EP3130762B1 - System zur aktiven einstellung einer radialen spaltgrösse und zugehöriges flugzeugtriebwerk - Google Patents

System zur aktiven einstellung einer radialen spaltgrösse und zugehöriges flugzeugtriebwerk Download PDF

Info

Publication number
EP3130762B1
EP3130762B1 EP16183854.5A EP16183854A EP3130762B1 EP 3130762 B1 EP3130762 B1 EP 3130762B1 EP 16183854 A EP16183854 A EP 16183854A EP 3130762 B1 EP3130762 B1 EP 3130762B1
Authority
EP
European Patent Office
Prior art keywords
housing
model
behavior
aircraft engine
setting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16183854.5A
Other languages
English (en)
French (fr)
Other versions
EP3130762A1 (de
Inventor
Ivo DR. SZARVASY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Deutschland Ltd and Co KG
Original Assignee
Rolls Royce Deutschland Ltd and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rolls Royce Deutschland Ltd and Co KG filed Critical Rolls Royce Deutschland Ltd and Co KG
Publication of EP3130762A1 publication Critical patent/EP3130762A1/de
Application granted granted Critical
Publication of EP3130762B1 publication Critical patent/EP3130762B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/582Cooling; Heating; Diminishing heat transfer specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/60Mounting; Assembling; Disassembling
    • F04D29/64Mounting; Assembling; Disassembling of axial pumps
    • F04D29/642Mounting; Assembling; Disassembling of axial pumps by adjusting the clearances between rotary and stationary parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/30Retaining components in desired mutual position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/81Modelling or simulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/303Temperature

