EP3130704B1 - Faserbewehrte rasentragschicht und verfahren zur aufbereitung deren - Google Patents

Faserbewehrte rasentragschicht und verfahren zur aufbereitung deren Download PDF

Info

Publication number
EP3130704B1
EP3130704B1 EP16183630.9A EP16183630A EP3130704B1 EP 3130704 B1 EP3130704 B1 EP 3130704B1 EP 16183630 A EP16183630 A EP 16183630A EP 3130704 B1 EP3130704 B1 EP 3130704B1
Authority
EP
European Patent Office
Prior art keywords
support layer
reinforcing fibers
reinforcing fibres
layer
activation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16183630.9A
Other languages
English (en)
French (fr)
Other versions
EP3130704B2 (de
EP3130704A1 (de
Inventor
Maurice HEILER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heiler & Co KG GmbH
Original Assignee
Heiler & Co KG GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56682007&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3130704(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Heiler & Co KG GmbH filed Critical Heiler & Co KG GmbH
Priority to PL16183630T priority Critical patent/PL3130704T3/pl
Publication of EP3130704A1 publication Critical patent/EP3130704A1/de
Application granted granted Critical
Publication of EP3130704B1 publication Critical patent/EP3130704B1/de
Publication of EP3130704B2 publication Critical patent/EP3130704B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C13/00Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
    • E01C13/02Foundations, e.g. with drainage or heating arrangements
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C13/00Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
    • E01C13/08Surfaces simulating grass ; Grass-grown sports grounds
    • E01C13/083Construction of grass-grown sports grounds; Drainage, irrigation or heating arrangements therefor
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C13/00Pavings or foundations specially adapted for playgrounds or sports grounds; Drainage, irrigation or heating of sports grounds
    • E01C13/08Surfaces simulating grass ; Grass-grown sports grounds
    • E01C2013/086Combination of synthetic and natural grass

