the thermally insulating elements of compressible material make it possible to limit or avoid the settling of the thermally insulating elements during the construction and operation of the tank, without forming a thermal conduction bridge. detrimental to the wall of the box.
  • the thermally insulating elements do not undergo damaging compression between the side wall of the box and the internal cladding blocks, so that they are not crushed and retain their thermal insulation capacity.
  • the use of thermally insulating elements made of compressible material thus made possible makes it possible to limit the raw material and implementation costs for an improved and easily adjustable heat balance.
  • thermally insulating element compressible material means any element that would be crushed, and therefore degraded by the inner facing blocks, during manufacture or operation of the tank, without the presence of wedging elements.
  • the thermally insulating elements of compressible material may be of ventilated structure, in particular based on fibers.
  • each wedging element has a thickness equal to or greater than the thickness of the thermally insulating elements.
  • the insulating side coating further comprises refractory protection elements disposed between the thermally insulating elements and the inner cladding blocks. These protection elements protect the thermally insulating elements behind against possible impregnation of electrolytic bath through the inner cladding blocks so that the protection of the thermal insulation is reinforced over time.
  • the space between two adjacent wedging elements houses protection elements.
  • the protection elements do not cover the wedging elements but only the thermally insulating elements.
  • each wedging element has a thickness substantially identical to the cumulative thickness of a protective element and a thermally insulating element so that the thermally insulating elements are free of compression.
  • This arrangement thus makes it possible to preserve the strength and the thermal insulation capacity of the thermally insulating elements of compressible material throughout the life of the tank.
  • the thermally insulating elements have a higher thermal insulation coefficient than that of the wedging elements and that of the protection elements. Thus it is possible to use thermally insulating elements of small thickness. Their presence impacts very little the residual internal volume of the box for an effective thermal insulation. Thus, these elements make it possible to reduce the thermal losses at the side walls of the box without the need to reduce the dimensions of the cathode blocks present in the box and therefore the efficiency of the electrolysis process.
  • each thermally insulating element measured along the longitudinal axis of the respective wall of the box, is greater than that of each wedging element. This arrangement optimizes the thermal insulation of the box and limit thermal bridges.
  • each thermally insulating element measured along the longitudinal axis of the respective wall of the box, is at least four times greater than that of each wedging element.
  • the insulating side coating further comprises outer facing plates, preferably silicon carbide (SiC), extending against the at least one side wall of the box and arranged vertically above the elements. cushioning, thermally insulating elements, and if necessary protective elements. These plates thus protect the thermally insulating elements from above and the box from corrosion. They also promote the localized and controlled evacuation of the heat flow at a chosen surface.
  • outer facing plates preferably silicon carbide (SiC)
  • each outer facing plate has a thickness substantially identical to that of each wedging element.
  • the lateral edges of the thermally insulating elements and, if appropriate, the protective elements are covered and protected vertically from the corrosive environment of the electrolytic cell.
  • the outer cladding plates are integrally formed with the inner cladding blocks.
  • the compressible material of the thermally insulating element is of fibrous material, such as a fiberglass material, carbon fiber, rock fiber, or hemp fiber. It can also be super-micro-porous type or based on perlite, diatomite or calcium silicate.
  • the compressible material of the thermally insulating elements has a thermal conductivity of less than 0.5 W / m ⁇ K (measured via the ASTM C201 method at room temperature).
  • the thermally insulating elements of compressible material are surrounded by a layer of material resistant to corrosion by electrolyte vapor.
  • Highly corrosive electrolyte vapors can in fact infiltrate and propagate during the life of the electrolytic cell against the side walls of the box and degrade the compressible material of the thermally insulating element.
  • Closing the compressible material in a layer of corrosion-resistant material by electrolyte vapor (or vapor barrier) makes it possible to protect it and widen the range of materials that can be used for producing the thermally insulating element.
  • the layer of material resistant to corrosion by electrolyte vapor is advantageously formed of an aluminum film.
  • the wedging elements show a compressive strength greater than 10 MPa.