Definitions

  • the invention relates to a system for the active adjustment of a radial gap size with the features of claim 1 and an aircraft engine having the features of claim 10.
  • TCC Tip Clearance Control
  • the setting ie the regulation or control of the cooling is thereby taken over by the engine computer (EEC), which controls a corresponding valve.
  • EEC engine computer
  • the aim is to set the smallest possible gap, but a squint, ie a tarnishing of the blade tip must be avoided in the housing or the shroud.
  • Fully modular modulated systems employ a method in which the actual gap is either measured or calculated by the engine computer. The thus determined actual gap is then compared with a desired gap and the housing cooling is adjusted accordingly by the control system.
  • the desired gap is set to zero when the aircraft engine provides the maximum thrust.
  • the value for the desired gap may be greater than zero when the aircraft engine is operating in the partial load range. In this case, a sudden thrust increase leads to a gap closure, which can not be compensated quickly enough by a reduced housing cooling - and thus keeping the gap constant. Too small a target gap would lead in this case to a start.
  • the system has a model-based adjusting device, wherein the time-dependent gap size is approximated by the model-based actuator and are taken into account only influencing variables whose time-dependent deformation behavior (eg strain behavior) is equal to or slower than the time-dependent deformation behavior of the housing (eg strain behavior) as a setpoint, the gap size in the cold state is used, this is reduced by at least one pre-stored value of a gap determined at maximum thrust of the aircraft engine, and by the model-based actuator a manipulated variable for a cooling system of the housing can be determined.
  • time-dependent deformation behavior eg strain behavior
  • the housing eg strain behavior
  • the model-based actuating device for the influencing variables has a relationship for the thermal behavior of at least one rotor disk of a compressor stage and / or turbine stage and a relationship for the thermal behavior of the housing.
  • the model-based manipulator for the influencing variables only includes relationships for the thermal behavior at least one rotor disk of a compressor stage and / or turbine stage and the thermal behavior of the housing.
  • An efficient embodiment for the model-based actuating device maps the dynamic deformation behavior of components by first-order step responses.
  • the target value of the gap size can be determined exclusively from values which are independent of the current thrust state of the aircraft engine. This independence can be achieved in particular in that the gap components caused by the mechanical and thermal deformation behavior of a blade, the mechanical deformation behavior of a rotor disk, the thermal deformation behavior of an inlet device (eg a liner or a segment with a liner) and / or the mechanical deformation behavior of a Housing can be determined in each case at maximum thrust.
  • the housing has at least one inlet device, in particular a liner or a segment with a liner.
  • calculated and / or measured values for the temperature, the pressure, the speed and / or the rotational speed are used in the determination of the manipulated variable. This provides further values for determining the manipulated variable.
  • Fig. 1 is schematically illustrated a per se known aircraft engine 100, in which air L flows from the front of the aircraft engine 100. The greater part of the incoming air L is passed through a bypass duct 101 and expelled accelerated at the rear end of the aircraft engine 100.
  • a smaller portion of the incoming air L enters the core engine 102 and is compressed there in a compressor having a plurality of compressor stages 11.
  • the compressed air is supplied to combustion chambers 103, the compressed and heated air is then fed to a turbine with turbine stages 12, wherein the air then accelerates at the rear end of the aircraft engine 100 flows.
  • the rotating blades 13 of the compressor stages 11 and the turbine stages 12 are surrounded by a housing 10, wherein the details in Fig. 2 are shown in more detail.
  • the presentation of the Fig. 1 is merely an example. The embodiments described below are also applicable in the context of other engine designs.
  • a section of the housing 10 is shown.
  • a blade 15 is disposed on a rotor disk, wherein the blade tip 13 is oriented radially to the housing 10.
  • a liner 14 is disposed in the housing 10.
  • the liner 14 is placed in a segment that is then connected to the housing.
  • a cooling system 200 is used in a conventional manner with the cooling air K can be applied to the outside of the housing 10.
  • a system 1 for active adjustment of the radial gap size sets a valve 201 of the cooling system 200 so that the gap size S is adapted to the respective requirements. It is important that the blade tip 13 does not come into contact with the housing 10 or the liner 14. In the cold state, a radial relative gap height (gap / length of the blade) of 3 to 4% can be sought. When warm, a relative gap height of 1% or less is desirable.
  • Fig. 3 a scheme is shown with an exemplary embodiment of the inventive system 1 for active adjustment of the radial gap size S, with which the cooling system 200 is adjustable. For the sake of simplicity, disturbances have been omitted here.
  • the system 1 has a model-based adjusting device M, which receives the desired value w as an input variable.
  • the desired value w is here the gap size Sk in the cold state reduced by at least one pre-stored value of a gap portion Sm determined at maximum thrust of the aircraft engine 100. This means that the desired value w can be determined in a simple manner from once determined and then permanently stored values.
  • the gap fraction Sm at maximum thrust is determined as a function of the thermal behavior of a blade 15, the deformation behavior of a rotor (e.g., strain behavior), the thermal behavior of the liner 14, and / or the pressure dependent behavior of the housing 10.
  • These influencing variables react dynamically faster than other components, which will be explained in more detail below.
  • determining (and fixing) the values at maximum thrust these influences can be made independently of the respective thrust.
  • a change in the thrust does not affect the setpoint values w.
  • the components in the core engine 102 have different time constants T in their deformation behavior (eg, expansion in the radial direction). Stress due to the speed act on the components faster than thermal influences, since the heat transfer is slower. When accelerated, thin housings 10 absorb the thermal strains faster than massive rotor disks. In some embodiments, a fast response may have time constants significantly less than 60 seconds, more preferably less than 30 seconds.
  • the system 1 has the model-based adjusting device M whose model takes into account only influencing variables whose time-dependent deformation behavior (eg with time constant T i ) are slower than the time-dependent deformation behavior of the housing 10 (eg with the time constant T housing ).
  • the deformation behavior refers in particular to the expansion behavior of the components under load.
  • the time-dependent deformation behavior of the housing 10 serves as a reference for the dynamic processes that are taken into account in the model M or even not taken into account.
  • the system 1 with the model-based actuator M e.g. taking into account the thermal behavior of the turbine rotor disks (i.e., the material from the shaft to the root of the blades 15) and the thermal behavior of the housing 10. These dynamic factors are comparatively slow. Faster influences, such as the thermal behavior of the blades 15, the influence of the centrifugal force on the blades 15 or the influence of the pressure on the housing 10 are not taken into account by the model-based adjusting device M.
  • the turbine engine rotor disk and housing 10 thermal variables essential to the model-based actuator M are stored in appropriate form of mathematical relationships (e.g., differential equation, difference equation, transfer function) in the model-based actuator M. It is the goal, with the manipulated variable y for the cooling system 200 to set the best value for the gap size S.
  • mathematical relationships e.g., differential equation, difference equation, transfer function
  • classes of step responses x i (t) can be formed for components with fast and slow expansion behavior, wherein the class division can be done on the basis of the time constant T i .
  • a constant x i , ⁇ is used for the steady state value of the expansion behavior.
  • a model-based adjusting device M which relies on the slower influencing variables, is more efficient than a model that takes into account both fast and slow influencing variables.
  • the rapid changes in the influencing variables can generally not be compensated quickly enough by the cooling system 200, so that the exclusive consideration of the slower influencing variables leads to a calmer setting of the gap sizes.
  • the manipulated variable y is not subject to such strong fluctuations.
  • a controller is shown without feedback, ie the values for the gap size S (ie the controlled variable) are not included in the determination of the manipulated variable y.
  • the gap size S directly or via variables dependent thereon in the determination of the manipulated variable y, so that a control loop with feedback is present. The gap size S would then be linked to the desired value w.
  • Fig. 4 is the time-dependent behavior of the different components with varying load shown in a schematic manner.
  • the inner wall of the housing 10 can move.
  • the rotor disk can move.
  • the thick solid line 22 represents the radial changes to blade tip 13 which are relatively high frequency.
  • the actual position of the inner housing wall 23 is in Fig. 4 represented by a solid line.
  • Min TCC With minimal cooling (Min TCC), the wall 23 of the housing 10 occupies a radially outward position radially.
  • Max TCC maximum cooling
  • the housing 10 contracts relatively far, so that the radius has become smaller. In this case, the rotor would penetrate the housing at high speed and damage it.
  • the wall of the housing 10 must be positioned so that the maximum possible position of the blade 14 is radially smaller than the position of the housing 10, in Fig. 4 the solid line 23.
  • Fig. 5 the expansions of the different components for two different load cases are shown in a schematic manner. It is about the filling of the gap size in the cold state Sk.
  • the left-hand bar graph shows the thermal expansion ratio of the rotor disk D and the fraction of the centrifugal force CF with the cooling off (0%). This means that the housing 10 has no significant share of the gap closure.
  • the closure is composed of three portions, namely the two relatively slow thermal portions of the rotor disk D, the housing C and the fast portion CF.
  • the slow components find their way into the model-based controller M.
  • the right-hand bar graph shows the case of medium power consumption but higher cooling (60%).
  • the slower rates of gap closure, i. the proportion D of the rotor disk and the proportion C of the housing expansion correspond in the sum of the two proportions at maximum power, but less cooling in the middle bar graph.
  • the fraction CF of the centrifugal strain is smaller because the rotational speeds are lower at medium power. If the target value calculation is done by means of the fast expansion components at maximum thrust (middle bar chart), the right-hand bar chart leaves a small gap, which is necessary as a safety margin when switching from medium power to maximum power. This shows that the setpoint determination in terms of Fig. 3 makes sense.