Definitions

  • the invention relates to a support layer for turf, which has reinforcing fibers made of plastic, wherein these reinforcing fibers are not biodegradable under the environmental conditions when used as a support layer in the ground substantially.
  • the invention also relates to a method for processing a support layer for turf.
  • Such a support layer is made of WO2012159145A1 known.
  • hybrid turf Another alternative for improving the wear resistance of lawns is the use of hybrid lawns.
  • hybrid turf the benefits of a natural lawn are combined with the benefits of synthetic reinforcement.
  • a synthetic fiber-reinforced base course is first applied to the existing subfloor.
  • the synthetic fibers in this base layer have the task of improving the shear strength of the layer by interlinking with each other. Mechanical stresses in the execution of the sports are thus better absorbed and distributed than in a soil that is not reinforced with fibers.
  • Natural grass is then created on this base course.
  • the reinforcing fibers of the support layer can also extend into the natural turf, which also gives the turf layer additional stability. Even such a hybrid lawn or its support layer has a finite life and must be renewed or replaced after a few years.
  • the object of the present invention is therefore to simplify the disposal of used base courses of hybrid turf.
  • a support layer having the features of claim 1.
  • a support layer according to the invention comprises reinforcing fibers of a plastic which is substantially non-biodegradable under ambient conditions when used as a base support layer or otherwise under conditions of normal use of the hybrid lawn (eg, temperatures, moisture / water content, radiation, especially UV Radiation) is decomposed.
  • This means that the reinforcing fibers do not or only to a very small extent change their properties during use in the base layer of a hybrid lawn. It is thus ensured that these reinforcing fibers reliably fulfill their task of mechanically supporting and strengthening the base course over a period of several years, since their mechanical properties remain substantially constant.
  • the reinforcing fibers of a support layer according to the invention have an activation threshold, from which these fibers are then substantially completely biodegradable in particular and disappear from the support layer.
  • this activation threshold from which a degradability of the reinforcing fibers given is, can be different physical effects.
  • a certain temperature can form this activation threshold.
  • other physical effects such as irradiation with a certain wavelength of radiation, for example UV radiation
  • the biodegradation By activating the biodegradation is initiated, in particular, a decomposition of the molecules of the plastic and then possibly the further biodegradation or other decomposition or reshaping of the plastic.
  • the activation threshold is described by a chemical or physical parameter.
  • the activation threshold is formed by a combination of two or more physical and / or chemical effects.
  • the Activation Threshold may consist of a combination of a given temperature with a certain water content in the vicinity of the reinforcing fibers.
  • the further decomposition of the cleavage products then takes place by other mechanisms.
  • the further decomposition can be done for example by Saprobionten. These are organisms that feed on dead material and split, reshape and shred it.
  • thermophilic bacteria and fungi have proven to be particularly favorable for biodegradation of reinforcing fibers according to the invention.
  • thermophilic organisms are particularly active at elevated temperatures, for example between 45 and 80 ° C.
  • complete biodegradation of the reinforcing fibers is not limited to degradation by thermophilic organisms. It is also suitable for this purpose other microorganisms, as they are e.g. when composting finds or uses. It is clear that biodegradation as described, of course, also by exceeding an activation threshold, which is defined only by a temperature or just another physical or chemical parameter occurs.
  • a support layer according to the invention thus offers the very advantageous combination of high-quality stabilization function when used in hybrid sport turfs with a significantly simplified and improved disposal after their use in hybrid turf.
  • an activation threshold of the reinforcing fibers which is never achieved as possible when used in the base layer of an in-use hybrid lawn. This ensures that no biodegradation of the reinforcing fibers takes place during use in the hybrid lawn. In the disposal of a used support layer is then ensured that the activation threshold is deliberately and significantly exceeded, so that the then desired biodegradation of the reinforcing fibers can take place. After a For a certain time under conditions beyond the activation threshold, the support layer then no longer contains any plastic and can be disposed of or reused as desired.
  • the activation threshold is a temperature higher than 50 ° C, 55 ° C, 60 ° C, 65 ° C or 70 ° C.
  • the activation threshold from which a biological degradation of the reinforcing fibers takes place, is formed by a temperature which is higher than 50 ° C.
  • This activation threshold may then be, for example, 55 ° C.
  • suitable plastics such as polylactides (PLA) absorb from this temperature to a significant extent water molecules, which in turn lead to the decomposition and thus the biodegradation of plastics.
  • the activation threshold formed here by a temperature In addition to exceeding the activation threshold formed here by a temperature, it should moreover be ensured that a sufficient amount of water is present in order to achieve good biodegradation of the reinforcing fibers. It is of course possible to use different plastics as a material for the reinforcing fibers, wherein the activation threshold can also be formed by higher temperatures.
  • One way to achieve or exceed the activation threshold is the introduction of a used, worn support layer in a composting plant. In industrial composting plants, temperatures of more than 60 ° C are often used, as from this temperature germs are effectively killed. The conditions in such a composting plant are thus also ideal for the degradation of the reinforcing fibers in a support layer according to the invention.
  • an activation threshold can also be lower Temperatures, for example in the range of 40 ° C or 45 ° C are formed.
  • the activation threshold depends on the material of which the reinforcing fibers are made and on the mechanisms or organisms to be used in the degradation or decomposition. Cleverly, such activation thresholds are available in applications that are not achieved in normal use as a base for a turf.
  • the reinforcing fibers when used as a base layer in the ground are stable to UV radiation or water.
  • the reinforcing fibers are designed to be stable to the environmental conditions prevailing during their use in the base course. This includes that the reinforcing fibers are stable to UV radiation contained in sunlight. This is particularly favorable if parts of the reinforcing fibers stick out of the ground. If the reinforcing fibers are completely enclosed or enclosed in the ground and thus normally no UV radiation strikes the fibers, this property can be dispensed with and UV light can be used for activation, for example.
  • This resistance to UV radiation can be achieved, for example, by using a UV-resistant, activatable plastic or by admixing pigments or by coating with a UV-absorbing coating with less stable plastics. It is also possible to color the reinforcing fibers green to make them unobtrusive within the natural grass. Furthermore, the reinforcing fibers are designed to be insensitive to water. Since lawns must be watered regularly to achieve good growth of natural grass, the reinforcing fibers are designed so that they do not absorb water under normal conditions of use in the hybrid lawn. An unwanted decomposition or swelling associated with it Change in the mechanical properties of the fibers is thus prevented.
  • the reinforcing fibers consist of a material from the group polylactides (PLA) or the group polyhydroxyalkanoates, in particular polyhydroxybutyric acid (PHB) or the group polyvinyl alcohols (PVA).
  • the reinforcement fibers of the support layer are formed of a material that is biodegradable beyond the activation threshold. Therefore, different biocompatible plastics are available as material for the reinforcing fibers. Particularly suitable are materials from the group of polylactides (PLA).
  • Polylactides are synthetic polymers belonging to the polyesters. Polylactides are composed of interconnected lactic acid molecules. From polylactides thermoplastics can be produced, which can be brought into almost any shape in common processing methods (injection molding, extrusion, ).
  • the reinforcing fibers can thus be made in different lengths, diameters and shapes from PLA.
  • PLA reinforcement fibers are particularly advantageous for their good mechanical properties, with high tensile strength, high modulus of elasticity and low elongation at break. These, largely due to the large molecular weight properties, provide for an effective support and networking of the support layer.
  • PLA behaves hydrophobic under the ambient conditions prevailing in the hybrid lawn. Thus, an influence of the reinforcing fibers on the water balance of the base course is excluded. At the same time there is no risk that the fibers swell due to water absorption and change their mechanical properties, or even decompose in the soil. Below the activation threshold, PLA reinforcement fibers behave in a long-term stable and virtually rotting-free manner.
  • the reinforcing fibers may also be made of another suitable biocompatible material, for example from the groups of polyhydroxyalkanoates, in particular polyhydroxybutyric acid (PHB) or the polyvinyl alcohols (PVA) exist.
  • PHB polyhydroxybutyric acid
  • PVA polyvinyl alcohols
  • biodegradable plastics are associated with the invention.
  • the base layer also comprises quartz sand and / or natural sand and / or lava and / or topsoil and / or peat and / or natural cork.
  • the reinforcing fibers serve to strengthen and improve the shear strength of the base course. The higher this shear strength, the higher the potential intensity of use of the hybrid lawn and the lower the care required and the required regeneration time.
  • the base layer contains various other materials that provide the other required properties of the base layer.
  • the base course has to be well permeable to water in order to avoid flooding the hybrid lawn during heavy rainfall. For this reason drainage systems are often installed inside the base course to remove water.
  • the support layer has the task to provide a lasting flatness of the hybrid lawn, even with regular load.
  • the base layer contains quartz sand and / or natural sand as the largest constituent. The proportion of these sands is usually 60-80 percent by volume. Grain sizes between 0.02 mm and 4 mm have proven to be particularly favorable.
  • lava may be part of the base course. Usually, lava is added in the proportion of 0 - 18 volume percent (volume%) of the support layer.
  • an interval is specified, which is described by an upper and lower limit.
  • an upper limit for example, the following values are provided: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 or 25% by volume.
  • the lower limits are, for example, the following values: 0.5, 1, 1.5, 2, 4, 6, 8, 10 or 12% by volume.
  • the disclosure of this application includes the amount of all intervals which consists of all possible technically correct combinations of the aforementioned upper and lower limits.
  • an interval is specified, which is described by an upper and lower limit.
  • the upper limit is, for example, the following values: 1, 1.5, 2, 2.5, 3, 3.5, 4, 5 or 6 mm.
  • the lower limits are, for example, the following values: 0.02, 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 0.7, 0.85, 1, 1.3, 1.5, 1.7, 2, 2.5, 3 or 4 mm.
  • the disclosure of this application includes the amount of all intervals which consists of all possible technically correct combinations of the aforementioned upper and lower limits.
  • topsoil Another component of the base layer, in particular to a proportion of 5 to 20 percent by volume, is topsoil.
  • an interval is given, which is described by an upper and lower limit.
  • an upper limit for example, the following values are provided: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28 or 30% by volume.
  • the lower limits are, for example, the following values: 0.5, 1, 1.5, 2, 4, 6, 8, 10 or 12% by volume.
  • the disclosure of this application includes the amount of all intervals which consists of all possible technically correct combinations of the aforementioned upper and lower limits.
  • Suitable topsoil for a base course is defined in the standard DIN 18300 as soil class 1 as topsoil or topsoil and contains inorganic material as well as humus and soil organisms. Also suitable are flowing soil types, as classified in the standard DIN 18915 as floor group 2.
  • peat As a further suitable constituent of the support layer, peat, ideally to a proportion of 3 - 11 volume percent (volume%) resulted.
  • Hochmoortorf or74feintorf can be used well.
  • an interval is specified, which is described by an upper and lower limit.
  • the following values are provided as the upper limit: 2, 4, 6, 8, 10, 11, 12 or 13% by volume.
  • the lower limits are, for example, the following values: 0.5, 1, 1.5, 2, 4, 6 or 8% by volume.
  • the disclosure of this application includes the amount of all intervals which consists of all possible technically correct combinations of the aforementioned upper and lower limits.
  • a base layer of natural cork in particular in a grain size between 0.5 mm and 20 mm, preferably between 3 mm and 7 mm are used.
  • an interval is specified, which is described by an upper and lower limit.
  • the upper limit is, for example, the following values: 3, 5, 7, 10, 12, 15, 17 or 20 mm.
  • the lower limits are, for example, the following values: 0.5, 1, 2, 3, 4, 5, 7, 10, 12 or 15 mm.
  • the disclosure of this application includes the amount of all intervals which consists of all possible technically correct combinations of the aforementioned upper and lower limits.
  • the proportion of natural cork may be in the range of 0 - 13 volume percent (volume%).
  • an interval is specified, which is described by an upper and lower limit.
  • the upper limit is, for example, the following values: 2, 4, 6, 8, 10, 12 or 13% by volume.
  • the lower limits are, for example, the following values: 0.5, 1, 1.5, 2, 4 or 6% by volume.
  • the disclosure of this application includes the amount of all intervals which consists of all possible technically correct combinations of the aforementioned upper and lower limits.
