EP3143342B1 - Unité de contrôle pour la ventilation d'un espace et méthode de ventilation d'un espace - Google Patents

Unité de contrôle pour la ventilation d'un espace et méthode de ventilation d'un espace Download PDF

Info

Publication number
EP3143342B1
EP3143342B1 EP15723882.5A EP15723882A EP3143342B1 EP 3143342 B1 EP3143342 B1 EP 3143342B1 EP 15723882 A EP15723882 A EP 15723882A EP 3143342 B1 EP3143342 B1 EP 3143342B1
Authority
EP
European Patent Office
Prior art keywords
room
sound
ventilation
arrangement according
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15723882.5A
Other languages
German (de)
English (en)
Other versions
EP3143342A1 (fr
EP3143342C0 (fr
Inventor
Karlheinz Bay
Philip Leistner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP3143342A1 publication Critical patent/EP3143342A1/fr
Application granted granted Critical
Publication of EP3143342C0 publication Critical patent/EP3143342C0/fr
Publication of EP3143342B1 publication Critical patent/EP3143342B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0001Control or safety arrangements for ventilation
    • F24F2011/0002Control or safety arrangements for ventilation for admittance of outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/40Noise

Definitions

  • the application relates to a control device for a room ventilation device and methods for controlling a room ventilation device.
  • Natural ventilation devices such as windows or openable facade elements, and mechanical ventilation devices, such as ventilation devices and systems, are used to ventilate rooms. They are operated either manually or controlled. Sometimes there are also mixed forms of these operating modes or just an air quality display, for example a so-called "CO2 traffic light", which informs the user about the ventilation requirement so that he can independently activate the natural or mechanical ventilation device.
  • CO2 traffic light a so-called "CO2 traffic light”
  • the opening of the window or the switching on of the ventilation device is based on room characteristics recorded by sensors, such as room temperature, room humidity and room air quality ( Fig. 1a ). This makes demand-based, energy-efficient ventilation possible. Ventilation occurs at certain limit values; ventilation is interrupted again at other limit values. This control can be further expanded by taking into account, for example, the temperature conditions outside the room.
  • this quiet level is also considered the maximum permissible ventilation noise level. If there is an increased need for ventilation, significantly quieter and more ventilation devices must be used, or the ventilation devices must be equipped with complex silencers. These silencers also cause a pressure loss, which in turn requires increased fan performance with the associated electrical energy consumption. In any case, reducing the noise of the ventilation involves considerable effort.
  • a room ventilation device and an associated method are known.
  • a ventilation valve is opened or closed for a certain time.
  • various parameters are recorded in the room to be ventilated.
  • the parameters can include sound, which can also be detected outside the room. By comparing the sound levels in the room and outside the room, it can be determined whether people are present in the room.
  • the ventilation can be regulated.
  • Ventilation devices which, when there is a high sound level outside a room to be ventilated, interrupt the ventilation in order to reduce the entry of sound into the room to be ventilated.
  • the object of this invention is to enable room ventilation in which the sound annoyance of users is reduced with little effort. This task is solved by the independent claims. Advantageous refinements can be found in the dependent claims.
  • an arrangement comprising a control device for a room ventilation device with the features of claim 1, which serves to ventilate a room.
  • the control device is designed in such a way that when deciding whether the room ventilation device should provide ventilation, noise pollution for people in the room resulting from the ventilation can be taken into account.
  • ventilation can contribute to noise pollution in the room in several ways. Sound from the surroundings can penetrate into the room through an open window. In the case of ventilation with a fan, fan noise may occur. To a limited extent, sound from the environment can penetrate into a room even with ventilation using a fan. Another source of noise can be the opening and closing of the windows themselves.
  • a detection device for sound in the room is present. This allows control depending on the sound detected in the room. If the noise level in the room is already high, for example when children are playing in a kindergarten, additional noise pollution through ventilation will not cause any nuisance. However, when the children are sleeping, noise pollution through ventilation should be avoided.
  • an operating state of a fan that is intended to ventilate the room can be taken into account. If the operating status of the fan is known, a statement can be made as to whether the sound detected in the room comes from the fan or from other sources. In order to determine the connection between the operating state of the fan and noise pollution in the room, it is possible to operate the fan in different operating states in a secure, otherwise quiet room and record the sound recorded in the room. Of course, data known from the manufacturer can also be used, although this often does not sufficiently take the respective room into account.
  • the opening of a window or a facade opening serving as a room ventilation device can be controlled.
  • the presence of people in the room can be detected.
  • room ventilation systems are operated in such a way that they do not operate when people are away because there is no need for ventilation.
  • it can make sense to ventilate, especially when you are away.
  • a window may not be opened in this way if there is a risk of break-in.
