EP3143288B1 - Convertisseur de pression à piston comprenant un détendeur de fin de course - Google Patents

Convertisseur de pression à piston comprenant un détendeur de fin de course Download PDF

Info

Publication number
EP3143288B1
EP3143288B1 EP15732299.1A EP15732299A EP3143288B1 EP 3143288 B1 EP3143288 B1 EP 3143288B1 EP 15732299 A EP15732299 A EP 15732299A EP 3143288 B1 EP3143288 B1 EP 3143288B1
Authority
EP
European Patent Office
Prior art keywords
pressure
reducer
piston
slave
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15732299.1A
Other languages
German (de)
English (en)
Other versions
EP3143288A1 (fr
Inventor
Vianney Rabhi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP3143288A1 publication Critical patent/EP3143288A1/fr
Application granted granted Critical
Publication of EP3143288B1 publication Critical patent/EP3143288B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B13/00Details of servomotor systems ; Valves for servomotor systems
    • F15B13/02Fluid distribution or supply devices characterised by their adaptation to the control of servomotors
    • F15B13/06Fluid distribution or supply devices characterised by their adaptation to the control of servomotors for use with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/02Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical
    • F04B9/04Piston machines or pumps characterised by the driving or driven means to or from their working members the means being mechanical the means being cams, eccentrics or pin-and-slot mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/107Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/103Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber
    • F04B9/107Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring
    • F04B9/1076Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having only one pumping chamber rectilinear movement of the pumping member in the working direction being obtained by a single-acting liquid motor, e.g. actuated in the other direction by gravity or a spring with fluid-actuated inlet or outlet valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/17Characterised by the construction of the motor unit of the straight-cylinder type of differential-piston type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B3/00Intensifiers or fluid-pressure converters, e.g. pressure exchangers; Conveying pressure from one fluid system to another, without contact between the fluids