  • constituents of a base layer listed here have proven to be particularly favorable in practice. Of course, however, other and further components may be contained in the support layer. In addition, other particle sizes or volume fractions than the stated sizes or proportions of the constituents in a support layer are also part of the invention and disclosed.
  • the layer thickness of the support layer is between 30 mm and 300 mm, in particular between 60 mm and 200 mm.
  • the base layer may be designed differently thick depending on the location and desired properties of the hybrid lawn. Thicknesses between 60 mm and 200 mm have proven to be particularly favorable. Also suitable are thicknesses between 30 mm and 300 mm. In addition, however, thinner or thicker support layer are also covered by the invention.
  • an interval is specified, which is described by an upper and lower limit.
  • the upper limit is, for example, the following values: 150 mm, 200 mm, 250 mm and 300 mm.
  • the lower limits are, for example, the following values: 30 mm, 45 mm, 75 mm, 60 mm and 90 mm.
  • the disclosure of this application includes the set of all intervals which consists of all possible combinations of the aforementioned upper and lower limits.
  • the invention provides that the proportion of reinforcing fibers on the support layer is between 0.1 and 4% by weight.
  • the proportion of reinforcing fibers in the base layer is relevant to the achieved shear strength of the base layer.
  • a proportion between 0.1 and 4% by weight of the reinforcing fibers on the base layer has proven to be particularly favorable for the shear strength.
  • the percentage of reinforcing fibers is given as an interval, which is described by an upper and lower limit.
  • the upper limit is, for example, the following values: 2, 4, 6, 8 or 10% by weight.
  • the lower limits are, for example, the following values: 0.05, 0.1, 0.5, 1, 1.5, 2 and 4% by weight.
  • the disclosure of this application includes the amount of all intervals which consists of all possible technically correct combinations of the aforementioned upper and lower limits.
  • the length of the reinforcing fibers is between 15 mm and 700 mm, in particular between 30 mm and 500 mm.
  • the length of the reinforcing fibers also has an influence on the achieved shear strength of the base course.
  • it plays a role in how the fibers are introduced into the support layer. If the fibers are mixed into the base layer before application of the hybrid turf, other fiber lengths may be optimal than with subsequent introduction of the reinforcing fibers into an already laid turf or already laid base course. Particularly favorable results can be achieved with reinforcing fibers achieve a length between 30 mm and 500 mm. Good shear strength is also achieved in the range between 15 mm and 700 mm.
  • an interval is specified, which is described by an upper and lower limit.
  • the upper limits are, for example, the following values: 90 mm, 100 mm, 150 mm, 250 mm, 300 mm, 350 mm, 400 mm, 450 mm, 500 mm, 550 mm, 600 mm, 650 mm and 700 mm.
  • the lower limits are, for example, the following values: 15 mm, 30 mm, 45 mm, 60 mm, 75 mm and 100 mm.
  • the disclosure of this application encompasses the set of all intervals, which consists of all possible, technically meaningful combinations of the aforementioned upper and lower limits.
  • the thickness of the reinforcing fibers is between 0.05 mm and 2 mm, in particular between 0.1 mm and 1 mm.
  • the thickness of the reinforcing fibers also has an influence on the mechanical strength of the base layer and thus of the hybrid turf. Particularly favorable results have been found in a thickness of the reinforcing fibers between 0.1 mm and 1 mm. However, also in the range between 0.05 mm and 2 mm for the thickness of the reinforcing fibers show very good results.
  • larger or smaller thicknesses of the reinforcing fibers are disclosed with the invention. For the thickness of the reinforcing fibers an interval is given, which is described by an upper and lower limit.
  • the upper limit is, for example, the following values: 1 mm, 1.5 mm, 2 mm, 2.5 mm and 3 mm.
  • the lower limits are, for example, the following values: 0.05 mm, 0.1 mm, 0.2 mm, 0.4 mm and 0.6 mm.
  • the disclosure of this application encompasses the set of all intervals, which consists of all possible, technically meaningful combinations of the aforementioned upper and lower limits.
  • the reinforcing fibers within the support layer in different directions, distributed randomly and at least partially there is a toothing between the individual reinforcing fibers.
  • the reinforcing fibers are disordered within the support layer. This means that there is no preferred or conscious direction in which the fibers run. Between the individual randomly distributed present fibers occurs at least partially to a toothing of the individual reinforcing fibers with each other. The fibers touch each other, hook into each other or are partially wrapped around each other. This creates an interaction between the individual fibers, which corresponds to a kind of networking. This networking or gearing ensures the desired improvement in the shear strength of the base layer.
  • the hybrid turf can be used much more intensively without heavy wear and requires less regeneration times.
  • Such a disordered presence of the reinforcing fibers in the support layer can be produced, for example, by mixing the reinforcing fibers with the other constituents of the support layer before the application of the base support layer.
  • the base layer thus mixed with reinforcing fibers is then applied to the floor of the sports facility and applied as the topmost layer of natural grass.
  • the randomly present reinforcing fibers in the base layer have proven to be particularly favorable for stabilizing the root zone of the natural grass.
  • reinforcing fibers are introduced into an already created turf structure subsequently in a disordered direction.
  • reinforcing fibers within the base layer are also possible.
  • randomly present in the support layer reinforcing fibers can be used with an ordered present layer of fibers in combination to produce special properties of the hybrid lawn.
  • the reinforcing fibers are net-like or fabric-like in the support layer.
  • reinforcing fibers in ordered form are net-like or fabric-like in the support layer.
  • Such an ordered shape provides a particularly good improvement in the shear strength of the backing layer along the direction of the reinforcing fibers. It is possible here to arrange different net-like or fabric-like arrangements one above the other, wherein the direction of the fiber progressions is in each case slightly offset from one another.
  • Such mesh-like or fabric-like executed reinforcing fibers can be introduced, for example, characterized in that a portion of the support layer is first distributed on the ground, then the net-like reinforcing fibers are placed and then further support layer material is filled.
  • the reinforcing fibers are designed, for example, as roll goods or web goods and are opened a pad rolled out. This stratified application of the support layer can of course also be done with multiple layers of reinforcing fibers.
  • the object of the invention is also achieved by methods for preparing a base layer according to one of the embodiments described, comprising the method steps: activation of the reinforcing fibers, in particular composting of the base layer.
  • activation of the reinforcing fibers in particular composting of the base layer.
  • a used support layer of a hybrid lawn is processed.
  • the activation threshold of the reinforcing fibers is exceeded, whereby then a biodegradability of the reinforcing fibers is given.
  • the reinforcing fibers that behave stably when used in the hybrid lawn are now completely degraded after activation, ie after the activation threshold has been exceeded, so that after a certain time they are no longer present in the base course.
  • the activation in particular composting with temperatures higher than 50 ° C takes place.
  • the activation of the reinforcing fibers by temperatures of greater than 50 ° C, 55 ° C, 60 ° C, 65 ° C or 70 ° C. These temperatures will be achieved particularly easily in the context of an industrial composting, in which temperatures at this level or even above are common and common. Due to this ease of activation temperatures in industrial composting plants, opportunities for activation and thus degradation of the reinforcing fibers are easily and inexpensively accessible.
  • the support layer is removed from the soil before activation / composting.
  • the support layer is first removed from the floor of the sports venue and then fed to the activation or composting, where then the degradation of the reinforcing fibers takes place.
  • the base layer is used as biomaterial / earth, in particular for the construction of a base layer according to one of the already described embodiments.
  • the material of the used support layer is used after the degradation of the reinforcing fibers for the construction of a new support layer.
  • the treated material can also be used for other applications, for example in agriculture, horticulture or the like, since it now free of plastics. Due to the complete freedom of the material from plastic remnants, it can also be used in nature, for example for the creation of biotopes or the like.
  • Fig. 1 shows a three-dimensional, sectional view of a first embodiment of a support layer in a sports floor.
  • a sports floor here is to understand the totality of all layers that form the background for the practice of sports.
  • a sports floor formed by a hybrid lawn contains artificial fibers in at least one of its layers and is otherwise naturally constructed.
  • the base of the shown sports floor is a floor 4.
  • Under a floor 4 is here to understand any surface that naturally prevails or already exists at the place where the sports floor should be created. This floor 4 is leveled before the construction of the sports floor and possibly otherwise pretreated as needed, for example, compressed, so that it forms a good surface for the subsequent supporting layer 1.
  • the base layer 1 is located as in Fig. 1 On the floor 4 above the support layer is again the lawn 3.
  • the lawn 3 is usually formed by a natural turf.
  • the shown sports floor with a turf 3 the turf 3 being formed by an artificial turf.
  • Lawn 3 is thus to be understood as the area in which the blades of a natural or artificial turf project out of the base layer 1.
  • the roots of a lawn 3 formed by a natural turf are located, at least for the most part, within the base layer 1.
  • the athletes directly contact the sports floor.
  • Essential for the function of the shown sports floor and the base layer 1 are the reinforcing fibers 2, which in the Fig. 1 illustrated embodiment of a support layer extend substantially vertically.
  • This standing of the reinforcing fibers 2 into or through the lawn 3 provides additional solidification and thus more intensive usability of the lawn 3.
  • the reinforcing fibers 2 also provide consolidation, resulting in improved shear strength of the entire sports floor.
  • the reinforcing fibers were 2 after the application of the support layer 1 and the lawn 3 on the bottom 4 subsequently implanted from above into the support layer 1. This can be done by hand or with the aid of a device or machine.
  • the reinforcing fibers 2 were taken approximately in the middle of their length by a tool and then pushed in the vertical direction through the turf 3 into the base layer 1.
  • reinforcing fibers 2 can also be introduced into the base layer 1 by other methods or with other aids in such a way that, as in the case shown, they extend essentially in the vertical direction.
  • Fig. 2 shows a three-dimensional, sectional view of a second embodiment of a support layer according to the invention in one Sports ground.
  • the construction of the sports ground in Fig. 2 is shown, consists of the same layers as those in Fig. 1 already described.
  • the reinforcing fibers 2 are in the Fig. 2 illustrated embodiment of the support layer 1 disordered and extending in different directions before. Due to the fact that the reinforcing fibers run in a disordered manner and along the course of the fibers changing spatial directions, there is a mutual entanglement or a mutual toothing of the reinforcing fibers 2.
  • the reinforcing fibers 2 can be dyed green so that they are barely distinguishable from the appearance of the natural blades of grass.
  • the introduction of the reinforcing fibers in the in Fig. 2 illustrated embodiment of a support layer is advantageously already before the application of the support layer 1.
  • the reinforcing fibers 2 can even before the construction of the sports floor evenly mixed with the other materials of the support layer 1. This saves time when building the sports ground at the sports venue.
  • the reinforcing fibers 2 can also be introduced after the application of the lawn 3 in the support layer 1.
  • Fig. 1 and Fig. 2 embodiments of a support layer shown are also combined with each other, so that both unordered as well as ordered introduced reinforcing fibers 2 are present in a support layer 1.
  • Fig. 3 shows a three-dimensional, sectional view of a third embodiment of a support layer in a sports floor.
  • the layer structure is identical to Fig. 1 and Fig. 2 .
  • the reinforcing fibers 2 are in the illustrated embodiment in a kind of fabric or mesh. This means that the fibers are regularly arranged in a certain way. In the illustrated case, the fibers are substantially horizontal and either parallel to each other or they take a 90 ° angle to each other. This arrangement of the reinforcing fibers provides for a particularly good solidification of the support layer in the direction of the reinforcing fibers 2. Since the reinforcing fibers 2 in the in Fig.
  • FIG. 3 illustrated embodiment substantially only in two horizontal directions, which are 90 ° to each other, run, the strength of the support layer 1 in these directions is particularly large, in contrast, lower in other directions. Therefore, a plurality of fabrics or nets of reinforcing fibers 2, which are twisted relative to each other with respect to the fiber direction, can be introduced into the base layer 1.
  • the support layer 1 is solidified in other directions.
  • the introduction of a network or fabric of reinforcing fibers 2 can be carried out particularly favorable during the application of the support layer 1 on the floor 4. It is also possible parallel to that Fig. 3 shown to provide a network or fabric of reinforcing fibers 2 more such networks or fabric, of which a layer may also be provided at the boundary between the base layer 1 and 3 lawn.
  • a solidification of the root zone of the turf 3 is achieved, which in turn increases the wear resistance of the sports floor.
  • Fig. 3 illustrated embodiment of a support layer 1 can with one or both embodiments, in Fig. 1 and Fig. 2 shown are used in combination.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Paving Structures (AREA)

