EP3119770B1 - Dibenzofurane und dibenzothiophene - Google Patents

Dibenzofurane und dibenzothiophene Download PDF

Info

Publication number
EP3119770B1
EP3119770B1 EP15709513.4A EP15709513A EP3119770B1 EP 3119770 B1 EP3119770 B1 EP 3119770B1 EP 15709513 A EP15709513 A EP 15709513A EP 3119770 B1 EP3119770 B1 EP 3119770B1
Authority
EP
European Patent Office
Prior art keywords
group
formula
alkyl
substituted
independently
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15709513.4A
Other languages
English (en)
French (fr)
Other versions
EP3119770A1 (de
Inventor
Heinz Wolleb
Yuki Nakano
Thomas Raimann
Ute HEINEMEYER
Hideaki Nagashima
Yuichi Nishimae
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Publication of EP3119770A1 publication Critical patent/EP3119770A1/de
Application granted granted Critical
Publication of EP3119770B1 publication Critical patent/EP3119770B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to compounds of formula (I) and their use in electronic devices, especially electroluminescent devices.
  • electroluminescent devices When used as electron transport material, hole blocking material and/or host material for phosphorescent emitters in electroluminescent devices, the compounds of formula I may provide improved efficiency, stability, manufacturability, or spectral characteristics of electroluminescent devices.
  • a compound of formula is disclosed, wherein Z07 is a group of formula
  • US2009039765 relates to a light emitting polymer composition
  • a light emitting polymer composition comprising a light emitting polymer and among others a compound of formulae (1a):
  • X represents an atom or atomic group forming a 5-membered or 6-membered ring together with four carbon atoms on two benzene rings in the formula
  • Q represents each independently a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, alkenyl group, alkynyl group, arylalkenyl group, arylalkynyl group, substituted silyloxy group, substituted silylthio group, substituted silylamino group, substituted amino group, amide group, acid imide group, acyloxy group, mono-valent
  • US20130092905 relates to a material for an organic electroluminescence device of formula
  • US20110278552 relates to a material for an organic electroluminescence device represented by formula wherein
  • US2013285035 discloses an organic electroluminescent element comprising an anode, a cathode, and an organic compound layer sandwiched by the anode and the cathode, wherein the organic compound layer at least comprises a light-emitting layer and a charge-generating layer; (1) the charge-generating layer is composed of at least one layer and provided between the anode and the light-emitting layer; and (2) at least one layer of the charge-generating layer comprises an organic metal complex.
  • the compound of formula is used as an electron extracting material in the charge generating layer.
  • WO2013058098 relates to an organic electroluminescent element wherein a hole injection layer (HI), a hole transport layer (HT1), a second hole transport layer (HT2) and a light emitting layer that contains a host compound (H) and a phosphorescent dopant compound (D) are sequentially laminated in this order between a positive electrode and a negative electrode.
  • HI hole injection layer
  • HT1 hole transport layer
  • HT2 second hole transport layer
  • D a light emitting layer that contains a host compound (H) and a phosphorescent dopant compound (D) are sequentially laminated in this order between a positive electrode and a negative electrode.
  • H host compound
  • D phosphorescent dopant compound
  • US20130234119 relates to an organic electroluminescence device employing a specific biscarbazole derivative having a cyano group as a first host and a compound having both a carbazole structure and a nitrogen-containing aromatic heteroring as a second host.
  • WO2013145923 relates to an organic electroluminescent element which is characterized by: using, as a first host, a biscarbazole derivative that has a specific structure having a cyano group; and using, as a second host, a compound that has both a carbazole derivative structure and a nitrogen-containing heteroaromatic ring.
  • This organic electroluminescent element has a long service life.
  • KR20140132244 relates to an organic electronic device containing a heterocyclic compound of formula
  • the substituent R 3 represents CN.
  • the substituents R 1 , R 2 , R 4 and R 5 may represent CN.
  • organic light emitting devices comprising new electron transport materials to provide improved efficiency, stability, manufacturability, and/or spectral characteristics of electroluminescent devices.
  • the present invention provides further materials suitable for use in OLEDs and further applications in organic electronics. More particularly, it should be possible to provide electron transport materials, hole/exciton blocker materials and matrix materials for use in OLEDs.
  • the materials should be suitable especially for OLEDs which comprise at least one phosphorescence emitter, especially at least one green emitter or at least one blue emitter.
  • the materials should be suitable for providing OLEDs which ensure good efficiencies, good operative lifetimes and a high stability to thermal stress, and a low use and operating voltage of the OLEDs.
  • dibenzofurans and dibenzothiophenes which are substituted by nitrile substituted carbazolyl groups, are found to be suitable for use in organo-electroluminescent devices.
  • said derivatives are suitable electron transporting materials, hole blocking materials or host materials for phosphorescent emitters with good efficiency and durability.
  • the present invention relates to compounds of formula wherein R 1 , R 2 and R 3 are independently of each other H, F, a C 3 -C 18 cycloalkyl group, which can optionally be substituted by G; a C 6 -C 24 aryl group, which can optionally be substituted by G, a C 2 -C 30 heteroaryl group, which can optionally be substituted by G; a group of formula - Si(R 91 )(R 92 )(R 93 ), R 4 is H, F, a C 3 -C 18 cycloalkyl group, which can optionally be substituted by G; a C 6 -C 24 aryl group, which can optionally be substituted by G, a C 2 -C 30 heteroaryl group, which can optionally be substituted by G; a group of formula -Si(R 91 )(R 92 )(R 93 ), ( Xa ), or ( Xb );
  • Certain compounds of the present invention show, when used as host and/or hole blocker in combination with phosphorescent emitters, excellent power efficiencies, in particular electroluminescent (EL) devices comprising the compounds of the present invention exhibit reduced drive voltage while maintaining excellent luminance properties. Furthermore, the colour and external quantum efficiency (EQE) can be improved and the roll-off may be reduced by use of the inventive compounds.
  • EL electroluminescent
  • EQE colour and external quantum efficiency
  • the compounds of the present invention may be used for electrophotographic photoreceptors, photoelectric converters, organic solar cells (organic photovoltaics), switching elements, such as organic transistors, for example, organic FETs and organic TFTs, organic light emitting field effect transistors (OLEFETs), image sensors, dye lasers and electroluminescent devices, such as, for example, organic light-emitting diodes (OLEDs).
  • organic photoreceptors organic solar cells
  • organic photovoltaics organic solar cells
  • switching elements such as organic transistors, for example, organic FETs and organic TFTs, organic light emitting field effect transistors (OLEFETs), image sensors, dye lasers and electroluminescent devices, such as, for example, organic light-emitting diodes (OLEDs).
  • a further subject of the present invention is directed to an electronic device, comprising a compound according to the present invention.
  • the electronic device is preferably an electroluminescent device.
  • the compounds of formula I can in principal be used in any layer of an EL device, but are preferably used as host, electron transport and/or hole blocking material.
  • a further subject of the present invention is directed to an electron transport layer and/or a hole blocking layer comprising a compound of formula I according to the present invention.
  • a further subject of the present invention is directed to an emitting layer, comprising a compound of formula I according to the present invention.
  • a compound of formula I is preferably used as host material in combination with a phosphorescent emitter.
  • D is preferably -CO-, -COO-, -S-, -SO-, -SO 2 -, -O-, -NR 65 -, wherein R 65 is C 1 -C 18 alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, or sec-butyl, or C 6 -C 14 aryl, such as phenyl, tolyl, naphthyl, or biphenylyl.
  • E is preferably -OR 69 ; -SR 69 ; -NR 65 R 65 ; -COR 68 ; -COOR 67 ; -CONR 65 R 65 ; or -CN; wherein R 65 , R 67 , R 68 and R 69 are independently of each other C 1 -C 18 alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl, or C 6 -C 14 aryl, such as phenyl, tolyl, naphthyl, or biphenylyl.
  • C 1 -C 18 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, tert-
  • G has the same preferences as E, or is C 1 -C 18 alkyl, especially C 1 -C 8 alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl.
  • R 1 , R 2 , R 3 and R 4 may be a C 6 -C 24 aryl group, which can optionally be substituted by G, or a C 2 -C 30 heteroaryl group, which can optionally be substituted by G.
  • the C 6 -C 24 aryl groups R 1 , R 2 , R 3 and R 4 which optionally can be substituted by G, are typically phenyl, 4-methylphenyl, 4-methoxyphenyl, naphthyl, especially 1-naphthyl, or 2-naphthyl, biphenylyl, terphenylyl, pyrenyl, 2- or 9-fluorenyl, phenanthryl, or anthryl, which may be unsubstituted or substituted by G.
  • the C 2 -C 30 heteroaryl group groups R 1 , R 2 , R 3 and R 4 which optionally can be substituted by G, represent a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated ⁇ -etectrons such as thienyl, benzothiophenyl, dibenzothiophenyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, dibenzofuranyl, phenoxythienyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindoly
  • Prefered C 2 -C 30 heteroaryl groups are pyridyl, benzimidazo[1,2-a]benzimidazo-5-yl ( ), carbazolyl, dibenzofuranyl, which can be unsubstituted or substituted especially by C 6 -C 10 aryl, or C 6 -C 10 aryl, which is substituted by C 1 -C 4 alkyl; or C 2 -C 14 heteroaryl, especially
  • the compounds of formula (I) comprise 1, or 2 groups of formula ( Xa ).
