EP3157711B1 - Procédé permettant de faire fonctionner un outil électrique - Google Patents

Procédé permettant de faire fonctionner un outil électrique Download PDF

Info

Publication number
EP3157711B1
EP3157711B1 EP15719476.2A EP15719476A EP3157711B1 EP 3157711 B1 EP3157711 B1 EP 3157711B1 EP 15719476 A EP15719476 A EP 15719476A EP 3157711 B1 EP3157711 B1 EP 3157711B1
Authority
EP
European Patent Office
Prior art keywords
electric motor
rotational speed
power tool
phase
determined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15719476.2A
Other languages
German (de)
English (en)
Other versions
EP3157711A1 (fr
Inventor
Chi Hoe Leong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3157711A1 publication Critical patent/EP3157711A1/fr
Application granted granted Critical
Publication of EP3157711B1 publication Critical patent/EP3157711B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/002Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose for special purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • B25B21/02Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose with means for imparting impact to screwdriver blade or nut socket
    • B25B21/026Impact clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • B25B23/147Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers
    • B25B23/1475Arrangement of torque limiters or torque indicators in wrenches or screwdrivers specially adapted for electrically operated wrenches or screwdrivers for impact wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B23/00Details of, or accessories for, spanners, wrenches, screwdrivers
    • B25B23/14Arrangement of torque limiters or torque indicators in wrenches or screwdrivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/02Construction of casings, bodies or handles