Description

  • Die Erfindung betrifft eine Tragschicht für Rasen, welche Bewehrungsfasern aus Kunststoff aufweist, wobei diese Bewehrungsfasern unter den Umgebungsbedingungen beim Einsatz als Tragschicht im Boden im Wesentlichen nicht biologisch abbaubar sind. Darüber hinaus betrifft die Erfindung auch ein Verfahren zur Aufbereitung einer Tragschicht für Rasen. Eine solche Tragschicht ist aus der WO2012159145A1 bekannt.
  • Viele beliebte Sportarten, wie Fußball, Hockey oder Reitsport werden bevorzugt auf Rasenflächen betrieben. Bei intensiver Nutzung von natürlichen Rasenflächen für derartige Sportarten kommt es schnell zu einem Verschleiß der Rasenflächen. Dieser Verschleiß kann soweit gehen, dass die Rasenflächen nicht mehr für sportliche Aktivitäten genutzt werden können. Es werden dann längere Pflege- und Regenerationsphasen für die Rasenflächen benötigt, während deren dort kein Sport betrieben werden kann. Längere Ausfallzeiten, bedingt durch den Verschleiß des Rasens, sind für Betreiber von Sportflächen allerdings unerwünscht.
  • Ein Ansatz dieser Problematik zu begegnen, ist die Verwendung von Kunstrasen, welcher aus synthetischen Stoffen aufgebaut ist und somit weniger schnell verschleißt. Allerdings entspricht auch moderner Kunstrasen in seinem Verhalten bei der Ausführung der meisten Sportarten nicht dem Verhalten eines natürlichen Rasens. Somit ist Kunstrasen in vielen Fällen unbeliebt bei den Sportlern.
  • Eine andere Alternative zur Verbesserung der Verschleißfestigkeit von Rasenflächen ist der Einsatz von Hybridrasen. Bei Hybridrasen werden die Vorteile einer natürlichen Rasenfläche mit den Vorteilen einer Verstärkung durch synthetische Stoffe verknüpft. Bei solchen Hybridrasen wird auf dem vorhandenen Unterboden zunächst eine kunstfaserverstärkte Tragschicht aufgebracht. Die Kunstfasern in dieser Tragschicht haben die Aufgabe, die Scherfestigkeit der Schicht durch eine Vernetzung untereinander zu verbessern. Mechanische Belastungen bei der Ausführung der Sportarten werden somit besser abgefangen und verteilt als bei einem Boden, der nicht mit Fasern verstärkt ist. Auf dieser Tragschicht wird dann Naturrasen angelegt. Dabei können die Verstärkungsfasern der Tragschicht auch bis in den Naturrasen hinein verlaufen, was auch der Rasenschicht zusätzliche Stabilität verschafft. Auch ein derartiger Hybridrasen bzw. dessen Tragschicht hat eine endliche Lebensdauer und muss nach einigen Jahren erneuert oder ausgetauscht werden.
  • Bei der Entsorgung gebrauchter Hybridrasen stellt sich dann das Problem, dass die Kunstfasern untrennbar mit den mineralischen und organischen Bestandteilen von Rasen und Tragschicht vermischt sind. Daher fallen jährlich große Mengen an abgetragenem Material bei der Erneuerung von Hybridrasenflächen an, welche neben natürlichem Material auch einen großen Anteil an Kunststoffen enthalten. Derartiges, kunstoffhaltiges Material kann nicht in der Natur ausgebracht werden und muss daher umständlich und kostenaufwändig deponiert oder entsorgt werden.
  • Die Aufgabe der vorliegenden Erfindung ist es somit, die Entsorgung gebrauchter Tragschichten von Hybridrasen zu vereinfachen.
  • Die Aufgabe der Erfindung wird durch eine Tragschicht mit den Merkmalen des Anspruchs 1 gelöst. Eine erfindungsgemäße Tragschicht weist Bewehrungsfasern aus einem Kunststoff auf, der unter den Umgebungsbedingungen beim Einsatz als Tragschicht im Boden im Wesentlichen nicht biologisch abbaubar ist oder auf andere Weise unter Bedingungen bei normalem Gebrauch des Hybridrasens (zum Beispiel Temperaturen, Feuchtigkeit/Wassergehalt, Strahlung, insbesondere UV-Strahlung) zersetzt wird. Das bedeutet, dass die Bewehrungsfasern ihre Eigenschaften während des Einsatzes in der Tragschicht eines Hybridrasens nicht oder nur in sehr geringem Maße verändern. Somit ist sichergestellt, dass diese Bewehrungsfasern ihre Aufgabe der mechanischen Stützung und Festigung der Tragschicht über einen Zeitraum von mehreren Jahren zuverlässig erfüllen, da ihre mechanischen Eigenschaften im Wesentlichen konstant bleiben. Die Bewehrungsfasern einer erfindungsgemäßen Tragschicht weisen eine Aktivierungsschwelle auf, ab der diese Fasern dann im Wesentlichen insbesondere komplett biologisch abbaubar sind und aus der Tragschicht verschwinden. Bei dieser Aktivierungsschwelle, ab der eine Abbaubarkeit der Bewehrungsfasern gegeben ist, kann es sich um verschiedene physikalische Effekte handeln. So kann beispielsweise eine bestimmte Temperatur diese Aktivierungsschwelle bilden. Weiterhin kann aber auch eine bestimmte Luftfeuchtigkeit bzw. Konzentration von Wasser oder anderen Flüssigkeiten in der Umgebung der Bewehrungsfasern diese Aktivierungsschwelle bilden. Darüber hinaus sind auch andere physikalische Effekte (wie zum Beispiel Bestrahlen mit einer Strahlung gewisser Wellenlänge, beispielsweise UV-Strahlung) als Aktivierungsschwelle für die biologische Abbaubarkeit der Bewehrungsfasern einer Tragschicht mit zur Erfindung gehörend.
  • Durch die Aktivierung wird der biologische Abbau eingeleitet, insbesondere erfolgt ein Zersetzen der Moleküle des Kunststoffes und anschließend unter Umständen der weitere biologische Abbau oder sonstiges Zersetzen oder Umformen des Kunststoffes. Üblicherweise wird die Aktivierungsschwelle von einem chemischen oder physikalischen Parameter beschrieben.
  • Weiterhin ist es möglich, dass die Aktivierungsschwelle von einer Kombination aus zwei oder mehreren physikalischen und/oder chemischen Effekten gebildet wird. So kann die Akteivierungsschwelle beispielsweise aus einer Kombination einer bestimmten Temperatur mit einem bestimmten Wassergehalt in der Umgebung der Bewehrungsfasern bestehen. Das Überschreiten einer derartigen kombinierten Aktivierungsschwelle, gebildet aus einer Temperatur und einem Wassergehalt, führt dann zunächst zu einer Aufnahme von Wasser in die Bewehrungsfasern. Diese Wasseraufnahme verursacht eine Spaltung der Moleküle des Kunststoffes, aus dem die Bewehrungsfasern bestehen. Die weitere Zersetzung der Spaltprodukte erfolgt dann wiederum durch andere Mechanismen. Die weitere Zersetzung kann dabei beispielsweise durch Saprobionten erfolgen. Dabei handelt es sich um Organismen, die sich von totem Material ernähren und dieses aufspalten, umformen und zerkleinern.
  • Diese Zersetzung kann dabei innerhalb der Organismen erfolgen, oder aber durch Enzyme, die die Organismen nach außen abgeben. Saprobionten sind typische Organismen in Kompostierungsprozessen. Als besonders günstig für einen biologischen Abbau von erfindungsgemäßen Bewehrungsfasern haben sich Saprobionten in Form von thermophilen Bakterien und Pilzen herausgestellt. Derartige thermophile Lebewesen sind bei erhöhten Temperaturen, beispielweise zwischen 45 und 80 °C besonders aktiv. Ein kompletter biologischer Abbau der Bewehrungsfasern ist aber nicht auf einen Abbau durch thermophile Lebewesen beschränkt. Es eigenen sich hierfür auch andere Mikroorganismen, wie man sie z.B. bei der Kompostierung vorfindet oder einsetzt. Es ist klar, dass ein biologischer Abbau, wie beschrieben, natürlich auch durch die Überschreitung einer Aktivierungsschwelle, die nur durch eine Temperatur oder nur einen anderen physikalischen oder chemischen Parameter definiert ist, erfolgt.
  • Letztendlich bleibt nach dem biologischen Abbau nur organisches und mineralisches Material, welches bedenkenlos in der Natur ausgebracht oder verteilt werden kann, zurück. Eine erfindungsgemäße Tragschicht bietet somit die sehr vorteilhafte Kombination aus qualitativ hochwertiger Stabilisierungsfunktion beim Einsatz in Hybridsportrasen mit einer deutlich vereinfachten und verbesserten Entsorgung nach ihrem Einsatz im Hybridrasen.
  • Besonders vorteilhaft ist dabei die Auswahl bzw. Einstellung einer Aktivierungsschwelle der Bewehrungsfasern, die beim Einsatz in der Tragschicht eines im Einsatz befindlichen Hybridrasens möglichst nie erreicht wird. Somit ist sichergestellt, dass während des Einsatzes im Hybridrasen keinerlei biologischer Abbau der Bewehrungsfasern stattfindet. Bei der Entsorgung einer gebrauchten Tragschicht wird dann dafür gesorgt, dass die Aktivierungsschwelle bewusst und deutlich überschritten wird, so dass der dann gewünschte biologische Abbau der Bewehrungsfasern stattfinden kann. Nach einer gewissen Zeit unter Bedingungen jenseits der Aktivierungsschwelle weist die Tragschicht dann keinerlei Kunststoffanteil mehr auf und kann nach Belieben entsorgt oder wiederverwendet werden.
  • Geschickter Weise ist vorgesehen, dass die Aktivierungsschwelle eine Temperatur höher als 50° C, 55° C, 60°C, 65°C oder 70°C ist. Erfindungsgemäß wird die Aktivierungsschwelle, ab der ein biologischer Abbau der Bewehrungsfasern erfolgt, von einer Temperatur gebildet, welche höher als 50 °C ist. Diese Aktivierungsschwelle kann dann beispielsweise bei 55 °C liegen. Es gibt geeignete Kunststoffe, wie beispielsweise Polylactide (PLA) die ab dieser Temperatur in nennenswertem Umfang Wassermoleküle aufnehmen, welche dann wiederum für die Zersetzung und damit den biologischen Abbau der Kunststoffe führen. Neben einer Überschreitung der hier von einer Temperatur gebildeten Aktivierungsschwelle sollte darüber hinaus dafür gesorgt werden, dass eine ausreichende Menge an Wasser vorhanden ist, um einen guten biologischen Abbau der Bewehrungsfasern zu erzielen. Es ist selbstverständlich möglich verschiedene Kunststoffe als Werkstoff für die Bewehrungsfasern einzusetzen, wobei die Aktivierungsschwelle auch durch höhere Temperaturen gebildet werden kann. Eine Möglichkeit zum Erreichen oder Überschreiten der Aktivierungsschwelle ist das Einbringen einer gebrauchten, abgetragenen Tragschicht in eine Kompostierungsanlage. In industriellen Kompostierungsanlagen werden oft Temperaturen von höher als 60 °C angewandt, da ab dieser Temperatur Keime wirkungsvoll abgetötet werden. Die Bedingungen in einer solchen Kompostierungsanlage sind somit ideal auch für den Abbau der Bewehrungsfasern in einer erfindungsgemäßen Tragschicht. Die in der Kompostierungsanlage vorherrschende Temperatur liegt deutlich jenseits der Aktivierungsschwelle zum biologischen Abbau der Bewehrungsfasern und gewährleistet somit einen sicheren und schnellen Abbau der Fasern. Darüber hinaus kann eine Aktivierungsschwelle auch durch niedrigere Temperaturen, beispielsweise im Bereich von 40°C oder 45°C gebildet werden. Die Aktivierungsschwelle ist abhängig vom Material, aus dem die Bewehrungsfasern bestehen sowie den Mechanismen oder Organismen, die beim Abbau oder der Zersetzung verwendet werden sollen. Geschickterweise bieten sich solche Aktivierungsschwellen in Einsatzbereichen an, die bei normalem Gebrauch als Tragschicht für einen Rasen nicht erreicht werden.
  • Des Weiteren ist günstiger Weise vorgesehen, dass die Bewehrungsfasern beim Einsatz als Tragschicht im Boden unter anderem stabil gegenüber UV-Strahlung oder Wasser sind. In dieser Ausführungsform sind die Bewehrungsfasern so ausgeführt, dass sie stabil gegenüber den, während ihres Einsatzes in der Tragschicht vorherrschenden Umgebungsbedingungen sind. Dazu gehört, dass die Bewehrungsfasern stabil gegenüber UV-Strahlung sind, welche im Sonnenlicht enthalten ist. Dies ist insbesondere dann günstig, wenn Teile der Bewehrungsfasern aus dem Boden herausstehen. Falls die Bewehrungsfasern vollständig im Boden eingehaust oder umschlossen sind und so im Normalfall keine UV-Strahlung auf die Fasern trifft, kann auf diese Eigenschaft verzichtet werden und UV-Licht zum Beispiel zur Aktivierung verwendet werden. Diese Beständigkeit gegenüber UV-Strahlung kann beispielsweise durch eine Verwendung eines UVbeständigen, aktivierbaren Kunststoffes erzielt werden oder durch die Beimengungen von Pigmenten oder durch die Beschichtung mit einer UV-absorbierenden Beschichtung bei weniger stabilen Kunststoffen erfolgen. Es ist dabei auch möglich, die Bewehrungsfasern grün einzufärben, um sie als innerhalb des Naturrasens unauffällig zu gestalten. Weiterhin sind die Bewehrungsfasern so gestaltet, dass sie unempfindlich gegenüber Wasser sind. Da Rasenflächen regelmäßig bewässert werden müssen, um ein gutes Wachstum des Naturrasens zu erzielen, sind die Bewehrungsfasern so ausgeführt, dass sie unter normalen Einsatzbedingungen im Hybridrasen kein Wasser aufnehmen. Eine ungewandte Zersetzung oder eine Quellung mit damit verbundener Veränderung der mechanischen Eigenschaften der Fasern wird somit verhindert.