  • the wedging elements have a thermal conductivity lower than the thermal conductivity of the internal cladding blocks and, where appropriate, external cladding plates.
  • the wedging elements therefore do not form damaging thermal conduction bridges towards the wall of the box between the thermally insulating elements.
  • the wedging elements have a thermal conductivity of less than 2 W / m.K (measured via the ASTM C201 method at room temperature).
  • the wedging elements consist of refractory bricks, for example silico-aluminous, or mica plates, which have good compressive strength and low thermal conductivity.
  • the protection elements are made of identical material, or of identical type, to that of the wedging elements.
  • the electrolysis tank 100 comprises a box 200 and a lateral insulation coating comprising thermally insulating elements 1 and wedging elements 2 affixed alternately against a side wall 3 of the box 200.
  • thermally insulating elements 1 are covered with protection elements 4 ( figure 2 ) that are in turn covered with internal facing blocks 5 bearing against the wedging elements 2 ( figure 3 ).
  • External facing plates 6 also extend against the lateral wall 3 of the box 200 and above the setting elements 2, thermally insulating elements 1 and protection elements 4. figure 3 ).
  • the thermally insulating elements 1 are protected against compression between the side wall of the box 200 and the inner facing blocks 5 by the arrangement of the wedging elements 2 so that they can be made of a compressible heat-insulating material.
  • the compressible heat-insulating material may for example be a fibrous material consisting of glass fibers, carbon fibers, rock fibers, or hemp fibers.
  • the compressible heat-insulating material may for example be of super-microporous super-insulation type or else based on perlite, diatomite or calcium silicate.
  • the thermally insulating elements 1 of compressible material have a high coefficient of thermal insulation so that a small thickness of this compressible material is sufficient to ensure good thermal insulation of the wall of the box they cover.
  • the wedging elements 2 comprise a refractory material, such as silico-aluminous refractory brick or mica plates.
  • the wedging elements must protect the thermally insulating elements from crushing and contribute advantageously to the thermal insulation.
  • These wedging elements 2, as well as the protection elements 4 generally have thermal insulation properties. less than those of thermally insulating elements 1, even if they remain good insulators. They have a thermal conductivity of less than 2 W / mK
  • the length of each thermally insulating element 1, measured along the longitudinal axis of the wall 3 of the box 200 (x axis, figure 1 ), is then chosen to be larger than that of each wedging element 2. Typically, a length ratio of one to four and preferably one to five is applied to obtain an optimal reduction of heat loss at level of the walls 3 of the box 200.
  • each wedging element 2 is equal to or greater than that of the thermally insulating element 1.
  • the expected distance between two adjacent wedging elements 2 is less than the length of a facing block internal 5 along the longitudinal axis x of the wall 3 of the box 200 so that an inner facing block 5 can bear against at least two wedging elements 2.
  • each inner facing block 5 rests against at least two 2.
  • the latter have a compressive strength greater than 10 MPa so that they are sufficiently rigid and incompressible to prevent the inner cladding blocks 5 from tamping the thermally insulating elements 1 of compressible material which would otherwise have thermal insulation properties decreased.
  • the inner cladding block 5 is made of a carbon-based material. Its purpose is to help protect the wall 3 of the box 200 and the thermally insulating elements 1 from corrosion by liquid aluminum and / or the electrolytic bath of very high temperature. It is intended to cover all the thermally insulating elements 1, wedging elements 2 and at least a part of the outer facing elements 6.
  • protection elements 4 may be introduced between the thermally insulating elements 1 and the inner facing blocks 5, in the space between two adjacent wedging elements 2.
  • Each wedging element 2 has indeed a thickness substantially identical to the cumulative thickness of a protective element 4 and a thermally insulating element 1.
  • the protection elements 4 may be of the same composition as the wedging elements 2.
  • outer facing plates 6 made of silicon carbide (SiC) material, of a thickness substantially identical to that of the wedging elements 2, cover the upper lateral edge of the thermally insulating elements 1, wedging elements 2 and protection elements 4 between the inner wall 3 of the casing 200 and the inner facing blocks 5.
  • SiC silicon carbide
  • the box 200 has an optimal thermal profile.
  • the figure 4 is a partial sectional view of the electrolytic cell illustrating the box 200, the thermally insulating elements 1 directly affixed against a wall 3 of the box 200 and adjacent to the protective elements 4, protected by inner cladding blocks 5 and outer cladding plates 6.
  • the present invention provides an electrolysis cell with a side insulation coating to effectively reduce heat loss through optimal insulation and space-saving.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Claims (15)