Definitions

  • the invention relates to a method for operating an electric tool according to claim 1, a control device for an electric tool according to claim 13 and an electric tool according to claim 14.
  • the object of the invention is to provide an improved method and an improved control device for operating an electric tool.
  • One advantage of the method described is that it is easier to screw a screw into a workpiece, in particular avoiding damage to the screw or the workpiece.
  • This advantage is achieved in that the torque of the electric motor is at least reduced if, after an initial time, the speed of the electric motor exceeds a determined speed limit. Tests have shown that when a screw is screwed into a workpiece, the speed of the electric motor increases again after a sitting position has been reached before the screw or the workpiece is damaged.
  • the speed limit can, for example, be determined by experiments and saved.
  • the speed limit during screwing the screw into the workpiece is determined as a function of the speed of the electric motor when screwing the screw into the workpiece. This means that an individual speed limit can be determined for every screwdriving situation. This ensures that the screwing-in process is not ended too early or too late.
  • the speed limit can be determined individually depending on the screw, in particular depending on the diameter of the screw, the thread pitch of the screw, the type of workpiece, in particular the hardness of the workpiece.
  • the speed is determined during an initial period of impact operation when the screw is screwed into the workpiece and the speed limit is determined as a function of the determined speed.
  • the speed limit can thus be recorded precisely depending on the prevailing conditions.
  • impact operation is used to tighten the screw.
  • the impact mode thus represents the operating state in which the risk of damage to the screw and / or the workpiece is high. It is therefore advantageous to determine the speed limit as a function of the speed during the start of the impact operation of the power tool.
  • the speed limit is determined as a function of a determined maximum speed during the initial time.
  • the speed limit can be calculated as a function of the maximum speed multiplied by a factor and / or added with a constant.
  • a mean value can also be used instead of the maximum speed the speed or several values of the determined speed can be used to calculate the speed limit.
  • an impact operation of the power tool is recognized as a function of parameters of the power tool.
  • a striking operation of the power tool is recognized when the speed is below a third comparison value and / or the current of the electric motor is above a fourth comparison value during a starting time. Both the current and the speed can be used as parameters for the precise detection of impact operation.
  • the percussion operation can also be precisely recognized by additionally detecting a measured time interval between two percussion operation beats, and if the time interval between two percussion operation beats is below a first comparison value.
  • a further specification for the detection of the impact operation is achieved in that an impact operation is recognized if a standard deviation of the determined speed of the electric motor during the start time of the impact operation is less than a second comparison value. The start of the impact operation can thus be precisely determined.
  • a workpiece is recognized that has a predetermined minimum thickness when the speed of the electric motor is below the third comparison value and the current through the electric motor is above the fourth comparison value during the start time of the electric tool. This results in an improved implementation of the method.
  • the torque of the electric motor is at least reduced after the start time when a predetermined first time period has passed. In this way, a maximum upper limit for the duration of the screwing-in process is specified. This defines a safety limit for the duration of the screwing-in process.
  • This method is used in particular for thin workpieces, the second time period being shorter than the first time period, for example.
  • the second method is carried out if, during the start time after the activation of the power tool, a change in the determined speed is outside a predetermined range and / or if a change in the determined current is outside a second range.
  • the torque of the electric motor is at least reduced or the electric motor is switched off completely during the second method if, after the initial time, a change in the determined speed of the electric motor is outside a specified speed range and / or if a change in the determined current is outside a specified current range lies.
  • atypical speed changes and / or current changes are recognized and used as a signal to reduce the torque of the electric motor. In this way, damage to the screw and / or the workpiece can be avoided, particularly in the case of a thin workpiece.
  • FIG. 1 shows a schematic representation of a power tool 10, which is designed in the form of an impact wrench 10.
  • the impact wrench 10 has a housing 11 which has a cylindrical main body 12 and a handle 15 attached thereto.
  • a battery 19 is arranged opposite the main body 12.
  • An electric motor 20 in the form of a brushless direct current motor 20 with a planetary gear 24, a spindle 25, an impact generating mechanism 26 and an anvil 27 is arranged in the main body 12.
  • the electric motor 20 serves as a drive source for the rotating impact generating mechanism 26.
  • the speed of the electric motor 20 is reduced with the aid of the planetary gear 24 and then transmitted to the spindle 25.
  • the rotating force of the spindle 25 is converted into a rotating impact force by the impact generating mechanism 26, for which purpose a hammer 26h and a compression spring 26b are provided.
  • An impact force of the hammer 26h is transmitted to the anvil 27.
  • the anvil 27 is rotatably mounted about an axis and is driven by the rotary impact force of the hammer 26h.
  • the anvil 27 is rotatably supported in the housing 11 through a bearing 12j disposed on a front side of the main body 12.
  • a receptacle 27t is provided on a front side of the anvil 27 in order to receive a screw 61 via an insert.
  • the screw 61 represents the tool that is driven by the power tool.
  • the handle 15 of the housing 11 is grasped by an operator in order to use the power tool 10.
  • the handle has a holding section 15h and a lower end section 15p which adjoins the lower end of the handle section 15h.