  • Des Weiteren ist vorgesehen, dass die Bewehrungsfasern aus einem Werkstoff der Gruppe Polylactide (PLA) oder der Gruppe Polyhydroxylalkanoate, insbesondere Polyhydroxybuttersäure (PHB) oder der Gruppe Polyvinylalkohole (PVA) bestehen. Die Bewehrungsfasern der Tragschicht werden aus einem Werkstoff gebildet, der jenseits der Aktivierungsschwelle biologisch abbaubar ist. Daher bieten sich als Werkstoff für die Bewehrungsfasern verschiedene biokompatible Kunststoffe an. Besonders geeignet sind dabei Werkstoffe aus der Gruppe der Polylactide (PLA). Polylactide sind synthetische Polymere, die zu den Polyestern gehören. Polylactide sind aus miteinander verbundenen Milchsäuremolekülen aufgebaut. Aus Polylactiden sind Thermoplaste herstellbar, die in gängigen Verarbeitungsverfahren (Spritzguss, Extrudieren,...) in nahezu beliebige Formen gebracht werden können. Die Bewehrungsfasern können somit in unterschiedlichen Längen, Durchmessern und Formen aus PLA hergestellt werden. Besonders günstig an Bewehrungsfasern aus PLA sind die guten mechanischen Eigenschaften, mit einer hohen Zugfestigkeit, einem hohen E-Modul und einer geringen Bruchdehnung. Diese, größtenteils durch die große Molekülmasse bedingten Eigenschaften, sorgen für eine wirkungsvolle Stützung und Vernetzung der Tragschicht. Darüber hinaus verhält sich PLA unter den im Hybridrasen vorherrschenden Umgebungsbedingungen wasserabweisend. Somit ist ein Einfluss der Bewehrungsfasern auf den Wasserhaushalt der Tragschicht ausgeschlossen. Gleichzeitig besteht keine Gefahr, dass die Fasern durch Wasseraufnahme aufquellen und ihre mechanischen Eigenschaften verändern, oder sich bereits im Boden zersetzen. Unterhalb der Aktivierungsschwelle verhalten sich Bewehrungsfasern aus PLA in ihren Eigenschaften langzeitstabil und nahezu verrottungsfrei. Selbstverständlich können die Bewehrungsfasern auch aus einem anderen geeigneten biokompatiblen Werkstoff, beispielsweise aus den Gruppen der Polyhydroxylalkanoate, insbesondere der Polyhydroxybuttersäure (PHB) oder der Polyvinylalkohole (PVA) bestehen. Darüber hinaus sind auch noch weitere, unter definierten Bedingungen biologisch abbaubare Kunststoffe mit zur Erfindung gehörend.
  • Vorteilhafter Weise ist vorgesehen, dass die Tragschicht neben den Bewehrungsfasern auch Quarzsand und/oder Natursand und/oder Lava und/oder Oberboden und/oder Torf und/oder Naturkork aufweist. Die Bewehrungsfasern dienen der Verfestigung und der Verbesserung der Scherfestigkeit der Tragschicht. Je höher diese Scherfestigkeit ist, desto höher ist die mögliche Nutzungsintensität des Hybridrasens und desto niedriger sind Pflegeaufwand und benötigte Regenerationszeit.
  • Neben dem Bewehrungsfasern enthält die Tragschicht diverse weitere Materialien, die für die anderen benötigten Eigenschaften der Tragschicht sorgen. So muss die Tragschicht beispielsweise gut durchlässig für Wasser sein, um eine Überflutung des Hybridrasens bei starkem Regen zu vermeiden. Innerhalb der Tragschicht werden deshalb oft Drainagesysteme zur Abführung von Wasser verlegt. Weiterhin hat die Tragschicht die Aufgabe, für eine bleibende Ebenheit des Hybridrasens, auch bei regelmäßiger Belastung zu sorgen. In einer möglichen Ausführungsform der Erfindung enthält die Tragschicht als größten Bestandteil Quarzsand und/oder Natursand. Der Anteil dieser Sande beträgt dabei üblicherweise 60 - 80 Volumenprozent. Als besonders günstig haben sich dabei Korngrößen zwischen 0,02 mm und 4 mm herausgestellt.
  • Weiterhin kann Lava ein Bestandteil der Tragschicht sein. Üblicherweise wird Lava im Anteil von 0 - 18 Volumenprozent (Volumen-%) der Tragschicht beigemengt.
  • Für den Anteil des Lavas wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 oder 25 Volumen-%. Als Untergrenze gelten zum Beispiel folgende Werte: 0,5, 1, 1,5, 2, 4, 6, 8, 10 oder 12 Volumen-%. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle mögliche, technisch richtigen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Auch hier haben sich Korngrößen des Lavas zwischen 0,02 mm und 4 mm als besonders günstig herausgestellt.
  • Für die Korngröße des Lavas wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 1, 1,5, 2, 2,5, 3, 3,5, 4, 5 oder 6mm. Als Untergrenze gelten zum Beispiel folgende Werte: 0,02, 0,05, 0,1, 0,15, 0,2, 0,3, 0,4, 0,5, 0,7, 0,85, 1, 1,3, 1,5, 1,7, 2, 2,5, 3 oder 4 mm . Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle mögliche, technisch richtigen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Weiterer Bestandteil der Tragschicht, insbesondere zu einem Anteil von 5 - 20 Volumenprozent, ist Oberboden.
  • Für den Anteil des Oberbodens wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 25, 28 oder 30 Volumen-%. Als Untergrenze gelten zum Beispiel folgende Werte: 0,5, 1, 1,5, 2, 4, 6, 8, 10 oder 12 Volumen-%. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle mögliche, technisch richtigen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Geeigneter Oberboden für eine Tragschicht ist in der Norm DIN 18300 als Bodenklasse 1 als Oberboden bzw. Mutterboden definiert und enthält neben anorganischem Material auch Humus und Bodenlebewesen. Ebenfalls geeignet sind fließende Bodenarten, wie sie in der Norm DIN 18915 als Bodengruppe 2 klassifiziert sind.
  • Als weiterer geeigneter Bestandteil der Tragschicht hat sich Torf, idealerweise zu einem Anteil von 3 - 11 Volumenprozent (Volumen-%) ergeben. Erfahrungsgemäß gut einsetzbar ist dabei Hochmoortorf oder Weißfeintorf.
  • Für den Anteil des Torfs wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 2, 4, 6, 8, 10, 11, 12 oder 13 Volumen-%. Als Untergrenze gelten zum Beispiel folgende Werte: 0,5, 1, 1,5, 2, 4, 6 oder 8 Volumen-%. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle mögliche, technisch richtigen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Weiterhin kann eine Tragschicht Naturkork, insbesondere in einer Korngröße zwischen 0,5 mm und 20 mm, bevorzugt zwischen 3 mm und 7 mm eingesetzt werden.
  • Für die Korngröße des Naturkorks wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 3, 5, 7, 10, 12, 15, 17 oder 20 mm. Als Untergrenze gelten zum Beispiel folgende Werte: 0,5, 1, 2, 3, 4, 5, 7, 10, 12 oder 15 mm. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle mögliche, technisch richtigen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Je nach gewünschten Eigenschaften des Hybridrasens kann der Anteil des Naturkorks im Bereich von 0 - 13 Volumenprozent (Volumen-%) liegen.
  • Für den Anteil des Naturkorks wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 2, 4, 6, 8, 10, 12 oder 13 Volumen-%. Als Untergrenze gelten zum Beispiel folgende Werte: 0,5, 1, 1,5, 2, 4 oder 6 Volumen-%. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle mögliche, technisch richtigen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Die hier aufgeführten Bestandteile einer Tragschicht haben sich in der Praxis als besonders günstig herausgestellt. Selbstverständlich können aber auch andere und weitere Bestandteile in der Tragschicht enthalten sein. Darüber hinaus sind auch andere Korngrößen oder Volumenanteile als die genannten Größen oder Anteile der Bestandteile in einer Tragschicht mit zur Erfindung gehörend und offenbart.
  • Des Weiteren ist günstiger Weise vorgesehen, dass die Schichtdicke der Tragschicht zwischen 30 mm und 300 mm liegt, insbesondere zwischen 60 mm und 200 mm. Die Tragschicht kann je nach Einsatzort und gewünschten Eigenschaften des Hybridrasens unterschiedlich dick gestaltet sein. Als besonders günstig haben sich dabei Dicken zwischen 60 mm und 200 mm herausgestellt. Gut geeignet sind weiterhin Dicken zwischen 30 mm und 300 mm. Darüber hinaus sind allerdings auch dünnere oder dickere Tragschicht mit von der Erfindung erfasst. Für die Schichtdicke wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 150 mm, 200 mm, 250 mm und 300 mm. Als Untergrenze gelten zum Beispiel folgende Werte: 30 mm, 45 mm, 75 mm, 60 mm und 90 mm. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle mögliche Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Des Weiteren ist erfindungsgemäß vorgesehen, dass der Anteil der Bewehrungsfasern an der Tragschicht zwischen 0,1 und 4 Gewichts-% beträgt. Der Anteil der Bewehrungsfasern in der Tragschicht ist relevant für die erzielte Scherfestigkeit der Tragschicht. Besonders günstig für die Scherfestigkeit hat sich dabei ein Anteil zwischen 0,1 und 4 Gewichts-% der Bewehrungsfasern an der Tragschicht herausgestellt.
  • Für den Anteil der Bewehrungsfasern wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 2, 4, 6, 8 oder 10 Gewichts-%. Als Untergrenze gelten zum Beispiel folgende Werte: 0,05, 0,1, 0,5, 1, 1,5, 2 und 4 Gewichts-%. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle mögliche, technisch richtigen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Vorteilhafter Weise ist vorgesehen, dass die Länge der Bewehrungsfasern zwischen 15 mm und 700 mm, insbesondere zwischen 30 mm und 500 mm beträgt. Auch die Länge der Bewehrungsfasern hat Einfluss auf die erzielte Scherfestigkeit der Tragschicht. Bei der Auswahl einer Länge für die Bewehrungsfasern spielt es eine Rolle, auf welche Art die Fasern in die Tragschicht eingebracht werden. Werden die Fasern vor der Aufbringung des Hybridrasens der Tragschicht untergemischt können andere Faserlängen optimal sein als bei nachträglicher Einbringung der Bewehrungsfasern in einen bereits verlegten Rasen bzw. eine bereits verlegte Tragschicht. Besonders günstige Ergebnisse lassen sich mit Bewehrungsfasern mit einer Länge zwischen 30 mm und 500 mm erzielen. Eine gute Scherfestigkeit wird auch im Bereich zwischen 15 mm und 700 mm erzielt. Darüber hinaus sind allerdings auch größere oder kleinere Längen der Bewehrungsfasern mit zur Erfindung gehörend. Für die Länge der Bewehrungsfasern wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 90mm, 100 mm, 150 mm, 250 mm, 300 mm, 350 mm, 400 mm, 450 mm, 500 mm, 550 mm, 600 mm, 650 mm und 700 mm. Als Untergrenze gelten zum Beispiel folgende Werte: 15 mm, 30 mm, 45 mm, 60 mm, 75 mm und 100 mm. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle möglichen, technisch sinnvollen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Bei einer bevorzugten Ausgestaltung des Vorschlags ist vorgesehen, dass die Dicke der Bewehrungsfasern zwischen 0,05 mm und 2 mm, insbesondere zwischen 0,1 mm und 1 mm beträgt. Auch die Dicke der Bewehrungsfasern hat Einfluss auf die mechanische Festigkeit der Tragschicht und damit des Hybridrasens. Besonders günstige Ergebnisse haben sich bei einer Dicke der Bewehrungsfasern zwischen 0,1 mm und 1 mm gezeigt. Allerdings zeigen sich auch im Bereich zwischen 0,05 mm und 2 mm für die Dicke der Bewehrungsfasern sehr gute Ergebnisse. Darüber hinaus sind auch größere oder kleinere Dicken der Bewehrungsfasern mit der Erfindung offenbart. Für die Dicke der Bewehrungsfasern wird ein Intervall angegeben, das durch eine obere und untere Grenze beschrieben ist. Als Obergrenze sind zum Beispiel dabei folgende Werte vorgesehen: 1 mm, 1,5 mm, 2 mm, 2,5 mm und 3 mm. Als Untergrenze gelten zum Beispiel folgende Werte: 0,05 mm, 0,1 mm, 0,2 mm, 0,4 mm und 0,6 mm. Die Offenbarung dieser Anmeldung umfasst die Menge von allen Intervallen, die durch alle möglichen, technisch sinnvollen Kombinationen der vorgenannten Ober- und Untergrenzen besteht.
  • Erfindungsgemäß ist vorgesehen, dass die Bewehrungsfasern innerhalb der Tragschicht in unterschiedlichen Richtungen, ungeordnet verteilt vorliegen und zumindest teilweise eine Verzahnung zwischen den einzelnen Bewehrungsfasern besteht. In dieser Ausführungsform der Erfindung liegen die Bewehrungsfasern innerhalb der Tragschicht ungeordnet vor. Das bedeutet, dass es keine bevorzugte oder bewusst eingestellte Richtung gibt, in der die Fasern verlaufen. Zwischen den einzelnen ungeordnet verteilt vorliegenden Fasern kommt es dabei zumindest teilweise zu einer Verzahnung der einzelnen Bewehrungsfasern untereinander. Die Fasern berühren sich gegenseitig, haken ineinander ein oder sind teilweise umeinander gewickelt. Dadurch entsteht eine Interaktion zwischen den einzelnen Fasern, welche eine Art Vernetzung entspricht. Diese Vernetzung oder Verzahnung sorgt für die gewünschte Verbesserung der Scherfestigkeit der Tragschicht. Durch die verbesserte Scherfestigkeit wiederum kann der Hybridrasen deutlich intensiver genutzt werden ohne stark zu verschleißen und benötigt dabei geringere Regenerationszeiten. Ein derartiges ungeordnetes Vorliegen der Bewehrungsfasern in der Tragschicht kann beispielsweise dadurch erzeugt werden, dass die Bewehrungsfasern vor der Aufbringung der Tragschicht auf dem Boden mit den anderen Bestandteilen der Tragschicht vermischt werden. Die so mit Bewehrungsfasern vermischte Tragschicht wird anschließend auf dem Boden der Sportstätte aufgebracht und als oberste Schicht der Naturrasen angelegt. Die ungeordnet vorliegenden Bewehrungsfasern in der Tragschicht haben sich als besonders günstig zur Stabilisierung der Wurzelzone des Naturrasens herausgestellt. Selbstverständlich ist es auch zur Erfindung gehörend, dass Bewehrungsfasern in einen bereits angelegten Rasenaufbau nachträglich in ungeordneter Richtung eingebracht werden.
  • Ebenfalls möglich ist eine Kombination aus verschiedenen Anordnungen der Bewehrungsfasern innerhalb der Tragschicht. So können beispielsweise ungeordnet in der Tragschicht vorliegenden Bewehrungsfasern mit einer geordnet vorliegenden Lage an Fasern in Kombination eingesetzt werden um spezielle Eigenschaften des Hybridrasens zu erzeugen. Geschickter Weise ist vorgesehen, dass die Bewehrungsfasern netzartig oder gewebeartig in der Tragschicht vorliegen. In dieser Ausführungsform liegen Bewehrungsfasern in geordneter Form netzartig oder gewebeartig in der Tragschicht vor. Eine derartige geordnete Form sorgt für eine besonders gute Verbesserung der Scherfestigkeit der Tragschicht entlang der Richtung der Bewehrungsfasern. Es ist hier möglich verschiedene netzartige oder gewebeartige Anordnungen übereinander anzuordnen, wobei die Richtung der Faserverläufe jeweils leicht zueinander versetzt ist. Dadurch lassen sich wiederum exzellente Scherfestigkeiten in verschiedene Richtungen erzeugen. Derartige netzartig oder gewebeartig ausgeführte Bewehrungsfasern können beispielsweise dadurch in die Tragschicht eingebracht werden, dass zunächst ein Anteil der Tragschicht auf dem Boden verteilt wird, dann die netzartig ausgebildeten Bewehrungsfasern aufgelegt werden und anschließend weiteres Tragschichtmaterial aufgefüllt wird. Die Bewehrungsfasern sind zum Beispiel als Rollenware oder Bahnware ausgebildet und werden auf einer Unterlage ausgerollt. Dieses schichtweise Ausbringen der Tragschicht kann selbstverständlich auch mit mehreren Schichten an Bewehrungsfasern erfolgen.