  • Preferred embodiments of the present invention are directed to compounds of formula R 4 is H, F, a C 3 -C 18 cycloalkyl group, which can optionally be substituted by G; a C 6 -C 24 aryl group, which can optionally be substituted by G, a C 2 -C 30 heteroaryl group, which can optionally be substituted by G; a group of formula -Si(R 91 )(R 92 )(R 93 ), ( Xa ), or ( Xb ).
  • the present invention is directed to compounds of formula wherein X 1 is O, or S; R 1 is a group of formula and R 3 is a group of formula ( Xa ); or R 1 is a group of formula and R 3 is a group of formula ( Xa ); or R 1 and R 3 are independently of each other a group of formula (Xa); or R 1 is a group of formula ( Xa ), or ( Xb ) and R 3 is H; or compounds of formula wherein X 1 is O, or S; R 1 is a group of formula and R 3 is a group of formula ( Xa ); or R 1 is a group of formula ( Xa ) and R 3 is a group of formula or R 1 is a group of formula and R 3 is a group of formula ( Xa ); or R 1 is a group of formula ( Xa ) and R 3 is a group of formula or R 1 and R 3 are independently of each other a group of formula ( Xa ); or R 1
  • the present invention is directed to compounds of formula wherein X 1 is O, or S; R 1 is a group of formula and R 3 is a group of formula ( Xa ); or R 1 is a group of formula ( Xa ) and R 3 is a group of formula or R 1 is a group of formula and R 3 is a group of formula ( Xa ); or R 1 is a group of formula ( Xa ) and R 3 is a group of formula or R 1 and R 3 are independently of each other a group of formula ( Xa ); or R 1 is H and R 3 is a group of formula ( Xa ), or ( Xb ) and R 13 and R 13' are independently of each other H, or a C 1 -C 25 alkyl group; or compounds of formula wherein X 1 is O, or S; R 1 is a group of formula and R 3 is a group of formula ( Xa ); or R 1 is a group of formula ( Xa ) and R 3 is a group of formula
  • the compound of formula (II) is preferably a compound of formula wherein ( Xa ), ( Xb ), X 1 , R 1 , R 2 , R 3 , R 5 and R 6 are as defined above; more preferably a compound of formula wherein X 1 is O, or S; R 1 is a group of formula and R 6 is a group of formula ( Xa ), or ( Xb ); or R 1 is a group of formula ( Xa ), or ( Xb ) and R 6 is a group of formula or R 1 and R 6 are independently of each other a group of formula ( Xa ); R 5 is H, or a C 1 -C 25 alkyl group and R 13 and R 13' are independently of each other H, or a C 1 -C 25 alkyl group.
  • the compound of formula (III) is preferably a compound of formula wherein ( Xa ), ( Xb ), X 1 , X 2 , R 1 , R 2 , R 3 , R 7 , R 8 and R 9 are as defined above; more preferably a compound of formula wherein X 1 and X 2 are independently of each other O, or S; R 1 is a group of formula and R 8 is a group of formula ( Xa ); or R 1 is a group of formula ( Xa ) and R 8 is a group of formula or R 1 and R 8 are independently of each other a group of formula ( Xa ) and R 13 and R 13' are independently of each other H, or a C 1 -C 25 alkyl group.
  • the group of formula ( Xa ) is preferably a group of formula or ( XIIv ), wherein R 10 is a C 1 -C 25 alkyl group, especially a C 3 -C 12 alkyl group, such as, for example, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, heptyl, octyl, or 2-ethyl-hexyl; more preferably a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ).
  • the group of formula ( Xb ) is preferably a group of formula or wherein R 10 is a C 1 -C 25 alkyl group, especially a C 3 -C 12 alkyl group, such as, for example, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, heptyl, octyl, or 2-ethyl-hexyl; and R 11 is a C 1 -C 25 alkyl group, especially a C 3 -C 12 alkyl group, such as, for example, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, heptyl, octyl, or 2-ethyl-hexyl; more preferably a group of formula ( XIIIa ), (
  • the present invention is directed to compounds of formula wherein X 1 is O, or S; R 1 is a group of formula and R 3 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula and R 3 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 and R 3 are independently of each other a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula (
  • R 13 is a C 1 -C 25 alkyl group, especially a C 3 -C 12 alkyl group, such as, for example, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, heptyl, octyl, or 2-ethyl-hexyl.
  • the present invention is directed to compounds of formula wherein X 1 is O, or S; R 1 is a group of formula and R 3 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ) and R 3 is a group of formula or R 1 is a group of formula and R 3 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula wherein X
  • R 13 is a C 1 -C 25 alkyl group, especially a C 3 -C 12 alkyl group, such as, for example, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, heptyl, octyl, or 2-ethyl-hexyl.
  • the present invention is directed to compounds of formula wherein X 1 is O, or S; R 1 is a group of formula and R 3 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ) and R 3 is a group of formula or R 1 is a group of formula and R 3 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula wherein X
  • R 13 is a C 1 -C 25 alkyl group, especially a C 3 -C 12 alkyl group, such as, for example, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, heptyl, octyl, or 2-ethyl-hexyl.
  • the present invention is directed to compounds of formula wherein X 1 is O, or S; R 1 is a group of formula and R 3 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ) and R 3 is a group of formula or R 1 is a group of formula and R 3 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula wherein X
  • R 13 is a C 1 -C 25 alkyl group, especially a C 3 -C 12 alkyl group, such as, for example, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, heptyl, octyl, or 2-ethyl-hexyl.
  • the present invention is directed to compounds of formula wherein X 1 is O, or S; R 5 is H, or a C 1 -C 25 alkyl group, R 1 is a group of formula and R 6 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ) and R 6 is a group of formula or R 1 and R 6 are independently of each other a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or
  • the present invention is directed to compounds of formula wherein X 1 and X 2 are independently of each other O, or S; R 1 is a group of formula and R 8 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ); or R 1 is a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ) and R 8 is a group of formula or R 1 and R 8 are independently of each other a group of formula ( XIIa ), ( XIIb ), ( XIIc ), ( XIId ), ( XIIf ), ( XIIg ), or ( XIIv ) and R 13
  • C 1 -C 25 alkyl (C 1 -C 18 alkyl) is typically linear or branched, where possible. Examples are methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethylpropyl, 1,1,3,3-tetramethylpentyl, n-hexyl, 1-methylhexyl, 1,1,3,3,5,5-hexamethylhexyl, n-heptyl, isoheptyl, 1,1,3,3-tetramethylbutyl, 1-methylheptyl, 3-methylheptyl, n-octyl, 1,1,3,3-tetramethylbutyl and 2-ethylhexyl, n-nonyl, decyl, undecyl, dodecy
  • C 1 -C 8 alkyl is typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl, n-pentyl, 2-pentyl, 3-pentyl, 2,2-dimethyl-propyl, n-hexyl, n-heptyl, n-octyl, 1,1,3,3-tetramethylbutyl and 2-ethylhexyl.
  • C 1 -C 4 alkyl is typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec.-butyl, isobutyl, tert.-butyl.
  • C 1 -C 25 alkoxy groups are straight-chain or branched alkoxy groups, e.g. methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, amyloxy, isoamyloxy or tert-amyloxy, heptyloxy, octyloxy, isooctyloxy, nonyloxy, decyloxy, undecyloxy, dodecyloxy, tetradecyloxy, pentadecyloxy, hexadecyloxy, heptadecyloxy and octadecyloxy.
  • C 1 -C 8 alkoxy examples are methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec.-butoxy, isobutoxy, tert.-butoxy, n-pentyloxy, 2-pentyloxy, 3-pentyloxy, 2,2-dimethylpropoxy, n-hexyloxy, n-heptyloxy, n-octyloxy, 1,1,3,3-tetramethylbutoxy and 2-ethylhexyloxy, preferably C 1 -C 4 alkoxy such as typically methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec.-butoxy, isobutoxy, tert.-butoxy.
  • C 6 -C 24 aryl (C 6 -C 18 aryl), which optionally can be substituted, is typically phenyl, 4-methylphenyl, 4-methoxyphenyl, naphthyl, especially 1-naphthyl, or 2-naphthyl, biphenylyl, terphenylyl, pyrenyl, 2- or 9-fluorenyl, phenanthryl, or anthryl, which may be unsubstituted or substituted by G.
  • Phenyl, 1-naphthyl and 2-naphthyl are examples of a C 6 -C 10 aryl group.