  • the battery 19, which supplies the power tool 10 with current, is provided at the lower end section 15p.
  • a main switch 18 is provided on the handle section 15h, which has a trigger 18t which can be actuated with a finger.
  • the main switch 18 furthermore has a switch unit 18s which is used to switch the power tool on or off becomes.
  • the trigger 18t is used to increase the amount of control of the electric motor 20 as a function of the actuation path of the trigger 18t.
  • the actuation path of the trigger 18t is detected, for example, as a resistance value with the aid of the switch unit 18s and sent to a control circuit (46, Fig. 3 ) reported.
  • the control circuit For example, a power of the control of the electric motor 20. In this way, the speed and / or the torque of the electric motor 20 can be controlled.
  • a direction switch 17 is provided above the main switch 18, which determines the direction of rotation of the receptacle 27t.
  • the power tool 10 can be clockwise in a right direction; H. in normal operation e.g. for screwing in a screw or in a left direction, d. H. counterclockwise in an unscrewing operation e.g. operated to unscrew a screw.
  • Fig. 2 shows further details of the power tool 10 in a further cross section.
  • the hammer 26h of the impact generating mechanism 26 is connected to the spindle 25 via V-shaped first guide grooves 25v, V-shaped second guide grooves 26z and steel balls 25r.
  • the first guide grooves 25v are arranged on the outer surface, the first guide grooves 25v having semicircular sections which are directed outwards with the V-shaped openings.
  • the V-shaped second guide grooves 26z are arranged in an inner surrounding area of the hammer 26h opposite the first guide grooves 25v of the spindle 25.
  • the second guide grooves 26z have a semicircular cross section, the grooves being opened in a forward direction.
  • the steel balls 25r are arranged between the first guide grooves 25v and the second guide grooves 26z.
  • the hammer 26h is supported so as to be rotatable by a predetermined angle with respect to a reference position of the spindle 25, and is able to move in the axial direction with respect to a longitudinal axis of the spindle 25.
  • the compression spring 26b is in contact with the outer surface of the spindle 25 and the hammer 26h, so that the hammer 26h is biased toward the spindle 25.
  • Striking projections 26w are formed on a front end surface of the hammer 26h in order to generate strikes on the anvil 27 at two positions offset from one another by 180 °. Furthermore, the anvil 27 has striking arms 27d at the two points offset by 180 ° in the circumferential direction ( Fig. 2 ) formed, which absorb the blows of the striking projections 26w of the hammer 26h.
  • the hammer 26h is held on the spindle 25 by the pretensioning force of the compression spring 26b, so that the striking projections 26w of the hammer 26h bear against the striking arms 27d of the anvil 27.
  • the screw When screwing in, the screw can reach a position in the workpiece at which a screw-in resistance exceeds the torque of the hammer 26h.
  • the screw-in resistance is transmitted to the anvil 27 as torque.
  • the hammer 26h is displaced back from the spindle against the biasing force of the compression spring 26b and the striking projections 26w of the hammer sweep over the striking arms 27d of the anvil 27.
  • the striking projections 26w are freed from contact with the striking arms 27d, so that the striking projections 26w can rotate freely at a specified angle.
  • the striking projections 26w of the hammer 26h move over the striking arms 27d of the anvil 27, the hammer accelerates its rotational movement.
  • the biasing force of the compression spring 26b pushes the hammer 26h back towards the anvil 27 within the specified angle, so that the striking projections 26w of the hammer come back into contact with the striking arms 27d of the anvil 27.
  • the impact of the striking projections 26w on the striking arms 27d an increased torque is exerted on the anvil 27 and thus on the receptacle 27t and the screw 61. This process represents an impact operation and is continuously repeated during the impact operation.
  • FIG Figure 3 shows in a schematic representation a circuit arrangement of the power tool 10 of FIG Figure 1 for controlling the electric motor 20, which is designed, for example, as a brushless direct current motor and is driven by a control circuit 40.
  • the electric motor 20 has a rotor 22 with permanent magnets and a stator 23 with drive coils 23C.
  • the control circuit 40 is an electrical circuit for controlling the electric motor 20 and has a three-phase bridge circuit 45 which has six switching elements 44, for example in the form of field effect transistors. Furthermore, a control circuit 46 is provided which controls the switching elements 44 of the three-phase bridge circuit 45 as a function of the switch unit 18s.
  • the three-phase bridge circuit 45 has three output lines 41 which are connected to the corresponding control coils 23c of the electric motor 20.
  • the control circuit 46 is designed to control the switching elements 44 based on signals from magnetic sensors 32 in such a way that an electric current flows sequentially through the drive coils 23c in order to rotate the rotor 22 at a desired speed and / or a desired torque.
  • the control circuit 46 can measure a speed of the electric motor 20 with the aid of the magnetic sensors 32.
  • the control circuit 46 is connected to a measuring device 53 which detects the state of charge of the battery 19, in particular the voltage of the battery 19, and forwards it to the control circuit 46.
  • the electronic control circuit 46 is connected to a memory 51. Limit values, data, characteristic curves, characteristic maps and / or calculation methods and / or formulas are stored in the memory 51.
  • the control circuit 46 detects the current voltage of the battery 19 with the aid of the measuring device 53.
  • the control circuit 46 can measure the current of the electric motor 20 with an ammeter 54 and / or the speed of the electric motor 20 with a tachometer 29. The current and / or the speed can be used by the control circuit 46 to determine when an impact operation of the power tool begins. For this purpose, there are corresponding thresholds or limit values for the current of the electric motor and the speed of the electric motor in the storage unit 51 stored, which the electric motor 20 exceeds when an impact operation starts.
