EP3121548B1 - Wärmeaustauschelement - Google Patents

Wärmeaustauschelement Download PDF

Info

Publication number
EP3121548B1
EP3121548B1 EP15178348.7A EP15178348A EP3121548B1 EP 3121548 B1 EP3121548 B1 EP 3121548B1 EP 15178348 A EP15178348 A EP 15178348A EP 3121548 B1 EP3121548 B1 EP 3121548B1
Authority
EP
European Patent Office
Prior art keywords
heat exchange
plate
tube
plate element
exchange element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15178348.7A
Other languages
English (en)
French (fr)
Other versions
EP3121548B8 (de
EP3121548A1 (de
Inventor
Beat Schönbächler
Remo Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KST AG
Original Assignee
KST AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KST AG filed Critical KST AG
Priority to DK15178348.7T priority Critical patent/DK3121548T3/da
Priority to EP15178348.7A priority patent/EP3121548B8/de
Publication of EP3121548A1 publication Critical patent/EP3121548A1/de
Application granted granted Critical
Publication of EP3121548B1 publication Critical patent/EP3121548B1/de
Publication of EP3121548B8 publication Critical patent/EP3121548B8/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/02Fastening; Joining by using bonding materials; by embedding elements in particular materials
    • F28F2275/025Fastening; Joining by using bonding materials; by embedding elements in particular materials by using adhesives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/14Fastening; Joining by using form fitting connection, e.g. with tongue and groove