  • C 2 -C 30 heteroaryl represents a ring with five to seven ring atoms or a condensed ring system, wherein nitrogen, oxygen or sulfur are the possible hetero atoms, and is typically a heterocyclic group with five to 30 atoms having at least six conjugated ⁇ -etectrons such as thienyl, benzothiophenyl, dibenzothiophenyl, thianthrenyl, furyl, furfuryl, 2H-pyranyl, benzofuranyl, isobenzofuranyl, dibenzofuranyl, phenoxythienyl, pyrrolyl, imidazolyl, pyrazolyl, pyridyl, bipyridyl, triazinyl, pyrimidinyl, pyrazinyl, pyridazinyl, indolizinyl, isoindolyl, indolyl, indazolyl, purinyl, quinolizinyl,
  • Benzimidazo[1,2-a]benzimidazo-5-yl, benzimidazo[1,2-a]benzimidazo-2-yl, carbazolyl and dibenzofuranyl are examples of a C 2 -C 14 heteroaryl group.
  • cycloalkyl group is typically C 3 -C 18 cycloalkyl, especially C 5 -C 12 cycloalkyl, such as cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, preferably cyclopentyl, cyclohexyl, cycloheptyl, or cyclooctyl, which may be unsubstituted or substituted by G.
  • G is as defined above and is especially C 1 -C 18 alkyl, very especially C 1 -C 8 alkyl, such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, isobutyl, tert-butyl, sec-butyl, hexyl, octyl, or 2-ethyl-hexyl.
  • substituted by G means that one, or more, especially one to three substituents G might be present. If a substituent occurs more than one time in a group, it can be different in each occurrence.
  • C 1 -C 18 alkyl interrupted by one or more units D is, for example, (CH 2 CH 2 O) 1-9 -R x , where R x is H or C 1 -C 10 alkyl or C 2 -C 10 alkanoyl (e.g.
  • R y is C 1 -C 18 alkyl, C 5 -C 12 cycloalkyl, phenyl, C 7 -C 15 phenylalkyl, and R y ' embraces the same definitions as R y or is H; C 1 -C 8 alkylene-COO-R z , e.g.
  • Nitrile substituted carbazoles can be synthesized starting from the corresponding bromo or iodo substituted carbazoles using Rosenmund-von Braun reactions in DMF as described, for example, by D. A. Patrick, European Journal of Medicinal Chemistry (1997) 32. 781-793 .
  • nitrile substituted phenyl hydrazine can be reacted with cyclohexanone to yield nitrile substituted 2,3,4,9-tetrahydro-1H-carbazole that can be oxidized to nitrile substituted carbazoles by using chloranil as described, for example, by B. M. Barclay, Journal of the Chemical Society, 1945, 530 .
  • carbazole can be reacted to the corresponding aldehyde using Vilsmeier-Haack conditions followed by transforming the aldehyde to the nitrile as described by K. Moriyama, Tetrahedron, 201, 68, 4588 .
  • the carbazole substituted dibenzofurans can be synthesized by reacting halogenated dibenzofuran derivatives with nitrile substituted carbazoles using copper catalyzed Ullmann conditions as described, for example, in EP2301921 , H. Gilman and D. A. Shirley, J. Am. Chem. Soc. 66 (1944) 888 ; D. Li et al., Dyes and Pigments 49 (2001) 181 - 186 and Eur. J. Org. Chem. (2007) 2147-2151 .
  • the reaction can be performed in solvent or in a melt. Suitable solvents are, for example, (polar) aprotic solvents such as dimethyl sulfoxide, dimethylformamide, NMP, tridecane or alcohols.
  • the carbazole substituted dibenzofurans can be synthesized by reacting halogenated dibenzofuran derivatives with nitrile substituted carbazoles using palladium catalyzed Buchwald-Hartwig conditions as described, for example, in Björn Schlummer, Ulrich Scholz, Adv. Synth. Catal. 2004, 346, 1599 -1626 .
  • Suitable base skeletons of the formula are either commercially available (especially in the cases when X is S, O, NH), or can be obtained by processes known to those skilled in the art. Reference is made to WO2010079051 and EP1885818 .
  • the halogenation can be performed by methods known to those skilled in the art. Preference is given to brominating or iodinating in the 3 and 6 positions (dibromination) or in the 3 or 6 positions (monobromination) of the base skeleton of the formula (II) 2,8 positions (dibenzofuran and dibenzothiophene) or 3,6 positions (carbazole).
  • Optionally substituted dibenzofurans, dibenzothiophenes and carbazoles can be dibrominated in the 2,8 positions (dibenzofuran and dibenzothiophene) or 3,6 positions (carbazole) with bromine or NBS in glacial acetic acid or in chloroform.
  • the bromination with Br 2 can be effected in glacial acetic acid or chloroform at low temperatures, e.g. 0°C.
  • Dibenzofuran (dibenzothiophene) can be monobrominated in the 3 position by a sequence known to those skilled in the art, comprising a nitration, reduction and subsequent Sandmeyer reaction.
  • the compounds of the formula I are particularly suitable for use in applications in which charge carrier conductivity is required, especially for use in organic electronics applications, for example selected from switching elements such as organic transistors, e.g. organic FETs and organic TFTs, organic solar cells and organic light-emitting diodes (OLEDs), the compounds of the formula I being particularly suitable in OLEDs for use as host material in a light-emitting layer and/or as hole and/or exciton blocker material and/or as electron transport material, especially in combination with a phosphorescence emitter, very especially blue, or green emitting phosphorescence emitters.
  • switching elements such as organic transistors, e.g. organic FETs and organic TFTs, organic solar cells and organic light-emitting diodes (OLEDs)
  • OLEDs organic light-emitting diodes
  • the inventive compounds of the formula I in OLEDs, OLEDs which have good efficiencies and a long lifetime and which can be operated especially at a low use and operating voltage are obtained. Furthermore, the compounds of the formula I can be used as conductor/complementary materials in organic electronics applications selected from switching elements and organic solar cells.
  • an emitter material In the emission layer or one of the emission layers of an OLED, it is also possible to combine an emitter material with a matrix material of the compound of the formula I and a further matrix material which has, for example, a good hole transport property. This achieves a high quantum efficiency of this emission layer.
  • Suitable structures of organic electronic devices are known to those skilled in the art and are specified below.
  • the organic transistor generally includes a semiconductor layer formed from an organic layer with hole transport capacity and/or electron transport capacity; a gate electrode formed from a conductive layer; and an insulating layer introduced between the semiconductor layer and the conductive layer.
  • a source electrode and a drain electrode are mounted on this arrangement in order thus to produce the transistor element.
  • further layers known to those skilled in the art may be present in the organic transistor.
  • the organic solar cell generally comprises an organic layer present between two plate-type electrodes arranged in parallel.
  • the organic layer may be configured on a comb-type electrode.
  • at least one electrode is preferably formed from a transparent electrode, for example an ITO electrode or a fluorine-doped tin oxide electrode.
  • the organic layer is formed from two sublayers, i.e. a layer with p-type semiconductor properties or hole transport capacity, and a layer formed with n-type semiconductor properties or electron transport capacity.
  • the layer with electron transport capacity may comprise the compounds of formula I.
  • the inventive organic light-emitting diode generally has the following structure: an anode (a) and a cathode (i) and a light-emitting layer (e) arranged between the anode (a) and the cathode (i).
  • the inventive OLED may, for example - in a preferred embodiment - be formed from the following layers:
  • Layer sequences different from the aforementioned structure are also possible, and are known to those skilled in the art.
  • the OLED does not have all of the layers mentioned; for example, an OLED with layers (a) (anode), (e) (light-emitting layer) and (i) (cathode) is likewise suitable, in which case the functions of the layers (c) (hole transport layer) and (f) (blocking layer for holes/excitons) and (g) (electron transport layer) are assumed by the adjacent layers.
  • OLEDs which have layers (a), (c), (e) and (i), or layers (a), (e), (f), (g) and (i), are likewise suitable.
  • the OLEDs may have a blocking layer for electrons/excitons (d) between the hole transport layer (c) and the Light-emitting layer (e).
  • a plurality of the aforementioned functions are combined in one layer and are assumed, for example, by a single material present in this layer.
  • a material used in the hole transport layer in one embodiment, may simultaneously block excitons and/or electrons.
  • the individual layers of the OLED among those specified above may in turn be formed from two or more layers.
  • the hole transport layer may be formed from a layer into which holes are injected from the electrode, and a layer which transports the holes away from the hole-injecting layer into the light-emitting layer.
  • the electron transport layer may likewise consist of a plurality of layers, for example a layer in which electrons are injected by the electrode, and a layer which receives electrons from the electron injection layer and transports them into the light-emitting layer.
  • These layers mentioned are each selected according to factors such as energy level, thermal resistance and charge carrier mobility, and also energy difference of the layers specified with the organic layers or the metal electrodes.
  • the person skilled in the art is capable of selecting the structure of the OLEDs such that it is matched optimally to the organic compounds used in accordance with the invention.
  • the anode is an electrode which provides positive charge carriers. It may be composed, for example, of materials which comprise a metal, a mixture of different metals, a metal alloy, a metal oxide or a mixture of different metal oxides. Alternatively, the anode may be a conductive polymer. Suitable metals comprise the metals of groups 11, 4, 5 and 6 of the Periodic Table of the Elements, and also the transition metals of groups 8 to 10. When the anode is to be transparent, mixed metal oxides of groups 12, 13 and 14 of the Periodic Table of the Elements are generally used, for example indium tin oxide (ITO). It is likewise possible that the anode (a) comprises an organic material, for example polyaniline, as described, for example, in Nature, Vol.