  • the control circuit 46 is designed to carry out a method for operating the power tool for screwing a screw into a workpiece, the electric motor being driven after activation of the power tool in order to screw the screw into the workpiece, with the screw being screwed in for an initial period a percussion operation of the electric tool, the control circuit 46 the speed of the electric motor is determined, the control circuit 46 determining a speed limit depending on the determined speed, wherein a speed of the electric motor is determined after the initial time, a torque of the electric motor is at least reduced by the control circuit 46 when the determined speed of the electric motor exceeds a specified speed limit.
  • a map, a characteristic curve, a table or a corresponding calculation method can be used to determine the speed limit.
  • the map, the characteristic curve, the table or the calculation method determine a relationship between the speed measured during the initial period and the speed limit. If the electric motor reaches the speed limit after the initial time, the electric motor 20 is stopped by the control circuit 46 or an electronic clutch is activated for a short period of time and then the electric motor is completely stopped.
  • Fig. 4 shows in a top diagram ( Figure 4a ) the temporal course of the speed U of the electric motor during a screwing-in process, in a middle diagram ( Figure 4b ) the time course of the current I during the screwing-in process and in a diagram below ( Figure 4c ) the variation over time of the voltage V that is applied to the electric motor by the control circuit.
  • the voltage V to the electric motor is increased over time up to a maximum voltage at a first point in time t1.
  • the voltage V gradually increased to maximum voltage.
  • other time profiles can also be selected for the increase in voltage V during the zeroth phase.
  • the speed U of the electric motor increases rapidly, only to slowly decrease again after reaching a maximum speed until the end of the zeroth phase.
  • the current I flowing through the electric motor which is shown in the second diagram ( Figure 4b ), rises rapidly to a maximum value after the voltage is applied to the electric motor and then drops again to a lower value, only to rise slightly by the end of the zeroth phase.
  • the button for operating the power tool is fully pressed. The button remains fully pressed during further operation.
  • the zeroth phase lasts from the zeroth point in time to to the first point in time t1.
  • the first phase After the zeroth phase, there is a first phase.
  • the first phase lasts from the first point in time t1 to the second point in time t2.
  • the screw 53 Both during the zeroth phase and during the first phase, the screw 53, as in the first position 100 of the Fig. 5 is shown drilling with the tip into the workpiece 110.
  • the workpiece 110 is designed, for example, in the form of a metal plate.
  • the current I increases slowly, the applied voltage V remaining constant at the maximum value.
  • the speed U of the electric motor fluctuates slightly during the first phase, only to drop somewhat by the end of the first phase. In contrast to this, the current I through the electric motor increases somewhat towards the end of the first phase 1.
  • the drilling operation is carried out in the workpiece 110 without the need for an impact operation of the power tool.
  • the second phase 2 begins, in which the screw 53 cuts a thread into the workpiece 110. This process requires more torque so that the power tool's striking mechanism is activated and the current through the power tool increases. In addition, the speed drops.
  • the time period for the second phase 2 can be very short and, for example, contain only two or three threads.
  • the second phase 2 lasts from the second point in time t2 to a third point in time t3.
  • a third phase begins at the third point in time t3, in which the screw 53 is screwed into the cut thread of the workpiece 110.
  • the speed increases significantly and the current decreases significantly.
  • the screw resistance is low, so that the speed increases sharply and the current drops sharply.
  • This process state is in a second position 101 Fig. 5 shown.
  • a fourth phase 4 begins at a fourth point in time t4. If the head 115 of the screw 53 reaches the upper side 116 of the workpiece 110, the screw-in resistance increases rapidly and significantly. The impact mode of the power tool is activated again and the screw 53 is tightened with a high torque. During the fourth phase 4, the speed of the electric motor increases again (not shown), similar to the second phase 2, and the current decreases again.
  • the control circuit 46 of the power tool detects that the speed of the electric motor exceeds the determined speed limit, so that the control circuit 46 reduces the voltage for the electric motor and / or a clutch between the electric motor and the receptacle of the screw opens.
  • This situation occurs at the end of the fourth phase 4 at a fifth point in time t5.
  • the maximum voltage can be in the range of 3.3 V and drop to a voltage of 2.2 V, for example, after the fourth zone 4.
  • the voltage can be completely switched off or at least fall below a value at which the electric motor is rotating. This value can be in the range of 1.8 V, for example.
  • Fig. 6 shows a schematic representation of a program sequence for operating the electric motor.
  • the control circuit 46 detects a voltage of the battery 19 with which the electric motor of the power tool is driven. Then at program point 205, the electric motor according to the zeroth phase is Fig. 4 with a increasing voltage. Furthermore, depending on the selected embodiment, at program point 205 the voltage can also be increased to the maximum voltage in one step.
  • the query is made as to whether the current through the electric motor is greater than a fourth comparison value.
  • the fourth comparison value can be between 10 A and 20 A.
  • the query is made as to whether the speed of the electric motor is less than a third comparison value.
  • the third comparison value can be between 8000 and 20,000 revolutions per minute. The third and fourth comparison values are stored in memory 51. If both queries are met, a branch is made to program point 215.
  • a check is made as to whether a percussion operation is present. For this purpose, it is checked whether the time between two beats is less than a first limit value.
  • the first limit value can be in the range between 0.01 seconds and 0.05 seconds.
  • the first limit value is stored in memory 51.