Description

  • Die Erfindung betrifft ein System für die aktive Einstellung einer radialen Spaltgröße mit den Merkmalen des Anspruchs 1 und ein Flugzeugtriebwerk mit den Merkmalen des Anspruchs 10.
  • Für den effizienten Betrieb eines Flugzeugtriebwerks ist es sinnvoll, den Spalt zwischen den Spitzen der rotierenden Turbinen- oder Kompressorschaufeln und dem umgebenden Gehäuse möglichst klein zu halten. So ist zum Beispiel aus der GB 2417762 A ein Verfahren zur aktiven Spaltkontrolle (Tip Clearance Control, TCC) bekannt. Dabei wird das Gehäuse mittels Kühlluft einstellbar so gekühlt, dass sich zwischen den rotierenden Laufschaufelspitzen und dem Gehäuse (oder den daran angeordneten Deckbändern oder Linern) ein definierter Spalt einstellt.
  • Die Einstellung, d.h. die Regelung oder Steuerung der Kühlung wird dabei vom Triebwerkscomputer (EEC) übernommen, der ein entsprechendes Ventil ansteuert. Ziel ist dabei die Einstellung eines möglichst kleinen Spaltes, wobei jedoch ein Anstreifverschleiß, d.h. ein Anlaufen der Schaufelspitze in das Gehäuse oder das Deckband vermieden werden muss.
  • Vollmodular modulierbare Systeme arbeiten mit einem Verfahren, bei dem der Ist-Spalt entweder gemessen oder durch den Triebwerkscomputer berechnet wird. Der so bestimmte Ist-Spalt wird dann mit einem Soll-Spalt verglichen und die Gehäusekühlung wird durch das Regelungssystem entsprechend angepasst.
  • Üblicherweise wird der Soll-Spalt auf Null gesetzt, wenn das Flugzeugtriebwerk den maximalen Schub liefert. Der Wert für den Soll-Spalt kann größer Null sein, wenn das Flugzeugtriebwerk im Teillastbereich läuft. In diesem Fall führt eine plötzliche Schuberhöhung zu einer Spaltschließung, welche nicht schnell genug durch eine verringerte Gehäusekühlung - und damit ein Konstanthalten des Spaltes - kompensiert werden kann. Ein zu kleiner Soll-Spalt würde in diesem Fall zu einem Anlaufen führen.
  • Es besteht daher die Aufgabe, effiziente Systeme für die Einstellung des radialen Spaltes für den Betrieb von Flugzeugtriebwerken und entsprechende Flugzeugtriebwerke zu schaffen.
  • Die Aufgabe wird durch das Reglungssystem mit den Merkmalen des Anspruchs 1 gelöst.
  • Dazu weist das System eine modellbasierte Stellvorrichtung auf, wobei die zeitabhängige Spaltgröße durch die modellbasierte Stellvorrichtung approximierbar ist und bei der nur Einflussgrößen berücksichtigt werden, deren zeitabhängiges Verformungsverhalten (z.B. Dehnungsverhalten) gleich oder langsamer ist als das zeitabhängige Verformungsverhalten des Gehäuses (z.B. Dehnungsverhalten), wobei als Sollwert die Spaltgröße im kalten Zustand dient, diese verringert um mindestens einen vorabgespeicherten Wert eines Spaltanteils bestimmt bei maximalem Schub des Flugzeugtriebwerkes, und durch die modellbasierte Stellvorrichtung eine Stellgröße für ein Kühlungssystem des Gehäuses ermittelbar ist.
  • Durch die Modellierung allein der langsameren Anteile in der modellbasierten Stellvorrichtung kann eine der Gesamtdynamik angemessene, effiziente Einstellung der Spaltgröße erhalten werden.
  • In einer vorteilhaften Ausgestaltung weist die modellbasierte Stellvorrichtung für die Einflussgrößen eine Beziehung für das thermische Verhalten mindestens einer Rotorscheibe einer Kompressorstufe und / oder Turbinenstufe und eine Beziehung für das thermische Verhalten des Gehäuses auf. Insbesondere umfasst die modellbasierte Stellvorrichtung für die Einflussgrößen nur Beziehungen für das thermische Verhalten mindestens einer Rotorscheibe einer Kompressorstufe und / oder Turbinenstufe und das thermische Verhalten des Gehäuses.
  • Eine effiziente Ausführungsform für die modellbasierte Stellvorrichtung bildet das dynamische Verformungsverhalten von Bauteilen durch Sprungantworten erster Ordnung ab.
  • Ferner ist es vorteilhaft, wenn der Sollwert der Spaltgröße ausschließlich aus Werten ermittelbar ist, die unabhängig vom aktuellen Schubzustand des Flugzeugtriebwerks sind. Diese Unabhängigkeit kann insbesondere dadurch erreicht werden, dass die Spaltanteile hervorgerufen durch das mechanische und thermische Verformungsverhalten einer Schaufel, das mechanische Verformungsverhalten einer Rotorscheibe, das thermische Verformungsverhalten einer Einlaufvorrichtung (z.B. einem Liner oder einem Segment mit einem Liner) und / oder das mechanische Verformungsverhalten eines Gehäuses jeweils bei maximalem Schub ermittelt werden.
  • In einer Ausführungsform weist das Gehäuse mindestens eine Einlaufvorrichtung, insbesondere einen Liner oder ein Segment mit einem Liner auf.
  • In einer weiteren Ausführungsform werden berechnete und / oder gemessene Werte für die Temperatur, den Druck, die Geschwindigkeit und / oder die Drehzahl bei der Bestimmung der Stellgröße verwendet. Damit stehen weitere Werte für die Bestimmung der Stellgröße bereit.