  • Die Aufgabe der Erfindung wird auch gelöst durch Verfahren zur Aufbereitung einer Tragschicht nach einer der beschriebenen Ausführungsformen umfassend die Verfahrensschritte: Aktivierung der Bewehrungsfasern, insbesondere Kompostierung der Tragschicht. Mit Hilfe des erfindungsgemäßen Verfahrens wird eine gebrauchte Tragschicht eines Hybridrasens aufbereitet. Dabei wird die Aktivierungsschwelle der Bewehrungsfasern überschritten, wodurch dann eine biologische Abbaubarkeit der Bewehrungsfasern gegeben ist. Die sich vorher beim Einsatz im Hybridrasens stabil verhaltenden Bewehrungsfasern werden nun nach Aktivierung, also nach Überschreitung der Aktivierungsschwelle, komplett abgebaut, so dass sie nach einer gewissen Zeit nicht mehr in der Tragschicht vorhanden sind. Als besonders günstig zur Aktivierung bzw. zur Überschreitung der Aktivierungsschwelle hat sich eine Kompostierung der gebrauchten Tragschicht herausgestellt. Bei einer, insbesondere industriellen Kompostierung liegen Umgebungsbedingungen vor, die zur Überschreitung der Aktivierungsschwelle und somit zum biologischen Abbau der Bewehrungsfasern in der Tragschicht führen können.
  • Geschickter Weise ist vorgesehen, dass die Aktivierung, insbesondere Kompostierung mit Temperaturen höher als 50° C erfolgt. In dieser Ausführungsform eines erfindungsgemäßen Verfahrens erfolgt die Aktivierung der Bewehrungsfasern durch Temperaturen von höher als 50 °C, 55 °C, 60 °C, 65 °C oder 70 °C. Diese Temperaturen werden besonders einfach im Rahmen einer industriellen Kompostierung erreicht, bei der Temperaturen in dieser Höhe oder auch darüber üblich und gängig sind. Aufgrund dieser Gängigkeit der Aktivierungstemperaturen bei industriellen Kompostierungsanlagen, sind Möglichkeiten zur Aktivierung und somit zum Abbau der Bewehrungsfasern einfach und kostengünstig zugänglich.
  • Des Weiteren ist vorgesehen, dass vor der Aktivierung/Kompostierung die Tragschicht vom Boden abgetragen wird. In dieser Ausführungsform des Verfahrens wird die Tragschicht zunächst vom Boden der Sportstätte abgetragen und anschließend der Aktivierung oder Kompostierung zugeführt, wo dann der Abbau der Bewehrungsfasern stattfindet. Dies hat den Vorteil, dass die entfernte Tragschicht sofort durch eine neue Tragschicht zum Aufbau eines neuen Hybridrasens ersetzt werden kann und dadurch keine Ausfallzeiten in den Sportstätten entstehen.
  • Vorteilhafter Weise ist vorgesehen, dass nach der Aktivierung/Kompostierung die Tragschicht als Biomaterial/Erde, insbesondere für den Bau einer Tragschicht nach einer der bereits beschriebenen Ausführungsformen verwendet wird. In dieser Ausführungsform des Verfahrens wird das Material der gebrauchten Tragschicht nach dem Abbau der Bewehrungsfasern für den Aufbau einer neuen Tragschicht eingesetzt. Dies hat den Vorteil dass die Materialien der alten Tragschicht bereits in einem günstigen Verhältnis untereinander gemischt sind und somit wenig bis keinen Aufwand bei der Anmischung einen neuen Tragschicht entsteht. Neue Bewehrungsfasern können dann je nach erwünschter Scherfestigkeit der neuen Tragschicht in der entsprechenden Menge Form und Gestalt ganz nach Bedarf zugegeben werden. Neben der Verwendung des Materials der gebrauchten Tragschicht nach dem vollständigen Abbau der Bewehrungsfasern für neue Tragschicht kann das aufbereitete Material aber auch für andere Anwendungen, beispielsweise in der Landwirtschaft, im Gartenbau oder Ähnlichem eingesetzt werden, da es nunmehr frei von Kunststoffen ist. Aufgrund der vollkommenen Freiheit des Materials von Kunststoffresten kann es auch in der Natur verwendet werden wie beispielsweise zum Anlegen von Biotopen oder Ähnlichem.
  • In diesem Zusammenhang wird insbesondere darauf hingewiesen, dass alle im Bezug auf die Vorrichtung beschriebenen Merkmale und Eigenschaften aber auch Verfahrensweisen sinngemäß auch bezüglich der Formulierung des erfindungsgemäßen Verfahrens übertragbar und im Sinne der Erfindung einsetzbar und als mitoffenbart gelten. Gleiches gilt auch in umgekehrter Richtung, das bedeutet, nur im Bezug auf das Verfahren genannte, bauliche also vorrichtungsgemäße Merkmale können auch im Rahmen der Vorrichtungsansprüche berücksichtigt und beansprucht werden und zählen ebenfalls zur Offenbarung.
  • In der Zeichnung ist die Erfindung insbesondere in einem Ausführungsbeispiel schematisch dargestellt. Es zeigen:
    • Fig. 1 eine dreidimensionale, geschnittene Ansicht einer ersten Ausführungsform einer Tragschicht in einem Sportboden,
    • Fig. 2 eine dreidimensionale, geschnittene Ansicht einer zweiten Ausführungsform einer erfindungsgemäßen Tragschicht in einem Sportboden und
    • Fig. 3 eine dreidimensionale, geschnittene Ansicht einer dritten Ausführungsform einer Tragschicht in einem Sportboden.
  • In den Figuren sind gleiche oder einander entsprechende Elemente jeweils mit den gleichen Bezugszeichen bezeichnet und werden daher, sofern nicht zweckmäßig, nicht erneut beschrieben. Die in der gesamten Beschreibung enthaltenen Offenbarungen sind sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragbar. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen. Weiterhin können auch Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unterschiedlichen Ausführungsbeispielen für sich eigenständige, erfinderische oder erfindungsgemäße Lösungen darstellen.
  • Fig. 1 zeigt eine dreidimensionale, geschnittene Ansicht einer ersten Ausführungsform einer Tragschicht in einem Sportboden. Unter einem Sportboden ist hier die Gesamtheit aller Schichten zu verstehen, die den Untergrund zur Ausübung von Sportarten bilden. Als besonders günstig hat sich ein Hybridrasen als Sportboden herausgestellt. Ein von einem Hybridrasen gebildeter Sportboden enthält zumindest in einer seiner Schichten künstliche Fasern und ist ansonsten natürlich aufgebaut. Die Basis des gezeigten Sportbodens ist ein Boden 4. Unter einem Boden 4 ist hier jeder Untergrund zu verstehen, der natürlicherweise an der Stelle vorherrscht oder bereits vorhanden ist, an der der Sportboden angelegt werden soll. Dieser Boden 4 wird vor dem Aufbau des Sportbodens eingeebnet und unter Umständen nach Bedarf anderweitig vorbehandelt, beispielsweise verdichtet, so dass er einen guten Untergrund für die darauf folgende Tragschicht 1 bildet.
  • Die Tragschicht 1 befindet sich, wie in Fig. 1 zu sehen ist, auf dem Boden 4. Oberhalb der Tragschicht wiederum befindet sich der Rasen 3. Der Rasen 3 wird normalerweise von einem Naturrasen gebildet. Allerdings wäre es auch möglich, den gezeigten Sportboden mit einem Rasen 3 zu erzeugen, wobei der Rasen 3 von einem Kunstrasen gebildet wird. Unter Rasen 3 ist somit der Bereich zu verstehen, in dem die Halme eines natürlichen oder künstlichen Rasens aus der Tragschicht 1 hervorstehen. Die Wurzeln eines von einem Naturrasen gebildeten Rasens 3 befinden sich, zumindest zum größten Teil, innerhalb der Tragschicht 1. Im Bereich des Rasens 3 findet der direkte Kontakt der Sportler mit dem Sportboden statt. Essenziell für die Funktion des gezeigten Sportbodens und der Tragschicht 1 sind die Bewehrungsfasern 2, welche in der Fig. 1 dargestellten Ausführungsform einer Tragschicht im Wesentlichen vertikal verlaufen. Dabei stehen die Enden der Bewehrungsfasern 2 aus der Tragschicht 1 nach oben hinaus bis in oder durch den Rasen 3. Dieses Einstehen der Bewehrungsfasern 2 bis in oder durch den Rasen 3 sorgt für eine zusätzliche Verfestigung und damit intensivere Nutzbarkeit des Rasens 3. Innerhalb der Tragschicht 1 sorgen die Bewehrungsfasern 2 ebenfalls für eine Verfestigung, was zu einer verbesserten Scherfestigkeit des gesamten Sportbodens führt. In der dargestellten Ausführungsform wurden die Bewehrungsfasern 2 nach dem Aufbringen der Tragschicht 1 und des Rasens 3 auf dem Boden 4 nachträglich von oben in die Tragschicht 1 implantiert. Dies kann von Hand oder unter Zuhilfenahme einer Vorrichtung oder Maschine erfolgen. Im dargestellten Fall wurden die Bewehrungsfasern 2 ungefähr in der Mitte ihrer Länge von einem Werkzeug aufgenommen und anschließend in vertikaler Richtung durch den Rasen 3 bis in die Tragschicht 1 gestoßen. Selbstverständlich ist es auch möglich die Bewehrungsfasern 2 zuerst in die Tragschicht zu stoßen und dann den Rasen 3 aufzubringen. Darüber hinaus können die Bewehrungsfasern 2 auch durch andere Verfahren oder mit anderen Hilfsmitteln so in die Tragschicht 1 eingebracht werden, dass sie wie im dargestellten Fall im Wesentlichen in vertikaler Richtung verlaufen.
  • Fig. 2 zeigt eine dreidimensionale, geschnittene Ansicht einer zweiten Ausführungsform einer erfindungsgemäßen Tragschicht in einem Sportboden. Der Aufbau des Sportbodens, der in Fig. 2 gezeigt wird, besteht aus den gleichen Schichten, wie sie in Fig. 1 bereits beschrieben wurden. Die Bewehrungsfasern 2 liegen in der Fig. 2 dargestellten Ausführungsform der Tragschicht 1 ungeordnet und in unterschiedliche Richtungen verlaufend vor. Dadurch, dass die Bewehrungsfasern hier ungeordnet und entlang des Faserverlaufes sich ändernden Raumrichtungen verlaufen kommt es zu einem gegenseitigen Verhaken oder einer gegenseitigen Verzahnung der Bewehrungsfasern 2. Genau diese Verzahnung zwischen den einzelnen Bewehrungsfasern 2 sorgt für eine Verfestigung der Tragschicht 1, was wiederum zu einer erhöhten Scherfestigkeit der Tragschicht 1 und damit des gesamten Sportbodens führt. Weiterhin stabilisieren ungeordnet durcheinander verlaufenden Bewehrungsfasern 2 die Wurzelzone des Rasens 3 und sorgen auch dadurch für eine erhöhte Verschleißfestigkeit des Sportbodens. Auch in der in Fig. 2 dargestellten Ausführungsform können die Enden der Bewehrungsfasern 2 aus der Tragschicht 1 hinaus nach oben bis in oder durch den Rasen 3 ragen. Dies führt wiederum zu einer erhöhten Verschleißfestigkeit und besseren Bespielbarkeit des Rasens 3, der dadurch sowohl von natürlichen Grashalmen als auch von synthetischen Bewehrungsfasern 2 gebildet wird, was oft als Hybridrasen bezeichnet wird. Für eine gefälligere Optik können die Bewehrungsfasern 2 grün eingefärbt werden, so dass sie kaum vom Erscheinungsbild der natürlichen Grashalme zu unterscheiden sind. Die Einbringung der Bewehrungsfasern in der in Fig. 2 dargestellten Ausführungsform einer Tragschicht erfolgt günstigerweise bereits vor dem Aufbringen der Tragschicht 1. Die Bewehrungsfasern 2 können bereits vor dem Aufbau des Sportbodens gleichmäßig mit den anderen Materialen der Tragschicht 1 vermengt werden. Dies spart dann Zeit beim Aufbau des Sportbodens an der Sportstätte. Selbstverständlich ist es aber auch möglich die Bewehrungsfasern 2 während des Auftragens der Tragschicht 1 auf den Boden 4 aufzutragen oder unterzumischen. Darüber hinaus können die Bewehrungsfasern 2 auch noch nach dem aufbringen des Rasens 3 in die Tragschicht 1 eingebracht werden.
  • Darüber hinaus können die in Fig. 1 und Fig. 2 dargestellten Ausführungsformen einer Tragschicht auch miteinander kombiniert werden, so dass sowohl ungeordnete als auch geordnet eingebrachte Bewehrungsfasern 2 in einer Tragschicht 1 vorliegen.
  • Fig. 3 zeigt eine dreidimensionale, geschnittene Ansicht einer dritten Ausführungsform einer Tragschicht in einem Sportboden. Auch in dieser, in Fig. 3 gezeigten Ausführungsform einer Tragschicht 1 ist der Schichtaufbau identisch zu Fig. 1 und Fig. 2. Die Bewehrungsfasern 2 liegen in der dargestellten Ausführungsform in eine Art Gewebe oder Netz vor. Das bedeutet, dass die Fasern in einer bestimmten Art und Weise regelmäßig angeordnet sind. Im dargestellten Fall verlaufen die Fasern im Wesentlichen horizontal und entweder parallel zueinander oder sie nehmen zueinander einen 90° Winkel ein. Diese Anordnung der Bewehrungsfasern sorgt für eine besonders gute Verfestigung der Tragschicht in Richtung der Bewehrungsfasern 2. Da die Bewehrungsfasern 2 in der in Fig. 3 dargestellten Ausführungsform im Wesentlichen nur in zwei horizontale Richtungen, die 90° zueinander verdreht sind, verlaufen, ist die Festigkeit der Tragschicht 1 in diesen Richtungen besonders groß, in anderen Richtungen dagegen niedriger. Deshalb können auch mehrere Gewebe oder Netze aus Bewehrungsfasern 2, die zueinander bezüglich der Faserrichtung verdreht sind, in die Tragschicht 1 eingebracht werden. Damit wird die Tragschicht 1 in weiteren Richtungen verfestigt. Das Einbringen eines Netzes oder Gewebes aus Bewehrungsfasern 2 kann dabei besonders günstig während dem Aufbringen der Tragschicht 1 auf den Boden 4 erfolgen. Es ist auch möglich parallel zu dem Fig. 3 dargestellten einen Netz oder Gewebe aus Bewehrungsfasern 2 weitere derartige Netze oder Gewebe vorzusehen, von denen eine Lage auch an der Grenze zwischen Tragschicht 1 und Rasen 3 vorgesehen sein kann. Durch ein Netz oder Gewebe aus Bewehrungsfasern 2 direkt an der Grenze zum Rasen 3 wird eine Verfestigung der Wurzelzone des Rasens 3 erreicht, was wiederum die Verschleißfestigkeit des Sportbodens erhöht. Auch die in Fig. 3 dargestellte Ausführungsform einer Tragschicht 1 kann mit einer oder beiden Ausführungsformen, die in Fig. 1 und Fig. 2 dargestellt sind kombiniert eingesetzt werden.