  • the impacts can be recorded acoustically, for example, using sound sensors or determined using the time course of the current through the electric motor. It is also checked whether a standard deviation of the measured speed is smaller than a second limit value.
  • the second limit value can be in the range between 30 and 90.
  • the second limit value is stored in memory 51. If both inquiries from program point 215 are met, a striking operation of the power tool is clearly recognized and a branch is made to program point 220.
  • the limit values are determined experimentally and can vary from power tool to power tool, e.g. vary depending on the type of electric motor.
  • the standard deviation can be calculated using the following formulas:
  • E ( ⁇ ) denotes the expected value.
  • the first time period is divided into a predetermined number of sub-intervals, for example into ten sub-intervals.
  • a standard deviation is then calculated for each sub-interval for the measured values for the speed.
  • An averaged standard deviation for the speed is then determined from the ten standard deviations for the speed by averaging.
  • the speed of the electric motor is recorded. For example, a time profile of the speed and / or individual values of the speed are recorded at time intervals or a maximum value of the speed.
  • a speed limit is then determined at program point 222 as a function of the detected speed.
  • the speed limit can be determined, for example, as a function of the recorded maximum speed, the detected speed values and / or as a function of the time profile of the speed during the measurement at program point 220.
  • the characteristic curves, characteristic diagrams and / or calculation methods and / or formulas of the memory 51 are used for the calculation. In a simple case, the speed limit is calculated by multiplying the measured maximum speed by a constant greater than 1.
  • a constant speed value can also be taken into account.
  • the constant speed value is stored in memory 51.
  • the speed limit can be calculated, for example, from the determined maximum speed by adding the constant speed value.
  • the speed value can e.g. are in the range between 200 and 1000 revolutions per minute.
  • a map, a characteristic curve, a table or a corresponding calculation method can be used, which are stored in the memory.
  • the speed limit is determined as a function of the state of charge of the battery, which was optionally determined at program point 200.
  • the state of charge of the battery can for example be taken into account in the form of a second factor.
  • the determined speed limit corresponds to the second Factor multiplied.
  • the speed of rotation can only be determined at program point 220 after a predetermined waiting time of 0.1 to 0.2 s, for example.
  • a predetermined speed limit can be stored in the memory, which is independent of the speed during impact operation, and which in a simple embodiment is used as the determined speed limit.
  • the second period of time can e.g. lie in the range between 0.1 and 0.3 s.
  • the program branches to program point 230.
  • the control circuit 46 reduces a torque of the electric motor, for example the voltage of the electric motor is reduced and / or a clutch between the electric motor and drive is opened. Subsequently, after a predetermined period of time, a branch can be made from program point 230 to an end point 235 at which the electric motor is switched off or at least the voltage is reduced to such an extent that the electric motor no longer rotates.
  • program point 210 If the query at program point 210 shows that neither the current nor the rotational speed are above or below the given limit values within a given time interval from program point 205, the program branches to program point 240.
  • program point 240 it is checked in a first embodiment whether a change in the speed and / or a change in the current is within predetermined ranges. If this is not the case, a branch is made to program point 230. The specified areas are stored in memory. In addition, a branch is made from program point 240 to program point 230 after a predetermined maximum screw-in time.
  • the maximum screw-in time can be between 0.1 and 0.3 seconds.
  • a check is made at program point 240 to determine whether a percussion operation is present. For this purpose, it is checked whether the time between two beats is less than a first limit value.
  • the first limit value can be in the range between 0.01 seconds and 0.05 seconds.
  • the first limit value is stored in memory 51.
  • the impacts can be recorded acoustically, for example, using sound sensors or determined using the time course of the current through the electric motor. It is also checked whether a standard deviation of the measured speed is smaller than a second limit value.
  • the second limit value can be in the range between 30 and 90.
  • the second limit value is stored in memory 51. If both queries of program point 240 are fulfilled, a striking operation of the power tool is clearly recognized.
  • the limit values are determined experimentally and can vary from power tool to power tool, for example depending on the type of electric motor.
  • a branch is made to program point 230 after a fixed period of, for example, 0.05 to 0.2 seconds.
  • the control circuit 46 reduces the torque of the electric motor, for example the voltage of the electric motor is reduced and / or a clutch between the electric motor and drive is opened.
  • a branch can be made to the end point 235, at which the electric motor is switched off or at least the voltage is reduced to such an extent that the electric motor no longer rotates.
  • the power tool can be designed to indicate whether the method according to program step 215 or the method according to program step 240 is carried out.
  • the method according to program step 215 displays a thick workpiece with a predetermined minimum thickness.
  • the method of 240 displays a workpiece that is thinner than the predetermined minimum thickness.
  • the display can be visual, acoustic or haptic.
  • Program steps 215 and 220 are performed during phase 2 of the Fig. 4 carried out.
  • Program step 225 becomes during phase 4 of Fig. 4 carried out.
  • the program step 240 can during phases 2 to 4 of the Fig. 4 be performed.
  • program point 215 can be dispensed with, so that, starting from program point 210, there is a direct change to program point 220.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Spanners, Wrenches, And Screw Drivers And Accessories (AREA)
  • Control Of Electric Motors In General (AREA)
  • Percussive Tools And Related Accessories (AREA)