  1. Elektrolysezelle (100) zur Aufnahme eines Elektrolytbades, umfassend eine Wanne (200) mit Seitenwänden (3) und eine die Seitenwände (3) bedeckende Seitenisolationsbeschichtung, dadurch gekennzeichnet, dass die Seitenisolationsbeschichtung umfasst:
    wärmeisolierende Elemente (1) aus kompressiblem Material,
    Verkeilungselemente (2) aus feuerfestem Material mit mindestens einer Seitenfläche, wobei die wärmeisolierenden Elemente (1) und die Verkeilungselemente (2) abwechselnd an mindestens einer Seitenwand (3) der Wanne (200) angebracht sind, und
    Innenverkleidungsblöcke (5), die zum Schutz der Wanne (200), der wärmeisolierenden Elemente (1) und der Verkeilungselemente (2) des Elektrolytbades vorgesehen sind, wobei der Abstand zwischen zwei benachbarten Verkeilungselementen (2) so angepasst ist, dass sich die Innenverkleidungsblöcke (5) jeweils an der Seitenfläche mindestens zweier Verkeilungselemente (2) abstützen.
  2. Elektrolysezelle (100) nach Anspruch 1, wobei die Verkeilungselemente (2) jeweils eine Dicke aufweisen, die gleich oder größer ist als die Dicke der wärmeisolierenden Elemente (1).
  3. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 2, wobei die Seitenisolationsbeschichtung ferner Schutzelemente (4) aus feuerfestem Material umfasst, die zwischen den wärmeisolierenden Elementen (1) und den Innenverkleidungsblöcken (5) angeordnet sind.
  4. Elektrolysezelle (100) nach Anspruch 3, wobei der Raum zwischen zwei benachbarten Verkeilungselementen (2) die Schutzelemente (4) aufnimmt.
  5. Elektrolysezelle (100) nach einem der Ansprüche 3 bis 4, wobei die Verkeilungselemente (2) jeweils eine im Wesentlichen gleiche Dicke haben wie die kumulierte Dicke eines wärmeisolierenden Elements (1) und eines Schutzelements (4), so dass die wärmeisolierenden Elemente (1) kompressionsfrei sind.
  6. Elektrolysezelle (100) nach einem der Ansprüche 3 bis 5, wobei die wärmeisolierenden Elemente (1) einen höheren Wärmeisolationskoeffizienten haben als die Verkeilungselemente (2) und die Schutzelemente (4).
  7. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 6, wobei die Länge jedes wärmeisolierenden Elements (1), gemessen entlang der Längsachse der jeweiligen Wand (3) der Wanne (200), größer ist als die Länge jedes Verkeilungselements (2).
  8. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 7, wobei die Seitenisolationsbeschichtung ferner Außenverkleidungsplatten (6) umfasst, die sich an der mindestens einen Seitenwand (3) der Wanne (200) erstrecken und senkrecht über den Verkeilungselementen (2) und den wärmeisolierenden Elementen (1) angeordnet sind.
  9. Elektrolysezelle (100) nach Anspruch 8, wobei jede Außenverkleidungsplatte (6) eine im Wesentlichen gleiche Dicke hat wie jedes Verkeilungselement (2).
  10. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 9, wobei das kompressible Material der wärmeisolierenden Elemente (1) aus Fasermaterial besteht, wie zum Beispiel einem Material aus Glasfasern, Kohlefasern, Steinfasern oder superisolierenden mikroporösen Hanffasern oder auf Basis von Perlit, Diatomit oder Kalziumsilikat.
  11. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 10, wobei die Verkeilungselemente (2) eine Kompressionsfestigkeit von mehr als 10 MPa aufweisen.
  12. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 11, wobei die Verkeilungselemente (2) eine niedrigere Wärmeleitfähigkeit aufweisen als die Innenverkleidungsblöcke (5) und gegebenenfalls die Außenverkleidungsplatten (6).
  13. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 12, wobei die Verkeilungselemente (2) eine Wärmeleitfähigkeit von weniger als 2 W/m.K aufweisen.
  14. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 13, wobei das kompressible Material der wärmeisolierenden Elemente (1) eine Wärmeleitfähigkeit von weniger als 0,5 W/m.K aufweist.
  15. Elektrolysezelle (100) nach einem der Ansprüche 1 bis 14, wobei die wärmeisolierenden Elemente (1) aus kompressiblem Material von einer Materialschicht umgeben sind, die beständig ist gegen Korrosion durch Elektrolytdämpfe.
EP15814096.2A 2014-07-04 2015-07-01 Seitenisolationsbeschichtung für eine elektrolysezelle Active EP3164529B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1401518A FR3023301B1 (fr) 2014-07-04 2014-07-04 Cuve d'electrolyse
PCT/IB2015/001116 WO2016001743A1 (fr) 2014-07-04 2015-07-01 Revêtement latéral d'isolation pour cuve d'électrolyse