  • Preferred anode materials include conductive metal oxides, such as indium tin oxide (ITO) and indium zinc oxide (IZO), aluminum zinc oxide (AlZnO), and metals.
  • Anode (and substrate) may be sufficiently transparent to create a bottom-emitting device.
  • a preferred transparent substrate and anode combination is commercially available ITO (anode) deposited on glass or plastic (substrate).
  • a reflective anode may be preferred for some top-emitting devices, to increase the amount of light emitted from the top of the device. At least either the anode or the cathode should be at least partly transparent in order to be able to emit the light formed. Other anode materials and structures may be used.
  • injection layers are comprised of a material that may improve the injection of charge carriers from one layer, such as an electrode or a charge generating layer, into an adjacent organic layer. Injection layers may also perform a charge transport function.
  • the hole injection layer may be any layer that improves the injection of holes from anode into an adjacent organic layer.
  • a hole injection layer may comprise a solution deposited material, such as a spin-coated polymer, or it may be a vapor deposited small molecule material, such as, for example, CuPc, MTDATA, or dipyrazino[2,3-f:2',3'-h]quinoxaline-2,3,6,7,10,11-hexacarbonitrile (HAT-CN).
  • Polymeric hole-injection materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, self-doping polymers, such as, for example, sulfonated poly(thiophene-3-[2[(2-methoxyethoxy)ethoxy]-2,5-diyl) (Plexcore® OC Conducting Inks commercially available from Plextronics), and copolymers such as poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) also called PEDOT/PSS.
  • PVK poly(N-vinylcarbazole)
  • polythiophenes polypyrrole
  • polyaniline polyaniline
  • self-doping polymers such as, for example, sulfonated poly(thiophene-3-[2[(2-methoxyethoxy)ethoxy]-2,5-diy
  • hole transport material Either hole-transporting molecules or polymers may be used as the hole transport material.
  • Suitable hole transport materials for layer (c) of the inventive OLED are disclosed, for example, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th Edition, Vol. 18, pages 837 to 860, 1996 , US20070278938 , US2008/0106190 , US2011/0163302 (triarylamines with (di)benzothiophen/(di)benzofuran; Nan-Xing Hu et al. Synth. Met.
  • Customarily used hole-transporting molecules are selected from the group consisting of (4-phenyl-N-(4-phenylphenyl)-N-[4-[4-(N-[4-(4-phenyl-phenyl)phenyl]anilino)phenyl]phenyl]aniline), (4-phenyl-N-(4-phenylphenyl)-N-[4-[4-(4-phenyl-N-(4-phenylphenyl)anilino)phenyl]phenyl]aniline), (4-phenyl-N-[4-(9-phenylcarbazol-3-yl)phenyl]-N-(4-phenylphenyl)aniline), (1,1',3,3'-tetraphenylspiro[1,3,2-benzodiazasilole-2,2'-3a,7a-dihydro-1,3,2-benzodiazasilole]), (N2,N2,N2',N
  • polymeric hole-injection materials can be used such as poly(N-vinylcarbazole) (PVK), polythiophenes, polypyrrole, polyaniline, self-doping polymers, such as, for example, sulfonated poly(thiophene-3-[2[(2-methoxyethoxy)ethoxy]-2,5-diyl) (Plexcore® OC Conducting Inks commercially available from Plextronics), and copolymers such as poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) also called PE-DOT/PSS.
  • PVK poly(N-vinylcarbazole)
  • polythiophenes polypyrrole
  • polyaniline polyaniline
  • self-doping polymers such as, for example, sulfonated poly(thiophene-3-[2[(2-methoxyethoxy)ethoxy]-2,5-di
  • Preferred examples of a material of the hole injecting layer are a porphyrin compound, an aromatic tertiary amine compound, or a styrylamine compound. Particularly preferable examples include an aromatic tertiary amine compound such as hexacyanohexaazatriphenylene (HAT).
  • HAT hexacyanohexaazatriphenylene
  • dibenzofurane and dibenzothiophene compounds mentioned as host below, such as, for example, may be used as hole transport material and exciton blocker material.
  • Suitable carbene complexes are, for example, carbene complexes as described in WO2005/019373A2 , WO2006/056418 A2 , WO2005/113704 , WO2007/115970 , WO2007/115981 , WO2008/000727 and WO2014147134 .
  • a suitable carbene complex is Ir(DPBIC) 3 with the formula:
  • Ir(ABIC) 3 is Another example of a suitable carbene complex with the formula:
  • the hole-transporting layer may also be electronically doped in order to improve the transport properties of the materials used, in order firstly to make the layer thicknesses more generous (avoidance of pinholes/short circuits) and in order secondly to minimize the operating voltage of the device.
  • Electronic doping is known to those skilled in the art and is disclosed, for example, in W. Gao, A. Kahn, J. Appl. Phys., Vol. 94, 2003, 359 (p-doped organic layers); A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett., Vol. 82, No.
  • mixtures may, for example, be the following mixtures: mixtures of the abovementioned hole transport materials with at least one metal oxide, for example MoO 2 , MoO 3 , WO x , ReO 3 and/or V 2 O 5 , preferably M0O 3 and/or ReO 3 , or mixtures comprising the aforementioned hole transport materials and one or more compounds selected from 7,7,8,8-tetracyanoquinodimethane (TCNQ), 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 -TCNQ), 2,5-bis(2-hydroxyethoxy)-7,7,8,8-tetracyanoquinodimethane, bis(tetra-n-butylammonium)tetracyanodiphenoquinodimethane, 2,5-dimethyl-7,7,8,8-tetracyanoquinodimethane, tetracyanoethylene, 11,11,12,12-tetracyan
  • Preferred mixtures comprise the aforementioned carbene complexes, such as, for example, the carbene complexes HTM-1 and HTM-2, and M0O 3 and/or ReO 3 .
  • the hole transport layer comprises from 0.1 to 10 wt % of M0O 3 and 90 to 99.9 wt % carbene complex, especially of a carbene complex HTM-1 and HTM-2, wherein the total amount of the M0O 3 and the carbene complex is 100 wt %.
  • the hole transport layer comprises from 0.1 to 10 wt % of MoO 3 and 90 to 99.9 wt % dibenzofurane compound, especially compound ( SH-1 ), wherein the total amount of the MoO 3 and the dibenzofurane compound is 100 wt %.
  • Blocking layers may be used to reduce the number of charge carriers (electrons or holes) and/or excitons that leave the emissive layer.
  • An electron/exciton blocking layer (d) may be disposed between the first emitting layer (e) and the hole transport layer (c), to block electrons from emitting layer (e) in the direction of hole transport layer (c). Blocking layers may also be used to block excitons from diffusing out of the emissive layer.
  • Suitable metal complexes for use as electron/exciton blocker material are, for example, carbene complexes as described in WO2005/019373A2 , WO2006/056418A2 , WO2005/113704 , WO2007/115970 , WO2007/115981 , WO2008/000727 and WO2014147134 .
  • Explicit reference is made here to the disclosure of the WO applications cited, and these disclosures shall be considered to be incorporated into the content of the present application.
  • One example of a suitable carbene complex is compound HTM-1.
  • Another example of a suitable carbene complex is compound HTM-2.
  • all hole transport materials having sufficient high triplet energy are suitable exciton blocking materials. Additional examples of hole transporting materials having sufficient high triplet energy are (SH-1) and (SH-11).
  • the light-emitting layer (e) comprises at least one emitter material.
  • it may be a fluorescence or phosphorescence emitter, suitable emitter materials being known to those skilled in the art.
  • the at least one emitter material is preferably a phosphorescence emitter.
  • the phosphorescence emitter compounds used with preference are based on metal complexes, and especially the complexes of the metals Ru, Rh, Ir, Pd and Pt, in particular the complexes of Ir, have gained significance.
  • the compounds of the formula I can be used as the matrix in the light-emitting layer.