Definitions

  • the present invention relates to a piston pressure converter.
  • the amplifiers or piston pressure reducers generally consist of at least one emitter cylinder in which an emitting piston rigidly connected to at least one receiving piston can move, which can move in a receiving cylinder, the two said pistons moving on the piston. same race but with a different section.
  • Each said piston cooperates with a cylinder and a cylinder head to form a closed and sealed space of variable volume.
  • the emitter cylinder communicates with a hydraulic circuit independent of that of the receiver cylinder.
  • Piston amplifiers or pressure reducers can be used statically to maintain two circuits or two volumes independent of one another at a constant pressure ratio without necessarily establishing a flow of hydraulic fluid which involves the displacement of the emitter piston and the receiver piston.
  • the emitter piston is a hydraulic motor that converts a flow of hydraulic fluid in motion, said movement being communicated to the receiving piston which forms a hydraulic pump so as to transform said movement into a flow of fluid hydraulic.
  • the emitter piston must be larger than the receiving piston, while to reduce the pressure, the emitter piston must have a smaller section than the receiver piston.
  • the emitter cylinder comprises at least one inlet and at least one outlet which can each be held open or closed by a valve while the receiving cylinder has at least one inlet which comprises a non-return valve allowing the fluid hydraulic to enter said cylinder but not out, and at least one outlet which has a check valve allowing the hydraulic fluid out of said cylinder but not to enter.
  • the emitter piston when the emitter piston reaches the end of the stroke, the emitter cylinder is decompressed in a low pressure circuit without any counterpart in production of work, and the compression energy stored in the fluid Hydraulic is dissipated in the form of heat, Depending on the application considered, this loss makes it irrelevant the use of reducers or pressure amplifiers. In this respect, it would be particularly advantageous to be able to recover this compression energy, particularly with regard to piston pressure amplifiers or reducers operating at very high pressures.
  • the reversible hydraulic pressure converter with tubular valves object of the patent application WO2015025094-A1 included in the state of the art under Art.
  • the end-of-stroke expansion valve comprises an expansion receiver intake duct connected via the expansion receiver intake valve to the expansion receiver chamber cooperating with the variable volume expansion emitter chamber which communicates with the receiving chamber which is connected to the receiver intake duct while the detent receiver discharge duct connected to the same said detent receiving chamber is connected to the receiver discharge duct.
  • the end-of-stroke expansion valve comprises an expansion receiver intake duct connected via the expansion receiver intake valve to the expansion receiver chamber cooperating with the variable volume expansion emitter chamber which communicates with the emitter chamber which is connected to the emitter discharge duct while the expansion receiver discharge duct connected to the same said expansion receiver chamber is connected - upstream of the emitter intake valve - to the duct transmitter admission.
  • the end-of-stroke regulator comprises a progressive-action lever transmission which comprises a return spring of the expansion pistons which tends to keep the engine-emitter piston relaxing in the vicinity of its position where the trigger-emitting chamber has the smallest volume while simultaneously, said spring allows to maintain the pump piston-trigger receiver in the vicinity of its position where the expansion receiver chamber has the largest volume.
  • the end-of-stroke regulator comprises a progressive-action lever transmission which consists of a crank shaft rotatable in a crankshaft bearing and having a trigger-emitting piston crank with the crank pin of a crank is connected to a piston-engine piston-trigger shaft arranged in the engine-emitter piston relaxation by a piston rod trigger relaxation whose first end is articulated around said crankpin and whose second end is articulated about said axis, the crank shaft cooperating with secondary detent transmission means which mechanically connect said shaft with the pump piston-trigger receiver.
  • the limit expansion valve according to the present invention comprises secondary trigger transmission means which consist of an expansion gear toothed wheel which is integral in rotation with the crank shaft and which, when rotating, drives in translation. a linear expansion gear rack connected to the piston pump-trigger receiver.
  • the limit expansion valve according to the present invention comprises secondary triggering transmission means which consist of a piston-receiver crank integral in rotation with the crank shaft and whose crank pin is connected to an axis.
  • piston piston-receiver relaxation arranged in the piston pump-trigger receiver by a piston rod relaxation receiver whose first end is articulated around said crankpin and whose second end is articulated said axis.
  • the limit expansion valve according to the present invention comprises a progressive-action lever transmission which is constituted by a camshaft rotatable in a camshaft bearing and having a trigger-emitting piston cam which can be held in position. contact with the engine-emitter piston and a detent reciprocating piston cam that can be held in contact with the pump-receiver piston.
  • the end-of-stroke regulator comprises a crank shaft or a trigger-emitting piston crank or a trigger-emitting piston rod or a rebound-transmitting gear wheel or a rebound-transmitting gear rack or crank arm.
  • FIG. 1 to 8 the end-of-stroke regulator 1 for a piston-pressure converter 2 which comprises at least one emitter cylinder 3 in which a motor-emitter piston 7 can be displaced so as to define a transmitting chamber 9 of variable volume that can be put in relation with an emitter intake duct 22 by an emitter admission valve 18 or with an emitter discharge duct 23 by an emitter discharge valve 19 , said pressure converter 2 also comprising at least one receiving cylinder 4 in which a pump-receiver piston 8 can move so as to define a receiving chamber 10 also of variable volume, the latter being able to admit a hydraulic fluid coming from a Receiver inlet conduit 24 via a receiver inlet valve 20 or discharge said fluid into a receiver discharge conduit 25 via a receiver discharge valve 21, the emitter chamber 9 and the receiving chamber 10 being each filled with a hydraulic fluid.
  • the end-of-stroke regulator 1 comprises at least one trigger-emitting cylinder 12, filled with a hydraulic fluid, and in which a motor-emitter-expansion piston 14 can be displaced so as to define an emitting chamber detent 16 of variable volume which communicates with the receiving chamber 10.
  • the end-of-stroke expander 1 comprises at least one expansion emitter cylinder 12, filled with a hydraulic fluid, and in which a motor piston can be moved.
  • trigger transmitter 14 so as to define an expansion emitter chamber 16 of variable volume which communicates with the emitter chamber 9.
  • the expansion emitter chamber 16 can communicate - as the case may be - either with the emitter chamber 9 or with the receiving chamber 10 via a duct arranged in a cylinder head relaxation transmitter 44 on the emitting cylinder 12, or simply because the expansion emitter cylinder 12 opens directly into either the emitter chamber 9 or the receiving chamber 10.
  • said emitter cylinder 12 does not have an expansion emitter cylinder head 44 and can respectively to terminate at the inner surface of a cylinder cylinder head 5 capping the emitter cylinder 3 or at the inner surface of a receiver cylinder head 6 capping the receiver cylinder 4.
  • the end-of-stroke regulator 1 comprises at least one rebound-receiving cylinder 13 which cooperates with the expansion-emitter cylinder 12 and in which a pump-receiver-expansion piston 15 can be displaced so as to define with said the receiver cylinder 13 has a variable volume expansion chamber 17 filled with a hydraulic fluid, said pump-receiver piston 15 being mechanically connected to the engine-emitter piston 14 by a progressive lever gear lever 11 arranged in such a way that when the engine-emitter piston 14 is at the top dead center, the piston-receiver piston relaxation is at low dead center and vice versa, while the maximum volume of the expansion receiver chamber 17 is less than the maximum volume of the relaxing emitting chamber 16.
  • the progressive lever transmission 11 defines between the engine-emitter piston 14 and the pump-receiver piston 15 a transmission ratio such that when said engine-emitter piston 14 is placed in its neutral position high and as a result the volume of the expansion emitting chamber 16 is minimal, said engine-emitter piston 14 can not - despite the pressure of the hydraulic fluid to which it is exposed - move and thereby cause the piston-receiver piston 15, while the more the engine-emitter piston relaxation 14 is removed from said top dead center, the greater the effort it is able to transmit to the piston pump-trigger receiver 15 is important, as well as its capacity to move said pump-receiver piston 15. It is further noted that the engine-emitter piston relaxation 14 and / or the pump piston-receiver receiver 15 may comprise at least one seal and / or at least one segment of seal Eite.
  • the Figures 1 to 8 show that the end-of-stroke regulator 1 according to the invention comprises at least one expansion receiver intake valve 26 which opens into the expansion receiving chamber 17 and which allows a hydraulic fluid contained in an intake duct of relaxation receiver 28 to enter said receiving chamber 17 but not out.
  • the Figures 1 to 8 also show that the end-of-stroke regulator 1 comprises at least one expansion receiver discharge valve 27 which opens into the expansion receiver chamber 17 and which allows a fluid hydraulic fluid contained in an expansion receiver discharge duct 29 out of said receiving chamber 17 but not to enter.
  • expansion receiver intake valve 26 and / or the expansion receiver discharge valve 27 can be arranged in a relaxation receiver cylinder head 45 which closes off one end of the expansion receiver cylinder. 13 or in the closed end of said cylinder 13 if it is blind.
  • the end-of-stroke regulator 1 also comprises at least one trigger release actuator 30 which can, by contact or mechanical connection, set the progressive-action lever transmission 11 in motion or unblock the latter so as to set in motion the engine-emitter piston relaxation 14 and the piston pump-trigger receiver 15 when the piston engine-emitter relaxation 14 is placed in its top dead center or in the vicinity of the latter, and this for example to achieve a report transmission between said pistons 14, 15 sufficient for the engine-emitter piston relaxation 14 can continue its course without the aid of the trigger release actuator 30.
  • trigger release actuator 30 can, by contact or mechanical connection, set the progressive-action lever transmission 11 in motion or unblock the latter so as to set in motion the engine-emitter piston relaxation 14 and the piston pump-trigger receiver 15 when the piston engine-emitter relaxation 14 is placed in its top dead center or in the vicinity of the latter, and this for example to achieve a report transmission between said pistons 14, 15 sufficient for the engine-emitter piston relaxation 14 can continue its course without the aid of the trigger release actuator 30.
  • the trigger release actuator 30 can be hydraulic, electro-hydraulic, electric, pneumatic, or generally, of any type known to those skilled in the art.
  • the trigger release actuator 30 can be controlled by a control computer 55 of the pressure converter which manages or cooperates to manage the operation of the piston pressure converter 2.
  • the expansion receiver intake duct 28 connected via the expansion receiver intake valve 26 to the expansion receiver chamber 17 cooperating with the variable volume expansion chamber 16 which communicates with the receiving chamber 10 may be connected to the receiver intake duct 24 while the expansion receiver discharge duct 29 connected to the same said expansion receiver chamber 17 can be connected to the receiver discharge duct 25.
  • the expansion receiver intake duct 28 connected via the expansion receiver intake valve 26 the relaxation receiving chamber 17 cooperating with the expansion emitter chamber 16 of variable volume which communicates with the emitter chamber 9 can be connected to the emitter discharge conduit 23 while the expansion receiver discharge conduit 29 connected to the even said relaxation receiving chamber 17 may be connected - upstream of the emitter admission valve 18 - to the emitter intake duct 22.
  • the progressive lever transmission 11 may comprise a return spring for the expansion pistons 33 which tends to keep the engine-emitter piston 14 relaxing in the vicinity of its position where the trigger-emitting chamber 16 presents the most while simultaneously, said spring 33 makes it possible to maintain the pump-receiver piston 15 relaxing in the vicinity of its position where the expansion receiving chamber 17 has the largest volume, said spring 33 being able to be torsion, flexion, traction or compression and be of any type known to those skilled in the art.
  • the progressive-action lever transmission 11 may consist of a crank shaft 46 which can rotate in a crankshaft bearing 47 and having a piston crank trigger transmitter 35 whose crank pin 48 is connected to a piston-engine piston axis relaxation 49 arranged in the piston engine-trigger 14 by a piston rod relaxation transmitter 34 whose first end is articulated around said crank pin 48 and whose second end is hinged about said axis 49, the crank shaft 46 cooperating with secondary expansion means of transmission 51 which mechanically connect said shaft 46 with the pump-receiver piston relaxation 15.
  • the secondary transmission means of relaxation 51 may consist of a gear transmission gear 34 which is integral in rotation with the crank shaft 46 and that when rotated in linear translation drives a transmission rack the trigger 37 is connected to the pump-receiver piston 15 directly or by means of a trigger rest piston push rod 39.
  • the trigger transmission rack 37 can be guided, in particular by at least one trigger rack guide roller 38.
  • the secondary triggering transmission means 51 may consist of a trigger-receiving piston crank 40 integral in rotation with the crankshaft 46 and whose crank pin 48 is connected to a pump-receiver piston pin of trigger 50 arranged in the pump piston-receiver relaxation 15 by a piston rod relaxation receiver 41 whose first end is articulated around said crankpin 48 and whose second end is hinged about said axis 50.
  • the secondary transmission means of relaxation 51 may also consist of a cam integral in rotation with the crank shaft 46 and can be kept in contact with the pump-receiver piston relaxing 15.
  • the progressive-action lever transmission 11 may be constituted by a camshaft 52 rotatable in a camshaft bearing 53 and having a detent-emitting piston cam 42 which can be held in contact with the engine piston.
  • trigger transmitter 14 and an expansion receiver piston cam 43 which can be kept in contact with the pump-receiver piston 15.
  • the detent reciprocating piston cam 43 can be replaced by a crank integral in rotation with the camshaft 52, said crank having a crankpin connected to an axis arranged in the piston pump-trigger receiver 15 by a connecting rod whose first end is articulated around said crankpin and whose second end is articulated about said axis.
  • crankshaft 46 or the trigger-emitting piston crank 35 or the trigger-emitting piston rod 34 or the rebound-transmitting gear 36 or the rebound-transmitting gear 37 or the receiver piston crank detent 40 or the trigger piston piston rod 41 or the camshaft 52 or the trigger emitter piston cam 42 or the expansion receiver piston cam 43 may have a detent release push-button 32 on which the trigger release actuator 30 can exert a force via a release release button 31 to put in motion at the appropriate moment the piston engine-transmitter relaxation 14 and the piston pump-trigger receiver 15 when the piston engine-emitter relaxation 14 is placed in its top dead center or in the vicinity of the latter.
  • Figures 1 to 8 show a variant according to which the trigger release push-button 32 is provided on the trigger-emitting piston crank 35.
  • the application illustrated by the figure 1 is intended to convert stored energy in the form of compressed nitrogen into a high-pressure fluid reservoir 58 into electricity by means of an electricity generator 62 driven by a medium-pressure hydraulic motor 59. Nitrogen compressed communicates its pressure to a hydraulic fluid that can circulate in particular in the ducts 64.
  • a piston pressure converter 2 has thus been inserted between the high-pressure fluid reservoir 58 and the medium-pressure hydraulic motor 59 which converts a high-pressure flow of hydraulic fluid coming out of said reservoir 58 into a medium-pressure flow rate of hydraulic fluid, the latter entering the medium-pressure hydraulic motor 59 via an inlet duct of the hydraulic motor 60.
  • the inlet duct of the hydraulic motor 60 comprises - according to this example - a medium-pressure fluid reservoir 57.
  • the management computer of the converter pressure 55 opens the emitter intake valve 18 which allows the hydraulic fluid contained in the high-pressure fluid reservoir 58 to enter the emitter chamber 9 via the emitter intake duct 22.
  • said calculator 55 simultaneously prevents said fluid from leaving said chamber 9 to go to the emitter outlet low-pressure fluid reservoir 56, said computer 55 maintaining for this the emitter discharge valve 19 closed.
  • the hydraulic fluid under high pressure from said reservoir 58 can push on the engine-emitter piston 7, which moves in the direction d2 , which has the effect of moving the pump-receiver piston 8 in the same direction, on the same distance and at the same speed.
  • the pump-receiver piston 8 compresses the hydraulic fluid contained in the receiving chamber 10, which has the effect of expelling said fluid in the receiver discharge pipe 25 via the receiver discharge valve 21. Said fluid is then conveyed via a duct 64 to the inlet duct of the hydraulic motor 60, which has the effect of rotating the medium-pressure hydraulic motor 59 and consequently the electricity generator 62, which produces electricity.
  • the position sensor of the pressure converter pistons 54 continuously returns the position of the pump-receiver piston 8 to the control computer of the pressure converter 55.
  • said computer 55 closes the emitter admission valve 18 so as to stop the displacement of the pump-receiver piston 8 in the direction d2 before it touches said cylinder head 6, and so that said piston 8 remains at a certain distance from the said cylinder head 6.
  • the management computer of the pressure converter 55 should at this stage open the emitter discharge valve 19 to decompress said chamber 9 in the emitter outlet low-pressure fluid reservoir 56, this which would have the effect of dissipating the compression energy of the hydraulic fluid contained in the emitter chamber 9, said energy being definitively no longer able to be transformed into additional flow of hydraulic fluid leaving the receiver discharge pipe 25.
  • the end-of-stroke pressure regulator 1 for a piston pressure converter 2 provides that the control computer of the pressure converter 55 does not open the valve yet. emitter discharge 19 so that said expander 1 can produce its effects and recover the compression energy of the hydraulic fluid contained in the emitter chamber 9.
  • the management computer of the pressure converter 55 supplies the trigger release actuator 30 with electric current, which has the effect of setting the transmission in motion. with progressive effect lever 11 and consequently, to set in motion the piston engine-emitter relaxation 14 and the pump piston-receiver of relaxation 15, the piston engine-emitter relaxation 14 being hitherto parked in its top dead center .
  • the figure 3 shows the state in which the end-of-stroke regulator 1 according to the invention was located as long as the engine-emitter piston 7 and the pump-receiver piston 8 were moving in the direction d2 . It should be noted that the engine-emitter piston 14 remains stuck in its top dead center because the pressure that the hydraulic fluid contained in the receiving chamber 10 exerted on said piston 14 tended to turn the crank shaft 46 in the opposite direction of the Clockwise.
  • the piston motor-emitter relaxation 14 remains blocked is due to the fact that - according to this particular embodiment illustrated in figure 3 and 4 when said piston is parked at its top dead center, the axis of rotation of the crank pin 48 is substantially misaligned with respect to the straight line which connects the axis of rotation of the engine-emitter piston pin 49 and the axis of rotation of the crankshaft 46, while the center of rotation of the piston-motor piston axis relaxation 49 and the axis of the cylinder emitter of 12 are perpendicular and intersecting, and that is the same for the axis of rotation of the crank shaft 46 and said axis of said cylinder 12.
  • the engine-emitter piston 7 and the piston pump-receiver 8 are temporarily stopped.
  • the pressure in the emitting chamber 9 approximately corresponds to the pressure in the high-pressure fluid reservoir 58 while the pressure prevailing in the receiving chamber 10 is equivalent to the pressure that previously prevailed in the inlet duct of the hydraulic motor 60.
  • the transmission ratio between the piston engine-emitter relaxation 14 and the piston pump-recess receiver 15 is large or infinitely large when said engine-emitter piston 14 is placed on or near from its top dead center, and small when said engine-emitter piston 14 is positioned at the bottom dead center. It is also noted that advantageously, the complete stroke of the engine piston-emitter relaxation 14 operates only a quarter turn of the crank shaft 46.
  • This decreasing transmission ratio derives - firstly - from the system constituted by the push-back piston connecting rod 34 and the trigger-emitting piston crank 35, said system offering a short or even infinitely short lever arm to the engine-emitter piston 14 to rotate the crank shaft 46 when said piston 14 is on or near its top dead center, said lever arm becoming maximum when said piston 14 is in its bottom dead center.
  • This decreasing transmission ratio comes from the second part because, unlike the piston motor-emitter trigger 14, the linear translation drive of the piston pump-trigger receiver 15 by the shaft to crank 46 operates at constant leverage since the secondary drive means of relaxation 51 in question are constituted - according to this non-limiting embodiment - of a toothed gear transmission of trigger 36 driving a push-and-turn gear rack 37 .
  • the difference in section and the variable transmission ratio between the engine-emitter piston 14 and relaxation piston-receiver piston 15 can relax the hydraulic fluid contained in the emitter chamber 9 and the receiving chamber 10 in the desired conditions c That is, using this trigger to generate a medium-pressure hydraulic fluid flow adds up! available at the inlet duct of the hydraulic motor 60.
  • the pressure in the receiving chamber 10 is substantially equal to the desired pressure at the duct hydraulic motor input 60.
  • the force exerted by the pressure in the receiving chamber 10 on the engine piston-emitter 14 is - for example - ten times greater than that which must be exerted on the pump piston-receiver for the latter to produce the desired pressure in the expansion receiver chamber 17.
  • the instantaneous transmission ratio between the engine-emitter piston relaxation 14 and the piston pump-trigger receiver 15 is - for example - of one out of ten.
  • the pump piston-receiver piston 15 well pressurizes the expansion receiver chamber 17 with which it cooperates with the desired pressure, so that it begins to expel from said receiving chamber 17 the hydraulic fluid that it contains in the expansion receiver discharge duct 29 via the expansion receiver discharge valve 27.
  • the engine-emitter piston 7 and the pump-receiver piston 8 begin to advance substantially in the direction d2 under the effect of the expansion of the emitter chamber 9.
  • the operating piston-emitter piston 14 moves towards its bottom dead point while decreases the pressure it receives from the hydraulic fluid coming from the receiving chamber 10. In doing so, the transmission ratio between said piston 14 and the The pump-recess piston 15 increases to approximately one when the piston engine-trigger 14 reaches its bottom dead center.
  • the management computer of the pressure converter 55 can open the emitter discharge valve 19.
  • the engine-emitter piston 7 and the pump-receiver piston 8 move rapidly in the direction d1 under the effect of the pressure exerted by the hydraulic fluid contained in the low-pressure receptor inlet fluid reservoir 63 on the entire section of the pump-receiver piston 8, via the valve d Receiver intake 20.
  • the control computer of the pressure converter 55 closes the emitter discharge valve 19 and the engine-emitter piston 7 and the pump-receiver piston 8 stops moving in the direction d1 .
  • the return spring of the expansion pistons 33 brings the engine-emitter piston trigger 14 to the top dead center, and brings the push-release trigger push-button 32 into contact with the trigger release button 31.
  • the piston pump-trigger receiver 15 returns to its bottom dead center by sucking - via the expansion receiver intake valve 26 - hydraulic fluid from the low-pressure receiver inlet fluid reservoir 63 so as to fill the relaxation guest room 17.
  • the engine-emitter piston 7 and the pump-receiver piston 8 of the piston pressure converter 2 are ready to carry out a new stroke in the direction d2 to convert the high-pressure flow of hydraulic fluid leaving the reservoir high-pressure fluid 58 at a medium-pressure flow rate of hydraulic fluid entering the medium-pressure hydraulic motor 59 before exiting via the outlet duct of the hydraulic motor 61 to finally open into a hydraulic fluid cover 65.
  • end-of-stroke regulator 1 is again ready to decompress the emitting chamber 9 and to recover the compression energy of the hydraulic fluid contained in said chamber 9 when the pump-receiver piston 8 again arrives. near the receiver cylinder head 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Reciprocating Pumps (AREA)
  • Hydraulic Motors (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)