  • Wenn die Spaltgröße bei den Eingangsgrößen der modellbasierten Stellvorrichtung berücksichtigt wird, liegt eine Regelung mit Rückkopplung vor. Anderenfalls kann das System auch ohne Rückkopplung arbeiten.
  • Die Aufgabe wird auch durch ein Flugzeugtriebwerk mit den Merkmalen des Anspruchs 10 gelöst.
  • In Zusammenhang mit den in den Figuren dargestellten Ausführungsbeispielen wird die Erfindung erläutert. Dabei zeigt
    • Fig. 1 eine schematische Darstellung eines Flugzeugtriebwerkes;
    • Fig. 2 eine schematische Darstellung eines Spaltes und der Einstellung der Spaltgröße;
    • Fig. 3 eine schematische Darstellung einer Ausführungsform des Systems zur Einstellung der Spaltgröße;
    • Fig. 4 eine schematische Darstellung möglicher oder tatsächlicher radialer Positionen der rotor- und gehäuseseitigen Spaltänderungen:
    • Fig. 5 eine schematische Darstellung unterschiedlicher Betriebszustände.
  • In Fig. 1 ist in schematischer Weise ein an sich bekanntes Flugzeugtriebwerk 100 dargestellt, bei dem Luft L von vorne in das Flugzeugtriebwerk 100 einströmt. Der größere Teil der einströmenden Luft L wird durch einen Nebenstromkanal 101 geführt und beschleunigt am hinteren Ende des Flugzeugtriebwerks 100 ausgestoßen.
  • Ein kleinerer Anteil der einströmende Luft L gelangt in das Kerntriebwerk 102 und wird dort in einem Kompressor mit mehreren Kompressorstufen 11 komprimiert. Die komprimierte Luft wird Brennkammern 103 zugeführt, wobei die komprimierte und erhitzte Luft dann einer Turbine mit Turbinenstufen 12 zugeführt wird, wobei die Luft dann am hinteren Ende des Flugzeugtriebwerks 100 beschleunigt ausströmt.
  • Die rotierenden Laufschaufeln 13 der Kompressorstufen 11 und der Turbinenstufen 12 werden von einem Gehäuse 10 umgeben, wobei die Details in Fig. 2 näher dargestellt sind. Die Darstellung der Fig. 1 ist lediglich beispielhaft zu verstehen. Die im Folgenden beschriebenen Ausführungsformen sind auch im Zusammenhang mit anderen Triebwerkbauformen anwendbar.
  • In Fig. 2 ist ein Ausschnitt des Gehäuses 10 dargestellt. Innerhalb des Gehäuses 10 ist eine Laufschaufel 15 auf einer Rotorscheibe angeordnet, wobei die Laufschaufelspitze 13 radial zum Gehäuse 10 orientiert ist. Gegenüber der Laufschaufelspitze 13 ist im Gehäuse 10 ein Liner 14 angeordnet. Bei einer Ausführungsform der vorliegenden Erfindung in einer Turbinenstufe 12 wird der Liner 14 in einem Segment angeordnet, dass dann mit dem Gehäuse verbunden wird.
  • Zwischen der Laufschaufelspitze 13 und dem Gehäuse 10, und hier insbesondere dem Liner 14, befindet sich der radiale Spalt mit der Spaltgröße S.
  • Zur Einstellung der Spaltgröße S wird in an sich bekannter Weise ein Kühlsystem 200 verwendet mit dem Kühlluft K auf die Außenseite des Gehäuses 10 aufgebracht werden kann. Ein System 1 zur aktiven Einstellung der radialen Spaltgröße stellt ein Ventil 201 des Kühlsystems 200 so ein, dass die Spaltgröße S den jeweiligen Erfordernissen angepasst wird. Wichtig ist dabei, dass die Laufschaufelspitze 13 nicht in Kontakt mit dem Gehäuse 10 oder dem Liner 14 gerät. Im kalten Zustand kann eine radiale relative Spalthöhe (Spalt / Länge der Laufschaufel) von 3 bis 4 % angestrebt werden. Im warmen Zustand ist eine relative Spalthöhe von 1% oder weniger erstrebenswert.
  • In Fig. 3 ist ein Schema mit einer bespielhaften Ausführungsform des erfindungsgemäßen Systems 1 zur aktiven Einstellung der radialen Spaltgröße S dargestellt, mit dem das Kühlsystem 200 einstellbar ist. Zur Vereinfachung wurden Störgrößen hier weggelassen.
  • Das System 1 weist eine modellbasierte Stellvorrichtung M auf, die als Eingangsgröße den Sollwert w erhält. Der Sollwert w ist hier die Spaltgröße Sk im kalten Zustand verringert um mindestens einen vorabgespeicherten Wert eines Spaltanteils Sm bestimmt bei maximalem Schub des Flugzeugtriebwerkes 100. Dies bedeutet, dass der Sollwert w sich in einfacher Weise aus einmal ermittelten und dann fest gespeicherten Werten bestimmen lässt.
  • In einer Ausführungsform wird der Spaltanteil Sm bei maximalen Schub in Abhängigkeit des thermischen Verhaltens einer Laufschaufel 15, des Verformungsverhaltens eines Rotors (z.B. dem Dehnungsverhalten), des thermischen Verhaltens des Liners 14 und / oder des druckabhängigen Verhaltens des Gehäuses 10 ermittelt. Diese Einflussgrößen reagieren dynamisch schneller als andere Bauteile, was im Folgenden noch näher erläutert wird. Durch die Bestimmung (und Festsetzung) der Werte bei maximalem Schub können diese Einflüsse unabhängig vom jeweiligen Schub gemacht werden. Somit wirkt sich eine Änderung des Schubes nicht auf die Sollwerte w aus.