Publications (3)

Publication Number Publication Date
EP3164529A1 EP3164529A1 (de) 2017-05-10
EP3164529A4 EP3164529A4 (de) 2018-01-24
EP3164529B1 true EP3164529B1 (de) 2019-04-24

Family

ID=51483483

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15814096.2A Active EP3164529B1 (de) 2014-07-04 2015-07-01 Seitenisolationsbeschichtung für eine elektrolysezelle

Country Status (7)

Country Link
EP (1) EP3164529B1 (de)
CN (1) CN106661747B (de)
AU (1) AU2015282394B2 (de)
CA (1) CA2950692C (de)
FR (1) FR3023301B1 (de)
RU (1) RU2689292C2 (de)
WO (1) WO2016001743A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129157A1 (fr) * 2021-11-18 2023-05-19 Rio Tinto Alcan International Limited Système de revêtement intérieur pour cuve d’électrolyse

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233196A1 (en) * 2022-06-03 2023-12-07 Vedanta Limited (Aluminium & Power) Lining design of electrolytic cell in an aluminum smelter

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0399786A3 (de) * 1989-05-25 1992-05-27 Alcan International Limited Feuerfeste Auskleidungen, beständig gegen Natrium und Natriumsalze
US5560809A (en) * 1995-05-26 1996-10-01 Saint-Gobain/Norton Industrial Ceramics Corporation Improved lining for aluminum production furnace
RU2186880C1 (ru) * 2001-03-05 2002-08-10 Общество с ограниченной ответственностью "АЛКОРУС ИНЖИНИРИНГ" Боковая футеровка алюминиевого электролизера
CN2721655Y (zh) * 2004-08-31 2005-08-31 贵阳铝镁设计研究院 电解槽侧部内衬材料的配置结构
CN100415938C (zh) * 2004-12-27 2008-09-03 沈阳铝镁设计研究院 一种铝电解槽内衬结构
RU2294404C1 (ru) * 2005-09-20 2007-02-27 Открытое акционерное общество "Сибирский научно-исследовательский, конструкторский и проектный институт алюминиевой и электродной промышленности" (ОАО "СибВАМИ") Катодное устройство алюминиевого электролизера
FR2893329B1 (fr) * 2005-11-14 2008-05-16 Aluminium Pechiney Soc Par Act Cuve d'electrolyse avec echangeur thermique.
CN201195753Y (zh) * 2008-04-29 2009-02-18 东北大学设计研究院(有限公司) 一种铝电解槽纵向端头格栅板绝缘结构
CN101423955A (zh) * 2008-11-21 2009-05-06 中国铝业股份有限公司 一种大型铝电解槽内衬结构
CN101709486B (zh) * 2009-12-18 2012-05-30 中国铝业股份有限公司 一种铝电解槽
CN201793762U (zh) * 2010-07-30 2011-04-13 任必军 用于铝电解槽的锁能结构
CN201908138U (zh) * 2010-12-17 2011-07-27 贵阳铝镁设计研究院有限公司 一种铝电解槽的保温内衬结构
CN202116666U (zh) * 2011-06-24 2012-01-18 贵阳铝镁设计研究院有限公司 一种精铝槽的内衬的侧部结构
CN103122463B (zh) * 2011-11-21 2015-07-22 沈阳铝镁设计研究院有限公司 一种保温型铝电解槽槽内衬侧部复合块
JP6457397B2 (ja) * 2012-12-13 2019-01-23 エスジーエル・シーエフエル・シーイー・ゲーエムベーハーSGL CFL CE GmbH アルミニウムを還元するための電解槽の壁用側壁レンガ
CN203307449U (zh) * 2013-06-29 2013-11-27 贵阳铝镁设计研究院有限公司 精铝槽侧部内衬结构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3129157A1 (fr) * 2021-11-18 2023-05-19 Rio Tinto Alcan International Limited Système de revêtement intérieur pour cuve d’électrolyse