Claims (9)

  1. Tragschicht für Rasen, welche Bewehrungsfasern (2) aus Kunststoff aufweist, wobei diese Bewehrungsfasern (2) unter den Umgebungsbedingungen beim Einsatz als Tragschicht im Boden im Wesentlichen nicht biologisch abbaubar sind, dadurch gekennzeichnet, dass die Bewehrungsfasern (2) innerhalb der Tragschicht (1) in unterschiedlichen Richtungen, ungeordnet verteilt vorliegen und zumindest teilweise eine Verzahnung zwischen den einzelnen Bewehrungsfasern (2) besteht, wobei der Anteil der Bewehrungsfasern (2) an der Tragschicht zwischen 0,1 und 4 Gewichts-% beträgt und diese Bewehrungsfasern (2) eine Aktivierungsschwelle aufweisen, oberhalb welcher die Bewehrungsfasern (2) im Wesentlichen komplett biologisch abbaubar sind, wobei die Aktivierungsschwelle eine Temperatur höher als 50° C ist.
  2. Tragschicht nach Anspruch 1, dadurch gekennzeichnet, dass die Bewehrungsfasern (2) beim Einsatz als Tragschicht im Boden unter anderem stabil gegenüber UV-Strahlung oder Wasser sind.
  3. Tragschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Bewehrungsfasern (2) aus einem Werkstoff der Gruppe Polylactide (PLA) oder der Gruppe Polyhydroxylalkanoate, insbesondere Polyhydroxybuttersäure (PHB) oder der Gruppe Polyvinylalkohole (PVA) bestehen.
  4. Tragschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Tragschicht neben den Bewehrungsfasern (2) auch Quarzsand und/oder Natursand und/oder Lava und/oder Oberboden und/oder Torf und/oder Naturkork aufweist.
  5. Tragschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schichtdicke der Tragschicht zwischen 30 mm und 300 mm liegt, insbesondere zwischen 60 mm und 200 mm.
  6. Tragschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Länge der Bewehrungsfasern (2) zwischen 15 mm und 700 mm, insbesondere zwischen 30 mm und 500 mm beträgt.
  7. Tragschicht nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dicke der Bewehrungsfasern (2) zwischen 0,05 mm und 2 mm, insbesondere zwischen 0,1 mm und 1 mm beträgt.
  8. Verfahren zur Aufbereitung einer Tragschicht nach einem der vorhergehenden Ansprüche umfassend die Verfahrensschritte
    - Abtragung der Tragschicht (1) vom Boden (4),
    - Aktivierung der Bewehrungsfasern (2), insbesondere Kompostierung der Tragschicht (1),
    wobei die Aktivierung, insbesondere Kompostierung mit Temperaturen höher als 50° C erfolgt.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass nach der Aktivierung/Kompostierung die Tragschicht (1) als Biomaterial/Erde, insbesondere für den Bau einer Tragschicht (1) nach einem der Ansprüche 1 bis 7 verwendet wird.
EP16183630.9A 2015-08-11 2016-08-10 Faserbewehrte rasentragschicht und verfahren zur aufbereitung deren Active EP3130704B2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL16183630T PL3130704T3 (pl) 2015-08-11 2016-08-10 Zbrojona włóknami warstwa nośna murawy i sposób jej obróbki

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015113210.9A DE102015113210A1 (de) 2015-08-11 2015-08-11 Faserbewehrte Rasentragschicht

Publications (3)