  • Die Bauteile im Kerntriebwerk 102 weisen dabei unterschiedliche Zeitkonstanten T in ihrem Verformungsverhalten (z.B. Ausdehnung in radialer Richtung) auf. Beanspruchungen auf Grund der Drehzahl wirken schneller auf die Bauteile als thermische Einflüsse, da der Wärmetransport langsamer ist. Bei einer Beschleunigung nehmen dünne Gehäuse 10 die thermischen Dehnungen schneller an als massive Rotorscheiben. In einigen Ausführungsformen kann eine schnelle Reaktion Zeitkonstanten von deutlich unterhalb von 60 Sekunden, insbesondere unterhalb von 30 Sekunden aufweisen.
  • Bei einem Verzögerungsvorgang unterliegen die Bauteile unterschiedlicher thermischer Trägheit, was zu einer schnellen Verkleinerung der Spaltgröße S führen kann. Dabei besteht dann die Gefahr des Anlaufens der Laufschaufelspitzen 13 an die Wandung des Gehäuses 10 oder des Liners 14, z.B. bei einer Wiederbeschleunigung bei noch heißen Rotorscheiben (hot re-slam). Somit liegt eine Überlagerung von unterschiedlichen mechanischen (z.B. drehzahlabhängigen) oder thermischen Dynamikeffekten vor; d.h. es gibt schnellere und langsamere Einflussgrößen.
  • Für eine effiziente Einstellung weist das System 1 die modellbasierte Stellvorrichtung M auf, deren Modell nur Einflussgrößen berücksichtigt, deren zeitabhängiges, Verformungsverhalten (z.B. mit Zeitkonstanten Ti) langsamer sind als das zeitabhängige Verformungsverhalten des Gehäuses 10 (z.B. mit der Zeitkonstanten TGehäuse) ist. Das Verformungsverhalten bezeichnet hier insbesondere das Dehnungsverhalten der Bauteile unter Belastung.
  • Damit dient das zeitabhängige, Verformungsverhalten des Gehäuses 10 als Referenz für die dynamischen Vorgänge, die im Modell M berücksichtigt oder eben auch nicht berücksichtigt werden.
  • In einer bestimmten Ausführungsform des Systems 1 mit der modellbasierten Stellvorrichtung M werden z.B. das thermale Verhalten der Turbinen-Rotorscheiben (d.h. das Material von der Welle bis zum Fuß der Laufschaufeln 15) und das thermale Verhalten des Gehäuses 10 berücksichtigt. Diese dynamischen Einflussgrößen sind vergleichsweise langsam. Schnellere Einflüsse, wie z.B. das thermale Verhalten der Laufschaufeln 15, der Einfluss der Zentrifugalkraft auf die Laufschaufeln 15 oder der Einfluss des Drucks auf das Gehäuse 10 werden von der modellbasierten Stellvorrichtung M nicht berücksichtigt.
  • Die in der modellbasierten Stellvorrichtung M wesentlichen thermalen Einflussgrößen für die Turbinen-Rotorscheiben und das Gehäuse 10 werden in geeigneter Form mathematischer Beziehungen (z.B. Differentialgleichung, Differenzengleichung, Übertragungsfunktion) in der modellbasierten Stellvorrichtung M gespeichert. Dabei ist es das Ziel, mit der Stellgröße y für das Kühlungssystem 200 den besten Wert für die Spaltgröße S einzustellen.
  • Eine Möglichkeit für die Modellierung besteht darin, das zeitliche Verformungsverhalten, wie z.B. das dynamische Dehnungsverhalten xi(t) für ein Bauteil i durch Sprungfunktionen erster Ordnung zu approximieren: x i t = x i , + x i 0 x i , e t T i
    Figure imgb0001
  • Dabei können Klassen von Sprungantworten xi(t) für Bauteile mit schnellen und langsamen Dehnungsverhalten gebildet werden, wobei die Klasseneinteilung anhand der Zeitkonstanten Ti geschehen kann. Außerdem wird in dem Modell für die Sprungantwort noch eine Konstante x i,∞ für den stationären Wert des Dehnungsverhaltens verwendet.
  • Die Sprungfunktionen für alle Bauteile i (z.B. Laufschaufel 15, Segment mit Liner, Gehäuse 10, Rotorscheibe), deren Zeitkonstanten Ti oberhalb einer bestimmten Grenze liegen, werden für die modellbasierte Stellvorrichtung M verwendet.
  • Zusätzlich zu diesen langsamen Einflussgrößen können noch Werte (berechnet und / oder gemessen) für die Temperatur, den Druck, die Geschwindigkeit und / oder der Drehzahl bei der Bestimmung der Stellgröße y verwendet werden. In Fig. 3 wird dies durch eine zweite Modellkomponente M' dargestellt.
  • Eine modellbasierte Stellvorrichtung M, die sich auf die langsameren Einflussgrößen stützt, ist effizienter als ein Modell, das schnelle und langsame Einflussgrößen gemeinsam berücksichtigt. Die schnellen Änderungen in den Einflussgrößen können durch das Kühlsystem 200 in der Regel nicht schnell genug kompensiert werden, so dass die ausschließliche Berücksichtigung der langsameren Einflussgrößen zu einer ruhigeren Einstellung der Spaltgrößen führt. Die Stellgröße y wird nicht so starken Schwankungen unterworfen.
  • In Fig. 3 ist eine Steuerung ohne Rückkopplung dargestellt, d.h. die Werte für die Spaltgröße S (d.h. der Regelgröße) fließen nicht in die Bestimmung der Stellgröße y ein. Es ist aber durchaus auch möglich die Spaltgröße S direkt oder über davon abhängige Größen in die Bestimmung der Stellgröße y einzubeziehen, so dass ein Regelkreis mit Rückkopplung vorliegt. Die Spaltgröße S würde dann mit dem Sollwert w verknüpft werden.