Description

  • La présente invention a pour objet un convertisseur de pression à pistons.
    Les amplificateurs ou réducteurs de pression à pistons sont généralement constitués d'au moins un cylindre émetteur dans lequel peut se mouvoir un piston émetteur rigidement relié à au moins un piston récepteur pouvant se déplacer dans un cylindre récepteur, les deux dits pistons se déplaçant sur la même course mais présentant une section différente. Chaque dit piston coopère avec un cylindre et une culasse pour former un espace fermé et étanche de volume variable. Le cylindre émetteur communique avec un circuit hydraulique indépendant de celui du cylindre récepteur.
  • Les amplificateurs ou réducteurs de pression à pistons peuvent être utilisés de façon statique pour maintenir deux circuits ou deux volumes indépendants l'un de l'autre sous un rapport de pression constant sans que ne s'établisse nécessairement un débit de fluide hydraulique qui implique le déplacement du piston émetteur et du piston récepteur.
    Dans le cas des amplificateurs de pression à pistons qui convertissent un débit de fluide hydraulique en un débit de fluide hydraulique plus petit mais sous pression plus haute, ou dans le cas des ou réducteurs de pression à pistons convertissant un débit de fluide hydraulique en un débit de fluide hydraulique plus grand mais sous pression plus basse, le piston émetteur constitue un moteur hydraulique qui transforme un débit de fluide hydraulique en mouvement, ledit mouvement étant communiqué au piston récepteur qui forme une pompe hydraulique de sorte à transformer ledit mouvement en débit de fluide hydraulique. Pour augmenter la pression, le piston émetteur doit être de plus grande section que le piston récepteur, tandis que pour réduire ladite pression, le piston émetteur doit présenter une section plus petite que celle du piston récepteur.
    On note en ce cas que le cylindre émetteur comporte au moins une entrée et au moins une sortie qui chacune peut être maintenue ouverte ou fermée par une vanne tandis que le cylindre récepteur présente au moins une entrée qui comporte un clapet anti-retour permettant au fluide hydraulique d'entrer dans ledit cylindre mais non d'en sortir, et au moins une sortie qui comporte un clapet anti-retour permettant au fluide hydraulique de sortir dudit cylindre mais non d'y entrer.
  • Lorsqu'un débit s'établit durablement au travers desdits amplificateurs ou réducteurs à pistons, le fonctionnement de ces derniers est séquentiel car lorsque les pistons qu'ils comportent arrivent en fin de course, ces derniers doivent retourner en début de course et inversement, et ceci aussi longtemps que fonctionnent lesdits amplificateurs ou réducteurs. Ce fonctionnement séquentiel est responsable de pertes énergétiques indésirables dues à la compressibilité du fluide hydraulique, lesdites pertes étant proportionnellement d'autant plus importantes que ledit fluide est compressible et que les pressions mises en oeuvres sont élevées. A mêmes pressions de fonctionnement, lesdites pertes sont proportionnellement plus importantes s'il s'agit d'un réducteur de pression, lesdites pertes survenant principalement au niveau du cylindre émetteur dudit réducteur.
  • En pratique, pour des pressions de quelques dizaines ou centaines de bars, le rendement des amplificateurs ou réducteurs de pression à pistons reste élevé. Lorsque ces derniers sont utilisés à des pressions encore plus élevées - par exemple de l'ordre de mille bars voire plus - le taux de compression du fluide hydraulique est accru ce qui détériore encore plus ledit rendement, même lorsque sont utilisés des fluides réputés peu compressibles comme l'huile ou l'eau.
  • En effet, de l'énergie est stockée lors de la compression du fluide hydraulique, or ladite énergie est ordinairement perdue en fin de course des pistons, principalement du coté du piston émetteur. Ceci provient du fait que lorsque ledit piston arrive en fin de course, le cylindre émetteur dans le quel il se meut est entièrement rempli de fluide sous pression. Or, pour que ledit piston émetteur puisse repartir en sens inverse, il faut préalablement décomprimer ledit fluide contenu dans ledit cylindre. La perte énergétique provient de l'impossibilité de transformer l'énergie de compression dudit fluide en débit de fluide sous pression additionnel disponible en sortie du cylindre récepteur, sauf à décomprimer dans les mêmes proportions l'ensemble du circuit relié à la sortie dudit cylindre récepteur, ce qui est rarement possible.
  • En pratique en effet, lorsque piston émetteur arrive en fin de course, on en décomprime le cylindre émetteur dans un circuit basse pression sans contrepartie en production de travail, et l'énergie de compression stockée dans le fluide hydraulique est dissipée sous forme de chaleur, En fonction de l'application considérée, cette perte rend peu pertinent l'emploi de réducteurs ou amplificateurs de pression.
    A ce titre, il serait particulièrement intéressant de pouvoir récupérer cette énergie de compression, particulièrement s'agissant des amplificateurs ou réducteurs de pression à pistons opérant sous très hautes pressions.
    Par exemple, le convertisseur de pression hydraulique réversible à vannes tubulaires objet de la demande de brevet WO2015025094-A1 comprise dans l'état de la technique au titre de l'Art. 54(3) CBE et appartenant au demandeur verrait son rendement énergétique notablement augmenté si il coopérait avec des moyens de récupération de l'énergie de compression du fluide hydraulique, quel que soit le contexte de mise en oeuvre dudit convertisseur. On remarque d'ailleurs que si ledit convertisseur est utilisé pour réaliser des véhicules automobiles à transmission hybride hydraulique à stockage-restitution d'huile sous pression, récupérer l'énergie de compression du fluide hydraulique dans ledit convertisseur devient particulièrement avantageux et permet de réduire la consommation de carburant au kilomètre desdits véhicules.
    L'avantage énergétique induit par des moyens de récupération de l'énergie de compression du fluide hydraulique bénéficierait également à tout convertisseur, amplificateur ou réducteur de pression séquentiel à pistons, quel que soit le nombre de pistons émetteur(s) ou récepteur(s) qu'il comporte, et quel que soit son domaine d'application.
  • C'est donc pour améliorer le rendement des amplificateurs de pression, réducteurs de pression ou convertisseurs de pression à pistons que le détendeur de fin de course pour convertisseur de pression à pistons selon l'invention propose, selon le mode de réalisation retenu :
    • De transformer - lorsque le piston émetteur arrive en fin de course - une fraction significative de l'énergie de compression du fluide hydraulique en débit additionnel sortant du cylindre récepteur, sans induire de baisse notable de pression en sortie de ce dernier ;
    • Une réalisation simple et un prix de revient modéré ;
    • Une grande robustesse et longévité ;
    • Une capacité à opérer dans le domaine des très hautes pressions, jusqu'à deux mille bars et plus.
  • Les autres caractéristiques de la présente invention ont été décrites dans la description et dans les revendications secondaires dépendantes directement ou indirectement de la revendication principale.
  • Le détendeur de fin de course selon l'invention, prévu pour un convertisseur de pression à pistons qui comprend au moins un cylindre émetteur dans lequel peut se déplacer un piston moteur-émetteur de sorte à définir une chambre émettrice de volume variable pouvant être mise en relation avec un conduit d'admission d'émetteur par une vanne d'admission d'émetteur ou avec un conduit de refoulement d'émetteur par une vanne de refoulement d'émetteur, ledit convertisseur de pression comprenant également au moins un cylindre récepteur dans lequel peut se déplacer un piston pompe-récepteur de sorte à définir une chambre réceptrice également de volume variable, cette dernière pouvant admettre un fluide hydraulique en provenance d'un conduit d'admission de récepteur via un clapet d'admission de récepteur ou refouler ledit fluide dans un conduit de refoulement de récepteur via un clapet de refoulement de récepteur, la chambre émettrice et la chambre réceptrice étant chacune remplie d'un fluide hydraulique, comprend :
    • Au moins un cylindre émetteur de détente, rempli d'un fluide hydraulique, et dans lequel peut se déplacer un piston moteur-émetteur de détente de sorte à définir une chambre émettrice de détente de volume variable qui communique avec la chambre émettrice et/ou au moins un cylindre émetteur de détente, rempli d'un fluide hydraulique, et dans lequel peut se déplacer un piston moteur-émetteur de détente de sorte à définir une chambre émettrice de détente de volume variable qui communique avec la chambre réceptrice ;
    • Au moins un cylindre récepteur de détente qui coopère avec le cylindre émetteur de détente et dans lequel peut se déplacer un piston pompe-récepteur de détente de sorte à définir avec ledit cylindre récepteur une chambre réceptrice de détente de volume variable remplie d'un fluide hydraulique, ledit piston pompe-récepteur étant mécaniquement relié au piston moteur-émetteur de détente par une transmission à levier à effet progressif agencée de telle sorte que quand le piston moteur-émetteur de détente est au point mort haut, le piston pompe-récepteur de détente est au point mort bas et inversement, tandis que le volume maximal de la chambre réceptrice de détente est inférieur au volume maximal de la chambre émettrice de détente ;
    • Au moins un clapet d'admission de récepteur de détente qui débouche dans la chambre réceptrice de détente et qui permet à un fluide hydraulique contenu dans un conduit d'admission de récepteur de détente d'entrer dans ladite chambre réceptrice mais non d'en sortir ;
    • Au moins un clapet de refoulement de récepteur de détente qui débouche dans la chambre réceptrice de détente et qui permet à un fluide hydraulique contenu dans un conduit de refoulement de récepteur de détente de sortir de ladite chambre réceptrice mais non d'y entrer ;
    • Au moins un actionneur de déblocage de détente pouvant par contact ou liaison mécanique mettre en mouvement la transmission à levier à effet progressif ou débloquer cette dernière.
  • Le détendeur de fin de course suivant la présente invention comprend un conduit d'admission de récepteur de détente relié via le clapet d'admission de récepteur de détente à la chambre réceptrice de détente coopérant avec la chambre émettrice de détente de volume variable qui communique avec la chambre réceptrice qui est relié au conduit d'admission de récepteur tandis que le conduit de refoulement de récepteur de détente relié à la même dite chambre réceptrice de détente est relié au conduit de refoulement de récepteur.
  • Le détendeur de fin de course suivant la présente invention comprend un conduit d'admission de récepteur de détente relié via le clapet d'admission de récepteur de détente à la chambre réceptrice de détente coopérant avec la chambre émettrice de détente de volume variable qui communique avec la chambre émettrice qui est relié au conduit de refoulement d'émetteur tandis que le conduit de refoulement de récepteur de détente relié à la même dite chambre réceptrice de détente est relié - en amont de la vanne d'admission d'émetteur - au conduit d'admission d'émetteur.
  • Le détendeur de fin de course suivant la présente invention comprend une transmission à levier à effet progressif qui comporte un ressort de rappel des pistons de détente qui tend à maintenir le piston moteur-émetteur de détente au voisinage de sa position où la chambre émettrice de détente présente le plus petit volume tandis que simultanément, ledit ressort permet de maintenir le piston pompe-récepteur de détente au voisinage de sa position où la chambre réceptrice de détente présente le plus grand volume.
  • Le détendeur de fin de course suivant la présente invention comprend une transmission à levier à effet progressif qui est constituée d'un arbre à manivelle pouvant tourner dans un palier d'arbre à manivelle et comportant une manivelle de piston émetteur de détente dont le maneton de manivelle est relié à un axe de piston moteur-émetteur de détente aménagé dans le piston moteur-émetteur de détente par une bielle de piston émetteur de détente dont la première extrémité est articulée autour dudit maneton et dont la deuxième extrémité est articulée autour dudit axe, l'arbre à manivelle coopérant avec des moyens de transmission secondaires de détente qui relient mécaniquement ledit arbre avec le piston pompe-récepteur de détente.