  • Suitable metal complexes for use in the inventive OLEDs are described, for example, in documents WO 02/60910 A1 , US 2001/0015432 A1 , US 2001/0019782 A1 , US 2002/0055014 A1 , US 2002/0024293 A1 , US 2002/0048689 A1 , EP 1 191 612 A2 , EP 1 191 613 A2 , EP 1 211 257 A2 , US 2002/0094453 A1 , WO 02/02714 A2 , WO 00/70655 A2 , WO 01/41512 A1 , WO 02/15645 A1 , WO 2005/019373 A2 , WO 2005/113704 A2 , WO 2006/115301 A1 , WO 2006/067074 A1 , WO 2006/056418 , WO 2006121811 A1 , WO 2007095118 A2 , WO 2007/115970 , WO 2007/115981 ,
  • metal complexes are the commercially available metal complexes tris(2-phenylpyridine)iridium(III), iridium(III) tris(2-(4-tolyl)pyridinato-N,C 2 '), bis(2-phenylpyridine)(acetylacetonato)iridium(III), iridium(III) tris(1-phenylisoquinoline), iridium(III) bis(2,2'-benzothienyl)pyridinato-N,C 3 ')(acetylacetonate), tris(2-phenylquinoline)iridium(III), iridium(III) bis(2-(4,6-difluorophenyl)pyridinato-N,C 2 )picolinate, iridium(III) bis(1-phenylisoquinoline)(acetylacetonate), bis(2-phenylquinoline)(acetylacetonato)iridium(
  • Preferred phosphorescence emitters are carbene complexes. Suitable phosphorescent blue emitters are specified in the following publications: WO2006/056418A2 , WO2005/113704 , WO2007/115970 , WO2007/115981 , WO2008/000727 , WO2009050281 , WO2009050290 , WO2011051404 , US2011/057559 WO2011/073149 , WO2012/121936A2 , US2012/0305894A1 , WO2012/170571 , WO2012/170461 , WO2012/170463 , WO2006/121811 , WO2007/095118 , WO2008/156879 , WO2008/156879 , WO2010/068876 , US2011/0057559 , WO2011/106344 , US2011/0233528 , WO2012/048266 , WO2012/172482 , WO2015000955 and
  • the light emitting layer (e) comprises at least one carbine complex as phosphorescence emitter.
  • Suitable carbine complexes are, for example, compounds of the formula which are described in WO 2005/019373 A2 , wherein the symbols have the following meanings:
  • metal-carbene complexes of the general formula which are described in WO2011/073149 .
  • the compound of formula IX is preferably a compound of the formula:
  • the compound of formula IX is more preferably a compound ( BE-1 ), ( BE-2 ), ( BE-7 ), ( BE-12 ), ( BE-16 ), ( BE-64 ), or ( BE-70 ).
  • the most preferred phosphorescent blue emitters are compounds ( BE-1 ) and ( BE-12 ).
  • the homoleptic metal-carbene complexes may be present in the form of facial or meridional isomers, preference being given to the facial isomers.
  • Suitable carbene complexes of formula ( IX ) and their preparation process are, for example, described in WO2011/073149 .
  • the compounds of the present invention can also be used as host for phosphorescent green emitters.
  • Suitable phosphorescent green emitters are, for example, specified in the following publications: WO2006014599 , WO20080220265 , WO2009073245 , WO2010027583 , WO2010028151 , US20110227049 , WO2011090535 , WO2012/08881 , WO20100056669 , WO20100118029 , WO20100244004 , WO2011109042 , WO2012166608 , US20120292600 , EP2551933A1 ; US6687266 , US20070190359 , US20070190359 , US20060008670 ; WO2006098460 , US20110210316 , WO 2012053627 ; US6921915 , US20090039776 ; JP2007123392 and European patent application no. 14180422.9 .
  • the light-emitting layer may comprise further components in addition to the emitter material.
  • a fluroescent dye may be present in the light-emitting layer in order to alter the emission color of the emitter material.
  • a matrix material can be used.
  • This matrix material may be a polymer, for example poly(N-vinylcarbazole) or polysilane.
  • At least one compound of the formula I is used as matrix material.
  • preferred compounds of formula I are compounds A-1 to A-134, B-1 to B-24, C-1 to C-44 as well as D-1 to D-36.
  • the light-emitting layer is formed from 2 to 40% by weight, preferably 5 to 35% by weight, of at least one of the aforementioned emitter materials and 60 to 98% by weight, preferably 75 to 95% by weight, of at least one of the aforementioned, or belowmentioned matrix materials - in one embodiment at least one compound of the formula I - where the sum total of the emitter material and of the matrix material adds up to 100% by weight.
  • Suitable metal complexes for use together with the compounds of the formula I as matrix material in OLEDs are, for example, also carbene complexes as described in WO 2005/019373 A2 , WO 2006/056418 A2 , WO 2005/113704 , WO 2007/115970 , WO 2007/115981 , WO 2008/000727 and WO2014147134 .
  • WO2007108459 H-1 to H-37
  • H-20 to H-22 and H-32 to H-37 most preferably H-20, H-32, H-36, H-37
  • WO2008035571 A1 Host 1 to Host 6
  • JP2010135467 compounds 1 to 46 and Host-1 to Host-39 and Host-43
  • WO2009008100 compounds No.1 to No.67 preferably No.3, No.4, No.7 to No. 12, No.55, No.59, No. 63 to No.67, more preferably No. 4, No. 8 to No. 12, No.
  • the above-mentioned small molecules are more preferred than the above-mentioned (co)polymers of the small molecules.
  • WO2011137072 for example, best results are achieved if said compounds are combined with ); WO2012048266 (for example, and ); WO2012162325 (for example, and ); and EP2551932 (for example, ).
  • one or more compounds of the general formula (X) specified hereinafter are used as second host material.
  • Additional host materials on basis of dibenzofurane are, for example, described in US2009066226 , EP1885818B1 , EP1970976 , EP1998388 and EP2034538 . Examples of particularly preferred host materials are shown below:
  • T is O, or S, preferably O. If T occurs more than one time in a molecule, all groups T have the same meaning.
  • Blocking layers may be used to reduce the number of charge carriers (electrons or holes) and/or excitons that leave the emissive layer.
  • the hole blocking layer may be disposed between the emitting layer (e) and electron transport layer (g), to block holes from leaving layer (e) in the direction of electron transport layer (g).
  • Blocking layers may also be used to block excitons from diffusing out of the emissive layer.
  • At least one compound of the formula I is used as hole/exciton blocking material.
  • Examples of preferred compounds of formula I are compounds A-1 to A-134, B-1 to B-24, C-1 to C-44 as well as D-1 to D-36.
  • Additional hole blocker materials typically used in OLEDs are 2,6-bis(N-carbazolyl)pyridine (mCPy), 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (bathocuproin, (BCP)), bis(2-methyl-8-quinolinato)-4-phenylphenylato)aluminum(III) (BAlq), phenothiazine S,S-dioxide derivates and 1,3,5-tris(N-phenyl-2-benzylimidazolyl)benzene) (TPBI), TPBI also being suitable as electron-transport material.
  • mCPy 2,6-bis(N-carbazolyl)pyridine
  • BCP 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline
  • BAlq bis(2-methyl-8-quinolinato)-4-phenylphenylato)aluminum(III)
  • TPBI 1,3,5-tris(N-phen
  • hole blockers and/or electron conductor materials are 2,2',2"-(1,3,5-benzenetriyl)tris(1-phenyl-1-H-benzimidazole), 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole, 8-hydroxyquinolinolatolithium, 4-(naphthalen-1-yl)-3,5-diphenyl-4H-1,2,4-triazole, 1,3-bis[2-(2,2'-bipyridin-6-yl)-1,3,4-oxadiazo-5-yl]benzene, 4,7-diphenyl-1,10-phenanthroline, 3-(4-biphenylyl)-4-phenyl-5-tert-butylphenyl-1,2,4-triazole, 6,6'-bis[5-(biphenyl-4-yl)-1,3,4-oxadiazo-2-yl]
  • disilyl compounds selected from the group consisting of disilylcarbazoles, disilylbenzofurans, disilylbenzothiophenes, disilylbenzophospholes, disilylbenzothiophene S-oxides and disilylbenzothiophene S,S-dioxides, as specified, for example, in PCT applications WO2009/003919 and WO2009003898 and disilyl compounds as disclosed in WO2008/034758 , as a blocking layer for holes/excitons (f).
  • compounds ( SH-1 ), ( SH-2 ), ( SH-3 ), ( SH-4 ), ( SH-5 ), ( SH-6 ), ( SH-7 ), ( SH-8 ), ( SH-9 ) and ( SH-10 ) may be used as hole/exciton blocking materials.
  • Electron transport layer may include a material capable of transporting electrons. Electron transport layer may be intrinsic (undoped), or doped. Doping may be used to enhance conductivity.
  • At least one compound of the formula I is used as electron transport material.
  • preferred compounds of formula I are compounds A-1 to A-134, B-1 to B-24, C-1 to C-44 as well as D-1 to D-36.
  • At least one material is electron-conducting.
  • at least one phenanthroline compound is used, preferably BCP, or at least one pyridine compound according to the formula ( VIII ) below, preferably a compound of the formula ( VIIIaa ) below.
  • alkaline earth metal or alkali metal hydroxyquinolate complexes for example Liq, are used.
  • Suitable alkaline earth metal or alkali metal hydroxyquinolate complexes are specified below ( formula VII ). Reference is made to WO2011/157779 .
  • the electron-transport layer may also be electronically doped in order to improve the transport properties of the materials used, in order firstly to make the layer thicknesses more generous (avoidance of pinholes/short circuits) and in order secondly to minimize the operating voltage of the device.
  • Electronic doping is known to those skilled in the art and is disclosed, for example, in W. Gao, A. Kahn, J. Appl. Phys., Vol. 94, No. 1, 1 July 2003 (p-doped organic layers); A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, K. Leo, Appl. Phys. Lett., Vol. 82, No.