  • this detection device can also detect the presence of people. If the detection device is so sensitive that breathing noises from an otherwise quiet person can also be detected, for example in a bedroom or hospital room, the presence of people in the room can also be detected.
  • the sound in the environment can be determined from the time and stored data at which time which sound is to be expected. For example, it may be known that on weekday mornings between 7:00 a.m. and 8:00 a.m. the noise level on a street is always so high that it is better not to ventilate. It is understood that this approach can of course involve errors. However, this means that there is no need for a detection device for the sound in the environment or its temporary failure can be bridged.
  • the sound in the environment can be obtained from real-time information and/or from predictions of sound-generating events based on real-time information.
  • a current flight plan can be used to determine whether aircraft noise is to be expected.
  • current flight schedules can be easily accessed online. It also makes sense to create a forecast from the real-time information requested as to when noise can be expected. For example, from a queried flight plan it can be made clear with the help of a forecast that aircraft noise will occur in three minutes.
  • a large number of locally distributed detection devices for sound are present in the environment, so that propagating acoustic events, in particular moving noise-producing means of transport, can be recorded and a forecast of the expected sound, in particular for a plurality of rooms to be ventilated, can be created.
  • the individual detection devices for sound in the environment can also be used for control devices in the rooms located there without forecasting.
  • a large number of detection devices for sound in the environment can be arranged along a railway line, which, on the one hand, create a forecast for the sound resulting from a train passing through and thus ensure that the windows are closed in a timely manner.
  • the sound detection devices can also detect other noise, for example from a construction site, and accordingly close the windows of rooms in the immediate vicinity of the construction site.
  • the sound can be analyzed with regard to the subjective annoyance it causes. Since ultimately it is mainly, if not exclusively, about avoiding subjective annoyance, it makes sense to take into account not only the level of the sound level, but also the subjective annoyance it causes.
  • the recorded noise can be compared with stored noise patterns that have been evaluated by test subjects. In this context, let's look at it again The above-mentioned consideration of the sound that occurs when windows are opened and closed should be remembered.
  • the sound can also be used to mask information-containing speech signals. It is therefore possible to consciously accept the intrusion of ambient noise if this means that more distracting conversations are perceived less strongly.
  • user intervention is possible so that room ventilation can take place in accordance with the user's current wishes.
  • Such a design increases user acceptance because he does not feel at the mercy of the technology.
  • high air quality or a lack of noise pollution is more important to a user than usual. This cannot be recognized by the technology. Only user intervention can correct this.
  • control device is designed to control a room ventilation device for ventilating a room of a mobile device, in particular a vehicle.
  • a room ventilation device for ventilating a room of a mobile device, in particular a vehicle.
  • High air quality combined with low noise pollution is also desirable in vehicles.
  • sound in particular sound in the environment
  • High traffic noise can generally indicate low air quality.
  • the analysis of the sound can be used to determine that you are in a tunnel where the air quality is normally low. Especially in this case it is not mandatory To detect sound in the environment.
  • a tunnel can sometimes also be recognized by the sound within the vehicle, i.e. by the sound detection device in the room.
  • a unit for signal preprocessing and signal evaluation is present so that control signals for the room ventilation device can be provided.
  • a signal evaluation module which generates a control signal for noise-dependent adjustment of the ventilation device from the recorded noise-related signals and other noise-relevant data, which controls the room ventilation device directly or as an element of a higher-level room control.
  • the invention also relates to a method for ventilating a room, whereby when deciding whether the room ventilation device should provide ventilation, noise pollution for people in the room resulting from the ventilation can be taken into account, with sound in the area surrounding the room from which to Air used for ventilation comes from, and sound in the room to be ventilated is taken into account. Further explanations of the method are omitted since the method is already sufficiently clear from the description of the control device.
  • the method can be carried out with a control device described above.
  • the noises generated by the users in the room and the noises caused by ventilation, whether coming from outside through windows or from ventilation devices in the room, must be separated from each other.
  • the signals are transmitted directly, for example with at least one, but usually several (vibro-)acoustic sensors (sound and vibration pickups) ( Fig. 2 ), or indirectly, e.g. based on information about the noise generators (traffic information such as data from traffic control devices or from timetables and flight plans for external sound sources and device-related settings for ventilation systems) recorded and processed for evaluation ( Fig. 3 ).
  • voice information such as data from traffic control devices or from timetables and flight plans for external sound sources and device-related settings for ventilation systems