  • Le détendeur de fin de course suivant la présente invention comprend des moyens de transmission secondaires de détente qui sont constitués d'une roue dentée de transmission de détente qui est solidaire en rotation de l'arbre à manivelle et qui lorsqu'elle tourne entraîne en translation linéaire une crémaillère de transmission de détente reliée au piston pompe-récepteur de détente.
  • Le détendeur de fin de course suivant la présente invention comprend des moyens de transmission secondaires de détente qui sont constitués d'une manivelle de piston récepteur de détente solidaire en rotation de l'arbre à manivelle et dont le maneton de manivelle est relié à un axe de piston pompe-récepteur de détente aménagé dans le piston pompe-récepteur de détente par une bielle de piston récepteur de détente dont la première extrémité est articulée autour dudit maneton et dont la deuxième extrémité est articulée dudit axe.
  • Le détendeur de fin de course suivant la présente invention comprend une transmission à levier à effet progressif qui est constituée d'un arbre à cames pouvant tourner dans un palier d'arbre à cames et comportant une came de piston émetteur de détente pouvant être maintenue en contact avec le piston moteur-émetteur de détente et une came de piston récepteur de détente pouvant être maintenue en contact avec le piston pompe-récepteur de détente.
  • Le détendeur de fin de course suivant la présente invention comprend un arbre à manivelle ou une manivelle de piston émetteur de détente ou une bielle de piston émetteur de détente ou une roue dentée de transmission de détente ou une crémaillère de transmission de détente ou une manivelle de piston récepteur de détente ou une bielle de piston récepteur de détente ou un arbre à cames ou une came de piston émetteur de détente ou une came de piston récepteur de détente qui présente une butée-poussoir de déblocage de détente sur laquelle l'actionneur de déblocage de détente peut exercer une effort par l'intermédiaire d'un toucheau de déblocage de détente.
  • La description qui va suivre en regard des dessins annexés, donnés à titre d'exemples non limitatifs permettra de mieux comprendre l'invention, les caractéristiques qu'elle présente, et les avantages qu'elle est susceptible de procurer.
    • Figure 1 illustre de façon schématique le détendeur de fin de course pour convertisseur de pression à pistons suivant la présente invention tel qu'il peut être prévu pour coopérer avec un convertisseur de pression à pistons à une seule chambre émettrice et une seule chambre réceptrice, ledit convertisseur étant mis en oeuvre pour convertir un débit de fluide hydraulique sous haute pression issu d'un réservoir de fluide haute-pression en un débit de fluide hydraulique moyenne-pression, et ceci, pour entrainer un moteur hydraulique moyenne-pression couplé à un générateur d'électricité.
    • Figure 2 illustre de façon schématique ie détendeur de fin de course pour convertisseur de pression à pistons suivant la présente invention tel qu'il peut être prévu pour coopérer avec un convertisseur de pression à pistons à deux chambres émettrices et deux chambres réceptrices, ledit convertisseur étant mis en oeuvre pour convertir un débit de fluide hydraulique sous haute pression issu d'un réservoir de fluide haute-pression en un débit de fluide hydraulique moyenne-pression, et ceci, pour entrainer un moteur hydraulique moyenne-pression couplé à un générateur d'électricité.
    • Figures 3 et 4 sont des coupes schématiques illustrant le fonctionnement du détendeur de fin de course pour convertisseur de pression à pistons suivant la présente invention et selon une variante où la transmission à levier à effet progressif est constituée d'un arbre à manivelle comportant une manivelle de piston émetteur de détente dont le maneton de manivelle est relié à un axe de piston moteur-émetteur de détente aménagé dans le piston moteur-émetteur de détente par une bielle de piston émetteur de détente, ledit arbre à manivelle coopérant avec des moyens de transmission secondaires de détente notamment constitués d'une roue dentée de transmission de détente et d'une crémaillère de transmission de détente.
    • Figures 5 et 6 sont des coupes schématiques illustrant le fonctionnement du détendeur de fin de course pour convertisseur de pression à pistons suivant la présente invention et selon une variante où la transmission à levier à effet progressif est constituée d'un arbre à manivelle comportant une manivelle de piston émetteur de détente dont le maneton de manivelle est relié à un axe de piston moteur-émetteur de détente aménagé dans le piston moteur-émetteur de détente par une bielle de piston émetteur de détente, ledit arbre à manivelle coopérant avec des moyens de transmission secondaires de détente notamment constitués d'une manivelle de piston récepteur de détente dont le maneton de manivelle est relié à un axe de piston pompe-récepteur de détente aménagé dans le piston pompe-récepteur de détente par une bielle de piston récepteur de détente.
    • Figures 7 et 8 sont des coupes schématiques illustrant le fonctionnement du détendeur de fin de course pour convertisseur de pression à pistons suivant la présente invention et selon une variante où la transmission à levier à effet progressif est constituée d'un arbre à cames comportant une came de piston émetteur de détente pouvant être maintenue en contact avec le piston moteur-émetteur de détente, et une came de piston récepteur de détente pouvant être maintenue en contact avec le piston pompe-récepteur de détente.
    DESCRIPTION DE L'INVENTION :
  • On a montré en figures 1 à 8 le détendeur de fin de course 1 pour convertisseur de pression à pistons 2 lequel comprend au moins un cylindre émetteur 3 dans lequel peut se déplacer un piston moteur-émetteur 7 de sorte à définir une chambre émettrice 9 de volume variable pouvant être mise en relation avec un conduit d'admission d'émetteur 22 par une vanne d'admission d'émetteur 18 ou avec un conduit de refoulement d'émetteur 23 par une vanne de refoulement d'émetteur 19, ledit convertisseur de pression 2 comprenant également au moins un cylindre récepteur 4 dans lequel peut se déplacer un piston pompe-récepteur 8 de sorte à définir une chambre réceptrice 10 également de volume variable, cette dernière pouvant admettre un fluide hydraulique en provenance d'un conduit d'admission de récepteur 24 via un clapet d'admission de récepteur 20 ou refouler ledit fluide dans un conduit de refoulement de récepteur 25 via un clapet de refoulement de récepteur 21, la chambre émettrice 9 et la chambre réceptrice 10 étant chacune remplie d'un fluide hydraulique.
  • On voit sur les figures 1 et 2 que le détendeur de fin de course 1 suivant l'invention comporte au moins un cylindre émetteur de détente 12, rempli d'un fluide hydraulique, et dans lequel peut se déplacer un piston moteur-émetteur de détente 14 de sorte à définir une chambre émettrice de détente 16 de volume variable qui communique avec la chambre réceptrice 10.
  • A titre de variante non représentée pouvant se substituer ou s'ajouter à la précédente le détendeur de fin de course 1 comporte au moins un cylindre émetteur de détente 12, rempli d'un fluide hydraulique, et dans lequel peut se déplacer un piston moteur-émetteur de détente 14 de sorte à définir une chambre émettrice de détente 16 de volume variable qui communique avec la chambre émettrice 9.
  • On note que la chambre émettrice de détente 16 peut communiquer - selon le cas - soit avec la chambre émettrice 9 soit avec la chambre réceptrice 10 par l'intermédiaire d'un conduit aménagé dans une culasse de cylindre émetteur de détente 44 coiffant le cylindre émetteur de détente 12, ou simplement parce que le cylindre émetteur de détente 12 débouche directement soit dans la chambre émettrice 9 soit dans la chambre réceptrice 10. Dans ce dernier cas ledit cylindre émetteur 12 ne comporte pas de culasse de cylindre émetteur de détente 44 et peut respectivement déboucher au niveau de la surface interne d'une culasse de cylindre émetteur 5 coiffant le cylindre émetteur 3 ou au niveau de la surface interne d'une culasse de cylindre récepteur 6 coiffant le cylindre récepteur 4.
  • On remarque également sur les figures 1 à 8 que le détendeur de fin de course 1 suivant l'invention comporte au moins un cylindre récepteur de détente 13 qui coopère avec le cylindre émetteur de détente 12 et dans lequel peut se déplacer un piston pompe-récepteur de détente 15 de sorte à définir avec ledit cylindre récepteur 13 une chambre réceptrice de détente 17 de volume variable remplie d'un fluide hydraulique, ledit piston pompe-récepteur 15 étant mécaniquement relié au piston moteur-émetteur de détente 14 par une transmission à levier à effet progressif 11 agencée de telle sorte que quand le piston moteur-émetteur de détente 14 est au point mort haut, le piston pompe-récepteur de détente 15 est au point mort bas et inversement, tandis que le volume maximal de la chambre réceptrice de détente 17 est inférieur au volume maximal de la chambre émettrice de détente 16.
  • On note que la transmission à levier à effet progressif 11 définit entre le piston moteur-émetteur de détente 14 et le piston pompe-récepteur de détente 15 un rapport de transmission tel, que lorsque ledit piston moteur-émetteur 14 est placé en son point mort haut et qu'en conséquence le volume de chambre émettrice de détente 16 est minimal, ledit piston moteur-émetteur 14 ne peut - malgré la pression du fluide hydraulique à laquelle il est exposé - se mouvoir et entraîner de ce fait le piston pompe-récepteur de détente 15, tandis que plus le piston moteur-émetteur de détente 14 est éloigné dudit point mort haut, plus l'effort qu'il est en mesure de transmettre au piston pompe-récepteur de détente 15 est important, de même que sa capacité à mouvoir ledit piston pompe-récepteur 15. On note en outre que le piston moteur-émetteur de détente 14 et/ou le piston pompe-récepteur de détente 15 peut comporter au moins un joint et/ou au moins un segment d'étanchéité.
  • Les figures 1 à 8 montrent que le détendeur de fin de course 1 suivant l'invention comprend au moins un clapet d'admission de récepteur de détente 26 qui débouche dans la chambre réceptrice de détente 17 et qui permet à un fluide hydraulique contenu dans un conduit d'admission de récepteur de détente 28 d'entrer dans ladite chambre réceptrice 17 mais non d'en sortir.
  • Les figures 1 à 8 montrent également que le détendeur de fin de course 1 comporte au moins un clapet de refoulement de récepteur de détente 27 qui débouche dans la chambre réceptrice de détente 17 et qui permet à un fluide hydraulique contenu dans un conduit de refoulement de récepteur de détente 29 de sortir de ladite chambre réceptrice 17 mais non d'y entrer.
  • On remarque d'ailleurs, que le clapet d'admission de récepteur de détente 26 et/ou le clapet de refoulement de récepteur de détente 27 peut être aménagé dans une culasse de cylindre récepteur de détente 45 qui obture une extrémité du cylindre récepteur de détente 13 ou dans l'extrémité fermée dudit cylindre 13 si celui-ci est borgne.
  • On remarque en figures 1 à 8 que le détendeur de fin de course 1 suivant l'invention comprend aussi au moins un actionneur de déblocage de détente 30 pouvant par contact ou liaison mécanique mettre en mouvement la transmission à levier à effet progressif 11 ou débloquer cette dernière de sorte à mettre en mouvement le piston moteur-émetteur de détente 14 et le piston pompe-récepteur de détente 15 lorsque le piston moteur-émetteur de détente 14 est placé en son point mort haut ou au voisinage de ce dernier, et ceci afin par exemple d'atteindre un rapport de transmission entre lesdits pistons 14, 15 suffisant pour que le piston moteur-émetteur de détente 14 puisse poursuivre sa course sans l'aide de l'actionneur de déblocage de détente 30.