Definitions

  • the present invention relates to a heat exchange element according to claim 1.
  • Heat exchange elements can be used, for example, in heat exchangers such as those used for cooling/heating rooms or entire buildings in the form of ceiling or wall panels or else directly in the ceiling or wall.
  • US6830098B1 discloses a heat exchange element according to the preamble of claim 1.
  • connection methods have disadvantages.
  • Conventional solder joints are mechanically sensitive, especially when subjected to impact stress, which can occur during assembly, for example.
  • bonded joints exhibit poor thermal conductivity, while in known welded joints materials, particularly materials with different thermal expansion coefficients, have a strong tendency to warp and often have to be reworked due to the associated high thermal stress.
  • the aim of the present application is to improve at least one of the aforementioned disadvantages of the prior art.
  • a heat exchange element comprises a tube for a heat exchange fluid to flow through and at least one thermally conductive plate element for absorbing ambient heat and thermally transferring the ambient heat to the tube and/or absorbing thermal heat from the tube and releasing it heat to the environment.
  • the pipe is arranged on at least one plate element or between at least two plate elements of a plate element arrangement, with at least one contact means being provided for thermal contact, which comprises a connecting means and/or pressing means.
  • the plate element is adapted in the area of a plate element contact surface for thermally conductive contact to the pipe contact surface by means of a fit with a material thickness d that is reduced compared to the plate thickness D of the plate element, in order to enlarge the contact surfaces.
  • the material thickness d can be stepped at an angle or at right angles, stepped or evenly decreasing towards the middle of the fit.
  • a pipe is operatively connected via one or more lateral pipe contact surfaces to at least one or, in the case of a plate element arrangement, to at least two or more plate elements, which in turn have at least having a plate member contact surface for connecting to the pipe contact surface.
  • An active connection is understood here to mean a thermally conductive arrangement between the tube or tube contact surface and the opposite contact surface, which is produced by physical, conductive connection means (solder, adhesive, welding) or by pressing one contact surface onto the other.
  • the connecting means comprise a soldered connection and/or an adhesive connection.
  • the pipe can have at least one pipe contact surface that is at least partially flat in cross section.
  • the heat exchange element comprises one or more plate elements which are connected to at least one tube in an edge area by an adhesive connection and in a central area by a soldered connection.
  • the soldered connection enables a particularly good pipe/plate heat transfer, while the adhesive connection ensures a particularly strong connection that is also insensitive to impacts. Even if such an embodiment is particularly well suited with a plate element provided with a fit, as described here, e.g. by providing the adhesive connection in the edge areas of the fit, it was found that quite generally even with conventional heat exchange elements without a fit, the strength or Thermal conductivity can be improved compared to pure soldered or pure adhesive connections. This applies in particular to corresponding Combinations of features of the present invention that are not directly related to the fit.
  • a flux-free soldering point is preferably produced in this case, since it has been shown that such soldering points ensure better strength and conductivity over a longer period of time.
  • the heat exchange element comprises one or more plate elements which are connected to the at least one tube by at least one or more substantially parallel lines of weld points.
  • the tube can be operatively connected to a longitudinal direction L of the plate element parallel or preferably transversely, particularly preferably essentially at a right angle.
  • the sections connected by soldering and/or gluing or welding become shorter, which means that thermal stresses that are not as great as in the case of a parallel structure cannot form in the connection.
  • spacing gaps are advantageously provided between the plate elements. For example, with a plate element width B of 20 to 80 mm, gap distances S between 10 and 40 mm can be selected. This applies in particular to materials with different thermal expansion coefficients, such as when using aluminum plates and copper pipes.
  • the tube is connected in a meandering manner to at least one plate element, the curved
  • pipe sections lie outside the contact surfaces, therefore protrude laterally beyond the plate element or elements, which facilitates mechanical adaptation of the contact surfaces.
  • tube and plate element can be straight in the area of the fit, particularly in the area of the contact surfaces for the heat transfer between tube and plate element, which lowers the manufacturing costs because, among other things, the fit can also be straight.
  • a further preferred embodiment of the heat exchange element results when a dimension X of the plate element parallel to the tube axis in the area of the plate element contact surface is greater than a dimension Y in an area further away from the tube.
  • a boundary line GL defined by the edge of the plate element can be enlarged and/or plate elements can be designed in such a way that they are opposite one another with mutually intertwined spaced boundary lines, e.g from the open space to the panel element, on the other hand large enough to attach the desired acoustic damping elements between the panels.
  • Corresponding shapes that can be combined with each other and preferably surface ratios, or surface to boundary line ratios, are described below using the corresponding Figures 7, 8 and 11 shown and described.
  • the plate element can have longitudinal holes aligned perpendicularly to the tube axis in the region of the pressing plane.
  • the weight of the plate element can be significantly reduced without interrupting the flow of heat in the direction of the tube.
  • This also makes it possible to significantly enlarge the thermally effective surface(s) of the plate element that is operatively connected to a pipe, e.g Weight saving results.
  • widths b of between 80 and 135 mm can be realized with a central tube mounted longitudinally on the plate element. Widths b of 80 to 1000 mm are possible with appropriate panel elements provided with longitudinal holes.
  • the open areas of the heat exchanger formed by the longitudinal holes are also available for acoustic damping measures, as described above, with appropriate dimensioning of the longitudinal holes.
  • the holes in the front wall of the heat exchanger can at least partially overlap with the holes or longitudinal holes in the plate element, in the area of the free areas formed, flanges can be placed on the front wall holes and/or corresponding flat insulating material (fleece, grid, etc.) may be provided.
  • the latter can also be arranged over the entire area between the tubes, ie covering the plate element and open area, for example analogous to heat exchangers with tubes attached directly to the inner heat exchange surface.
  • each embodiment can also have a larger number of round holes flanged in a rearward direction, ie in the opposite direction to the pressing surface. These can be provided at least in certain surface areas in addition to the longitudinal holes, with the latter also being able to be flanged.
  • the flanging can be done by a punching tool that is rounded at the cutting edges to produce the holes.
  • the side of the plate element facing away from the tube, or the sides of the at least two plate elements of the plate element arrangement facing away from the tube extend on both sides of a plane of symmetry S of the heat exchange element in a different plane A, A′, respectively the planes A, A′ intersect in the plane of symmetry S along a line of intersection between the plane of symmetry S and a fourth plane H running parallel to a pipe axis Z and perpendicular to the plane of symmetry S.
  • the planes A, A' form an acute angle a, ⁇ ' to the plane H, so that the The heat exchange element (1) with the levels A, A' can be resiliently pressed against a heat exchange surface 21 parallel to the fourth level H.
  • a plane of symmetry S is understood here and in the following to mean a plane S which divides the heat exchange element symmetrically and is perpendicular to the heat exchange surface.
  • angles a, ⁇ ′ are equal in magnitude and/or open in opposite directions with respect to the plane of symmetry S, thereby on the same side of the plane H opposite the tube.
  • the angle is preferred in terms of magnitude from 1 to 15°, particularly preferably from 2 to 10°.
  • the pressing means can in principle be fastened on the side of the plate element or elements facing the pipe, or interact with a heat exchanger comprising the heat exchange element or with a building element mounted on or in a building surface in such a way that the heat transfer between pipe and plate element and/or between plate element and an inner heat exchange surface of the heat exchanger is improved.
  • the heat exchange element is advantageously pressed against the inner heat exchange surface of the heat exchanger by the pressing means in such a way that the angles a, ⁇ ' are essentially equal to 0° and the entire pressing surface is therefore available for heat exchange .
  • fits with a depth of 2 to 12% of the outer diameter of the tube are used in order not to reduce the stability of the plate elements too much.
  • fits which are in the form of segments of a circle in the edge region or in the entire cross section are used.
  • the fit can include a flat surface or consist of a flat surface.
  • the average roughness of the contact surfaces is adjusted to an Ra range of 0.05 to 2.0 ⁇ m, preferably 0.1 to 1 ⁇ m.
  • the latter is also advantageous, for example, for a plate element/pipe arrangement with plates cut at an angle, since a connection is then possible, e.g Lateral surface of the plate element enlarged.
  • the supply/dissipation of the heat to or from the plate element is also facilitated by a central connection with respect to the plate thickness.
  • the heat exchange element has a solder gap.
  • This can advantageously be set to a depth of between 0.05 and 0.3 mm. If the solder gap is thereby provided by two spacer steps provided in the edge area of the fit and the one lying thereon Formed tube, this can be particularly narrow, for example. Between 0.05 and 0.2 mm, be designed without liquid solder leaking laterally when placing the tube on the plate. This applies in particular if an adhesive connection is additionally provided on the spacer steps.
  • the width of the space step can be set between 2 and 5 mm. If an interrupted spacer step or spacer nubs is used, a slightly larger distance of 0.1 to 0.3 mm is better.
  • the plate element is preferably made of a light metal, in particular aluminum, due to its good thermal conductivity and low weight.
  • the preferred material for the tube is copper, but another metal, for example aluminum, can also be used here.
  • the tube can be connected to the plate element by a welded connection SV in the area of the fit.
  • the welded connection SV advantageously comprises at least one sequence of spot welds arranged parallel to the pipe axis, as a result of which less distortion could be achieved in comparison to continuous weld seams.
  • the welded connection SV in particular the welding points, can be attached from the side of the plate element facing away from the pipe.
  • the plate material can be thinned, for example in the form of one or more Beads or indentations can be arranged parallel to the fit.
  • the material thickness d can be set between 0.1 and 0.5 mm in the area of the fit, in particular in the area of a welded joint, which facilitates the welding process.
  • the illustrated heat exchange element 1 'of the prior art consists of a tube 2' that is held in a hollow profile of an extruded plate element 4 '.