  • In Fig. 4 ist das zeitabhängige Verhalten der unterschiedlichen Bauteile bei variierender Belastung in schematischer Weise dargestellt. Im oberen Teil ist das Band 20 dargestellt, in dem sich die innere Wandung des Gehäuses 10 bewegen kann. Im unteren Teil ist das Band 21 darstellt, in dem sich die Rotorscheibe bewegen kann.
  • Die dicke durchgezogene Linie 22 stellt die radialen Änderungen an Laufschaufelspitze 13 dar, die relativ hochfrequent sind. Die tatsächliche Position der inneren Gehäusewandung 23 ist in Fig. 4 durch eine durchgezogene Linie dargestellt.
  • Bei minimaler Kühlung (Min TCC) nimmt die Wandung 23 des Gehäuses 10 radial eine weit außenstehende Position ein. Bei maximaler Kühlung (Max TCC) zieht sich das Gehäuse 10 relativ weit zusammen, so dass der Radius kleiner geworden ist. In diesem Fall würde der Rotor bei hoher Drehzahl in das Gehäuse eindringen und dieses beschädigen.
  • Damit es nicht zum Anlaufen der Laufschaufelspitze 13 in das Gehäuse 10 kommt, muss die Wandung des Gehäuses 10 so positioniert sein, dass die maximal mögliche Position der Laufschaufel 14 radial kleiner ist, als die Position des Gehäuses 10, in Fig. 4 die durchgezogene Line 23.
  • Durch die in Zusammenhang mit Fig. 3 beschriebene modellbasierte Stellvorrichtung M werden die thermischen Ausdehnungen der Rotorscheibe und des Gehäuses 10 gemeinsam berücksichtigt; in einer Ausführungsform auch genau nur diese.
  • In Fig. 5 sind die Ausdehnungen der unterschiedlichen Bauteile für zwei unterschiedliche Lastfälle in schematischer Weise dargestellt. Es geht dabei jeweils um die Ausfüllung der Spaltgröße im kalten Zustand Sk.
  • Im linken Teil der Fig. 5 sind in zwei Balken die Dehnungsanteile der Bauteile dargestellt, die bei maximaler Leistung, aber jeweils unterschiedlicher Kühlung auftreten.
  • Das linke Balkendiagramm zeigt den thermischen Dehnungsanteil der Rotorscheibe D und den Anteil der Zentrifugalkraft CF bei abgeschalteter Kühlung (0%). Dies bedeutet, dass das Gehäuse 10 keinen nennenswerten Anteil an der Spaltschließung hat.
  • Wird die Kühlung von 0% auf 40% erhöht, was im mittleren Balkendiagramm dargestellt ist, so wirkt sich die Verformung C des Gehäuses 10 auf die Spaltschließung aus. Somit setzt sich die Schließung aus drei Anteilen zusammen, nämlich den beiden relativ langsamen thermische Anteilen der Rotorscheibe D, des Gehäuses C und dem schnellen Anteil CF. Die langsamen Anteile finden Eingang in den modellbasierten Regler M.
  • Der Rest der Spaltschließung bei maximaler Leistung und 40% Kühlung fast dann die schnellen Anteile Sm zusammen. Dieser Betrag kann einmal ermittelt werden und kann dann immer wieder verwendet werden, wie dies im Rahmen der Sollwertvorgabe in der oben beschriebenen (siehe Fig. 3) Ausführungsform der Fall ist.
  • Das rechte Balkendiagramm zeigt den Fall mittlerer Leistungsaufnahme, aber höherer Kühlung (60%). Die langsameren Anteile der Spaltschließung, d.h. der Anteil D der Rotorscheibe und der Anteil C der Gehäusedehnung entsprechen in der Summe den beiden Anteilen bei maximaler Leistung, aber geringerer Kühlung im mittleren Balkendiagram.
  • Der Anteil CF der zentrifugalen Dehnung ist kleiner, da die Drehzahlen bei mittlerer Leistung geringer ist. Wenn die Sollwertberechnung mittels der schnellen Dehnungsanteile bei maximalem Schub erfolgt (mittleres Balkendiagramm), so bleibt im rechten Balkendiagramm eine kleine Lücke, die als Sicherheitsabstand notwendig ist, wenn von mittlerer Leistung auf maximale Leistung umgeschaltet wird. Dies zeigt, dass die Sollwertbestimmung im Sinne der Fig. 3 sinnvoll ist.
  • Bezugszeichenliste
  • 1
    System für die aktive Einstellung einer radialen Spaltgröße
    10
    Gehäuse
    11
    Kompressorstufe
    12
    Turbinenstufe
    13
    Schaufelspitzen
    14
    Einlaufvorrichtung, Liner
    15
    Laufschaufel
    20
    Band der Gehäusepositionen
    21
    Band der Schaufelspitzenposition
    22
    Tatsächliche Schaufelspitzenposition
    23
    Tatsächliche Gehäuseposition
    100
    Flugzeugtriebwerk
    101
    Nebenstromkanal
    102
    Kerntriebwerk
    103
    Brennkammer
    200
    Kühlsystem
    201
    Ventil
    C
    thermischer Dehnungsanteil Gehäuse auf Grund von Kühlung
    CF
    Dehnungsanteil auf Grund von Zentrifugalkräften
    D
    thermischer Dehnungsanteil der Rotorscheibe
    L
    einströmende Luft
    K
    einströmende Kühlluft
    M
    modellbasierte Stellvorrichtung
    S
    Spaltgröße, radial (Einstellgröße, Regelgröße)
    Sk
    Spaltgröße im kalten Zustand
    Sm
    Spaltanteil bei maximalem Schub
    T
    Zeitkonstante
    w
    Sollwert
    y
    Stellgröße