  • Il convient de préciser que l'actionneur de déblocage de détente 30 peut être hydraulique, électro-hydraulique, électrique, pneumatique, ou de façon générale, de tout type connu de l'homme de l'art. En outre, l'actionneur de déblocage de détente 30 peut être commandé par un calculateur de gestion du convertisseur de pression 55 qui gère ou coopère à gérer le fonctionnement du convertisseur de pression à pistons 2.
  • Comme l'illustrent les figures 1 et 2, le conduit d'admission de récepteur de détente 28 relié via le clapet d'admission de récepteur de détente 26 à la chambre réceptrice de détente 17 coopérant avec la chambre émettrice de détente 16 de volume variable qui communique avec la chambre réceptrice 10 peut être relié au conduit d'admission de récepteur 24 tandis que le conduit de refoulement de récepteur de détente 29 relié à la même dite chambre réceptrice de détente 17 peut être relié au conduit de refoulement de récepteur 25.
  • Selon une configuration non-illustrée par les figures, le conduit d'admission de récepteur de détente 28 relié via le clapet d'admission de récepteur de détente 26 à la chambre réceptrice de détente 17 coopérant avec la chambre émettrice de détente 16 de volume variable qui communique avec la chambre émettrice 9 peut être relié au conduit de refoulement d'émetteur 23 tandis que le conduit de refoulement de récepteur de détente 29 relié à la même dite chambre réceptrice de détente 17 peut être relié - en amont de la vanne d'admission d'émetteur 18 - au conduit d'admission d'émetteur 22.
  • Sur les figures 3 à 8, on voit que la transmission à levier à effet progressif 11 peut comporter un ressort de rappel des pistons de détente 33 qui tend à maintenir le piston moteur-émetteur de détente 14 au voisinage de sa position où la chambre émettrice de détente 16 présente le plus petit volume tandis que simultanément, ledit ressort 33 permet de maintenir le piston pompe-récepteur de détente 15 au voisinage de sa position où la chambre réceptrice de détente 17 présente le plus grand volume, ledit ressort 33 pouvant être de torsion, de flexion, de traction ou de compression et être de tout type connu de l'homme de l'art.
  • Les figures 3 à 6 montrent quant à elles que selon le détendeur de fin de course 1 suivant l'invention, la transmission à levier à effet progressif 11 peut être constituée d'un arbre à manivelle 46 pouvant tourner dans un palier d'arbre à manivelle 47 et comportant une manivelle de piston émetteur de détente 35 dont le maneton de manivelle 48 est relié à un axe de piston moteur-émetteur de détente 49 aménagé dans le piston moteur-émetteur de détente 14 par une bielle de piston émetteur de détente 34 dont la première extrémité est articulée autour dudit maneton 48 et dont la deuxième extrémité est articulée autour dudit axe 49, l'arbre à manivelle 46 coopérant avec des moyens de transmission secondaires de détente 51 qui relient mécaniquement ledit arbre 46 avec le piston pompe-récepteur de détente 15.
  • Les figures 3 et 4 montrent que les moyens de transmission secondaires de détente 51 peuvent être constitués d'une roue dentée de transmission de détente 36 qui est solidaire en rotation de l'arbre à manivelle 46 et qui lorsqu'elle tourne entraîne en translation linéaire une crémaillère de transmission de détente 37 reliée au piston pompe-récepteur de détente 15 directement ou par l'intermédiaire d'une jambe de poussée de piston récepteur de détente 39.
  • On note que la crémaillère de transmission de détente 37 peut être guidée, notamment par au moins un galet de guidage de crémaillère de détente 38.
  • Selon la configuration particulière exposée en figures 5 et 6, les moyens de transmission secondaires de détente 51 peuvent être constitués d'une manivelle de piston récepteur de détente 40 solidaire en rotation de l'arbre à manivelle 46 et dont le maneton de manivelle 48 est relié à un axe de piston pompe-récepteur de détente 50 aménagé dans le piston pompe-récepteur de détente 15 par une bielle de piston récepteur de détente 41 dont la première extrémité est articulée autour dudit maneton 48 et dont la deuxième extrémité est articulée autour dudit axe 50.
  • On conçoit aisément que, selon une variante non-représentée, les moyens de transmission secondaires de détente 51 peuvent également être constitués d'une came solidaire en rotation de l'arbre à manivelle 46 et pouvant être maintenue en contact avec le piston pompe-récepteur de détente 15.
  • A titre de variante exposée en figures 7 et 8, la transmission à levier à effet progressif 11 peut être constituée d'un arbre à cames 52 pouvant tourner dans un palier d'arbre à cames 53 et comportant une came de piston émetteur de détente 42 pouvant être maintenue en contact avec le piston moteur-émetteur de détente 14 et une came de piston récepteur de détente 43 pouvant être maintenue en contact avec le piston pompe-récepteur de détente 15.
  • En alternative non-représentée, la came de piston récepteur de détente 43 peut être remplacée par une manivelle solidaire en rotation de l'arbre à cames 52, ladite manivelle comportant une maneton reliè à un axe aménagé dans le piston pompe-récepteur de détente 15 par une bielle dont la première extrémité est articulée autour dudit maneton et dont la deuxième extrémité est articulée autour dudit axe.
  • On note que l'arbre à manivelle 46 ou la manivelle de piston émetteur de détente 35 ou la bielle de piston émetteur de détente 34 ou la roue dentée de transmission de détente 36 ou la crémaillère de transmission de détente 37 ou la manivelle de piston récepteur de détente 40 ou la bielle de piston récepteur de détente 41 ou l'arbre à cames 52 ou la came de piston émetteur de détente 42 ou la came de piston récepteur de détente 43 peut présenter une butée-poussoir de déblocage de détente 32 sur laquelle l'actionneur de déblocage de détente 30 peut exercer une effort par l'intermédiaire d'un toucheau de déblocage de détente 31 pour mettre en mouvement au moment opportun le piston moteur-émetteur de détente 14 et le piston pompe-récepteur de détente 15 lorsque le piston moteur-émetteur de détente 14 est placé en son point mort haut ou au voisinage de ce dernier.
  • On remarque que les figures 1 à 8 montrent une variante selon laquelle la butée-poussoir de déblocage de détente 32 est prévue sur la manivelle de piston émetteur de détente 35.
  • FONCTIONNEMENT DE L'INVENTION :
  • A partir de la description qui précède et en relation avec les figures 1 à 8, on comprend le fonctionnement du détendeur de fin de course 1 pour convertisseur de pression hydraulique 2 suivant la présente invention.
  • On a choisi ici d'illustrer le fonctionnement dudit détendeur 1 en utilisant ce dernier pour récupérer l'énergie de compression d'un fluide hydraulique mis en oeuvre dans un convertisseur de pression à pistons 2 utilisé comme réducteur de pression dont deux configurations sont schématiquement représentées en figures 1 et 2. Pour plus de simplicité, nous considérerons principalement le schéma de la figure 1 qui expose un convertisseur de pression à pistons 2 à une seule chambre émettrice 9 et une seule chambre réceptrice 10.
  • L'application qu'illustre la figure 1 a pour objectif de convertir de l'énergie stockée sous forme d'azote comprimé dans un réservoir de fluide haute-pression 58 en électricité au moyen d'un générateur d'électricité 62 entraîné par un moteur hydraulique moyenne-pression 59. L'azote comprimé communique sa pression à un, fluide hydraulique pouvant notamment circuler dans les conduits 64.
  • Pour tenir l'objectif défini, on a donc intercalé entre le réservoir de fluide haute-pression 58 et le moteur hydraulique moyenne-pression 59 un convertisseur de pression à pistons 2 qui transforme un débit haute-pression de fluide hydraulique sortant dudit réservoir 58 en un débit moyenne-pression de fluide hydraulique, ce dernier entrant dans le moteur hydraulique moyenne-pression 59 via un conduit d'entrée du moteur hydraulique 60. Pour filtrer les pulsations générées par le fonctionnement du convertisseur de pression à pistons 2, on remarque que le conduit d'entrée du moteur hydraulique 60 comporte - selon cet exemple - un réservoir de fluide moyenne-pression 57.
  • On comprend au vu de la figure 1 que pour générer un débit moyenne-pression de fluide hydraulique entrant dans le moteur hydraulique moyenne-pression 59, il faut mettre en communication le réservoir de fluide haute-pression 58 avec la chambre émettrice 9. Pour cela, le calculateur de gestion du convertisseur de pression 55 ouvre la vanne d'admission d'émetteur 18 qui permet au fluide hydraulique contenu dans le réservoir de fluide haute-pression 58 d'entrer dans la chambre émettrice 9 via le conduit d'admission d'émetteur 22. Toutefois, ledit calculateur 55 empêche simultanément ledit fluide de sortir de ladite chambre 9 pour aller vers le réservoir de fluide basse-pression de sortie d'émetteur 56, ledit calculateur 55 maintenant pour cela la vanne de refoulement d'émetteur 19 fermée. Ainsi, le fluide hydraulique sous haute pression en provenance dudit réservoir 58 peut pousser sur le piston moteur-émetteur 7, lequel se déplace dans le sens d2, ce qui a pour effet de déplacer le piston pompe-récepteur 8 dans le même sens, sur la même distance et à la même vitesse.
  • En se déplaçant dans le sens d2, le piston pompe-récepteur 8 comprime le fluide hydraulique que renferme la chambre réceptrice 10, ce qui a pour effet d'expulser ledit fluide dans le conduit de refoulement de récepteur 25 via le clapet de refoulement de récepteur 21. Ledit fluide est alors acheminé par un conduit 64 jusqu'au conduit d'entrée du moteur hydraulique 60 ce qui a pour effet de mettre en rotation le moteur hydraulique moyenne-pression 59 et par conséquent, le générateur d'électricité 62, lequel produit de l'électricité.
  • Le capteur de position des pistons de convertisseur de pression 54 retourne en permanence la position du piston pompe-récepteur 8 au calculateur de gestion du convertisseur de pression 55. Lorsque le piston pompe-récepteur 8 arrive à proximité de la culasse de cylindre récepteur 6, ledit calculateur 55 ferme la vanne d'admission d'émetteur 18 de sorte à stopper le déplacement du piston pompe-récepteur 8 dans le sens d2 avant qu'il ne touche ladite culasse 6, et de sorte que ledit piston 8 reste à une certaine distance de la dite culasse 6.
  • Avant que le piston moteur-émetteur 7 et le piston pompe-récepteur 8 ne puissent repartir en sens inverse dans le sens d1, il est avantageux de décomprimer la chambre émettrice 9. Si l'on en reste à ce que permet l'état de l'art et de la technique, le calculateur de gestion du convertisseur de pression 55 devrait à ce stade ouvrir la vanne de refoulement d'émetteur 19 pour décomprimer ladite chambre 9 dans le réservoir de fluide basse-pression de sortie d'émetteur 56, ce qui aurait pour effet de dissiper l'énergie de compression du fluide hydraulique contenu dans la chambre émettrice 9, ladite énergie ne pouvant définitivement plus être transformée en débit additionnel de fluide hydraulique sortant du conduit de refoulement de récepteur 25.
  • C'est pour éviter cette perte énergétique qu'à ce stade, le détendeur de fin de course 1 pour convertisseur de pression à pistons 2 suivant la présente invention prévoit que le calculateur de gestion du convertisseur de pression 55 n'ouvre pas encore la vanne de refoulement d'émetteur 19 de sorte que ledit détendeur 1 puisse produire ses effets et récupérer l'énergie de compression du fluide hydraulique contenu dans la chambre émettrice 9.
  • Pour cela, immédiatement après avoir fermé la vanne d'admission d'émetteur 18, le calculateur de gestion du convertisseur de pression 55 alimente l'actionneur de déblocage de détente 30 en courant électrique, ce qui a pour effet de mettre en mouvement la transmission à levier à effet progressif 11 et par conséquent, de mettre en mouvement le piston moteur-émetteur de détente 14 et le piston pompe-récepteur de détente 15, le piston moteur-émetteur de détente 14 étant jusqu'alors stationné en son point mort haut.
  • Pour détailler le fonctionnement du détendeur de fin de course 1 selon l'invention, on a choisi ici le mode de réalisation de la transmission à levier à effet progressif 11 qui est représenté en figures 3 et 4.