  • the pipe 2' and the plate element 4' are connected to one another by welded connections 16. Due to the punctiform or linear welding, there is only direct heat-conducting material contact between the pipe and the welding points or welding lines Plate element, which is disadvantageous for heat transport.
  • extruded profiles for small series are expensive if they can only be used for one pipe dimension.
  • FIG. 1 Another heat exchange element 1 "of the prior art, such as from DE 10 2013 209 961 B4 known is in figure 2 shown.
  • a tube 2" flattened on one side is connected by means of an adhesive connection 17 via tube contact surfaces 3" and plate contact surfaces 5" to a plate or contact element 4" designed as a simple profile.
  • the disadvantage here is that there is an adhesive layer between the contact surfaces 3" and 5" which prevents a metal contact between the tube 2" and the plate or contact element 4" which conducts heat well. Therefore, a heat conducting sheet 27 was provided here in order to improve the heat transfer.
  • FIG 3 shows a heat exchange element 1 according to the invention.
  • the tube axis Z is aligned centrally parallel to the longitudinal axis of the heat exchange element 1 and the tube is connected to the plate element 4 by solder 18 or any other good conducting solder connection.
  • solder 18 or any other good conducting solder connection.
  • a significantly improved heat exchange can be ensured by the metallic, large-area solder connection on the plate element contact surface 5, which is adapted here to the tube contact surface 3 by mechanical processing as described in more detail below.
  • the material thickness d is reduced in relation to the plate thickness D of the plate element 4, approximately in the shape of a segment of a circle.
  • the fit in the areas laterally spaced from the plane of symmetry must be somewhat larger than a segment of a circle, e.g. parabolic, in order to absorb the pressure, e.g. by the solder and/or the adhesive between the pipe and the heat exchange element 4 when the heat exchanger is pressed on, which means that at the same time the heat transfer is improved.
  • This can be done particularly easily by introducing the fit 33 into a flat plate material, then tailoring it to the desired plate size and, if desired, bending the plate elements at the center line of the fit, in the present example also in the plane of symmetry S of the plate element 4.
  • Other geometries, e.g Trough-shaped with a flat bottom for adaptation to pipes etc. that are flattened on one side can thus be realized without further ado.
  • FIG 4 Another heat exchange element 1 according to the invention is shown figure 4 , in which two plate elements 4 are used instead of one plate element, which are attached laterally to the tube 2. Furthermore, in Figure 3 and 4 it can be seen that the two plate elements 4 lie in two planes A, A′ which are angled relative to the plane of symmetry S.
  • the planes form one in each case compared to the plane H running horizontally in the figure, which runs parallel to the tube axis Z and at right angles to the plane of symmetry S Angles ⁇ , ⁇ ' and intersect the plane of symmetry S together with the plane H.
  • the angular range for a, ⁇ ' is preferably between 1 and 15°, particularly preferably between 2 and 10°.
  • the plate element 4 is essentially planar on both sides and parallel on both sides and forms a fit 33 towards the pipe, in the present case in the shape of a segment of a circle or a parabola. In a simple variant, an oblique cut on the plate element 4 can also suffice as a fit 33 .
  • Figure 5 and Figure 6 show an arrangement of several plate elements 4, which are connected to one another by means of a meandering tube 2.
  • the tube runs 2 in figure 5 transverse to the longitudinal direction L of the plate elements 4, while in figure 6 the tube runs parallel to the longitudinal direction L of the plate elements.
  • the curved tube sections lie outside the contact surfaces.
  • Figure 7a and 7b show two further preferred embodiments, wherein a dimension x of the plate element parallel to the tube axis in the range or at the plate member contact surface is greater than a dimension y in an area further spaced from the tube 2.
  • the dimensions can change as in Figure 7b shown by way of example, also change abruptly when wide and narrow areas of the plate element alternate along the tube axis Z.
  • combinations of shapes of the plate element(s) that change partly continuously and partly abruptly with respect to the width dimensions b can also be used here.
  • plate elements specially tailored to one size or flexibly usable for smaller batch sizes or different heat exchangers e.g. geometrically shaped plate elements 4 that can be arranged one behind the other, such as e.g Figure 7B shown are used.
  • Figure 8a shows schematically two other options for the design of a heat exchange element.
  • Longitudinal holes 6 can be seen in an upper area of the drawing in the plate element or elements 4, the alignment of which is perpendicular to the tube axis Z in order to influence the heat flow as little as possible.
  • By attaching appropriate longitudinal holes it is possible on the one hand without or with only a slight increase in the Total weight of the heat exchange element to provide significantly larger areas, for example in the dimensions of the entire inner heat exchange surface A wi 21 of a heat exchanger 8, for heat exchange.
  • the open area 28 of the heat exchanger can be enlarged in this way, for example to provide acoustically damping elements.
  • Free surface 28 is understood here to be the inner heat exchange surface A wi of a heat exchanger 8, which is not in direct contact with the contact surface Apr of the plate element or elements. Finally, such measures make it possible to increase the thermal conductivity of the entire cooling/heating surface, here called the front wall 10 of the heat exchanger 8, since there are many but only small or narrow open spaces with short heat conduction paths to the next area connected to a pressing surface 25 .
  • this width can advantageously be selected between 400 and 1000 mm with a corresponding perforation while maintaining a comparable transmission value.
  • Corresponding flanges can also be provided on the longitudinal holes. Also a combination of acoustic effective holes and corresponding longitudinal holes is possible.
  • FIG 9 shows a heat exchanger 8 according to the invention with an inserted heat exchange element 2, which here comprises a tube 2 with a plate element 4 attached thereto.
  • an inserted heat exchange element 2 which here comprises a tube 2 with a plate element 4 attached thereto.
  • the pressing plane 25 of the plate elements without pressure not even on the heat exchange plane A wi 26 of the heat exchanger 8.
  • Pressing means 11 symbolically represented by an arrow, which in Figure 9B shown by way of example as a clamping device 12 engaging in the housing of the heat exchanger 8
  • the pressing planes 25 are brought into thermally conductive contact with the heat exchange plane 21 of the heat exchanger 8 . This can be done either directly or in combination with a supporting thin adhesive layer, preferably pre-coated on the contact surface of the plate elements 4 .
  • any cavities 24 between the heat exchange plane 21 and the heat exchange element 1, for example under the soldering or adhesive line of plate elements attached to the side of the pipe, can be filled with thermally conductive paste, which can alternatively also be applied to the pressing plane 25 and/or the heat exchange plane.
  • the heat exchanger 8 can also contain other heat exchange elements according to the invention or a combination thereof, as they are shown, for example, in the figures and descriptions.
  • figure 10 shows the steps of a method for producing a heat exchange element 1.
  • a plate element contact surface 5 is coated with solder
  • heat Q being applied to the plate element 4 and after a soldering temperature T1 has been reached
  • the solder is evenly and thinly distributed using an ultrasonic head 15 adapted to the contour of the plate element contact surface 5.
  • the heat can be supplied by thermal radiation or by direct contact with the heating elements 20 and/or via a worktop 19 that can be heated if necessary.
  • the US treatment during this soldering step reduces the surface tension of the molten solder, which enables a particularly even and thin application.
  • the tube contact surface 3 can also be coated with solder after heating the tube with the aid of an ultrasonic head 15' adapted to the outer circumference of the tube 2 or the tube contact surface 3.
  • the tube contact surface 3 aligned on the plate element contact surface 5 and plate element 4 and tube 2 in the present case brought to a third and fourth soldering temperature T3, T4 by means of heating elements 20.
  • the tube 2 and plate element 4 are preferably held and cooled while applying a contact pressure, with which the heat exchange element is completed. It has proven to be advantageous here to set the temperature of the pipe and the plate element as equally as possible.
  • Figures 12 and 13 show different versions of a heat exchange element with a solder gap 30 figure 12 the solder gap is formed by spacer steps 31 provided laterally in the fit between tube 2 and plate element 4 .
  • the spacing steps 31 can be produced in a simple manner, for example by raising the round milling cutter that produces the fit in the edge regions of the fit.
  • the gap formed by spacer cams 32 can be attached, glued, soldered together or advantageously formed from the material of the plate element itself, for example by attaching defined welding humps.
  • the latter can be produced by means of spot welding electrodes, which are pressed in the direction of the fit from a side opposite the fit.
  • figure 14 shows a heat exchange element in which the tube 2 is connected to the plate element 4 by an adhesive connection 17 and a soldered connection 18 .
  • the adhesive connection 17 is located on both edge regions of the plate element 4 opposite the tube 2, or in the end region of the fit, while the soldered connection 18 is located in between.
  • other arrangements are also possible, for example a possible additional adhesive point in the middle.
  • the provision of the two adhesive connections in the edge area of the fit has the advantage that it can prevent the solder tin from running out, for example when the parts of the heat exchanger are joined together.
  • Figure 15 A to D shows various design options for the execution of a welded connection of a heat exchange element 1 in cross section.
  • Figure 1 shows a configuration with tube 2 and one-piece plate element 4, where A shows a connection with a single-row sequence, Figure B shows a connection with a double-row sequence of spot welds.
  • FIG 15c shows a plate element 4 in which, in a further upstream mechanical processing step, the material thickness d in the area of the fit 33 was additionally reduced by applying a thinning 34, here in the form of a bead, on the side of the plate element 4 facing away from the tube 2.
  • a thinning 34 here in the form of a bead
  • the fit 33 can be made less deep and a material thickness d between 0.1 and 0.5 mm that is particularly suitable for producing a secure welded connection SV can still be set in the area of the fit 33 .
  • the welded connection in the fit 33 is applied starting from the side of the plate element 4 facing away from the tube 2 .
  • laser or ultrasonic (US) welding devices can be used.
  • Such additionally thinned plate elements 4 can also be advantageous for soldered and/or glued connections, for example in order to control the temperature particularly precisely during the connection process.
  • FIG 11 different variants of a heat exchanger 8 are shown in a plan from the rear. while showing Figure 11A a known conventional heat exchanger, with a heat exchange element consisting of a plate element 4 with a tube 2 attached to the rear thereof.
  • the heat exchange element rests with the pressure surface on the inner heat exchange surface A wi of the heat exchanger, as a result of which a free surface 28 is formed between the edges of the pressure surface and the outer circumference of the heat exchange surface.