Claims (10)

  1. System für die aktive Einstellung einer radialen Spaltgröße (S) zwischen einer Schaufelspitze (13) mindestens einer Kompressorstufe (11) und / oder mindestens einer Turbinenstufe (12) eines Flugzeugtriebwerks (100) und einem Gehäuse (10), das die mindestens eine Kompressorstufe (11) und / oder mindestens eine Turbinenstufe (12) umgibt,
    gekennzeichnet durch
    a) eine modellbasierte Stellvorrichtung (M), wobei die zeitabhängige Spaltgröße (S) durch die modellbasierte Stellvorrichtung (M) approximierbar ist und bei der nur Einflussgrößen berücksichtigt werden, deren zeitabhängiges Verformungsverhalten gleich oder langsamer ist als das zeitabhängige Verformungsverhalten des Gehäuses (10), wobei
    b) als Sollwert (w) die Spaltgröße im kalten Zustand (Sk) dient, diese verringert um mindestens einen vorabgespeicherten Wert eines Spaltanteils (Sm) bestimmt bei maximalem Schub des Flugzeugtriebwerkes (100), und
    c) durch die modellbasierte Stellvorrichtung (M) eine Stellgröße (y) für ein Kühlungssystem (200) des Gehäuses (10) ermittelbar ist.
  2. System nach Anspruch 1, dadurch gekennzeichnet, dass die modellbasierte Stellvorrichtung (M) für die Einflussgrößen eine Beziehung für das thermische Verhalten mindestens einer Rotorscheibe einer Kompressorstufe (11) und / oder Turbinenstufe (12) und eine Beziehung für das thermische Verhalten des Gehäuses (10) umfasst.
  3. System nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die modellbasierte Stellvorrichtung (M) für die Einflussgrößen nur Beziehungen für das thermische Verhalten mindestens einer Rotorscheibe einer Kompressorstufe (11) und / oder Turbinenstufe (12) und das thermische Verhalten des Gehäuses (10) umfasst.
  4. System nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die modellbasierte Stellvorrichtung (M) das dynamische Verformungsverhalten von Bauteilen durch Sprungantworten erster Ordnung abbildet.
  5. System nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Sollwert (w) der Spaltgröße (S) ausschließlich aus Werten ermittelbar ist, die unabhängig vom aktuellen Schubzustand des Flugzeugtriebwerks (100) sind.
  6. System nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Spaltanteil (Sm) bestimmt bei maximalen Schub in Abhängigkeit des thermischen Verhaltens einer Schaufel, des Verformungsverhaltens eines Rotors, des thermischen Verhaltens einer Einlaufvorrichtung und / oder des druckabhängigen Verhaltens des Gehäuses (10) ermittelt wird.
  7. System nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse (10) mindestens eine Einlaufvorrichtung, insbesondere einen Liner (14) oder ein Segment mit einem Liner aufweist.
  8. System nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass berechnete und / oder gemessene Werte für die Temperatur, den Druck, die Geschwindigkeit und / oder die Drehzahl bei der Bestimmung der Stellgröße (y) verwendet werden.
  9. System nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spaltgröße (S) bei den Eingangsgrößen der modellbasierten Stellvorrichtung (M) berücksichtigt wird.
  10. Flugzeugtriebwerk mit mindestens einem System nach den Ansprüchen 1 bis 9.
EP16183854.5A 2015-08-13 2016-08-11 System zur aktiven einstellung einer radialen spaltgrösse und zugehöriges flugzeugtriebwerk Active EP3130762B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015215479.3A DE102015215479A1 (de) 2015-08-13 2015-08-13 System zur aktiven Einstellung einer radialen Spaltgröße und Flugzeugtriebwerk mit einem System zur aktiven Einstellung einer radialen Spaltgröße