  • Fig. 3 several methods are available to separate the signals from intrinsic noise and background noise, such as correlation analysis of acoustic and, if necessary, other signals.
  • noise separation can be done based on the relationship between the ventilation noise and the speed of the fan, expressed by a linear correlation or a type of characteristic curve.
  • the resulting expected value of the ventilation noise is compared in the room with the noise level measured using a sound sensor, for example one or more microphones at representative locations, see above that the noise balance can be concluded from the comparison. If the measured noise level is above the expected value of the speed-related ventilation noise, the user noise in the room exceeds the ventilation noise. Depending on the difference, you can continue to ventilate as before or increase the ventilation performance. If the measured noise level corresponds to the expected value of the ventilation noise, the ventilation (speed) is gradually reduced by a control and the noise balance is checked until the useful noise dominates again.
  • spectrally selective amplitude and correlation evaluation is used to acoustically separate ventilation-related external noise and interior noise, as several noise sources overlap in the room.
  • the noise components In order to identify the dominant noise, the noise components must be extracted from the resulting one.
  • the inner and outer panes of a window can be used together as direction detectors.
  • the sound intensity method can be used methodically. This information and the noise amplitudes of the two sensors enable a clear assessment of the noise situation in terms of acoustic control.
  • the known distance or phase difference of the sound signals can be used in the cross-correlation function to separate the noise components based on the sign of the phase difference.
  • the sensors must be protected from mechanical or weather influences, for example, as well as from unconscious manipulation.
  • the acoustically determined control signals must be processed electronically and semantically in conjunction with other relevant information, e.g. time of day or user presence, so that they can be combined with other sensor signals, e.g. resulting from room temperature, humidity and air quality ( Fig. 3 ).
  • the signal for influencing the ventilation device is finally generated and transmitted to it.
  • the priority rules include, for example, different time constants for acoustic interference and for acceptable air quality. For example, a moderate excess of the CO 2 content for a short period of time can certainly be accepted without any problems if this avoids a temporary period of intense noise input ( Fig. 4 ).
  • the decision model must therefore be supplemented by psychoacoustically based criteria, such as annoyance and potential for interference.
  • recurring circumstances and habits can also be learned for predictive control.
  • These learning algorithms or pattern recognition for situational and predictive control enable the comparison of acute needs and a likely future need situation.
  • the control device can be provided with a scenario memory that records over a predetermined period of time what the situation is like outside (e.g. outside noise) and inside (e.g. CO 2 content) behave or change. This results in a kind of average load curve for a specific room, which is also used to control the ventilation scenario.
  • Both critical phases e.g. with high CO 2 indoor air content and simultaneously high noise pollution, as well as harmless periods can be predicted, with a permanent comparison with the current measured values ensuring additional decision-making and control reliability.
  • this qualitative acoustic influence must also be quantified or implemented in practice, i.e. a gradual change in the ventilation rate must be linked to a corresponding change, whether gradual or continuous, in the noise balance.
  • this change can be responded to by changing the speed.
  • the opening area which is equally responsible for the ventilation rate and the resulting sound insulation, e.g. the tilt angle or opening dimension, offers a gradual possibility of influence.
  • the acoustic control or decision-making process must be able to be influenced or “overruled” by the user. According to current findings in the field of building automation, this user control option is an important prerequisite for the acceptance of such control systems.
  • FIG. 1 A room 1 can be seen, which can be ventilated with a window 2 in the variants shown above and with a fan 3 in the variants shown below.
  • a vehicle 4 generates sound in the environment. Accordingly, the room is 1 in Figure 1b exposed to sound 5a above. How out Figure 1b As can be seen below, the fan 3 leads to noise pollution 5b.
  • a control device 6 can also be seen, which controls the window 2 from the variables CO 2 concentration, relative humidity and temperature of the room air.
  • Figure 2 differs from Figure 1 in that there are additional detection devices 8 for the sound.
  • additional detection devices 8 for the sound in the variant shown above, in which ventilation takes place with the window 2, both a detection device 8 for the sound in the room 1 and a detection device 8 for the sound in the surroundings can be seen.
  • control device 6 in addition to the sound detected in the detection devices 8, the CO 2 concentration, the relative humidity and the temperature of the room air, also takes into account user interventions, which can be stimulated by a CO 2 traffic light.
  • user interventions which can be stimulated by a CO 2 traffic light.
  • time and timetables can be taken into account.
  • Figures 4a to 4d show the results of the improved control.
  • the time is plotted to the right. Up is in Figure 4a the air quality is plotted, with air quality rising. It can be seen that the air quality varies around a limit shown by the dashed line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Air Conditioning Control Device (AREA)
  • Ventilation (AREA)