  • FIG 11D Another way to improve the corresponding ratios (A pr / A wi or A wi / GL) is in Figure 11D shown, are used in the wavy designed plate elements in the edge area, with at least partially mutually parallel boundary lines.
  • An analog structure is basically also possible with others, for example from Figure 7A and/or 7B known geometries of the plate elements possible.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Wärmeaustauschelement nach Anspruch 1.
  • Wärmeaustauschelemente können beispielsweise in Wärmetauschern, wie sie zum Kühlen/Heizen von Räumen oder ganzen Gebäuden in der Form von Decken- oder Wandpanelen oder auch direkt in der Decke oder Wand eingesetzt werden, Verwendung finden.
  • Grundsätzlich sind verschiedene Wärmeaustauschelemente aus dem Stand der Technik bekannt, jedoch kommt es bei solchen Wärmeaustauschelementen, auf Grund zumindest teilweiser schlechter thermischer Leitung zwischen Wärmeaustauschelement und der in den Raum gerichteten Kühl-/Wärmefläche des Wärmetauschers zu einem mangelhaften Wärmetausch und somit zu schlechten Übertragungswerten, weshalb bspw. in der DE 10 2013 209 961 B4 vorgeschlagen wird ein zusätzliches Wärmeleitelement zu verwenden.
  • US 6830098 B1 offenbart ein Wärmeaustauschelement gemäß dem Oberbegriff von Anspruch 1.
  • Des Weiteren sind bei bekannten Wärmetauschern für Raumkühlung bzw. Heizung oft zusätzliche akustisch dämpfende Eigenschaften gewünscht, die bspw. durch Lochungen in der Vorderwand, kombiniert mit möglichst grossflächig auf der Rückseite der Vorderwand ausgelegten akustischem Dämmmaterial verbessert werden können. Da die Rückseite gleichzeitig die innere Wärmeaustauschfläche des Wärmetauschers bildet, die beispielsweise mit der Platte eines Wärmeaustauschelements, das mit einem Kühl-/Heizwasser transportierenden Rohr wirkverbunden ist, zusammenwirkt, steht die akustisch nutzbare Fläche mit der zur Kühlung mit dem Wärmeaustauschelement nutzbaren Fläche in Konkurrenz. Weshalb die Kühl-/Heizleistung einerseits und/oder die akustischen Eigenschaften bekannter Wärmetauscher sich gegenseitig beschränken.
  • Des Weiteren können bei bekannten Wärmetauschern nur Plattenelemente mit einer verhältnismässig kleinen thermisch wirksamen Oberfläche mit dem das Wasser oder ein anderes Wärmeaustauschfluid transportierenden Rohr verbunden werden, was Installationsaufwand, Kosten und das Gewicht der Wärmetauscher erhöht.
  • Bekannt ist des Weiteren bei Wärmeaustauschelementen spezielle Strangpressprofile als Rohrträger bzw. Plattenelemente einzusetzen. Solche Profile sind jedoch nur für bestimmte Anwendungen ausgelegt und in der Herstellung, insbesondere für kleinere Stückzahlen sehr teuer.
  • Des Weiteren hat sich bei herkömmlichen Wärmeaustauschelementen gezeigt, dass die Verbindungsverfahren mit Nachteilen behaftet sind. So sind herkömmliche Lotverbindungen mechanisch empfindlich, dies insbesondere bei Schlagbeanspruchung, wie sie beispielsweise bei der Montage vorkommen kann. Demgegenüber zeigen Klebverbindungen eine schlechte Wärmeleitfähigkeit während bei bekannten Schweissverbindungen durch die damit einhergehende grosse thermische Belastung Materialien, insbesondere Materialien mit unterschiedlichen thermischen Ausdehnungskoeffizienten, stark zu Verzug neigen und häufig nachbearbeitet werden müssen.
  • Ziel der vorliegenden Anmeldung ist es zumindest einen der vorgenannten Nachteile des Standes der Technik zu verbessern.
  • Ein erfindungsgemässes Wärmeaustauschelement umfasst, wie aus dem Stand der Technik bekannt, ein Rohr zur Durchströmung mit einem Wärmeaustauschfluid und zumindest ein thermisch leitfähiges Plattenelement zur Aufnahme von Umgebungswärme und thermischer Weiterleitung der Umgebungswärme an das Rohr oder/und Aufnahme von Heizwärme aus dem Rohr und Abgabe der Heizwärme an die Umgebung.
  • Dabei ist das Rohr auf zumindest einem Plattenelement oder zwischen zumindest zwei Plattenelementen einer Plattenelementanordnung angeordnet, wobei zumindest ein Kontaktmittel zur thermischen Kontaktierung vorgesehen ist, das ein Verbindungsmittel oder/und Anpressmittel umfasst.
  • Das Plattenelement ist dabei im Bereich einer Plattenelementkontaktfläche zum thermisch leitenden Kontaktieren an die Rohrkontaktfläche mittels einer Passung, mit einer gegenüber der Plattendicke D des Plattenelements verringerten Materialdicke d, angepasst um die Kontaktflächen zu vergrössern. Dabei kann die Materialdicke d schräg oder rechtwinklig gestuft, stufenförmig oder gleichmässig zur Mitte der Passung hin abnehmend ausgeführt sein.
  • Dabei wird ein Rohr über eine bzw. mehrere seitliche Rohrkontaktflächen mit zumindest einem, bzw. bei einer Plattenelementanordnung mit zumindest zwei, oder mehreren Plattenelementen wirkverbunden, die ihrerseits zumindest eine Plattenelementkontaktfläche zum Verbinden mit der Rohrkontaktfläche aufweisen. Unter Wirkverbindung wird hier eine thermisch leitende Anordnung zwischen Rohr bzw. Rohrkontaktfläche und gegenüberliegender Kontaktfläche verstanden die durch physische, leitende Verbindungsmittel (Lot, Kleber, Schweissung) oder Anpressen einer Kontaktfläche auf die andere hergestellt wird.
  • Die Verbindungsmittel umfassen erfindungsgemäß eine Lötverbindung oder/und eine Klebverbindung .
  • Zur weiteren oder einfacheren Vergrösserung der Kontaktflächen kann das Rohr zumindest eine im Querschnitt zumindest teilweise ebene Rohrkontaktfläche aufweisen.
  • In einer bevorzugten Ausführungsform umfasst das Wärmeaustauschelement ein oder mehrere Plattenelemente, die in einem Randbereich durch eine Klebverbindung, in einem mittigen Bereich durch eine Lötverbindung mit zumindest einem Rohr verbunden sind. Dabei ermöglicht die Lötverbindung einen besonders guten Rohr/Platte-Wärmeübergang, während die Klebverbindung eine besonders feste auch gegen Schläge unempfindliche Verbindung sicherstellt. Auch wenn eine solche Ausführung besonders gut mit einem, wie vorliegend beschriebenen, mit einer Passung versehenen Plattenelement geeignet ist, bspw. durch Vorsehen der Klebverbindung in den Randbereichen der Passung, konnte festgestellt werden, dass ganz allgemein auch bei herkömmlichen Wärmetauschelementen ohne Passung die Festigkeit bzw. thermische Leitfähigkeit gegenüber reinen Löt- bzw. reinen Klebverbindungen verbessert werden kann. Dies gilt besonders auch für entsprechende Merkmalskombinationen der vorliegenden Erfindung die nicht in unmittelbarem Zusammenhang mit der Passung stehen. Vorzugsweise wird dabei eine flussmittelfreie Lötstelle hergestellt, da sich gezeigt hat, dass solche Lötstellen über längere Zeit eine bessere Festigkeit und Leitfähigkeit sicherstellen.
  • In einer weiteren bevorzugten Ausführungsform umfasst das Wärmeaustauschelement ein oder mehrere Plattenelemente, die mit dem zumindest einem Rohr durch zumindest eine oder mehrere im Wesentlichen parallel Linien von Schweisspunkten miteinander verbunden sind.
  • Das Rohr kann dabei parallel oder bevorzugt quer, insbesondere bevorzugt im Wesentlichen in einem rechten Winkel, zu einer Längsrichtung L des Plattenelements mit diesem wirkverbunden sein. Durch das Ausrichten quer zum Plattenelement werden die durch Löten oder/und Kleben bzw. Schweissen verbundenen Abschnitte kürzer, womit sich keine so grossen thermischen Spannungen in der Verbindung wie bei einem parallelen Aufbau bilden können. Trotzdem werden bei Verbindung von mehreren Plattenelementen durch ein oder mehrere Rohre vorteilhaft Abstandsspalte zwischen den Plattenelementen vorgesehen. Beispielsweise können bei einer Plattenelementbreite B von 20 bis 80 mm Spaltbstände S zwischen 10 bis 40 mm gewählt werden. Dies gilt besonders für Materialien mit unterschiedlichen thermischen Ausdehungskoeffizienten wie bspw. bei Verwendung von Aluminiumplatten und Kupferrohre.
  • Erfindungsgemäß ist das Rohr mäandrierend mit zumindest einem Plattenelement verbunden, wobei die gekrümmten Rohrabschnitte erfindungsgemäß ausserhalb der Kontaktflächen liegen, daher das oder die Plattenelemente seitlich überragen, was eine mechanische Anpassung der Kontaktflächen erleichtert. Somit können Rohr und Plattenelement im Bereich der Passung, insbesondere im Bereich der Kontaktflächen für den Wärmeübergang zwischen Rohr und Plattenelement, gerade ausgeführt sein, was die Herstellungskosten vergünstigt, da u.a. auch die Passung gerade ausgeführt sein kann.
  • Eine weitere bevorzugte Ausführungsform des Wärmeaustauschelements ergibt sich wenn eine Abmessungen X des Plattenelements parallel zur Rohrachse im Bereich der Plattenelementkontaktfläche grösser ist als eine Abmessungen Y in einem vom Rohr weiter beabstandeten Bereich. Dadurch kann beispielsweise eine durch den Rand des Plattenelements definierte Grenzlinie GL vergrössert werden und oder Plattenelemente so ausgeführt werden, dass sie mit ineinander verschränkt beabstandeten Grenzlinien, bspw. auf einer inneren Wärmeaustauschfläche Awi gegenüberliegen, wobei der Abstand einerseits klein genug gewählt ist um eine rasche Wärmeleitung aus der Freifläche zum Plattenelement zu gewährleisten, andererseits gross genug um jeweils gewünschte akustische Dämpfungselemente zwischen den Platten anzubringen. Entsprechende miteinander kombinierbare Formen und bevorzugt Flächenverhältnisse, bzw. Flächen zu Grenzlinienverhältnisse werden unten an Hand der entsprechenden Figuren 7, 8 und 11 dargestellt und beschrieben.
  • In einer weiteren Ausführungsform des Wärmeaustauschelements kann das Plattenelement im Bereich der Anpressebene senkrecht zur Rohrachse ausgerichtete Längslöcher aufweisen. Dadurch kann das Gewicht des Plattenelements deutlich herabgesetzt werden, ohne dabei den Wärmefluss in Richtung des Rohrs zu unterbrechen. Damit ist es auch möglich die thermisch wirksame(n) Oberfläche(n) des mit einem Rohr wirkverbundenen Plattenelements, bspw. die Anpressfläche oder deren Rückseite, wesentlich zu vergrössern, womit einerseits aus der leichteren Bauweise des Plattenelements, andererseits aus dem geringeren Rohrleitungsbedarf eine deutliche Gewichtsersparnis resultiert. Bei üblichen Plattenelementen des Standes der Technik können bei üblichen Rohrdurchmessern von 5 bis 20 mm, bevorzugt 8 bis 15mm bei einem zentralen, längs auf dem Plattenelement montierten Rohr Breiten b zwischen 80 bis 135 mm realisiert werden. Bei entsprechenden mit Längslöchern versehenen Plattenelementen sind Breiten b von 80 bis 1000 mm möglich. Eine entsprechende um einen Faktor 3 bis ca. 12 grössere Fläche pro Rohreinheit kann damit verwirklicht werden. Des Weiteren stehen, bspw. für einen Einsatz in einem Wärmetauscher, auch die durch die Längslöcher gebildeten Freiflächen des Wärmetauschers bei entsprechender Dimensionierung der Längslöcher für akustische Dämpfungsmassnahmen, wie oben beschrieben zur Verfügung. So können bspw. die Löcher der Vorderwand des Wärmetauschers zumindest teilweise mit den Löchern bzw. Längslöchern des Plattenelements überlappen, im Bereich der gebildeten Freiflächen Bördelungen der Vorderwandlöcher und/oder entsprechendes flächiges Dämmmaterial (Vliese, Gitter, etc.) vorgesehen sein. Letzteres kann auch einfachheitshalber, bspw. analog zu Wärmetauschern mit direkt auf der inneren Wärmeaustauschfläche aufgebrachten Rohren, über die gesamte Fläche zwischen den Rohren, also Plattenelement und Freifläche überdeckend, angeordnet sein.
  • Um dem Plattenelement auch akustisch dämpfende Eigenschaften zu verleihen, kann dieses in jeder Ausführungsform auch eine grössere Anzahl in eine rückwärtige, also der Anpressfläche entgegengesetzten Richtung gebördelte Rundlöcher aufweisen. Diese können zumindest in bestimmten Flächenbereichen zusätzlich zu den Längslöchern vorgesehen sein, wobei Letztere ebenfalls gebördelt ausgeführt sein können. In einfacher Weise kann dabei die Bördelung durch ein an den Schneidkanten verrundetes Stanzwerkzeug zum Herstellen der Löcher erfolgen.
  • In einer weiteren Ausführungsform des Wärmeaustauschelements erstreckt sich die dem Rohr abgewandte Seite des Plattenelements, bzw. die dem Rohr abgewandten Seiten der zumindest zwei Plattenelemente der Plattenelementanordnung, sich zu beiden Seiten einer Symmetrieebene S des Wärmeaustauschelements in jeweils einer unterschiedlichen Ebene A, A', wobei sich die Ebenen A, A' in der Symmetrieebene S, entlang einer Schnittlinie zwischen Symmetrieebene S und einer parallel zu einer Rohrachse Z und senkrecht zur Symmetrieebene S verlaufenden vierten Ebene H, schneiden. Dabei bilden die Ebenen A, A' zur Ebene H jeweils einen spitzen Winkel a, α', so dass das Wärmeaustauschelement (1) mit den Ebenen A, A' federnd an eine zur vierten Ebene H parallelen Wärmeaustauschfläche 21 anpressbar ist. Unter Symmetrieebene S wir hier und im Folgenden eine Ebene S verstanden, die das Wärmeaustauschelement symmetrisch teilt und dabei auf die Wärmeaustauschfläche senkrecht steht.