  • n-Doping is achieved by the addition of reducing materials.
  • mixtures may, for example, be mixtures of the abovementioned electron transport materials with alkali/alkaline earth metals or alkali/alkaline earth metal salts, for example Li, Cs, Ca, Sr, Cs 2 CO 3 , with alkali metal complexes and with Y, Ce, Sm, Gd, Tb, Er, Tm, Yb, Li 3 N, Rb 2 CO 3 , dipotassium phthalate, W(hpp) 4 from EP1786050 , or with compounds described in EP1837926B1 , EP1837927 , EP2246862 and WO2010132236 .
  • alkali/alkaline earth metals or alkali/alkaline earth metal salts for example Li, Cs, Ca, Sr, Cs 2 CO 3 , with alkali metal complexes and with Y, Ce, Sm, Gd, Tb, Er, Tm, Yb, Li 3 N, Rb 2 CO 3 , dipotassium phthalate
  • the electron-transport layer comprises at least one compound of the general formula ( VII ) in which
  • a very particularly preferred compound of the formula ( VII ) is which may be present as a single species, or in other forms such as Li g Q g in which g is an integer, for example Li 6 Q 6 .
  • Q is an 8-hydroxyquinolate ligand or an 8-hydroxyquinolate derivative.
  • the electron-transport layer comprises at least one compound of the formula ( VIII ), in which
  • Preferred compounds of the formula ( VIII ) are compounds of the formula ( VIIIa ) in which Q is:
  • the electron-transport layer comprises a compound Liq and a compound ETM-2.
  • the electron-transport layer comprises the compound of the formula ( VII ) in an amount of 99 to 1 % by weight, preferably 75 to 25% by weight, more preferably about 50% by weight, where the amount of the compounds of the formulae ( VII ) and the amount of the compounds of the formulae ( VIII ) adds up to a total of 100% by weight.
  • the electron-transport layer comprises Liq in an amount of 99 to 1% by weight, preferably 75 to 25% by weight, more preferably about 50% by weight, where the amount of Liq and the amount of the dibenzofuran compound(s), especially ETM-1, adds up to a total of 100% by weight.
  • the electron-transport layer comprises at least one phenanthroline derivative and/or pyridine derivative.
  • the electron-transport layer comprises at least one phenanthroline derivative and/or pyridine derivative and at least one alkali metal hydroxyquinolate complex.
  • the electron-transport layer comprises at least one of the dibenzofuran compounds A-1 to A-36 and B-1 to B-22 described in WO2011/157790 , especially ETM-1.
  • the electron-transport layer comprises a compound described in WO2012/111462 , WO2012/147397 , WO2012014621 , such as, for example, a compound of formula US2012/0261654 , such as, for example, a compound of formula and WO2012/115034 , such as for example, such as, for example, a compound of formula
  • the electron injection layer may be any layer that improves the injection of electrons into an adjacent organic layer.
  • Lithium-comprising organometallic compounds such as 8-hydroxyquinolatolithium (Liq), CsF, NaF, KF, Cs 2 CO 3 or LiF may be applied between the electron transport layer (g) and the cathode (i) as an electron injection layer (h) in order to reduce the operating voltage.
  • the cathode (i) is an electrode which serves to introduce electrons or negative charge carriers.
  • the cathode may be any metal or nonmetal which has a lower work function than the anode. Suitable materials for the cathode are selected from the group consisting of alkali metals of group 1, for example Li, Cs, alkaline earth metals of group 2, metals of group 12 of the Periodic Table of the Elements, comprising the rare earth metals and the lanthanides and actinides. In addition, metals such as aluminum, indium, calcium, barium, samarium and magnesium, and combinations thereof, may be used.
  • the different layers if present, have the following thicknesses:
  • Suitable materials for the individual layers are known to those skilled in the art and are disclosed, for example, in WO 00/70655 .
  • the layers used in the inventive OLED have been surface-treated in order to increase the efficiency of charge carrier transport.
  • the selection of the materials for each of the layers mentioned is preferably determined by obtaining an OLED with a high efficiency and lifetime.
  • the inventive OLED can be produced by methods known to those skilled in the art.
  • the inventive OLED is produced by successive vapor deposition of the individual layers onto a suitable substrate.
  • Suitable substrates are, for example, glass, inorganic semiconductors or polymer films.
  • vapor deposition it is possible to use customary techniques, such as thermal evaporation, chemical vapor deposition (CVD), physical vapor deposition (PVD) and others.
  • the organic layers of the OLED can be applied from solutions or dispersions in suitable solvents, employing coating techniques known to those skilled in the art.
  • the compounds of the formula I in at least one layer of the OLED preferably in the light-emitting layer (preferably as a matrix material), charge transport layer and/or in the charge/exciton blocking layer makes it possible to obtain OLEDs with high efficiency and with low use and operating voltage.
  • the OLEDs obtained by the use of the compounds of the formula I additionally have high lifetimes.
  • the efficiency of the OLEDs can additionally be improved by optimizing the other layers of the OLEDs. For example, high-efficiency cathodes such as Ca or Ba, if appropriate in combination with an intermediate layer of LiF, can be used.
  • additional layers may be present in the OLEDs in order to adjust the energy level of the different layers and to facilitate electroluminescence.
  • the OLEDs may further comprise at least one second light-emitting layer.
  • the overall emission of the OLEDs may be composed of the emission of the at least two light-emitting layers and may also comprise white light.
  • the OLEDs can be used in all apparatus in which electroluminescence is useful. Suitable devices are preferably selected from stationary and mobile visual display units and illumination units. Stationary visual display units are, for example, visual display units of computers, televisions, visual display units in printers, kitchen appliances and advertising panels, illuminations and information panels. Mobile visual display units are, for example, visual display units in cellphones, tablet PCs, laptops, digital cameras, MP3 players, vehicles and destination displays on buses and trains. Further devices in which the inventive OLEDs can be used are, for example, keyboards; items of clothing; furniture; wallpaper.
  • the present invention relates to a device selected from the group consisting of stationary visual display units such as visual display units of computers, televisions, visual display units in printers, kitchen appliances and advertising panels, illuminations, information panels, and mobile visual display units such as visual display units in cellphones, tablet PCs, laptops, digital cameras, MP3 players, vehicles and destination displays on buses and trains; illumination units; keyboards; items of clothing; furniture; wallpaper, comprising at least one inventive organic light-emitting diode or at least one inventive light-emitting layer.
  • stationary visual display units such as visual display units of computers, televisions, visual display units in printers, kitchen appliances and advertising panels, illuminations, information panels
  • mobile visual display units such as visual display units in cellphones, tablet PCs, laptops, digital cameras, MP3 players, vehicles and destination displays on buses and trains
  • illumination units keyboards
  • items of clothing furniture
  • wallpaper comprising at least one inventive organic light-emitting diode or at least one inventive light-emitting layer.
  • the filtrate is mixed with 25 g of silica, refluxed for 1 h, filtered hot and washed three times with hot toluene (100 ml each).
  • the filtrate is evaporated on the rotavap, the residue is triturated with 200 ml of methanol, stirred for 1 h and the resulting suspension is filtered and the filter cake is dried in the hood for 24 h.
  • Purification using CombiFlash and heptane/ CH 2 Cl 2 as eluent yielded 4.40 g (40.4% of theory) 9-(8-Carbazol-9-yldibenzofuran-2-yl) carbazole-3-carbonitrile as a white solid.
  • the filtrate is mixed with 25 g of silica, refluxed for 1 h, filtered hot and washed three times with hot toluene (100 ml each).
  • the filtrate is evaporated on the rotavap, the residue is triturated with 200 ml of methanol, stirred for 1 h and the resulting suspension is filtered and the filter cake is dried in the hood for 24 h.
  • the ITO substrate used as the anode is first cleaned with an acetone/isopropanol mixture in an ultrasonic bath. To eliminate any possible organic residues, the substrate is exposed to a continuous ozone flow in an ozone oven for further 25 minutes. This treatment also improves the hole injection properties of the ITO. Then Plexcore® OC AJ20-1000 (commercially available from Plextronics Inc.) is spin-coated and dried to form a hole injection layer (-40 nm). Thereafter, the organic materials specified below are applied by vapor deposition to the clean substrate at a rate of approx. 0.5-5 nm/min at about 10 -7 -10 -9 mbar.
  • a mixture of 10% by weight of emitter compound, 5% by weight of compound (HTM-1) and 85% by weight of compound is applied by vapor deposition in a thickness of 40 nm.
  • material (SH-1) is applied by vapour deposition with a thickness of 5 nm as blocker.
  • a 20 nm thick electron transport layer is deposited consisting of 50% by weight of and of 50% of Finally a 2 nm KF layer serves as an electron injection layer and a 100 nm-thick Al electrode completes the device.
  • the ITO substrate used as the anode is first cleaned with an acetone/isopropanol mixture in an ultrasonic bath. To eliminate any possible organic residues, the substrate is exposed to a continuous ozone flow in an ozone oven for further 25 minutes. This treatment also improves the hole injection properties of the ITO. Then Plexcore® OC AJ20-1000 (commercially available from Plextronics Inc.) is spin-coated and dried to form a hole injection layer (-40 nm). Thereafter, the organic materials specified below are applied by vapor deposition to the clean substrate at a rate of approx. 0.5-5 nm/min at about 10 -7 -10 -9 mbar.