Claims (14)

  1. Agencement, comprenant
    un dispositif de commande (6, 7) pour un dispositif de ventilation d'un espace (2, 3) qui sert à ventiler un espace (1),
    un dispositif de détection (8) du son dans l'environnement de l'espace (1) d'où provient l'air servant à la ventilation,
    un dispositif de détection supplémentaire (8) du son dans l'espace (1),
    dans lequel le dispositif de commande (6, 7) est configuré de telle sorte que lors de la décision si le dispositif de ventilation d'un espace (2, 3) doit provoquer une ventilation, le son détecté par le dispositif de détection (8) du son dans l'environnement de l'espace (1) et par le dispositif de détection (8) du son dans l'espace (1) permet de prendre en compte une nuisance sonore (5a, 5b) provenant de la ventilation pour des personnes se trouvant dans l'espace (1).
  2. Agencement selon la revendication 1, caractérisé en ce qu'un état de fonctionnement d'un ventilateur (3), qui est prévu pour la ventilation de l'espace (1), peut être pris en compte.
  3. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'ouverture d'une fenêtre ou d'une ouverture de façade, servant de dispositif de ventilation d'un espace, peut être commandée.
  4. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que la présence de personnes dans l'espace (1) peut être détectée.
  5. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que le son dans l'environnement peut être déterminé à partir de l'heure et de données enregistrées concernant l'heure à laquelle un certain type de son est à prévoir.
  6. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que le son dans l'environnement peut être obtenu à partir d'informations en temps réel et/ou à partir de pronostics basés sur des informations en temps réel d'événements générateurs de son.
  7. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une pluralité de dispositifs de détection (8) du son dans l'environnement, localement répartis, est présente de sorte que des événements acoustiques qui se propagent, en particulier des moyens de transport bruyants en mouvement, peuvent être détectés, et un pronostic du son à prévoir, en particulier pour une pluralité d'espaces (1) à ventiler, peut être établi.
  8. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une analyse du son concernant la nuisance subjective qui en émane peut être effectuée, dans lequel le son peut aussi être utilisé pour masquer des signaux vocaux porteurs d'informations.
  9. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une intervention d'utilisateurs est possible de sorte que la ventilation de l'espace peut avoir lieu selon les préférences actuelles de l'utilisateur.
  10. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif de commande (6, 7) est configuré pour commander un dispositif de ventilation d'un espace (2, 3) pour ventiler un espace (1) d'un dispositif mobile, en particulier d'un véhicule.
  11. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que le son, en particulier le son dans l'environnement, peut servir d'indication de la qualité de l'air de l'air dans l'environnement.
  12. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une unité de prétraitement de signal et d'évaluation de signal est présente de sorte que des signaux de commande peuvent être fournis pour le dispositif de ventilation d'un espace (2, 3).
  13. Procédé de ventilation d'un espace (1), dans lequel, lors de la décision si un dispositif de ventilation d'un espace (2, 3) doit provoquer une ventilation, une nuisance sonore (5a, 5b) provenant de la ventilation pour des personnes se trouvant dans l'espace (1) est prise en compte, caractérisé en ce que le son dans l'environnement de l'espace (1) d'où provient l'air servant à la ventilation et le son dans l'espace à ventiler sont pris en compte.
  14. Procédé selon la revendication 13, caractérisé en ce qu'un agencement selon l'une quelconque des revendications 1 à 12 est mis en œuvre.
EP15723882.5A 2014-05-12 2015-05-11 Unité de contrôle pour la ventilation d'un espace et méthode de ventilation d'un espace Active EP3143342B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014106606.5A DE102014106606A1 (de) 2014-05-12 2014-05-12 Steuereinrichtung für eine Raumlüftungseinrichtung und Verfahren zur Belüftung eines Raums
PCT/EP2015/060352 WO2015173185A1 (fr) 2014-05-12 2015-05-11 Dispositif de commande d'un dispositif de ventilation d'un local et procédé de ventilation d'un local