  • In einer bevorzugten Ausführungsvariante sind dabei die Winkel a, α' dem Betrag nach gleich und/oder öffnen sich in einer bezüglich der Symmetrieebene S entgegengesetzten Richtungen, dabei auf dieselbe, zum Rohr entgegengesetzt gelegenen Seite der Ebene H. Dem Betrag nach wird der Winkel bevorzugt von 1 bis 15°, insbesondere bevorzugt von 2 bis 10° eingestellt.
  • Die Anpressmittel können grundsätzlich auf der zum Rohr gewandten Seite des oder der Plattenelemente so befestigt sein, oder mit einem das Wärmeaustauschelement umfassenden Wärmetauscher oder einem an oder in einer Gebäudeoberfläche montiertem Gebäudeelement so zusammenwirken, dass der Wärmeübergang zwischen Rohr und Plattenelement und/oder zwischen Plattenelement und einer inneren Wärmeaustauschfläche des Wärmetauschers verbessert wird. Im Falle einer wie oben beschriebenen gewinkelten Rohr zu Plattenelementanordnung wird das Wärmetauschelement durch die Anpressmittel vorteilhafterweise so gegen die innere Wärmeaustauschfläche des Wärmetauschers angepresst, dass die Winkel a, α' im Wesentlichen gleich 0° sind und somit die gesamte Anpressfläche für den Wärmeaustausch zur Verfügung steht. Für ein erfindungsgemässes Wärmeaustauschelement werden Plattenelemente mit einer Plattendicke D von 0.5 bis 3.0 mm, dabei bevorzugt eine Dicke von 1 bis 2 mm eingesetzt, die sich für den Bau von sehr flachen und leichten Wärmetauschern eignen. Erfindungsgemäß werden Passungen mit einer Tiefe von 2 bis 12% des Außendurchmessers des Rohrs verwendet, um die Stabilität der Plattenelemente nicht zu stark herabzusetzen. Erfindungsgemäß werden Passungen die im Randbereich oder im gesamten Querschnitt kreissegmentförmig sind benutzt.
  • Alternativ oder zusätzlich kann dabei die Passung eine ebene Fläche umfassen oder aus einer ebenen Fläche bestehen.
  • Die mittlere Rauheit der Kontaktflächen wird auf einen Ra-Bereich von 0.05 bis 2.0 µm, bevorzugt von 0.1 bis 1 µm eingestellt. Letzteres ist beispielsweise auch für eine Plattenelement/Rohranordnung mit schräg geschnittenen Platten vorteilhaft, da dann ein Verbinden bspw. in einem mittleren Bereich der Plattendicke möglich ist und bspw. flüssiger Kleber oder Lötzinn die Gesamtkontaktfläche durch kapillares Anhaften im Spaltbereich beidseitig der Rohrkontaktlinie auf der schräg angeschnittenen Seitenfläche des Plattenelements vergrössert. Des Weiteren wird durch eine bezüglich der Plattendicke mittige Verbindung auch die Zu-/Ableitung der Wärme zum oder vom Plattenelement erleichtert.
  • In einer weiteren Ausführungsform weist das Wärmeaustauschelement einen Lotspalt auf. Dieser kann vorteilhaft mit einer Tiefe zwischen 0.05 bis 0.3 mm eingestellt werden. Wird der Lotspalt dabei durch zwei im Randbereich der Passung vorgesehene Abstandsstufen und dem darauf liegenden Rohr gebildet, kann dieser besonders schmal, bspw. zwischen 0.05 und 0.2 mm, ausgestaltet sein, ohne dass flüssiges Lötzinn beim Aufsetzen des Rohrs auf die Platte seitlich austritt. Dies gilt insbesondere dann, wenn zusätzlich auf den Abstandsstufen eine Klebverbindung vorgesehen ist. Die Breite der Abstandstufe kann dabei zwischen 2 und 5 mm eingestellt werden. Wird eine unterbrochene Abstandsstufe oder Abstandsnoppen verwendet ist ein etwas grösserer Abstand von 0.1 bis 0.3 mm günstiger.
  • Bevorzugt wird das Plattenelements aus einem Leichtmetall, insbesondere aus Aluminium auf Grund seiner guten Wärmeleiteigenschaft und geringem Gewicht hergestellt. Bevorzugtes Material für das Rohr ist Kupfer, jedoch kann hier auch eine anderes Metall, beispielsweise ebenfalls Aluminium verwendet werden.
  • In einer weiteren bevorzugten Ausführungsform kann das Rohr im Bereich der Passung mit dem Plattenelement durch eine Schweissverbindung SV verbunden sein. Die Schweissverbindung SV umfasst dabei vorteilhaft zumindest eine parallel zur Rohrachse angeordnete Abfolge von Punktschweissungen, wodurch im Vergleich zu durchgehenden Schweissnähten ein geringerer Verzug erreicht werden konnte.
  • Die Schweissverbindung SV, insbesondere die Schweisspunkte können dabei von der dem Rohr abgewandten Seite des Plattenelements aus angebracht werden. Ebenfalls auf der dem Rohr abgewandten Seite der Passung kann eine Ausdünnung des Plattenmaterials bspw. in der Form einer oder mehrerer Sicken oder Vertiefungen parallel zur Passung angeordnet sein.
  • Die Materialdicke d kann im Bereich der Passung, insbesondere im Bereich einer Schweissverbindung zwischen 0.1 und 0.5 mm eingestellt sein, was den Schweissvorgang erleichtert.
  • Ganz allgemein hat es sich für geschweisste Wärmeaustauschelemente 1 mit einer von unten (also von der dem Rohr abgewandten Seite des Plattenelements) ausgeführten Schweissung als vorteilhaft erwiesen Plattendicken D zwischen 0.5 und 10 mm zu wählen.
  • Figurenbeschreibung:
    Im Folgenden wird die Erfindung anhand von Figuren und Beispielen näher erläutert. Hier sei darauf hingewiesen, dass die Darstellung der Figuren rein schematisch ist und zwecks besserer Darstellung der erfindungswesentlichen Details weder massstabs- noch proportionsgerecht erfolgt. Beispiele für bevorzugte Bemassungen bzw. Dimensionierungen finden sich in der allgemeinen Beschreibung oben sowie in der Figurenbeschreibung, bzw. Ansprüche wie folgt. Gleiche Bezugszeichen in unterschiedlichen Zeichnungen bezeichnen denselben Gegenstand, bzw. dieselbe Funktion des Gegenstandes.
  • Dabei zeigen die Figuren Folgendes:
  • Figur 1:
    Ein Wärmeaustauschelement des Standes der Technik
    Figur 2:
    Ein weiteres Wärmeaustauschelement des Standes der Technik
    Figur 3:
    Ein erfindungsgemässes Wärmeaustauschelement
    Figur 4:
    Ein weiteres erfindungsgemässes Wärmeaustauschelement
    Figur 5 und Figur 6:
    Mehrteiliger Wärmeaustauschelementverbund
    Figur 7 und Figur 8:
    Weitere Ausführungsformen des Wärmeaustauschelements
    Figur 9:
    Wärmetauscher
    Figur 10:
    Verfahren zur Herstellung eines Wärmeaustauschelements
    Figur 11:
    Wärmetauscher
    Figur 12:
    Verbindung mit Abstandsstufen
    Figur 13:
    Verbindung mit Abstandsnoppen
    Figur 14:
    Klebe-/Lötverbindung
    Figur 15:
    Schweissverbindungen
  • Das in Figur 1 dargestellte Wärmeaustauschelement 1' des Standes der Technik besteht aus einem Rohr 2', dass in einem Hohlprofil eines stranggepressten Plattenelements 4' gehalten ist. Dabei sind Rohr 2' und Plattenelement 4' durch Schweissverbindungen 16 miteinander verbunden. Durch die punktuelle oder linienförmige Verschweissung kommt es nur an den Schweisspunkten bzw. Schweisslinien zu einem direkten wärmeleitenden Materialkontakt zwischen Rohr und Plattenelement, was für den Wärmetransport nachteilig ist. Des Weiteren sind stranggepresste Profile für Kleinserien aufwendig, wenn diese lediglich für eine Rohrdimension verwendet werden können.
  • Ein weiteres Wärmeaustauschelement 1" des Standes der Technik, wie beispielsweise aus DE 10 2013 209 961 B4 bekannt, ist in Figur 2 dargestellt. Dabei ist ein einseitig abgeflachtes Rohr 2" mittels einer Klebverbindung 17 über Rohrkontaktflächen 3" und Plattenkontaktflächen 5" mit einem als einfaches Profil ausgeführten Platten-, bzw. Kontaktelement 4" verbunden. Nachteilig ist hier, dass sich zwischen den Kontaktflächen 3" und 5" eine Klebeschicht befindet, die einen gut wärmeleitenden metallischen Kontakt zwischen Rohr 2" und Platten-, bzw. Kontaktelement 4" verhindert. Daher wurde hier ein Wärmeleitblech 27 vorgesehen um den Wärmeübergang zu verbessern.
  • Figur 3 zeigt ein erfindungsgemässes Wärmeaustauschelement 1. Die Rohrachse Z, ist dabei mittig parallel zur Längsachse des Wärmeaustauschelements 1 ausgerichtet und das Rohr durch Lötzinn 18 oder eine beliebig andere gut leitende Lotverbindung mit dem Plattenelement 4 verbunden. Durch die metallische grossflächige Lot-Verbindung auf der hier, durch eine wie unten näher beschriebenen mechanische Bearbeitung an die Rohrkontaktfläche 3 angepasste Plattenelementkontaktfläche 5, kann ein wesentlich verbesserter Wärmeaustausch sichergestellt werden. Im vorliegenden Beispiel ist im Bereich der Passung 33 die Materialdicke d gegenüber der Plattendicke D des Plattenelements 4 annähernd kreissegmentförmig verringert. Dabei kann, besonders bei grösseren Winkeln a, α` (zur Funktion siehe auch Figur 4 und Beschreibung dazu) die Passung in den von der Symmetrieeben seitlich beabstandeten Bereichen etwas grösser als kreissegmentförmig, bspw. parabelförmig sein, um bei Anpressen des Wärmetauschers die Pressung bspw. durch das Lot und/oder den Kleber zwischen Rohr und Wärmeaustauschelement 4 aufzunehmen, wodurch gleichzeitig der Wärmeübergang verbessert wird. Besonders einfach kann dies durch Einbringen der Passung 33 in ein ebenes Plattenmaterial, anschliessendes Konfektionieren auf die gewünschte Plattengrösse und, falls gewünscht, Biegen der Plattenelemente an der Mittellinie der Passung, im vorliegenden Beispiel auch in der Symmetrieebene S des Plattenelements 4. Andere Geometrien, bspw. trogförmig mit flachem Boden zur Anpassung an einseitig abgeflachte Rohre etc. können so ohne weiteres verwirklicht werden.
  • Ein weiteres erfindungsgemässes Wärmeaustauschelement 1 zeigt Figur 4, in dem statt einem Plattenelement zwei Plattenelemente 4 verwendet werden, die seitlich an das Rohr 2 angesetzt sind. Des Weiteren ist in Figur 3 und 4 zu erkennen, dass die zwei Plattenelemente 4 in zwei gegenüber der Symmetrieebene S angewinkelten Ebenen A, A' liegen. Die Ebenen bilden dabei gegenüber der in der Figur horizontal verlaufende Ebene H die parallel zur Rohrachse Z und rechtwinklig zur Symmetrie-Ebene S verläuft jeweils einen Winkel α, α' und schneiden die Symmetrieebene S gemeinsam mit der Ebene H. Der Winkelbereich für a, α' liegt dabei bevorzugt zwischen 1 und 15°, insbesondere bevorzugt zwischen 2 und 10°. Damit wird sichergestellt, dass die Ebenen A, A' des Wärmeaustauschelements elastisch federnd an eine zur Ebene H parallele Wärmeaustauschfläche anpressbar sind. Durch das flächige Anpressen der durch die Winkelanstellung einfedernden Plattenelemente kann der Wärmeübergang zu einer inneren Wärmeaustauschfläche 21 eines Wärmetauschers 8 deutlich verbessert werden. Das Plattenelement 4 ist auch hier im Wesentlichen beidseitig planar und seitenparallel und bildet zum Rohr hin eine Passung 33, im vorliegenden Fall kreissegment- oder parabelförmig. In einer einfachen Variante kann auch ein schräger Anschnitt des Platenelements 4 als Passung 33 genügen.
  • Figur 5 und Figur 6 zeigen eine Anordnung mehrerer Plattenelemente 4, die mittels eines mäandrierenden Rohrs 2 miteinander verbunden sind. Dabei verläuft das Rohr 2 in Figur 5 quer zur Längsrichtung L der Plattenelemente 4, während in Figur 6 das Rohr parallel zur Längsrichtung L der Plattenelemente verläuft. In beiden Fällen liegen die gekrümmten Rohrabschnitte erfindungsgemäß ausserhalb der Kontaktflächen.
  • Figur 7a und 7b zeigen zwei weitere bevorzugte Ausführungsformen, wobei eine Abmessung x des Plattenelements parallel zur Rohrachse im Bereich oder an der Plattenelement-Kontaktfläche grösser ist als eine Abmessung y in einem vom Rohr 2 weiter beabstandeten Bereich. Dabei kann die Änderung der Abmessungen in den Dimensionen des Plattenelements 4 wie in Figur 7a gezeigt kontinuierlich erfolgen bspw. wie hier als seitlich abragende Dreiecke. Andererseits können sich die Abmessungen wie in Figur 7b beispielhaft dargestellt auch sprungartig ändern, wenn breite und schmale Bereiche des Plattenelements sich entlang der Rohrachse Z abwechseln. Wie für den Fachmann ohne weiteres erkennbar können hier auch Kombinationen von, bezüglich der Breitenabmessungen b sich teils kontinuierlich teils sprungartig ändernde Formen des oder der Plattenelemente verwendet werden. Auch können je nach Bedarf und Menge der zu fertigenden Wärmetauscher entweder speziell auf eine Grösse konfektionierte Plattenelemente oder flexibel für kleinere Losgrössen oder unterschiedliche Wärmetauscher verwendbare, bspw. hintereinander anordenbare geometrische geformte Plattenelemente 4, wie bspw. in Fig. 7B dargestellt eingesetzt werden.