  • a hole transport and exciton blocker compound ( SH-1 ) is applied to the substrate with a thickness of 20 nm, wherein the first 10 nm are doped with MoO 3 ( ⁇ 10%) to improve the conductivity.
  • a mixture of 10% by weight of emitter compound ( BE-1 ) and 90% by weight of compound ( SH-1 ) is applied by vapor deposition in a thickness of 40 nm.
  • material ( SH-1 ) is applied by vapour deposition with a thickness of 5 nm as blocker.
  • a 20 nm thick electron transport layer is deposited consisting of 50% by weight of compound ( ETM-1 ) and of 50% of Liq.
  • a 2 nm KF layer serves as an electron injection layer and a 100 nm-thick Al electrode completes the device.
  • 1,6-difluorobenzonitrile (2.50 g, 12.0 mmol) and 9H-carbazole-3-carbonitrile (4.80 g, 25.0 mmol) are dissolved in NMP (60 ml).
  • NMP 60 ml
  • potassium phosphate (10.8 g, 50.0 mmol) is added, the mixture is stirred at 150 °C for 15 h. After the reaction mixture is cooled at room temperature, it is diluted with 120 ml of water to give a solid. The solid is collected by filtration and dried in vacuum oven at 50 °C.
  • the crude product is purified by column chromatography on silica gel eluting with a mixed solvent of CH 2 Cl 2 and toluene (10:1), followed by recrystallization with toluene to yield 3.3 g (50%) of 9-[6-(3-cyanocarbazol-9-yl)dibenzofuran-1-yl]carbazole-3-carbonitrile as a white solid.
  • a glass substrate with 120 nm-thick indium-tin-oxide (ITO) transparent electrode used as an anode is first cleaned with isopropanol in an ultrasonic bath for 10 min. To eliminate any possible organic residues, the substrate is exposed to an ultraviolet light and ozone for further 30 min. This treatment also improves the hole injection properties of the ITO.
  • the cleaned substrate is mounted on a substrate holder and loaded into a vacuum chamber. Thereafter, the organic materials specified below are applied by vapor deposition to the ITO substrate at a rate of approx. 0.2-1 ⁇ /sec at about 10 -6 -10 -8 mbar. As a hole injection layer, compound with 30 nm thickness is applied is applied.
  • compound with 60 nm thickness is applied as a hole transporting layer.
  • compound for preparation see Ir complex (7) in the application WO2005/019373
  • a thickness of 10 nm is then applied with a thickness of 10 nm.
  • a mixture of 20% by weight of emitter compound, 15% by weight of compound ( HTM-1 ) and 65% by weight of host are applied to form a 40 nm-thick emitting layer.
  • 5 nm-thick material ( SH-1 ) is applied as an exciton blocker.
  • compound with 20 nm thickness is deposited as an electron transport layer.
  • compound with 20 nm thickness is deposited as an electron transport layer.
  • 1 nm-thick LiF is deposited as an electron injection layer and 80 nm-thick Al is then deposited as a cathode to complete the device.
  • the device is sealed with a glass lid and a getter in an inert nitrogen atmosphere with less than 1 ppm of water and oxygen.
  • electroluminescence spectra are recorded at various currents and voltages.
  • the current-voltage characteristic is measured in combination with the luminance to determine luminous efficiency and external quantum efficiency (EQE).
  • a glass substrate with 120 nm-thick ITO is cleaned and treated in the same manner as comparative application example 1.
  • compound with 30 nm thickness is applied by vapor deposition.
  • 60 nm of compound ( SH-1 ) doped with MoOx ( ⁇ 10%) is deposited as hole transporting layer. MoOx is used to improve the hole conductivity of SH-1 .
  • compound ( SH-1 ) is applied with a thickness of 10 nm.
  • a mixture of 20% by weight of emitter compound ( BE-1 ) and 80% by weight of host ( SH-1 ) are applied to form a 40 nm of emitting layer.
  • the emitting layer On the emitting layer, 5 nm of material ( SH-1 ) is applied as an exciton blocker. Thereafter, compound with 20 nm thickness is deposited as an electron transport layer. Finally, 1 nm of LiF is deposited as an electron injection layer and 80 nm of Al is then deposited as a cathode to complete the device. The device is sealed with a glass lid and a getter in an inert nitrogen atmosphere with less than 1 ppm of water and oxygen.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Claims (18)

  1. Verbindung der Formel
    Figure imgb0513
    wobei R1, R2 und R3 unabhängig voneinander für H, F, eine C3-C18-Cycloalkylgruppe, die gegebenenfalls durch G substituiert sein kann, eine C6-C24-Arylgruppe, die gegebenenfalls durch G substituiert sein kann, eine C2-C30-Heteroarylgruppe, die gegebenenfalls durch G substituiert sein kann, eine Gruppe der Formel -Si(R91)(R92)(R93),
    Figure imgb0514
    oder
    Figure imgb0515
    stehen,
    R4 für H, F, eine C3-C18-Cycloalkylgruppe, die gegebenenfalls durch G substituiert sein kann, eine C6-C24-Arylgruppe, die gegebenenfalls durch G substituiert sein kann, eine C2-C30-Heteroaryl-gruppe, die gegebenenfalls durch G substituiert sein kann, eine Gruppe der Formel -Si(R91)(R92)(R93),
    Figure imgb0516
    (Xa) oder (Xb) steht,
    R91, R92 und R93 unabhängig voneinander für eine C1-C25-Alkylgruppe oder eine C6-C24-Arylgruppe, die gegebenenfalls durch G substituiert sein kann, stehen,
    X1 und X2 unabhängig voneinander für O oder S stehen,
    R5, R7, R9 und R11 unabhängig voneinander für H, F, eine C1-C25-Alkylgruppe, die gegebenenfalls durch E substituiert und/oder durch D unterbrochen sein kann, eine C1-C25-Alkoxygruppe, eine C3-C18-Cycloalkylgruppe, die gegebenenfalls durch G substituiert sein kann, eine C6-C10-Arylgruppe, die gegebenenfalls durch G substituiert sein kann, eine C2-C9-Heteroarylgruppe, die gegebenenfalls durch G substituiert sein kann, stehen,
    R6 und R8 unabhängig voneinander für H, eine C1-C25-Alkylgruppe, eine Gruppe der Formel (Xa) oder (Xb) stehen,
    R10 für H oder eine C1-C25-Alkylgruppe steht und R10' für H oder eine C1-C25-Alkylgruppe steht oder R10 für H oder eine C1-C25-Alkylgruppe steht und R10' für CN steht oder R10 für CN steht und R10' für H oder eine C1-C25-Alkylgruppe steht,
    R12 für eine Gruppe der Formel (Xa) steht,
    D für -CO-, -COO-, -S-, -SO-, -SO2-, -O-, -NR65-, -SiR70R71-, -POR72-, -CR63=CR64- oder -C≡C- steht,
    E für -OR69, -SR69, -NR65R66, -COR68, -COOR67, -CONR65R66, -CN oder F steht,
    G für E oder eine C1-C18-Alkylgruppe, eine C3-C18-Cycloalkylgruppe, eine C6-C24-Arylgruppe, eine C6-C24-Arylgruppe, die durch F, C1-C18-Alkyl oder C1-C18-Alkyl, das durch O unterbrochen ist, substituiert ist, eine C2-C30-Heteroarylgruppe oder eine C2-C30-Heteroarylgruppe, die durch F, C1-C18-Alkyl oder C1-C18-Alkyl, das durch O unterbrochen ist, substituiert ist, steht,
    R63 und R64 unabhängig voneinander für H, C6-C18-Aryl, C6-C18-Aryl, das durch C1-C18-Alkyl oder C1-C18-Alkoxy substituiert ist, C1-C18-Alkyl oder C1-C18-Alkyl, das durch -O- unterbrochen ist, stehen,
    R65 und R66 unabhängig voneinander für eine C6-C18-Arylgruppe, ein C6-C18-Aryl, das durch C1-C18-Alkyl oder C1-C18-Alkoxy substituiert ist, eine C1-C18-Alkylgruppe oder eine C1-C18-Alkylgruppe, die durch -O- unterbrochen ist, stehen, oder
    R65 und R66 zusammen einen fünf- oder sechsgliedrigen Ring bilden,
    R67 für eine C6-C18-Arylgruppe, eine C6-C18-Arylgruppe, die durch C1-C18-Alkyl oder C1-C18-Alkoxy substituiert ist, eine C1-C18-Alkylgruppe oder eine C1-C18-Alkylgruppe, die durch -O- unterbrochen ist, steht,
    R68 für H, eine C6-C18-Arylgruppe, eine C6-C18-Arylgruppe, die durch C1-C18-Alkyl oder C1-C18-Alkoxy substituiert ist, eine C1-C18-Alkylgruppe oder eine C1-C18-Alkylgruppe, die durch -O- unterbrochen ist, steht,
    R69 für ein C6-C18-Aryl, ein C6-C18-Aryl, das durch C1-C18-Alkyl oder C1-C18-Alkoxy substituiert ist, eine C1-C18-Alkylgruppe oder eine C1-C18-Alkylgruppe, die durch -O- unterbrochen ist, steht,
    R70 und R71 unabhängig voneinander für eine C1-C18-Alkylgruppe, eine C6-C18-Arylgruppe oder eine C6-C18-Arylgruppe, die durch C1-C18-Alkyl substituiert ist, stehen und
    R72 für eine C1-C18-Alkylgruppe, eine C6-C18-Arylgruppe oder eine C6-C18-Arylgruppe, die durch C1-C18-Alkyl substituiert ist, steht, mit der Maßgabe, dass mindestens einer der Substituenten R1, R2, R3, R4, R6, R8 und R12 für eine Gruppe der Formel (Xa) steht.