Publications (3)

Publication Number Publication Date
EP3143342A1 EP3143342A1 (fr) 2017-03-22
EP3143342C0 EP3143342C0 (fr) 2024-03-06
EP3143342B1 true EP3143342B1 (fr) 2024-03-06

Family

ID=53199959

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15723882.5A Active EP3143342B1 (fr) 2014-05-12 2015-05-11 Unité de contrôle pour la ventilation d'un espace et méthode de ventilation d'un espace

Country Status (3)

Country Link
EP (1) EP3143342B1 (fr)
DE (1) DE102014106606A1 (fr)
WO (1) WO2015173185A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021209641A1 (de) * 2021-09-01 2023-03-02 Ziehl-Abegg Se Verfahren zum Betrieb eines Ventilators und System zur Durchführung des Verfahrens

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1449710A (fr) * 1965-05-31 1966-08-19 Nat Res Dev Appareil de fermeture à commande acoustique
DE2719144A1 (de) * 1977-04-29 1978-11-02 Siegenia Frank Kg Schalldaemmende lueftungsvorrichtung fuer raeume

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3805458A1 (de) * 1988-02-22 1989-08-31 Hans Uschwa Klimaanlage mit zuluftdurchstoemten waermetauscher im zu klimatisierenden raum
US5010739A (en) * 1989-06-30 1991-04-30 Kabushiki Kaisha Toshiba Air conditioning apparatus having audible sound level control function
JPH09190244A (ja) * 1996-01-12 1997-07-22 Hitachi Ltd 冷却用ファンの制御装置
NL1004626C2 (nl) * 1996-11-27 1998-05-28 Berli Holding B V Werkwijze voor het ventileren van een ruimte alsmede inrichting geschikt voor het uitvoeren van een dergelijke werkwijze.
US6494381B2 (en) * 2000-12-21 2002-12-17 Koninklijke Phillips Electronics N.V. Cooling fan in sync with audio output level
JP2005221107A (ja) * 2004-02-03 2005-08-18 Sanyo Electric Co Ltd 空気調和装置
US7459002B2 (en) * 2004-08-31 2008-12-02 Airistar Technologies Llc Modular presentation apparatus having integral air processing apparatus
JP2006118747A (ja) * 2004-10-19 2006-05-11 Aisin Aw Co Ltd 空気調和機
DE202012103045U1 (de) * 2012-08-13 2013-11-18 Meltem Wärmerückgewinnung GmbH & Co. KG Luftaustauschvorrichtung mit Geräuschregulierung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1449710A (fr) * 1965-05-31 1966-08-19 Nat Res Dev Appareil de fermeture à commande acoustique
DE2719144A1 (de) * 1977-04-29 1978-11-02 Siegenia Frank Kg Schalldaemmende lueftungsvorrichtung fuer raeume