  • La figure 3 montre l'état dans lequel se trouvait le détendeur de fin de course 1 selon l'invention tant que le piston moteur-émetteur 7 et le piston pompe-récepteur 8 se déplaçaient dans le sens d2. On remarque que piston moteur-émetteur de détente 14 restait bloqué en son point mort haut car la pression que le fluide hydraulique contenu dans la chambre réceptrice 10 exerçait sur ledit piston 14 tendait à faire tourner l'arbre à manivelle 46 dans le sens inverse des aiguilles d'une montre. Que le piston moteur-émetteur de détente 14 restât bloqué est dû au fait que - selon cet exemple particulier de réalisation illustré en figure 3 et 4 - lorsque ledit piston 14 est stationné en son point mort haut, l'axe de rotation du maneton de manivelle 48 est sensiblement désaligné vers le bas par rapport à la droite qui relie l'axe de rotation de l'axe de piston moteur-émetteur de détente 49 et l'axe de rotation de l'arbre à manivelle 46, tandis que le centre de rotation de l'axe de piston moteur-émetteur de détente 49 et l'axe du cylindre émetteur de détente 12 sont perpendiculaires et sécants, et qu'il en est de même pour l'axe de rotation de l'arbre à manivelle 46 et ledit axe dudit cylindre 12.
  • On remarque - toujours en figure 3 - qu'il était également impossible au piston moteur-émetteur de détente 14 de faire tourner davantage l'arbre à manivelle 46 dans le sens inverse des aiguilles d'une montre car la butée-poussoir de déblocage de détente 32 que comporte la manivelle de piston émetteur de détente 35 butait sur le toucheau de déblocage de détente 31, ce dernier étant maintenu en position stationnaire par l'actionneur de déblocage de détente 30.
  • On remarque également - outre ce qui vient d'être exposé - que le ressort de rappel des pistons de détente 33 tend à faire tourner l'arbre à manivelle 46 dans le sens inverse des aiguilles d'une montre et donc, à maintenir la butée-poussoir de déblocage de détente 32 au contact du toucheau de déblocage de détente 31.
  • On comprend au vu des figures 3 et 4 que dès que le calculateur de gestion du convertisseur de pression 55 alimente l'actionneur de déblocage de détente 30 en courant électrique, ledit actionneur 30 repousse le toucheau de déblocage de détente 31 qui, en poussant à son tour sur la butée-poussoir de déblocage de détente 32 que comporte la manivelle de piston émetteur de détente 35, fait tourner l'arbre à manivelle 46 de quelques degrés dans le sens des aiguilles d'une montre de sorte à faire passer le désalignement de l'axe de rotation du maneton de manivelle 48 d'au-dessous à au-dessus de la droite qui relie l'axe de rotation de l'axe de piston moteur-émetteur de détente 49 et l'axe de rotation de l'arbre à manivelle 46.
  • Il résulte de ceci que la poussée que produit le piston moteur-émetteur de détente 14 sous l'effet de la pression du fluide hydraulique que renferme la chambre réceptrice 10 - ladite pression étant répercutée à la chambre émettrice de détente 16 ces deux dites chambres 10 et 16 étant communicantes - tend désormais à faire tourner l'arbre à manivelle 46 dans le sens des aiguilles d'une montre, ce qui devient possible car seuls le piston pompe-récepteur de détente 15 et le ressort de rappel des pistons de détente 33 tendent désormais à s'opposer à cette rotation sans toutefois pouvoir l'empêcher.
  • Rappelons que la vanne d'admission d'émetteur 18 et la vanne de refoulement d'émetteur 19 étant toutes deux fermées, le piston moteur-émetteur 7 et le piston pompe-récepteur 8 sont temporairement à l'arrêt. Corrélativement, tant que le piston moteur-émetteur de détente 14 est au voisinage de son point mort haut, la pression régnant dans la chambre émettrice 9 correspond approximativement à la pression régnant dans le réservoir de fluide haute-pression 58 cependant que la pression régnant dans la chambre réceptrice 10 est équivalente à la pression qui régnait jusqu'alors dans le conduit d'entrée du moteur hydraulique 60.
  • C'est à ce stade que le rôle du détendeur de fin de course 1 pour convertisseur de pression à pistons 2 suivant la présente invention devient déterminant car ledit détendeur 1 va décomprimer la chambre émettrice 9 et la chambre réceptrice 10 et utiliser cette décompression pour générer un débit de fluide hydraulique additionnel disponible au niveau du conduit d'entrée du moteur hydraulique 60, la pression dudit fluide étant sensiblement équivalente à celle qui régnait dans ledit conduit 60 lorsque le piston moteur-émetteur 7 et le piston pompe-récepteur 8 se déplaçaient jusqu'ici dans le sens d2.
  • On remarque en figures 3 et 4 que le piston moteur-émetteur de détente 14 expose à la pression du fluide hydraulique une section très supérieure à celle qu'expose le piston pompe-récepteur de détente 15.
  • On remarque - toujours sur les mêmes figures - que le rapport de transmission entre le piston moteur-émetteur de détente 14 et le piston pompe-récepteur de détente 15 est grand voire infiniment grand lorsque ledit piston moteur-émetteur 14 est placé sur ou à proximité de son point mort haut, et petit lorsque ledit piston moteur-émetteur 14 est positionné au point mort bas. On remarque aussi qu'avantageusement, la course complète du piston moteur-émetteur de détente 14 ne s'opère que sur un quart de tour de l'arbre à manivelle 46.
  • Ce rapport de transmission décroissant provient - de première part - du système que constituent la bielle de piston émetteur de détente 34 et la manivelle de piston émetteur de détente 35 ledit système offrant un bras de levier court voire infiniment court au piston moteur-émetteur de détente 14 pour faire tourner l'arbre à manivelle 46 lorsque ledit piston 14 est sur ou à proximité de son point mort haut, ledit bras de levier devenant maximal lorsque ledit piston 14 est en son point mort bas. Ce rapport de transmission décroissant provient - de deuxième part - du fait que contrairement au piston moteur-émetteur de détente 14, l'entraînement en translation linéaire du piston pompe-récepteur de détente 15 par l'arbre à manivelle 46 s'opère à levier constant puisque les moyens de transmission secondaires de détente 51 dont il est question sont constitués - selon cet exemple de réalisation non limitatif - d'une roue dentée de transmission de détente 36 entraînant une crémaillère de transmission de détente 37.
  • La différence de section et le rapport de transmission variable entre le piston moteur-émetteur de détente 14 et le piston pompe-récepteur de détente 15 permettent de détendre le fluide hydraulique contenu dans la chambre émettrice 9 et la chambre réceptrice 10 dans les conditions recherchées c'est à dire, en utilisant cette détente pour générer un débit de fluide hydraulique moyenne-pression additionne! disponible au niveau du conduit d'entrée du moteur hydraulique 60.
  • Au début de la détente - c'est à dire lorsque le piston moteur-émetteur de détente 14 est au voisinage de son point mort haut - la pression régnant dans la chambre réceptrice 10 est sensiblement égale à la pression recherchée au niveau du conduit d'entrée du moteur hydraulique 60. L'effort qu'exerce la pression régnant dans la chambre réceptrice 10 sur le piston moteur-émetteur de détente 14 est - par exemple - dix fois supérieur à celui qu'il faut exercer sur le piston pompe-récepteur de détente 15 pour que ce dernier produise la pression recherchée dans la chambre réceptrice de détente 17. Toutefois, le rapport instantané de transmission entre le piston moteur-émetteur de détente 14 et le piston pompe-récepteur de détente 15 est - par exemple - de un sur dix. En ce cas, le piston pompe-récepteur de détente 15 pressurise bien la chambre réceptrice de détente 17 avec laquelle il coopère à la pression recherchée, de sorte qu'il commence à expulser de ladite chambre réceptrice 17 le fluide hydraulique qu'elle contient dans le conduit de refoulement de récepteur de détente 29 via le clapet de refoulement de récepteur de détente 27.
  • A ce stade, le piston moteur-émetteur 7 et le piston pompe-récepteur 8 commencent à avancer sensiblement dans le sens d2 sous l'effet de la détente de la chambre émettrice 9.
  • Au fur et à mesure que se détend la chambre émettrice 9, le piston moteur-émetteur de détente 14 se déplace en direction de son point mort bas tandis que décroît la pression qu'il reçoit du fluide hydraulique en provenance de la chambre réceptrice 10. Ce faisant, le rapport de transmission entre ledit piston 14 et le piston pompe-récepteur de détente 15 croît pour arriver approximativement à un lorsque le piston moteur-émetteur de détente 14 atteint son point mort bas.
  • Ainsi, alors que la pression régnant dans la chambre émettrice 9 et la chambre réceptrice 10 chutait, la pression du fluide hydraulique expulsé de la chambre réceptrice de détente 17 par le piston pompe-récepteur de détente 15 via le clapet de refoulement de récepteur de détente 27 restait relativement constante. Comme le débit entrant dans le moteur hydraulique moyenne-pression 59 est resté constant durant cette séquence, la vitesse de rotation de arbre à manivelle 46 s'est accrue corrélativement à la décompression des chambres émettrice 9 et réceptrice 10, ladite décompression ayant également engendré un déplacement dans le sens d2 et sur une courte distance du piston moteur-émetteur 7 et du piston pompe-récepteur 8.
  • Une fois la chambre émettrice 9 et la chambre réceptrice 10 décomprimées, le calculateur de gestion du convertisseur de pression 55 peut ouvrir la vanne de refoulement d'émetteur 19. Il en résulte que le piston moteur-émetteur 7 et le piston pompe-récepteur 8 se déplacent rapidement dans le sens d1 sous l'effet de la pression qu'exerce le fluide hydraulique contenu dans le réservoir de fluide basse-pression d'entrée de récepteur 63 sur toute la section du piston pompe-récepteur 8, via le clapet d'admission de récepteur 20. Lorsque le piston moteur-émetteur 7 arrive à proximité de la culasse de cylindre émetteur 5, le calculateur de gestion du convertisseur de pression 55 ferme la vanne de refoulement d'émetteur 19 et le piston moteur-émetteur 7 et le piston pompe-récepteur 8 cessent de se déplacer dans le sens d1.
  • Ce faisant, le ressort de rappel des pistons de détente 33 ramène le piston moteur-émetteur de détente 14 au point mort haut, et ramène la butée-poussoir de déblocage de détente 32 au contact du toucheau de déblocage de détente 31. Simultanément, le piston pompe-récepteur de détente 15 revient en son point mort bas en aspirant - via le clapet d'admission de récepteur de détente 26 - du fluide hydraulique provenant du réservoir de fluide basse-pression d'entrée de récepteur 63 de sorte à remplir la chambre réceptrice de détente 17.
  • Ainsi, le piston moteur-émetteur 7 et le piston pompe-récepteur 8 du convertisseur de pression à pistons 2 sont à prêts à effectuer une nouvelle course dans le sens d2 pour convertir le débit haute-pression de fluide hydraulique sortant du réservoir de fluide haute-pression 58 en un débit moyenne-pression de fluide hydraulique entrant dans le moteur hydraulique moyenne-pression 59 avant d'en ressortir via le conduit de sortie du moteur hydraulique 61 pour finalement déboucher dans une bâche à fluide hydraulique 65.
  • En outre, le détendeur de fin de course 1 selon l'invention est à nouveau prêt à décomprimer la chambre émettrice 9 et à récupérer l'énergie de compression du fluide hydraulique contenu dans ladite chambre 9 lorsque le piston pompe-récepteur 8 arrivera de nouveau à proximité de la culasse de cylindre récepteur 6.
  • On comprend aisément le fonctionnement apparenté des variantes du détendeur de fin de course 1 pour convertisseur de pression à pistons 2 selon l'invention telles qu'illustrées en figures 5 à 8. On conçoit également aisément toute application possible dudit détendeur 1 qu'il s'agisse de celle exposée en figure 2, ou de toute autre, sans limitation, qu'elle soit ou non appliquée à un convertisseur de pression ou à toute autre machine connue ou non de l'homme de l'art et qui trouve avec le détendeur de fin de course 1 selon l'invention une solution à la récupération de l'énergie de compression contenue dans tout fluide liquide ou gazeux.
  • Il doit être entendu que la description qui précède n'a été donnée qu'à titre d'exemple et quelle ne limite nullement le domaine de l'invention qui est défini par les revendications.