Claims (14)

  1. Procédé pour faire fonctionner un outil électrique, lequel est équipé d'un mécanisme générateur de coups destiné à générer une force de frappe rotatoire, afin de visser une vis autoforeuse et autotaraudeuse dans une pièce ouvrée,
    un moteur électrique étant entraîné après une activation de l'outil électrique en vue de visser la vis dans la pièce ouvrée,
    une augmentation de la vitesse de rotation ayant lieu pendant le vissage de la vis dans une phase zéro (t0<t<t1), une vitesse de rotation du moteur électrique augmentant rapidement pour chuter légèrement jusqu'à la fin de la phase zéro après avoir atteint une vitesse de rotation maximale,
    la vitesse de rotation du moteur électrique fluctuant légèrement dans une première phase (t1<t<t2) qui suit, pour chuter légèrement jusqu'à la fin de la première phase,
    le mécanisme générateur de coups étant activé dans une deuxième phase (t2<t<t3) qui suit, de sorte que la vis taille un filet dans la pièce ouvrée, et la vitesse de rotation du moteur électrique diminuant,
    dans une troisième phase (t3<t<t4) qui suit, la vitesse de rotation du moteur électrique augmentant fortement et le mécanisme générateur de coups étant désactivé,
    le mécanisme générateur de coups étant activé dans une quatrième phase (t4<t<t5) qui suit, et la vitesse de rotation du moteur électrique étant déterminée pendant un temps initial prédéfini du régime de frappe de l'outil électrique, la vitesse de rotation du moteur électrique étant déterminée après le temps initial, et un couple du moteur électrique étant au moins réduit à la fin de la quatrième phase lorsque la vitesse de rotation déterminée du moteur électrique dépasse une limite de vitesse de rotation prédéfinie,
    et une tension du moteur électrique dans la phase zéro étant augmentée jusqu'à une tension maximale à la fin de la phase zéro et la tension étant maintenue sensiblement constante jusqu'à la fin de la quatrième phase, à la fin de la quatrième phase, la tension étant réduite et/ou un accouplement entre le moteur électrique et un logement de la vis s'ouvrant et, après un temps de fonctionnement par inertie prédéfini, la tension étant complètement déconnectée ou chutant au moins au-dessous d'une valeur à laquelle le moteur électrique tourne.
  2. Procédé selon la revendication 1, une vitesse de rotation maximale du moteur électrique étant déterminée en tant que vitesse de rotation pendant le temps initial et la limite de vitesse de rotation étant déterminée en fonction de la vitesse de rotation maximale déterminée.
  3. Procédé selon la revendication 1 ou 2, une valeur de vitesse de rotation prédéfinie étant en plus prise en compte lors de la détermination de la limite de vitesse de rotation.
  4. Procédé selon l'une des revendications 1 à 3, le temps initial étant reconnu pendant le régime de frappe si, pendant un temps de démarrage après l'activation de l'outil électrique, la vitesse de rotation est inférieure à une troisième valeur comparative et le courant à travers le moteur électrique est supérieur à une quatrième valeur comparative.
  5. Procédé selon la revendication 4, le temps initial étant reconnu pendant le régime de frappe si, en plus, un écart dans le temps mesuré entre deux coups du régime de frappe est inférieur à une première valeur comparative.
  6. Procédé selon la revendication 4 ou 5, le temps initial étant reconnu pendant le régime de frappe si, en plus, un écart type de la vitesse de rotation déterminée du moteur électrique pendant le temps initial est inférieur à une deuxième valeur comparative.
  7. Procédé selon l'une des revendications 5 et 6, une pièce ouvrée ayant une épaisseur minimale prédéfinie étant reconnue si, pendant le temps de démarrage après l'activation de l'outil électrique, la vitesse de rotation est inférieure à la troisième valeur comparative et le courant à travers le moteur électrique est supérieur à la quatrième valeur comparative, et la présence d'une pièce ouvrée ayant l'épaisseur minimale étant indiquée par l'outil électrique.
  8. Procédé selon l'une des revendications précédentes, un couple du moteur électrique étant au moins réduit après le temps initial lorsqu'une première durée prédéfinie s'est écoulée.
  9. Procédé selon la revendication 1, un deuxième procédé étant mis en œuvre si, pendant le temps de démarrage après l'activation de l'outil électrique, le courant à travers le moteur électrique est inférieur à une cinquième valeur comparative, avec le deuxième procédé, un régime de frappe de l'outil électrique prenant fin après une deuxième durée prédéfinie.
  10. Procédé selon la revendication 9, le deuxième procédé étant mis en œuvre si, pendant le temps de démarrage après l'activation de l'outil électrique, une modification de la vitesse de rotation déterminée se trouve en plus en-dehors d'une plage prédéfinie et/ou si une modification du courant déterminé se trouve en-dehors d'une deuxième plage.
  11. Procédé selon l'une des revendications 9 et 10, un couple du moteur électrique étant au moins réduit après le temps initial si une modification de la vitesse de rotation déterminée du moteur électrique se trouve en-dehors d'une plage de vitesses de rotation prédéfinie et/ou une modification du courant déterminé se trouve en-dehors d'une plage de courant prédéfinie.
  12. Procédé selon l'une des revendications précédentes, le moteur électrique étant entraîné par une batterie, la détermination de la limite de vitesse de rotation tenant compte d'une tension de la batterie.
  13. Contrôleur qui est configuré pour mettre en œuvre un procédé selon l'une des revendications précédentes.
  14. Outil électrique comprenant un mécanisme générateur de coups destiné à générer une force de frappe rotatoire et comprenant un contrôleur selon la revendication 13.
EP15719476.2A 2014-06-20 2015-05-04 Procédé permettant de faire fonctionner un outil électrique Active EP3157711B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014211891.3A DE102014211891A1 (de) 2014-06-20 2014-06-20 Verfahren zum Betreiben eines Elektrowerkzeuges
PCT/EP2015/059679 WO2015193022A1 (fr) 2014-06-20 2015-05-04 Procédé permettant de faire fonctionner un outil électrique