Also Published As

Publication number Publication date
WO2015173185A1 (fr) 2015-11-19
DE102014106606A1 (de) 2015-11-12
EP3143342A1 (fr) 2017-03-22
EP3143342C0 (fr) 2024-03-06

Similar Documents

Publication Publication Date Title
DE112018001883T5 (de) Belegungsabschätzung mittels nichtparametrischen Online-Änderungspunkt-Erfassungsalgorithmus und Vorrichtungen, Systeme, und Software für Selbiges
EP2002406B8 (fr) Procede pour evacuer des batiments divises en sections
EP3046863A1 (fr) Procédé permettant de faire fonctionner un dispositif de commande d'un ascenseur
EP2634756A2 (fr) Détecteur de fumée de tabac
DE102014012184A1 (de) Vorrichtung und Verfahren zur automatischen Erkennung und Klassifizierung von akustischen Signalen in einem Überwachungsbereich
EP2642213A1 (fr) Procédé de commande d'un système de ventilation d'au moins une pièce et système de ventilation correspondant
EP3143342B1 (fr) Unité de contrôle pour la ventilation d'un espace et méthode de ventilation d'un espace
EP1808853B1 (fr) Dispositif et procédé pour améliorer l'intelligibilité d'un système de sonorisation, et programme informatique
WO2009037077A2 (fr) Dispositif de détection et système de surveillance de bruits
EP3459792A1 (fr) Procédé, dispositif et support d'enregistrement lisible par ordinateur pourvu d'instructions d'identification d'un côté sortie d'un véhicule automobile
DE202012103045U1 (de) Luftaustauschvorrichtung mit Geräuschregulierung
DE202019005528U1 (de) Vorrichtung zur Regelung der Behaglichkeit in Gebäuden
EP3929886B1 (fr) Procédé destiné à l'automatisation de bâtiment à l'aide des informations d'état du bâtiment ainsi que bâtiment correspondant
DE102009058797B4 (de) Verfahren zum Ausführen einer Infraschall-Einbruchsdetektion
EP0670025A1 (fr) Dispositif d'amenee et d'evacuation d'air pour un espace interieur
EP3220617A1 (fr) Système de communication de porte, appareil externe pour un système de communication de porte et procédé de fonctionnement d'un système de communication de porte
DE19949637A1 (de) Verfahren und Vorrichtungen zur Geräuscherkennung und -trennung sowie Lärmüberwachung und -prognose
DE3722983A1 (de) Sensorgefuehrtes umd microprozessorgesteuertes erfassungs- und regelsystem zur bekaempfung von geruechen bei verbrennungen, verkokungen, vergasungen und bei biologischen umsetzprozessen
EP2697702B1 (fr) Dispositif et procédé de commande gestuelle d'un écran de visualisation dans une salle de contrôle
DE102019107044A1 (de) Verfahren zur Auswahl eines Betriebsmodus einer aktiven Schallerzeugungsvorrichtung einer Abgasanlage, Abgasanlage sowie Kraftfahrzeug
DE112019004709T5 (de) Sprachgerät, server, steuersystem, steuerverfahren und programm
AT16282U1 (de) Bewegungserfassung von Objekten mittels Bewegungsmelder
DE102017126956B3 (de) Verfahren zum personenpositionsabhängigen Ansteuern wenigstens eines in ein Gebäudeautomatisierungssystem eingebundenen Aktors
DE102018201702B3 (de) Gefahrenkennung mit Sprachverarbeitung
DE102009027230A1 (de) Brandmeldeanlage

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200129

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: F24F 130/40 20180101ALI20230828BHEP

Ipc: F24F 11/00 20060101AFI20230828BHEP

INTG Intention to grant announced

Effective date: 20230922

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015016771

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

U01 Request for unitary effect filed

Effective date: 20240404

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240412

U20 Renewal fee paid [unitary effect]

Year of fee payment: 10

Effective date: 20240529