Claims (9)

  1. Convertisseur de pression à pistons (2) comprenant au moins un cylindre émetteur (3) dans lequel peut se déplacer un piston moteur-émetteur (7) de sorte à définir une chambre émettrice (9) de volume variable pouvant être mise en relation avec un conduit d'admission d'émetteur (22) par une vanne d'admission d'émetteur (18) ou avec un conduit de refoulement d'émetteur (23) par une vanne de refoulement d'émetteur (19), ledit convertisseur de pression (2) comprenant également au moins un cylindre récepteur (4) dans lequel peut se déplacer un piston pompe-récepteur (8) de sorte à définir une chambre réceptrice (10) également de volume variable, cette dernière pouvant admettre un fluide hydraulique en provenance d'un conduit d'admission de récepteur (24) via un clapet d'admission de récepteur (20) ou refouler ledit fluide dans un conduit de refoulement de récepteur (25) via un clapet de refoulement de récepteur (21), la chambre émettrice (9) et la chambre réceptrice (10) étant chacune remplie d'un fluide hydraulique, caractérisé en ce que le convertisseur de pression (2) comporte en outre un détendeur de fin de course (1) comprenant:
    • Au moins un cylindre émetteur de détente (12), rempli d'un fluide hydraulique, et dans lequel peut se déplacer un piston moteur-émetteur de détente (14) de sorte à définir une chambre émettrice de détente (16) de volume variable qui communique avec la chambre émettrice (9) et/ou au moins un cylindre émetteur de détente (12), rempli d'un fluide hydraulique, et dans lequel peut se déplacer un piston moteur-émetteur de détente (14) de sorte à définir une chambre émettrice de détente (16) de volume variable qui communique avec la chambre réceptrice (10) ;
    • Au moins un cylindre récepteur de détente (13) qui coopère avec le cylindre émetteur de détente (12) et dans lequel peut se déplacer un piston pompe-récepteur de détente (15) de sorte à définir avec ledit cylindre récepteur (13) une chambre réceptrice de détente (17) de volume variable remplie d'un fluide hydraulique, ledit piston pompe-récepteur (15) étant mécaniquement relié au piston moteur-émetteur de détente (14) par une transmission à levier à effet progressif (11) agencée de telle sorte que quand le piston moteur-émetteur de détente (14) est au point mort haut, le piston pompe-récepteur de détente (15) est au point mort bas et inversement ;
    • Au moins un clapet d'admission de récepteur de détente (26) qui débouche dans la chambre réceptrice de détente (17) et qui permet à un fluide hydraulique contenu dans un conduit d'admission de récepteur de détente (28) d'entrer dans ladite chambre réceptrice (17) mais non d'en sortir ;
    • Au moins un clapet de refoulement de récepteur de détente (27) qui débouche dans la chambre réceptrice de détente (17) et qui permet à un fluide hydraulique contenu dans un conduit de refoulement de récepteur de détente (29) de sortir de ladite chambre réceptrice (17) mais non d'y entrer ;
    • Au moins un actionneur de déblocage de détente (30) pouvant par contact ou liaison mécanique mettre en mouvement la transmission à levier à effet progressif (11) ou débloquer cette dernière.
  2. Convertisseur de pression (2) suivant la revendication 1, caractérisé en ce que le conduit d'admission de récepteur de détente (28) relié via le clapet d'admission de récepteur de détente (26) à la chambre réceptrice de détente (17) coopérant avec la chambre émettrice de détente (16) de volume variable qui communique avec la chambre réceptrice (10) est relié au conduit d'admission de récepteur (24) tandis que le conduit de refoulement de récepteur de détente (29) relié à la même dite chambre réceptrice de détente (17) est relié au conduit de refoulement de récepteur (25).
  3. Convertisseur de pression (2) suivant la revendication 1, caractérisé en ce que le conduit d'admission de récepteur de détente (28) relié via le clapet d'admission de récepteur de détente (26) à la chambre réceptrice de détente (17) coopérant avec la chambre émettrice de détente (16) de volume variable qui communique avec la chambre émettrice (9) est relié au conduit de refoulement d'émetteur (23) tandis que le conduit de refoulement de récepteur de détente (29) relié à la même dite chambre réceptrice de détente (17) est relié - en amont de la vanne d'admission d'émetteur (18) - au conduit d'admission d'émetteur (22).
  4. Convertisseur de pression (2) suivant la revendication 1, caractérisé en ce que la transmission à levier à effet progressif (11) comporte un ressort de rappel des pistons de détente (33) qui tend à maintenir le piston moteur-émetteur de détente (14) au voisinage de sa position où la chambre émettrice de détente (16) présente le plus petit volume tandis que simultanément, ledit ressort (33) permet de maintenir le piston pompe-récepteur de détente (15) au voisinage de sa position où la chambre réceptrice de détente (17) présente le plus grand volume.
  5. Convertisseur de pression (2) suivant la revendication 1, caractérisé en ce que la transmission à levier à effet progressif (11) est constituée d'un arbre à manivelle (46) pouvant tourner dans un palier d'arbre à manivelle (47) et comportant une manivelle de piston émetteur de détente (35) dont le maneton de manivelle (48) est relié à un axe de piston moteur-émetteur de détente (49) aménagé dans le piston moteur-émetteur de détente (14) par une bielle de piston émetteur de détente (34) dont la première extrémité est articulée autour dudit maneton (48) et dont la deuxième extrémité est articulée autour dudit axe (49), l'arbre à manivelle (46) coopérant avec des moyens de transmission secondaires de détente (51) qui relient mécaniquement ledit arbre (46) avec le piston pompe-récepteur de détente (15).
  6. Convertisseur de pression (2) suivant la revendication 5, caractérisé en ce que les moyens de transmission secondaires de détente (51) sont constitués d'une roue dentée de transmission de détente (36) qui est solidaire en rotation de l'arbre à manivelle (46) et qui lorsqu'elle tourne entraîne en translation linéaire une crémaillère de transmission de détente (37) reliée au piston pompe-récepteur de détente (15).
  7. Convertisseur de pression (2) suivant la revendication 5, caractérisé en ce que les moyens de transmission secondaires de détente (51) sont constitués d'une manivelle de piston récepteur de détente (40) solidaire en rotation de l'arbre à manivelle (46) et dont le maneton de manivelle (48) est relié à un axe de piston pompe-récepteur de détente (50) aménagé dans le piston pompe-récepteur de détente (15) par une bielle de piston récepteur de détente (41) dont la première extrémité est articulée autour dudit maneton (48) et dont la deuxième extrémité est articulée autour dudit axe (50).
  8. Convertisseur de pression (2) suivant la revendication 1, caractérisé en ce que la transmission à levier à effet progressif (11) est constituée d'un arbre à cames (52) pouvant tourner dans un palier d'arbre à cames (53) et comportant une came de piston émetteur de détente (42) pouvant être maintenue en contact avec le piston moteur-émetteur de détente (14) et une came de piston récepteur de détente (43) pouvant être maintenue en contact avec le piston pompe-récepteur de détente (15).
  9. Convertisseur de pression (2) suivant l'une quelconque des revendications 5 à 8, caractérisé en ce que l'arbre à manivelle (46) ou la manivelle de piston émetteur de détente (35) ou la bielle de piston émetteur de détente (34) ou la roue dentée de transmission de détente (36) ou la crémaillère de transmission de détente (37) ou la manivelle de piston récepteur de détente (40) ou la bielle de piston récepteur de détente (41) ou l'arbre à cames (52) ou la came de piston émetteur de détente (42) ou la came de piston récepteur de détente (43) présente une butée-poussoir de déblocage de détente (32) sur laquelle l'actionneur de déblocage de détente (30) peut exercer une effort par l'intermédiaire d'un toucheau de déblocage de détente (31).
EP15732299.1A 2014-05-12 2015-05-07 Convertisseur de pression à piston comprenant un détendeur de fin de course Active EP3143288B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1454223A FR3020840B1 (fr) 2014-05-12 2014-05-12 Detendeur de fin de course pour convertisseur de pression a pistons
FR1455710A FR3020841B1 (fr) 2014-05-12 2014-06-20 Detenteur de fin de course pour convertisseur de pression a pistons
PCT/FR2015/051209 WO2015173495A1 (fr) 2014-05-12 2015-05-07 Détendeur de fin de course pour convertisseur de pression a pistons