Publication Number Publication Date
EP3130704A1 EP3130704A1 (de) 2017-02-15
EP3130704B1 true EP3130704B1 (de) 2019-07-17
EP3130704B2 EP3130704B2 (de) 2023-02-22

Family

ID=56682007

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16183630.9A Active EP3130704B2 (de) 2015-08-11 2016-08-10 Faserbewehrte rasentragschicht und verfahren zur aufbereitung deren

Country Status (6)

Country Link
EP (1) EP3130704B2 (de)
DE (1) DE102015113210A1 (de)
DK (1) DK3130704T3 (de)
ES (1) ES2750589T5 (de)
PL (1) PL3130704T3 (de)
PT (1) PT3130704T (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105498A1 (en) * 2022-11-18 2024-05-23 Biopolymer Swiss Ag Hybrid turf

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL3325703T3 (pl) 2016-08-02 2020-03-31 Fitesa Germany Gmbh Układ i sposób wytwarzania materiałów włókninowych z poli(kwasu mlekowego)
US11441251B2 (en) 2016-08-16 2022-09-13 Fitesa Germany Gmbh Nonwoven fabrics comprising polylactic acid having improved strength and toughness
DE102017113307A1 (de) * 2017-06-16 2018-12-20 Intergreen Ag Sportplatzoberbau und Sportplatz
EP3467203A1 (de) 2017-10-06 2019-04-10 Polytex Sportbeläge Produktions-GmbH Kompostierbarer kunstrasen mit zersetzungsinhibitor
DE102019115810A1 (de) * 2019-06-11 2020-12-17 EuroSportsTurf GmbH Maschine und Verfahren zum Bearbeiten einer Tragschicht eines Rasenplatzes
EP3959966A1 (de) * 2020-08-31 2022-03-02 Gebrüder Peiffer GbR Fertigrasen - Zuchtbetrieb Naturfaserverstärkter rollrasen

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204381B1 (de) 1985-06-04 1989-03-29 Hollandsche Beton Groep N.V. Sportfeld
WO1992005316A1 (en) 1990-09-21 1992-04-02 Heckmondwike Fb Limited Ground stabilisation material
US5586408A (en) 1992-06-22 1996-12-24 Turf Systems International, Inc. Surface for sports and other uses
WO1998023817A1 (en) 1996-11-29 1998-06-04 Hugo De Vries Combined turf
DE69330046T2 (de) * 1992-10-02 2001-11-15 Cargill, Inc. Schmelzstabiles lactidpolymergewebe und verfahren zu seiner herstellung
AU9730801A (en) * 1997-06-06 2002-02-14 Technology Licensing Corp. Stabilized turf for athletic field
DE10063949A1 (de) * 2000-12-20 2002-06-27 Basf Ag Verfahren zum Abbau von biologisch abbaubaren Polymeren
DE69825997T2 (de) 1997-06-06 2005-01-27 Technology Licensing Corp., Newtown Stabilisierter natürlicher rasen für einen sportplatz
US7326659B2 (en) 2004-02-16 2008-02-05 Conwed Plastics Llc Biodegradable netting
EP1990470A2 (de) 2007-05-10 2008-11-12 Firma H. Cordel u. Sohn Als Vegetations- und Tragschicht für natürliche Sportrasen dienendes Einbaumaterial
WO2010022421A1 (de) 2008-08-26 2010-03-04 Thomas Eichenauer Vegetations- und tragschicht und verfahren zum herstellen derselben
US8188013B2 (en) * 2005-01-31 2012-05-29 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
CN102797073A (zh) * 2012-08-14 2012-11-28 青岛青禾人造草坪有限公司 一种可降解人造草丝及其制备方法
WO2012159145A1 (en) 2011-05-23 2012-11-29 Hg Sports Turf Pty Ltd Improved relocatable turf

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0204381B1 (de) 1985-06-04 1989-03-29 Hollandsche Beton Groep N.V. Sportfeld
WO1992005316A1 (en) 1990-09-21 1992-04-02 Heckmondwike Fb Limited Ground stabilisation material
US5586408A (en) 1992-06-22 1996-12-24 Turf Systems International, Inc. Surface for sports and other uses
DE69330046T2 (de) * 1992-10-02 2001-11-15 Cargill, Inc. Schmelzstabiles lactidpolymergewebe und verfahren zu seiner herstellung
WO1998023817A1 (en) 1996-11-29 1998-06-04 Hugo De Vries Combined turf
DE69825997T2 (de) 1997-06-06 2005-01-27 Technology Licensing Corp., Newtown Stabilisierter natürlicher rasen für einen sportplatz
AU9730801A (en) * 1997-06-06 2002-02-14 Technology Licensing Corp. Stabilized turf for athletic field
DE10063949A1 (de) * 2000-12-20 2002-06-27 Basf Ag Verfahren zum Abbau von biologisch abbaubaren Polymeren
US7326659B2 (en) 2004-02-16 2008-02-05 Conwed Plastics Llc Biodegradable netting
US8188013B2 (en) * 2005-01-31 2012-05-29 Halliburton Energy Services, Inc. Self-degrading fibers and associated methods of use and manufacture
EP1990470A2 (de) 2007-05-10 2008-11-12 Firma H. Cordel u. Sohn Als Vegetations- und Tragschicht für natürliche Sportrasen dienendes Einbaumaterial
WO2010022421A1 (de) 2008-08-26 2010-03-04 Thomas Eichenauer Vegetations- und tragschicht und verfahren zum herstellen derselben
WO2012159145A1 (en) 2011-05-23 2012-11-29 Hg Sports Turf Pty Ltd Improved relocatable turf
CN102797073A (zh) * 2012-08-14 2012-11-28 青岛青禾人造草坪有限公司 一种可降解人造草丝及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABSCHLUSSBERICHT_15494_1, PDF-DATEN - D13C
ANONYMOUS: "Faserbewehrter Boden – Faserbewehrung von feinkörnigen Recyclingmaterialien und Aushubböden für eine Verwertung im Erd- und Tiefbau", IUTA.DE, 1 August 2009 (2009-08-01), pages 1 - 2, XP055743652
ANONYMOUS: "Zusammenfassung", ABSCHLUSSBERICHT_15494_1 - D13B, 1 August 2009 (2009-08-01), pages 1 - 58

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105498A1 (en) * 2022-11-18 2024-05-23 Biopolymer Swiss Ag Hybrid turf

Also Published As

Publication number Publication date
EP3130704B2 (de) 2023-02-22
PT3130704T (pt) 2019-10-25
DK3130704T3 (da) 2019-10-21
ES2750589T5 (es) 2023-06-19
DE102015113210A1 (de) 2017-02-16
EP3130704A1 (de) 2017-02-15
ES2750589T3 (es) 2020-03-26
PL3130704T3 (pl) 2020-03-31

Similar Documents

Publication Publication Date Title
EP3130704B1 (de) Faserbewehrte rasentragschicht und verfahren zur aufbereitung deren
DE19725403C2 (de) Vegetationsträger, bestehend aus einer Matte aus ineinander gewirrten organischen Fasern
DE102010007552B4 (de) Vegetationselement zur Begrünung von künstlichen nicht erdgebundenen Flächen mit niederen und/oder höheren Pflanzen sowie Verfahren zur Herstellung des Vegetationselements
DE3938738C2 (de)
WO2020187552A1 (de) Geomaterialbahn mit biologischen abbaueigenschaften
DE102017113307A1 (de) Sportplatzoberbau und Sportplatz
EP2190281B1 (de) Geomatte
DE602004010075T2 (de) Verfahren zur herstellung eines wachstumssubstrats
DE102008061720B4 (de) Kunststoffformteil, insbesondere Pflanzgefäß
WO2021160517A1 (de) Schutzvorrichtung und böschungssicherung
DE202015104216U1 (de) Faserbewehrte Rasentragschicht
EP0700883B1 (de) Schüttfähiges Vegetationserdsubstrat, Verfahren zum herstellen desselben und seine Verwendung
EP3419409B1 (de) Trockenlegungselement für pflanzen und dessen verwendung
DE19800842C2 (de) Kunststoff-Faden
DE3817480C2 (de)
DE202017001062U1 (de) Vulkangestein-Streugut für Garten-/Landschaftsbau und Agraranwendungen
DE102007027064B4 (de) Flächengebilde umfassend einen Träger, eine Wachstumsmatrix und einen biologischen Stoff sowie dessen Herstellung und Verwendung
EP1111987B1 (de) Fertigrasen
EP3959966A1 (de) Naturfaserverstärkter rollrasen
DE4437482C2 (de) Verfahren zum Reparieren und Regenerieren von Rasenflächen
EP4252525B1 (de) Substratplatte für eine dachbegrünung sowie verfahren zur dachbegrünung
EP2921044A1 (de) Fertigrasen und Herstellungsverfahren für einen Fertigrasen
WO2023072326A1 (de) Düngemittelanordnung
AT397176B (de) Verfahren zur fruchtbarmachung und/oder verfestigung trockener, insbesondere sandiger und/oder felsiger böden
EP3592136A1 (de) Verfahren zum heranwachsen lassen von pflanzen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170811

RAV Requested validation state of the european patent: fee paid

Extension state: MD

Effective date: 20170811

Extension state: MA

Effective date: 20170811

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20170811

Extension state: ME

Payment date: 20170811

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: E01C 13/08 20060101ALI20171204BHEP

Ipc: E01C 13/02 20060101AFI20171204BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

INTG Intention to grant announced

Effective date: 20180112

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1237007

Country of ref document: HK

17Q First examination report despatched

Effective date: 20180315

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190306

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016005558

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1155939

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190815

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20191015

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3130704

Country of ref document: PT

Date of ref document: 20191025

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20191003

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191017

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191017

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 32649

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191117

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191018

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2750589

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20200326

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502016005558

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MD

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

26 Opposition filed

Opponent name: INTERGREEN AG

Effective date: 20200417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MA

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20160810

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20210819

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20210830

Year of fee payment: 6

Ref country code: CZ

Payment date: 20210810

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20210819

Year of fee payment: 6

Ref country code: PL

Payment date: 20210802

Year of fee payment: 6

Ref country code: SK

Payment date: 20210806

Year of fee payment: 6

Ref country code: DK

Payment date: 20210823

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20210729

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190717

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20230222

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502016005558

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502016005558

Country of ref document: DE

Representative=s name: PATENTANWAELTE OLBRICHT, BUCHHOLD, KEULERTZ PA, DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20220831

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 32649

Country of ref document: SK

Effective date: 20220810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220810

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220810

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220831

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220810

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Ref document number: 2750589

Country of ref document: ES

Kind code of ref document: T5

Effective date: 20230619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230630

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220810

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230906

Year of fee payment: 8

Ref country code: AT

Payment date: 20230831

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231027

Year of fee payment: 8

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1237007

Country of ref document: HK

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240826

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240831

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240830

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240830

Year of fee payment: 9