  • Figur 8a zeigt schematisch zwei weitere Möglichkeiten zur Ausführung eines Wärmeaustauschelements. Dabei sind in einem in der Zeichnung oberen Bereich des oder der Plattenelemente 4 Längslöcher 6 zu erkennen, deren Ausrichtung senkrecht zur Rohrachse Z ist um den Wärmefluss möglichst wenig zu beeinflussen. Durch Anbringen entsprechender Längslöcher ist es einerseits möglich ohne oder mit einer nur geringfügigen Erhöhung des Gesamtgewichts des Wärmeaustauschelements wesentlich grössere Flächen, beispielsweise in den Dimensionen der gesamten inneren Wärmeaustauschfläche Awi 21 eines Wärmetauschers 8, für einen Wärmeaustausch zur Verfügung zu stellen. Des Weiteren kann so die Freifläche 28 des Wärmetauschers, bspw. zum vorsehen akustisch dämpfender Elemente vergrössert werden. Unter Freifläche 28 wird hier die innere Wärmeaustauschfläche Awi eines Wärmetauschers 8 verstanden, die nicht in direktem Kontakt mit der Anpressfläche Apr des oder der Plattenelemente steht. Schliesslich wird es durch solche Massnahmen möglich den Wärmeleitwert der gesamten Kühl-/Heizfläche, hier Vorderwand 10 des Wärmetauschers 8 genannt, zu erhöhen, da jeweils zwar viele aber nur kleine bzw. schmale Freiflächen mit jeweils kurzen Wärmeleitwegen zum nächsten mit einer Anpressfläche 25 verbundenen Bereich.
  • Ist bei herkömmlichen Wärmeaustauschelementen eine Breite b von 80 bis 135 mm möglich, so kann diese Breite, unter Beibehaltung eines vergleichbaren Übertragungswerts, mit einer entsprechenden Lochung vorteilhaft zwischen 400 bis 1000 mm gewählt werden.
  • Einen anderen Zweck erfüllen die im unteren Bereich des oder der Plattenelemente 4 dargestellten Rundlöcher, die an ihrer, wie in Figur 8b dargestellten, der Wärmeaustauschfläche gegenüberliegenden Seite eine Bördelung aufweisen.
  • Entsprechende Bördelungen können auch an den Längslöchern vorgesehen sein. Auch eine Kombination von akustisch wirksamen Löchern und entsprechenden Längslöchern ist möglich.
  • Figur 9 zeigt einen erfindungsgemässen Wärmetauscher 8 mit einem eingesetzten Wärmeaustauschelement 2, dass hier ein Rohr 2 mit einem daran befestigten Plattenelementen 4 umfasst. Analog zu dem bezüglich der Figuren 3 und 4 Beschriebenen liegt die Anpressebene 25 der Plattenelemente ohne Druck nicht eben auf der Wärmetauschebene Awi 26 des Wärmetauschers 8. Erst durch Anpressen mit dem oder den in Figur 9A symbolisch durch einen Pfeil dargestellten Anpressmitteln 11, die in Figur 9B beispielhaft als eine im Gehäuse des Wärmetauschers 8 eingreifende Klemmvorrichtung 12 dargestellt ist, werden die Anpressebenen 25 mit der Wärmetauschebene 21 des Wärmetauschers 8 in wärmeleitenden Kontakt gebracht. Dies kann entweder direkt oder in Kombination mit einer unterstützenden vorzugsweise auf der Anpressfläche der Plattenelemente 4 vorbeschichteten dünnen Klebeschicht erfolgen. Zusätzlich können eventuelle Hohlräume 24 zwischen Wärmetauschebene 21 und Wärmeaustauschelement 1, beispielsweise unter der Löt- oder Klebelinie von seitlich am Rohr befestigter Plattenelementen, mit Wärmeleitpaste gefüllt sein, die alternativ auch auf Anpressebene 25 und/oder Wärmetauschebene aufgetragen sein kann. Der Wärmetauscher 8 kann dabei auch andere erfindungsgemässe Wärmeaustauschelemente oder eine Kombination davon enthalten, wie sie beispielsweise in den Figuren und Beschreibungen ausgeführt.
  • Figur 10 zeigt die Schritte eines Verfahrens zur Herstellung eines Wärmeaustauschelements 1. Dabei wird, wie in Figur 10a beispielhaft dargestellt, wie eine Plattenelement-Kontaktfläche 5 mit Lötzinn beschichtet wird, wobei dem Plattenelement 4 Wärme Q zugeführt und nach Erreichen einer Löttemperatur T1 das Lötzinn mithilfe eines der Kontur der Plattenelementkontaktfläche 5 angepassten Ultraschallkopfes 15 gleichmässig und dünn verteilt wird. Die Wärme kann dabei durch Wärmestrahlung oder durch direkten Kontakt mit den Heizelementen 20 und/oder über eine bei Bedarf beheizbare Arbeitsplatte 19 zugeführt werden. Durch die US-Behandlung während dieses Lötschritts wird die Oberflächenspannung des geschmolzenen Lötzinns herabgesetzt, was einen besonders gleichmässigen und dünnen Auftrag ermöglicht.
  • Gleichzeitig oder gestaffelt dazu kann die Rohrkontaktfläche 3 gleichfalls nach Erwärmung des Rohrs unter Zuhilfenahme eines auf den Aussenumfang des Rohrs 2, bzw. der Rohrkontaktfläche 3 angepassten Ultraschallkopfs 15' mit Lötzinn beschichtet werden. Anschliessend wird, wie in Figur 10c dargestellt, die Rohrkontaktfläche 3 auf der Plattenelementkontaktfläche 5 ausgerichtet und Plattenelement 4 sowie Rohr 2, im vorliegenden Fall mittels Heizelementen 20 auf eine dritte bzw. vierte Löttemperatur T3, T4 gebracht. Dabei werden Rohr 2 und Plattenelement 4 vorzugsweise unter Ausübung eines Anpressdrucks gehalten und abgekühlt, womit das Wärmeaustauschelement fertiggestellt ist. Als vorteilhaft hat es sich hierbei erwiesen, die Temperatur des Rohrs und des Plattenelements möglichst gleich einzustellen.
  • Figuren 12 und 13 zeigen verschieden Ausführungen eines Wärmetauschelements mit Lotspalt 30. Dabei wird in Figur 12 der Lotspalt durch seitlich in der Passung vorgesehen Abstandsstufen 31 zwischen Rohr 2 und Plattenelement 4 gebildet. Die Abstandsstufen 31 können dabei in einfacher Weise, bspw. durch Anheben des die Passung erzeugenden Rundfräsers in den Randbereichen der Passung hergestellt werden. Alternativ kann, wie in Figur 13 dargestellt, der Spalt durch Abstandsnocken 32 gebildeten werden. Letztere können aufgesetzt, geklebt, gemeinsam verlötet oder vorteilhaft aus dem Material des Plattenelements selbst bspw. durch Anbringen von definierten Schweisshöckern gebildet werden. Letztere können mittels Punktschweisselektroden erzeugt werden, die von einer der Passung gegenüber liegenden Seite in Richtung der Passung gedrückt werden.
  • Figur 14 zeigt ein Wärmeaustauschelement bei dem das Rohr 2 mit dem Plattenelement 4 durch eine Klebverbindung 17 und eine Lötverbindung 18 verbunden ist. Die Klebverbindung 17 befindet sich dabei auf beiden dem Rohr 2 gegenüber liegenden Randbereichen des Plattenelements 4, oder im Endbereich der Passung, während die Lötverbindung 18 sich dazwischen befindet. Es versteht sich für den Fachmann von selbst, dass auch andere Anordnungen möglich sind, bspw. eine eventuell zusätzliche Klebestelle in der Mitte. Das Vorsehen der zwei Klebverbindungen im Randbereich der Passung hat aber den Vorteil, dass dadurch ein Ausrinnen des Lötzinns, beispielsweise beim Zusammenfügen der Teile des Wärmeaustauschers, verhindert werden kann.
  • Figur 15 A bis D zeigt verschiedene Gestaltungsmöglichkeiten zur Ausführung von Schweissverbindung eines Wärmeaustauschelements 1 im Querschnitt. In Figuren 15 A und B ist eine Konfiguration mit Rohr 2 und einteiligem Plattenelement 4 dargestellt, wobei A eine Verbindung mit einer einreihigen Abfolge, Figur B eine Verbindung mit einer zweireihigen Abfolge von Punktschweissungen zeigt.
  • In Figur 15 C ist ein Plattenelement 4 gezeigt, bei dem in einem weiteren vorgelagerten mechanischen Bearbeitungsschritt die Materialdicke d im Bereich der Passung 33 durch Anbringen einer Ausdünnung 34, hier in Form einer Sicke, auf der dem Rohr 2 abgewandten Seite des Plattenelements 4, zusätzlich herabgesetzt wurde. Damit können auch etwas dickere Plattendicken D verwendet oder die Passung 33 weniger tief ausgeführt und trotzdem eine für die Herstellung einer sicheren Schweissverbindung SV besonders geeignete Materialdicke d zwischen 0.1 bis 0.5 mm im Bereich der Passung 33 eingestellt werden. Dies da bei erfindungsgemässen Wärmeaustauschelementen 1 die Schweissverbindung in der Passung 33 von der dem Rohr 2 abgewandten Seite des Plattenelements 4 ausgehend angebracht wird. Dabei können bspw. Laser- oder Ultraschall(US)-Schweissgeräte verwendet werden. Solche zusätzlich ausgedünnten Plattenelemente 4 können auch für Löt- und/oder Klebeverbindungen vorteilhaft sein, bspw. um die Temperatur während des Verbindungsprozesses besonders genau zu steuern.
  • In Figur 11 werden verschiedene Varianten eines Wärmetauschers 8 in Aufsicht von der Rückseite her dargestellt. Dabei zeigt Figur 11A einen bekannten konventionellen Wärmetauscher, mit einem Wärmeaustauschelement das aus einem Plattenelement 4 mit einem an dessen Rückseite befestigten Rohr 2 besteht. Das Wärmeaustauschelement liegt mit der Anpressfläche auf der innere Wärmeaustauschfläche Awi des Wärmetauschers auf wodurch zwischen den Rändern der Anpressfläche und dem äusseren Umfang der Wärmeaustauschfläche eine Freifläche 28 gebildet wird. Diese beträgt bei einer hier angenommenen Wärmeaustauschfläche Awi von 200 cm2 (Länge lwi von 20, Breite bwi von 10 cm) und einer Anpressfläche Apr von 144 cm2 (Länge lwi von 18, Breite bwi von 8 cm) bei 66 cm2, was einem Flächenverhältnis von Apr / Awi = 0.72 entspricht. Da bei solchen Wärmetauschern meist neben der Wärmetauschleistung auch bestimmte akustische Eigenschaften, insbesondere schalldämpfende Eigenschaften verlangt werden, bleibt für das Anbringen von solchen schalldämpfenden Elementen, wie bspw. Dämpfungsplatten und/oder Vliesen lediglich der schmale Bereich zwischen Anpressfläche Apr und äusseren Umfang der Wärmeaustauschfläche Awi. Dieser kann auch nicht beliebig verbreitert werden, da sonst der gewünschte Wärmeaustausch zwischen Wärmetauscher und Plattenelement schlechter wird. Um diesen über den gesamten Wärmeaustauscher möglichst effizient zu halten, muss nämlich der Abstand eines beliebigen, nicht in direktem Kontakt mit der Anpressfläche stehenden Flächenelements der Wärmeaustauschfläche zu einer, durch den Rand der Anpressfläche definierten Grenzlinie GL möglichst gering bzw. das Verhältnis von Wärmeaustauschfläche zu Grenzlinie Awi / GL (hier 3.8 cm) möglichst klein sein. Dementsprechend sind in den Figuren 11B und 11C Konfigurationen für Wärmetauscher dargestellt, wie sie mit Platenelementen in einfacher Weise verwirklicht werden können. Dabei werden in Figur 11B 6 Plattenelemente mit einer Dimension von 2 x 8 cm, in Figur 11C 10 Plattenelemente mit einer Dimension von 1 x 8 cm in einem rechteckigen Wärmetauscher wie oben beschrieben eingesetzt. Damit ist ein Flächenverhältnis Apr / Awi von 0.48 bzw. 0.4 und ein Verhältnis Awi / GL von 1.67 bzw. 1.1 cm erzielbar. Damit ist ein im Vergleich zum Stand der Technik deutlich besserer Wärmeaustausch möglich.
  • Eine andere Möglichkeit um die entsprechenden Verhältniszahlen (Apr / Awi bzw. Awi / GL) zu verbessern, ist in Figur 11D dargestellt, bei der im Randbereich wellenförmige gestaltete Plattenelemente, mit zumindest abschnittsweise zueinander parallelen Grenzlinien eingesetzt werden. Ein analoger Aufbau ist grundsätzlich auch mit anderen, beispielsweise aus Figur 7A und/oder 7B bekannten Geometrien der Plattenelemente möglich.
  • BEZUGSZEICHEN
  • 1
    Wärmeaustauschelement
    2
    Rohr
    3
    Rohrkontaktfläche
    4
    Plattenelement
    5
    Plattenelementkontaktfläche
    6
    Längsloch
    7
    Rundloch
    8
    Wärmetauscher
    9
    Seitenwand
    10
    Vorderwand
    11
    Anpressmittel
    12
    Klemmvorrichtung
    13
    Dämpfer
    14
    Isolationsmaterial
    15
    US-Kopf (Ultraschallkopf)
    16
    Schweissverbindung
    17
    Klebverbindung
    18
    Lotverbindung
    19
    Arbeitsplatte
    20
    Heizelement
    21
    Innere Wärmeaustauschfläche des Wärmetauschers
    22
    Äussere Wärmeaustauschfläche des Wärmetauschers
    23
    Vlies und/oder Platte
    24
    Zwischenraum
    25
    Anpressfläche
    26
    Beschichtung
    27
    Wärmeleitblech
    28
    Freifläche
    29
    Wärmeaustauschkontaktfläche
    30
    Lotspalt
    31
    Abstandsstufe
    32
    Abstandsnoppe
    33
    Passung
    34
    Ausdünnung, Sicke
    A, A'
    1. und 2. Ebene
    B
    Breite des Plattenelements
    D
    Plattendicke (Dicke des Plattenelements (4))
    d
    Materialdicke des Plattenelements im Bereich der Passung
    H
    3. Ebene (Horizontalebene)
    L
    Längsrichtung, Länge des Plattenelements
    SV
    Schweissverbindung
    S
    Spaltbreite
    x
    Abmessung des Plattenelements parallel zur Rohrachse im Bereich der Plattenelementkontaktfläche
    y
    Abmessung des Plattenelements parallel zur Rohrachse in einem vom Rohr weiter beabstandeten Bereich
    Z
    Rohrachse