Also Published As

Publication number Publication date
FR3023301B1 (fr) 2016-07-01
RU2017103537A3 (de) 2019-01-28
EP3164529A4 (de) 2018-01-24
CN106661747A (zh) 2017-05-10
CA2950692C (fr) 2022-07-26
RU2017103537A (ru) 2018-08-06
CN106661747B (zh) 2018-08-07
AU2015282394B2 (en) 2019-03-07
CA2950692A1 (fr) 2016-01-07
WO2016001743A1 (fr) 2016-01-07
RU2689292C2 (ru) 2019-05-24
AU2015282394A1 (en) 2017-01-12
FR3023301A1 (fr) 2016-01-08
EP3164529A1 (de) 2017-05-10

Similar Documents

Publication Publication Date Title
AU698926B2 (en) Improved lining for aluminum production furnace
EP3164529B1 (de) Seitenisolationsbeschichtung für eine elektrolysezelle
WO2013007408A1 (en) Composite refractory for an inner lining of a blast furnace
LU84042A1 (fr) Rigole de coulee pour metaux liquides
JP4969627B2 (ja) 高温タンクの基礎構造及び基礎工法
EP2751051B1 (de) Stopfmasse für die feuerfeste auskleidung eines metallurgischen gefässes, metallurgisches gefäss, beispielsweise ein hochofen, das eine auskleidung umfasst, die die genannte stopfmasse verwendet
EP2013381B1 (de) Elektrolysebehälter zum erhalt von aluminium
EP0126700B1 (de) Unterkathodisches Schutzblech mit verformbaren Teilen für Elektrolyseöfen des Typs "Hall-Héroult"
RU2668615C2 (ru) Боковой блок для стенки электролизера для восстановления алюминия
ES2744204T3 (es) Crisol reutilizable para la fabricación de material cristalino
CA2935452C (fr) Ensemble anodique et procede de fabrication associe
NO832497L (no) Katodekar for aluminium-elektrolysecelle
Pardo et al. Cathode performance evaluation at Votorantim Metais—CBA
BE1008400A6 (fr) Garnissage de protection en briques refractaires pour un caisson de refroidissement d'un four industriel.
CN201184480Y (zh) 步进梁式炉水冷管纤维包扎结构
EP1139049B1 (de) Feuerfest-Ausmauerung für Flüssig-Metall enthaltende Öfen
BR112017025769B1 (pt) Métodos para forrar um conjunto de cátodos de uma célula de redução para produção de alumínio primário (variantes)
SU732409A1 (ru) Футеровка электролизера дл получени магни
CA3122504A1 (fr) Ensemble anodique et procede de fabrication associe
FR2468092A1 (fr) Couvercle pour chambre de four annulaire de cuisson de corps en carbone
RU2006114478A (ru) Устройство для подвода тока к печам

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20180103

RIC1 Information provided on ipc code assigned before grant

Ipc: C25C 3/08 20060101AFI20171220BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181120

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1124264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015029024

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190424

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190824

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190725

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190724

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1124264

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015029024

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602015029024

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

26N No opposition filed

Effective date: 20200127

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190724

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150701

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190424

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230712

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20240624

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240621

Year of fee payment: 10