Publications (2)

Publication Number Publication Date
EP3143288A1 EP3143288A1 (fr) 2017-03-22
EP3143288B1 true EP3143288B1 (fr) 2018-11-07

Family

ID=51261066

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15732299.1A Active EP3143288B1 (fr) 2014-05-12 2015-05-07 Convertisseur de pression à piston comprenant un détendeur de fin de course

Country Status (10)

Country Link
US (1) US9856891B2 (fr)
EP (1) EP3143288B1 (fr)
JP (1) JP6559704B2 (fr)
KR (1) KR102277604B1 (fr)
CN (1) CN106662082B (fr)
AU (1) AU2015261366B2 (fr)
CA (1) CA2946466C (fr)
ES (1) ES2709397T3 (fr)
FR (2) FR3020840B1 (fr)
WO (1) WO2015173495A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6717451B2 (ja) * 2017-02-27 2020-07-01 株式会社神戸製鋼所 エネルギー回収装置、およびエネルギー回収方法
DE102017010789A1 (de) * 2017-11-22 2019-05-23 Linde Aktiengesellschaft Verfahren zum Betreiben eines Kolbenverdichters und Kolbenverdichter
FR3075285B1 (fr) * 2017-12-18 2020-09-11 Poclain Hydraulics Ind Amplificateur de pression hydraulique
US10788060B2 (en) * 2017-12-19 2020-09-29 Ibrahim Mounir Hanna Cylinder occupying structure
NO345199B1 (en) * 2018-10-25 2020-11-02 Fmc Kongsberg Subsea As Flow measuring device
CN109519445B (zh) * 2018-11-23 2020-04-21 中国航发北京航科发动机控制系统科技有限公司 一种行程-压力转换控制装置
FR3090761B1 (fr) 2018-12-19 2021-11-26 Poclain Hydraulics Ind Convertisseur de pression hydraulique, procédé de conversion de pression hydraulique et véhicule équipé

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1358071A (fr) 1962-05-30 1964-04-10 Licentia Gmbh Relais temporisé électronique
FR2183383A5 (fr) * 1972-05-05 1973-12-14 Inst Francais Du Petrole
US3889466A (en) * 1972-05-05 1975-06-17 Inst Francais Du Petrole Device for maintaining a working fluid under a predetermined pressure
US4347701A (en) * 1980-04-03 1982-09-07 Tokyo Electric Co., Ltd. Power system for land vehicles
JPS5932723Y2 (ja) * 1980-11-04 1984-09-13 株式会社 昭空 増圧装置
GB8522932D0 (en) * 1985-09-17 1985-10-23 Ic Gas Int Ltd Absorption refrigeration cycle
DE3735236A1 (de) * 1987-10-17 1989-04-27 Teves Gmbh Alfred Einrichtung zur anpassung der kennlinie eines hydrospeichers an die kennlinie eines verbrauchers
JPH05975U (ja) * 1991-06-24 1993-01-08 川崎重工業株式会社 増圧器の給水装置
CN2170399Y (zh) * 1993-07-03 1994-06-29 戎兴汉 联动自由活塞式液体压力能量回收机
JP3007539B2 (ja) * 1994-10-03 2000-02-07 豊興工業株式会社 増圧装置
EP0857877A3 (fr) * 1997-02-08 1999-02-10 Mannesmann Rexroth AG Convertisseur pneumatique-hydraulique
JPH11303601A (ja) * 1998-04-20 1999-11-02 Shin Yoneda 増圧回流機関の運動原理
JP3508125B2 (ja) * 1999-03-29 2004-03-22 日本製紙株式会社 増圧装置
AT408023B (de) * 1999-05-06 2001-08-27 Tcg Unitech Ag Vorrichtung zur umwandlung von pneumatischer energie in hydraulische energie
WO2007065082A2 (fr) * 2005-11-29 2007-06-07 Elton Daniel Bishop Systeme hydraulique numerique
US7927082B2 (en) * 2005-12-05 2011-04-19 Gth Water Systems, Inc. Highly efficient durable fluid pump and method
CN101498323A (zh) * 2008-10-23 2009-08-05 北京航空航天大学 一种长寿命节能静音型增压阀
EP2679832B1 (fr) * 2012-06-28 2016-08-17 Luis Fernando Quirós Morales Générateur d'énergie hydrostatique
JP5848678B2 (ja) * 2012-08-17 2016-01-27 イーグル工業株式会社 圧力変換装置
US9695840B2 (en) * 2013-08-20 2017-07-04 Vianney Rabhi Reversible hydraulic pressure converter employing tubular valves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
FR3020841A1 (fr) 2015-11-13
FR3020840A1 (fr) 2015-11-13
FR3020840B1 (fr) 2017-03-03
US9856891B2 (en) 2018-01-02
AU2015261366A1 (en) 2016-12-15
CA2946466A1 (fr) 2015-11-19
JP2017520725A (ja) 2017-07-27
JP6559704B2 (ja) 2019-08-14
WO2015173495A1 (fr) 2015-11-19
KR102277604B1 (ko) 2021-07-14
ES2709397T3 (es) 2019-04-16
KR20170002430A (ko) 2017-01-06
AU2015261366B2 (en) 2018-08-23
EP3143288A1 (fr) 2017-03-22
CN106662082B (zh) 2018-12-28
US20150322976A1 (en) 2015-11-12
FR3020841B1 (fr) 2017-07-07
CA2946466C (fr) 2022-09-06
CN106662082A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
EP3143288B1 (fr) Convertisseur de pression à piston comprenant un détendeur de fin de course
EP3036442B1 (fr) Convertisseur de pression hydraulique reversible a vannes tubulaires
CA2822042A1 (fr) Vanne tubulaire de commande d'un moteur a rapport volumetrique variable
FR2942511A1 (fr) Dispositif d'injection d'un produit additif dans le systeme d'echappement d'un vehicule automobile.
CA2727333C (fr) Dispositif de levee de bille a vis pour moteur a taux de compression variable
CA2946481A1 (fr) Moteur a air comprime a chambre active incluse et a distribution active a l'admission
EP2738366A1 (fr) Système SCR et méthode pour sa purge
WO2017109329A1 (fr) Système de refroidissement et lubrification pour dispositif d'étanchéité pour piston
WO2012127160A2 (fr) Procede et dispositif de demarrage d'un moteur thermique alimentant une pompe dans un systeme hydraulique
FR2978215A1 (fr) Circuit hydraulique ferme comprenant une partie haute pression et une partie basse pression avec un moyen de maintien de la basse pression
FR2479399A1 (fr) Soupape de retenue assistee pneumatiquement
FR3097254A3 (fr) Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
FR2931765A1 (fr) Systeme de freinage avec controle de stabilite et de trajectoire a au moins un element de frein motorise muni d'un systeme de recuperation d'energie mecanique.
WO2023217413A1 (fr) Moteur à air comprimé à chambre active incluse et à distribution active à soupape d'échappement équilibrée permettant une désactivation de cylindre
WO2022100810A1 (fr) Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
FR3054002A1 (fr) Systeme de commande hydraulique de soupapes pour moteur a combustion interne avec recuperation d'energie maximale
FR2512104A1 (fr) Appareil rotatif a fluide, a chambre de travail de volume variable, utilisable en tant que moteur ou pompe
CH337027A (fr) Dispositif d'entraînement mécanique momentané à enclabotage de dents de loup
FR3028568A1 (fr) Accumulateur avec piston relais
FR3009337A1 (fr) Dispositif de transmission mecanique a train epicycloidal commutable
FR2793283A1 (fr) Procede permettant de fournir un debit variable de liquide a tres haute pression et pompe pour la mise en oeuvre de ce procede

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180528

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1062386

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015019505

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1062386

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181107

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2709397

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20190416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190207

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190307

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190208

REG Reference to a national code

Ref country code: SE

Ref legal event code: RPOT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015019505

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190507

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150507

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230519

Year of fee payment: 9

Ref country code: FR

Payment date: 20230525

Year of fee payment: 9

Ref country code: ES

Payment date: 20230601

Year of fee payment: 9

Ref country code: DE

Payment date: 20230530

Year of fee payment: 9

Ref country code: CH

Payment date: 20230610

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230527

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230529

Year of fee payment: 9