Claims (12)

  1. Wärmeaustauschelement zum Kühlen oder Heizen von Räumen, umfassend ein thermisch leitfähiges Rohr (2) zur Durchströmung mit einem Wärmeaustauschfluid und zumindest ein thermisch leitfähiges im Wesentlichen beidseitig planar und seitenparallel ausgebildetes Plattenelement (4) zur Aufnahme von Umgebungswärme und thermischer Weiterleitung der Umgebungswärme an das Rohr (2) oder/und Aufnahme von Heizwärme aus dem Rohr (2) und Abgabe der Heizwärme an die Umgebung wobei das Rohr (2) auf zumindest einem Plattenelement (4) oder zwischen zumindest zwei Plattenelementen (4) einer Plattenelementanordnung angeordnet ist und ein Kontaktmittel zur thermischen Kontaktierung vorgesehen ist, wobei das Kontaktmittel ein Verbindungsmittel umfasst
    und das Plattenelement (4) im Bereich einer Plattenelement-kontaktfläche (5) zum thermisch leitenden Kontaktieren mit einer Rohrkontaktfläche (3) an die Rohrkontaktfläche mittels einer Passung (33), mit einer gegenüber der Plattendicke D des Plattenelements (4) verringerten Materialdicke d, angepasst ist um die Kontaktflächen (3, 5) zu vergrössern und das Verbindungsmittel eine Lötverbindung oder eine Klebverbindung umfasst
    dadurch gekennzeichnet,
    dass das Plattenelement (4) eine Plattendicke D von 0.5 bis 3 mm aufweist
    und die Passung im Randbereich oder im gesamten Querschnitt kreissegmentförmig ist, dabei mit einer Tiefe von 2 bis 12% des Aussendurchmessers des Rohrs, wobei das Rohr (2) mäandrierend mit zumindest einem Plattenelement (4) wirkverbunden und das Rohr (2) und das Plattenelement im Bereich der Passung gerade ausgeführt ist, wobei die gekrümmten Rohrabschnitte das Plattenelement seitlich überragen.
  2. Wärmeaustauschelement nach Anspruch 1, wobei das zumindest eine Rohr (2) quer, dabei bevorzugt im Wesentlichen in einem rechten Winkel zu einer Längsrichtung L des zumindest einen Plattenelements (4) mit diesem wirkverbunden ist.
  3. Wärmeaustauschelement nach einem der vorhergehenden Ansprüche, wobei sich das Plattenelement (4) bzw. die Plattenelementanordnung sich zu beiden Seiten einer Symmetrieebene S des Wärmeaustauschelements (1) in jeweils einer Ebenen A, A' erstreckt, wobei sich die Ebenen A, A' in der Symmetrieebene S, entlang einer Schnittlinie zwischen Symmetrieebene S und einer parallel zu einer Rohrachse Z und senkrecht zur Symmetrieebene S verlaufenden vierten Ebene H, schneiden und zur Ebene H jeweils einen spitzen Winkel a, α' bilden, so dass das Wärmeaustauschelement (1) mit den Ebenen A, A' federnd an eine zur vierten Ebene H parallelen Wärmeaustauschfläche W anpressbar ist.
  4. Wärmeaustauschelement nach Anspruch 3, wobei die Winkel a, α' dem Betrag nach gleich sind.
  5. Wärmeaustauschelement nach Anspruch 3 oder 4, wobei die Winkel α, α' in einem Bereich zwischen 1 bis 15°, dabei bevorzugt zwischen 2 bis 10° liegen.
  6. Wärmeaustauschelement nach einem der vorhergehenden Ansprüche, wobei das Plattenelement (4) eine Plattendicke D von 1 bis 2 mm aufweist.
  7. Wärmeaustauschelement nach einem der vorhergehenden Ansprüche, wobei die Passung eine Tiefe von 0.6 bis 1 mm oder 5 bis 8% des Aussendurchmessers des Rohrs aufweist.
  8. Wärmeaustauschelement nach einem der vorhergehenden Ansprüche, wobei die Passung eine ebene Fläche umfasst oder ist, deren mittlere Rauheit auf einen Ra-Bereich von 0.05 bis 2.0 µm, bevorzugt von 0.1 bis 1 µm eingestellt ist.
  9. Wärmeaustauschelement nach einem der vorhergehenden Ansprüche, wobei das Wärmeaustauschelement einen durch Abstandsstufen (31) oder Abstandsnocken (32) gebildeten Lotspalt (30) zwischen Rohr (2) und Plattenelement (4) umfasst.
  10. Wärmeaustauschelement nach einem der vorhergehenden Ansprüche, wobei das Rohr (2) mit dem Plattenelement (4) durch eine Klebverbindung (17) und eine Lötverbindung (18) verbunden ist.
  11. Wärmeaustauschelement nach Anspruch 10, wobei die Klebverbindung (17) zumindest in einem, einem Endbereich der Passung (33) gegenüberliegenden, bevorzugt jedoch in beiden dem Rohr (2) gegenüberliegenden Randbereichen des Plattenelements (4) und die Lötverbindung (18) zwischen dem anderen Ende der Passung und dem einen Endbereich, bevorzugt jedoch zwischen den Endbereichen, zwischen den Klebverbindungen angebracht ist.
  12. Wärmetauscher mit zumindest einem Wärmeaustauschelement (1) nach einem der vorhergehenden Ansprüche.
EP15178348.7A 2015-07-24 2015-07-24 Wärmeaustauschelement Active EP3121548B8 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DK15178348.7T DK3121548T3 (da) 2015-07-24 2015-07-24 Varmeudvekslingselement
EP15178348.7A EP3121548B8 (de) 2015-07-24 2015-07-24 Wärmeaustauschelement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15178348.7A EP3121548B8 (de) 2015-07-24 2015-07-24 Wärmeaustauschelement