Publications (2)

Publication Number Publication Date
EP3157711A1 EP3157711A1 (fr) 2017-04-26
EP3157711B1 true EP3157711B1 (fr) 2020-10-28

Family

ID=53016609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15719476.2A Active EP3157711B1 (fr) 2014-06-20 2015-05-04 Procédé permettant de faire fonctionner un outil électrique

Country Status (6)

Country Link
US (1) US10293469B2 (fr)
EP (1) EP3157711B1 (fr)
JP (1) JP6356344B2 (fr)
CN (1) CN107073692B (fr)
DE (1) DE102014211891A1 (fr)
WO (1) WO2015193022A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9908182B2 (en) 2012-01-30 2018-03-06 Black & Decker Inc. Remote programming of a power tool
DE102015211119A1 (de) 2014-06-20 2015-12-24 Robert Bosch Gmbh Verfahren zum Steuern eines Elektromotors eines Elektrowerkzeuges
US10322498B2 (en) 2014-10-20 2019-06-18 Makita Corporation Electric power tool
US20160121467A1 (en) * 2014-10-31 2016-05-05 Black & Decker Inc. Impact Driver Control System
US10406662B2 (en) * 2015-02-27 2019-09-10 Black & Decker Inc. Impact tool with control mode
KR102102106B1 (ko) * 2015-12-25 2020-04-20 니토 코키 가부시키가이샤 나사 결합 부재 체결 공구 및 나사 결합 부재 체결 공구에 있어서의 구동 시간 설정 방법
WO2017122592A1 (fr) * 2016-01-14 2017-07-20 日立工機株式会社 Outil à impact rotatif
DE102016212520B4 (de) * 2016-07-08 2020-06-18 Robert Bosch Gmbh Verfahren zum Betreiben eines Elektrowerkzeuges
CN213319858U (zh) * 2018-02-19 2021-06-01 米沃奇电动工具公司 冲击工具
CN215789518U (zh) * 2018-12-10 2022-02-11 米沃奇电动工具公司 冲击工具
CN215789519U (zh) * 2018-12-21 2022-02-11 米沃奇电动工具公司 冲击工具
CN109782643B (zh) * 2019-03-12 2022-04-15 常州彤扬电气制造有限公司 一种电动工具启动热机控制方法
JP7320419B2 (ja) 2019-09-27 2023-08-03 株式会社マキタ 回転打撃工具
JP7386027B2 (ja) * 2019-09-27 2023-11-24 株式会社マキタ 回転打撃工具
TWI691262B (zh) * 2019-10-08 2020-04-21 何炳梓 電動園藝機
JP7178591B2 (ja) * 2019-11-15 2022-11-28 パナソニックIpマネジメント株式会社 インパクト工具、インパクト工具の制御方法及びプログラム
JP7281744B2 (ja) * 2019-11-22 2023-05-26 パナソニックIpマネジメント株式会社 インパクト工具、インパクト工具の制御方法及びプログラム
USD948978S1 (en) 2020-03-17 2022-04-19 Milwaukee Electric Tool Corporation Rotary impact wrench
DE102020207023A1 (de) * 2020-06-04 2021-12-09 Festool Gmbh Elektrowerkzeug-Vorrichtung und Verfahren
EP4205906A4 (fr) * 2020-11-09 2024-02-07 Nanjing Chervon Industry Co., Ltd. Outil électrique intelligent et procédé de commande associé
EP4263138A1 (fr) 2020-12-18 2023-10-25 Black & Decker Inc. Outils à percussion et modes de commande
CN114614703B (zh) * 2022-03-17 2022-12-23 广东新比克斯实业股份有限公司 基于电力输出管控智能化电动工具

Family Cites Families (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3975954A (en) * 1974-11-25 1976-08-24 Process Computer Systems, Inc. Method and apparatus for evaluating torquing operations
US4316512A (en) * 1979-04-04 1982-02-23 Sps Technologies, Inc. Impact wrench
JPH07106549B2 (ja) * 1988-10-12 1995-11-15 不二空機株式会社 インパクトレンチの締付制御装置
US5216795A (en) * 1989-09-22 1993-06-08 Atlas Copco Tools Ab Method for tightening threaded joints
US5131130A (en) * 1990-10-09 1992-07-21 Allen-Bradley Company, Inc. Torque-angle window control for threaded fasteners
JPH04109867U (ja) * 1991-03-07 1992-09-24 瓜生製作株式会社 トルク制御式インパクトレンチ
SE501155C2 (sv) * 1993-04-21 1994-11-28 Atlas Copco Tools Ab Impulsmutterdragare
JP3000185B2 (ja) * 1993-04-21 2000-01-17 株式会社山崎歯車製作所 インパクトレンチによるボルト締結方法
DE19503524A1 (de) * 1995-02-03 1996-08-08 Bosch Gmbh Robert Impulsschrauber und Verfahren zum Anziehen einer Schraubverbindung mittels des Impulsschraubers
US6581696B2 (en) * 1998-12-03 2003-06-24 Chicago Pneumatic Tool Company Processes of determining torque output and controlling power impact tools using a torque transducer
DE10045985A1 (de) * 2000-09-16 2002-03-28 Hilti Ag Elektrohandwerkzeuggerät mt Drehmomentkontrolle
US6598684B2 (en) * 2000-11-17 2003-07-29 Makita Corporation Impact power tools
JP4999236B2 (ja) 2001-04-25 2012-08-15 勝行 戸津 電動回転工具のトルク制御方式
EP2263833B1 (fr) * 2003-02-05 2012-01-18 Makita Corporation Outil motorisé à limitation de couple n'utilisant qu'un moyen de détection de déplacement angulaire
JP4906236B2 (ja) * 2004-03-12 2012-03-28 株式会社マキタ 締付工具
JP4211676B2 (ja) * 2004-05-12 2009-01-21 パナソニック電工株式会社 インパクト回転工具
JP4211675B2 (ja) * 2004-05-12 2009-01-21 パナソニック電工株式会社 インパクト回転工具
US7552781B2 (en) * 2004-10-20 2009-06-30 Black & Decker Inc. Power tool anti-kickback system with rotational rate sensor
JP4211744B2 (ja) * 2005-02-23 2009-01-21 パナソニック電工株式会社 インパクト締付け工具
US7602137B2 (en) * 2006-02-20 2009-10-13 Black & Decker Inc. Electronically commutated motor and control system
JP5405157B2 (ja) * 2009-03-10 2014-02-05 株式会社マキタ 回転打撃工具
DE102009002479B4 (de) * 2009-04-20 2015-02-19 Hilti Aktiengesellschaft Schlagschrauber und Steuerungsverfahren für einen Schlagschrauber
JP5464014B2 (ja) * 2010-03-31 2014-04-09 日立工機株式会社 電動工具
JP5464434B2 (ja) * 2010-03-31 2014-04-09 日立工機株式会社 電動工具
JP5769385B2 (ja) * 2010-05-31 2015-08-26 日立工機株式会社 電動工具
DE102010024920A1 (de) * 2010-06-18 2011-12-22 C. & E. Fein Gmbh Schrauber
JP5674027B2 (ja) * 2011-03-14 2015-02-18 日立工機株式会社 締付工具
CN103269832A (zh) 2010-12-28 2013-08-28 日立工机株式会社 驱动工具
DE102011005079A1 (de) * 2011-03-04 2012-09-06 Hilti Aktiengesellschaft Setzverfahren für einen Spreizanker und Schlagschrauber zum Setzen eines Spreizankers
JP2013146846A (ja) * 2012-01-23 2013-08-01 Max Co Ltd 回転工具
US8919456B2 (en) * 2012-06-08 2014-12-30 Black & Decker Inc. Fastener setting algorithm for drill driver
JP6135925B2 (ja) 2013-07-19 2017-05-31 パナソニックIpマネジメント株式会社 インパクト回転工具及びインパクト回転工具用先端アタッチメント
US9597784B2 (en) * 2013-08-12 2017-03-21 Ingersoll-Rand Company Impact tools