Publications (2)

Publication Number Publication Date
EP3130762A1 EP3130762A1 (de) 2017-02-15
EP3130762B1 true EP3130762B1 (de) 2018-10-03

Family

ID=56684500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16183854.5A Active EP3130762B1 (de) 2015-08-13 2016-08-11 System zur aktiven einstellung einer radialen spaltgrösse und zugehöriges flugzeugtriebwerk

Country Status (3)

Country Link
US (1) US10428675B2 (de)
EP (1) EP3130762B1 (de)
DE (1) DE102015215479A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10458429B2 (en) 2016-05-26 2019-10-29 Rolls-Royce Corporation Impeller shroud with slidable coupling for clearance control in a centrifugal compressor
DE102017216119A1 (de) 2017-09-13 2019-03-14 MTU Aero Engines AG Gasturbinenverdichtergehäuse
CN113408058B (zh) * 2021-06-30 2022-06-17 东风汽车集团股份有限公司 衬套与周边结构校核间隙的确定方法、装置及电子设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2417762B (en) 2004-09-04 2006-10-04 Rolls Royce Plc Turbine case cooling
GB0609312D0 (en) * 2006-05-11 2006-06-21 Rolls Royce Plc Clearance Control Apparatus
GB201121426D0 (en) 2011-12-14 2012-01-25 Rolls Royce Plc Controller
GB2516048A (en) * 2013-07-09 2015-01-14 Rolls Royce Plc Tip clearance control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US10428675B2 (en) 2019-10-01
US20170044924A1 (en) 2017-02-16
DE102015215479A1 (de) 2017-02-16
EP3130762A1 (de) 2017-02-15

Similar Documents

Publication Publication Date Title
DE3124782C2 (de)
DE69931740T2 (de) Turbine mit Kühlung oder Heizung von Rotorbauteilen beim Starten oder Abschalten
EP3130762B1 (de) System zur aktiven einstellung einer radialen spaltgrösse und zugehöriges flugzeugtriebwerk
DE3926707C2 (de) Steueranordnung und -verfahren für ein Gasturbinentriebwerk
DE3910319A1 (de) Aktive spaltsteuerung fuer ein gasturbinentriebwerk
DE3144473A1 (de) Schaufelspitzendichtung fuer die turbine eines gasturbinentriebwerks
CH697962B1 (de) Innengehäuse für eine Rotationsmaschine, Rotationsmaschine und Verfahren zur Regelung eines Masses eines Mantelrings in einer Rotationsmaschine.
DE102010040503B4 (de) Verfahren zur Steuerung eines Verdichters
DE69925231T2 (de) Steuerung des Strömungsablösungsbereiches in eine Gasturbine während der Beschleunigung
EP2527600A1 (de) Turbomaschine
EP1970542A2 (de) Drosselgradabhängige Schaufelverstellung bei Strömungsarbeitsmaschinen
DE2338634A1 (de) Steuervorrichtung fuer eine einwellige kraftfahrzeug-gasturbinenmaschine
DE102014110749A1 (de) Systeme und Verfahren betreffend die axiale Positionierung von Turbinengehäusen und den Schaufelspitzenspalt in Gasturbinen
EP3704354B1 (de) Verfahren zur steuerung einer spaltminimierung einer gasturbine
DE2746485A1 (de) Abblasventil-steuerungssystem
DE2852911C2 (de)
DE3523144A1 (de) Gasturbinentriebwerksregelung
EP1908926A1 (de) Turbomaschine
DE102016209262A1 (de) Einstellvorrichtung und Einstellverfahren einer Axiallast in einem Flugzeugtriebwerk
EP1746256A1 (de) Reduzierung von Spaltverlust in Strömungsmaschinen
EP2602430B1 (de) Turbine
EP2037099B1 (de) Brennkraftmaschinen sowie Motorregeleinrichtung
EP0358139A2 (de) Regelverfahren und Regeleinheit
DE2358926C3 (de) Regelung von verstellbaren Überschallufteinläufen, insbesondere zweidimensionalen SchrägstoBdiffusoren für Gasturbinenstrahltriebwerke zum Antrieb von Hochleistungsflugzeugen
EP3330644A1 (de) Kälteanlage und verfahren zur regelung einer kälteanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170201

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F02C 6/08 20060101ALI20170628BHEP

Ipc: F01D 11/20 20060101ALI20170628BHEP

Ipc: F04D 29/32 20060101ALI20170628BHEP

Ipc: F01D 11/14 20060101ALI20170628BHEP

Ipc: F04D 29/58 20060101ALI20170628BHEP

Ipc: F04D 29/52 20060101ALI20170628BHEP

Ipc: F01D 11/24 20060101AFI20170628BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DR. SZARVASY, IVO

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1048820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016002142

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181003

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190103

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190203

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190104

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016002142

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

26N No opposition filed

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190811

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160811

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181003

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1048820

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210811

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230822

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230824

Year of fee payment: 8

Ref country code: DE

Payment date: 20230828

Year of fee payment: 8