Publications (3)

Publication Number Publication Date
EP3121548A1 EP3121548A1 (de) 2017-01-25
EP3121548B1 true EP3121548B1 (de) 2022-07-06
EP3121548B8 EP3121548B8 (de) 2022-09-14

Family

ID=53724081

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15178348.7A Active EP3121548B8 (de) 2015-07-24 2015-07-24 Wärmeaustauschelement

Country Status (2)

Country Link
EP (1) EP3121548B8 (de)
DK (1) DK3121548T3 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD104233A1 (de) * 1973-04-16 1974-03-05
US6830098B1 (en) * 2002-06-14 2004-12-14 Thermal Corp. Heat pipe fin stack with extruded base
US20070089858A1 (en) * 2005-10-25 2007-04-26 Andberg John W Waterblock for cooling electrical and electronic circuitry
JP5267381B2 (ja) * 2009-08-19 2013-08-21 日本軽金属株式会社 伝熱板の製造方法
DE102013209961B4 (de) 2013-05-28 2015-01-15 Caverion Deutschland GmbH Wärmetauscher und Verfahren zum Befestigen

Also Published As

Publication number Publication date
EP3121548B8 (de) 2022-09-14
EP3121548A1 (de) 2017-01-25
DK3121548T3 (da) 2022-09-26

Similar Documents

Publication Publication Date Title
WO2012010272A1 (de) Heiz- oder kühlelement für einen deckenaufbau
WO2013143521A2 (de) Verfahren zur herstellung eines niederdruck-dünnwandwärmetauschers und dünnwandwärmetauscher
DE102006002932B4 (de) Wärmetauscher und Herstellungsverfahren für Wärmetauscher
EP1426721B1 (de) Wärmeaustauscherelement
EP0106262B1 (de) Wärmetauscher, insbesondere Heizkörper
EP3121520B1 (de) Wärmetauscher
EP2762787A2 (de) Klimaelement für eine Heiz- und Kühldecke
DE3301858C2 (de) Verfahren zur Herstellung einer Sonnenkollektorplatine
EP3121548B1 (de) Wärmeaustauschelement
EP1703214B1 (de) Heiz- und/oder Kühlelement für eine ein Ständerwerk aufweisende Trockenbauwand
EP3121549B1 (de) Wärmeaustauschelement
WO2006018246A1 (de) Befestigen einer kühlschlange an der platine eines kühlgerätes
DE2727219A1 (de) Verfahren zur kontinuierlichen herstellung grossflaechiger waermetauscher
EP1725150B1 (de) Behälter und verfahren zum herstellen eines behälters
DE8429260U1 (de) Flachheizkoerper
DE1946011A1 (de) Deckenstrahlungsheizung bzw. -kuehlung
DE19850013B4 (de) Plattenförmiges Wärmeaustauscherelement
DE2351920A1 (de) Verfahren zur herstellung eines waermetauschers
CH707507B1 (de) Klimaelement für eine Heiz- und Kühldecke.
CH708008A1 (de) Klimaelement für eine Heiz- und Kühldecke.
EP2338631B1 (de) Verfahren zur Herstellung eines Heizkörpers unter Verwendung eines Ultraschallschweißens; danach hergestellter Heizkörper
DE102008018209B4 (de) Hauptrohr eines Wärmetauschers mit Führungsrillen für Lötzusatzwerkstoff
DE3331619C2 (de)
WO2015117706A1 (de) Kühlkörper
AT412908B (de) Absorber für einen sonnenkollektor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170719

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20200407

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220126

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1503124

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220715

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015935

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KST AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20220919

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221006

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221106

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221007

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015015935

Country of ref document: DE

Representative=s name: SKM-IP SCHMID KRAUSS KUTTENKEULER MALESCHA SCH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015935

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

26N No opposition filed

Effective date: 20230411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220724

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230614

Year of fee payment: 9

Ref country code: MC

Payment date: 20230627

Year of fee payment: 9

Ref country code: IT

Payment date: 20230612

Year of fee payment: 9

Ref country code: FR

Payment date: 20230620

Year of fee payment: 9

Ref country code: DK

Payment date: 20230627

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230613

Year of fee payment: 9

Ref country code: LU

Payment date: 20230714

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230616

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230601

Year of fee payment: 9

Ref country code: CH

Payment date: 20230801

Year of fee payment: 9

Ref country code: AT

Payment date: 20230626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230607

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220706