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2017517406A (ja) 2017-06-29
US10293469B2 (en) 2019-05-21
DE102014211891A1 (de) 2015-12-24
EP3157711A1 (fr) 2017-04-26
CN107073692A (zh) 2017-08-18
CN107073692B (zh) 2020-03-03
US20180200872A1 (en) 2018-07-19
JP6356344B2 (ja) 2018-07-11
WO2015193022A1 (fr) 2015-12-23

Similar Documents

Publication Publication Date Title
EP3157711B1 (fr) Procédé permettant de faire fonctionner un outil électrique
EP3157712B1 (fr) Procédé pour commander un moteur électrique d&#39;un outil électrique
DE102015001982B4 (de) Drehschlagwerkzeug
DE102007059422B4 (de) Verfahren zum Setzen von Nietelementen durch ein von einem Elektromotor angetriebenes portables Nietgerät sowie ein Nietgerät
DE102015013532B4 (de) Elektrisches Kraftwerkzeug
DE602004004213T2 (de) Kraftangetriebenes Werkzeug zum Anziehen einer Schraube oder eines Bolzens
EP2397258B1 (fr) Visseuse
DE102007000281A1 (de) Verfahren zur Steuerung eines Schraubgerätes
EP3113911B1 (fr) Affichage de puissance adaptatif
DE202017003590U1 (de) Elektrisch angetriebenes Werkzeug
EP3228423A1 (fr) Comportement de commutation optimise par application d&#39;un dispositif d&#39;accouplement a patinage electronique
EP1785231A2 (fr) Outil de vissage à régulation de vitesse de rotation et méthode de régulation de vitesse pour un outil de vissage
EP3348347B1 (fr) Procédé et dispositif destiné à enfoncer une vis
WO2022128388A1 (fr) Procédé de fonctionnement d&#39;un outil électrique portatif
DE102016212520B4 (de) Verfahren zum Betreiben eines Elektrowerkzeuges
WO2006048420A1 (fr) Procede pour commander un comportement de serrage d&#39;un dispositif de vissage
WO2016116250A1 (fr) Procédé pour faire fonctionner un moteur électrique d&#39;un outil électrique
EP3393710B1 (fr) Procédé permettant de faire fonctionner un outil électrique
DE102018208302A1 (de) Verfahren zum Anziehen einer Schraubverbindung
EP2921263A1 (fr) Reconnaissance de comportement au choc en fonction de la charge
WO2019145156A1 (fr) Procédé de commande d&#39;une visseuse à percussion
DE102018201052A1 (de) Verfahren zum Steuern einer Drehzahl eines Elektromotors eines Schraubwerkzeuges
EP4046226B1 (fr) Procédé de commande et de régulation d&#39;un accumulateur
DE102005060022A1 (de) Verfahren zur Bestimmung eines Überlastbereichs einer elektrischen Bremse
DE102020213271A1 (de) Verfahren zum Betrieb einer Handwerkzeugmaschine

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170120

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180322

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200602

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015013708

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1327736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210301

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210128

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015013708

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20210729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210228

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1327736

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230517

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230726

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201028