  2. Verbindung nach Anspruch 1, bei der es sich um eine Verbindung der Formel
    Figure imgb0517
    wobei R4 für H, F, eine C3-C18-Cycloalkylgruppe, die gegebenenfalls durch G substituiert sein kann, eine C6-C24-Arylgruppe, die gegebenenfalls durch G substituiert sein kann, eine C2-C30-Heteroaryl-gruppe, die gegebenenfalls durch G substituiert sein kann, eine Gruppe der Formel -Si(R91)(R92)(R93), (Xa) oder (Xb) steht, eine Verbindung der Formel
    Figure imgb0518
    oder
    Figure imgb0519
    wobei (Xa), (Xb), G, X1, X2, R91, R92, R93, R1, R2, R3, R5, R6, R7, R8 und R9 wie in Anspruch 1 definiert sind, handelt.
  3. Verbindung nach Anspruch 2, bei der es sich um eine Verbindung der Formel
    Figure imgb0520
    oder
    Figure imgb0521
    wobei
    X1, X2, R1, R2, R3, R5, R6, R7, R8 und R9 wie in Anspruch 1 definiert sind,
    handelt.
  4. Verbindung nach Anspruch 2, bei der es sich um eine Verbindung der Formel
    Figure imgb0522
    wobei
    X1 für O oder S steht,
    R1 für eine Gruppe der Formel
    Figure imgb0523
    steht und R3 für eine Gruppe der Formel (Xa) steht oder
    R1 für eine Gruppe der Formel
    Figure imgb0524
    steht und R3 für eine Gruppe der Formel (Xa) steht oder
    R1 und R3 unabhängig voneinander für eine Gruppe der Formel (Xa) stehen oder
    R1 für eine Gruppe der Formel (Xa) oder (Xb) steht und R3 für H steht, oder
    eine Verbindung der Formel
    Figure imgb0525
    wobei
    X1 für O oder S steht,
    R1 für eine Gruppe der Formel
    Figure imgb0526
    steht und R3 für eine Gruppe der Formel (Xa) steht oder
    R1 für eine Gruppe der Formel (Xa) steht und R3 für
    eine Gruppe der Formel
    Figure imgb0527
    steht oder
    R1 für eine Gruppe der Formel
    Figure imgb0528
    steht und R3 für eine Gruppe der Formel (Xa) steht oder
    R1 für eine Gruppe der Formel (Xa) steht und R3 für
    eine Gruppe der Formel
    Figure imgb0529
    steht oder
    R1 und R3 unabhängig voneinander für eine Gruppe der Formel (Xa) stehen oder
    R1 für eine Gruppe der Formel (Xa) oder (Xb) steht und R3 für H steht, oder
    R1 für H steht und R3 für eine Gruppe der Formel (Xa) oder (Xb) steht und
    R13 und R13' unabhängig voneinander für H oder eine C1-C25-Alkylgruppe stehen,
    handelt.
  5. Verbindung nach Anspruch 2 oder 3, bei der es sich um eine Verbindung der Formel
    Figure imgb0530
    wobei
    X1 für O oder S steht,
    R1 für eine Gruppe der Formel
    Figure imgb0531
    steht und R6 für eine Gruppe der Formel (Xa) oder (Xb) steht oder
    R1 für eine Gruppe der Formel (Xa) oder (Xb) steht und R6 für eine Gruppe der Formel
    Figure imgb0532
    steht oder
    R1 und R6 unabhängig voneinander für eine Gruppe der Formel (Xa) stehen,
    R5 für H oder eine C1-C25-Alkylgruppe steht und
    R13 und R13' unabhängig voneinander für H oder eine C1-C25-Alkylgruppe stehen,
    handelt.
  6. Verbindung nach Anspruch 2 oder 3, bei der es sich um eine Verbindung der Formel
    Figure imgb0533
    wobei
    X1 und X2 unabhängig voneinander für O oder S stehen,
    R1 für eine Gruppe der Formel
    Figure imgb0534
    steht und R8 für eine Gruppe der Formel (Xa) steht oder
    R1 für eine Gruppe der Formel (Xa) steht und R8 für
    eine Gruppe der Formel
    Figure imgb0535
    steht
    oder
    R1 und R8 unabhängig voneinander für eine Gruppe der Formel (Xa) stehen und
    R13 und R13' unabhängig voneinander für H oder eine C1-C25-Alkylgruppe stehen,
    handelt.
  7. Verbindung nach einem der Ansprüche 1 bis 6, wobei es sich bei der Gruppe der Formel (Xa) um eine Gruppe der Formel
    Figure imgb0536
    Figure imgb0537
    Figure imgb0538
    Figure imgb0539
    Figure imgb0540
    Figure imgb0541
    Figure imgb0542
    Figure imgb0543
    Figure imgb0544
    Figure imgb0545
    Figure imgb0546
    Figure imgb0547
    wobei R10 für eine C1-C25-Alkylgruppe steht, handelt.
  8. Verbindung nach einem der Ansprüche 1 bis 6, wobei es sich bei der Gruppe der Formel (Xb) um eine Gruppe der Formel
    Figure imgb0548
    Figure imgb0549
    Figure imgb0550
    Figure imgb0551
    Figure imgb0552
    Figure imgb0553
    Figure imgb0554
    Figure imgb0555
    Figure imgb0556
    Figure imgb0557
    Figure imgb0558
    wobei R10 für eine C1-C25-Alkylgruppe steht und R11 für eine C1-C25-Alkylgruppe steht,
    handelt.
  9. Verbindung nach einem der Ansprüche 1 bis 8, bei der es sich um eine Verbindung der Formel
    Figure imgb0559
    wobei
    X1 für O oder S steht,
    R1 für eine Gruppe der Formel
    Figure imgb0560
    steht und R3 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht oder
    R1 für eine Gruppe der Formel
    Figure imgb0561
    steht und R3 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht oder
    R1 und R3 unabhängig voneinander für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 stehen oder
    R1 für eine Gruppe der Formel (XIIIa), (XIIIb), (XIIIc), (XIIId), (XIIIf), (XIIIg), (XIIIs) oder (XIIIt) gemäß Anspruch 8 steht und R3 für H steht, oder
    eine Verbindung der Formel
    Figure imgb0562
    wobei
    X1 für O oder S steht,
    R1 für eine Gruppe der Formel
    Figure imgb0563
    steht und R3 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht oder
    R1 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht und R3 für eine Gruppe der Formel
    Figure imgb0564
    steht oder
    R1 für eine Gruppe der Formel
    Figure imgb0565
    steht und R3 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht oder
    R1 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht und R3 für eine Gruppe der Formel
    Figure imgb0566
    steht oder
    R1 und R3 unabhängig voneinander für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 stehen oder
    R1 für eine Gruppe der Formel (XIIIa), (XIIIb), (XIIIc), (XIIId), (XIIIf), (XIIIg), (XIIIs) oder (XIIIt) gemäß Anspruch 8 steht und R3 für H steht oder
    R1 für H steht und R3 für eine Gruppe der Formel (XIIIa), (XIIIb), (XIIIc), (XIIId), (XIIIf), (XIIIg), (XIIIs) oder (XIIIt) gemäß Anspruch 8 steht und R13 für H oder eine C1-C25-Alkylgruppe steht, handelt.
  10. Verbindung nach einem der Ansprüche 1 bis 8, bei der es sich um eine Verbindung der Formel
    Figure imgb0567
    wobei
    X1 für O oder S steht,
    R5 für H oder eine C1-C25-Alkylgruppe steht,
    R1 für eine Gruppe der Formel
    Figure imgb0568
    steht und R6 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht oder
    R1 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht und R6 für eine Gruppe der Formel
    Figure imgb0569
    steht oder
    R1 und R6 unabhängig voneinander für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 stehen und R13 für H oder eine C1-C25-Alkylgruppe steht,
    handelt.
  11. Verbindung nach einem der Ansprüche 1 bis 8, bei der es sich um eine Verbindung der Formel
    Figure imgb0570
    wobei
    X1 und X2 unabhängig voneinander für O oder S stehen,
    R1 für eine Gruppe der Formel
    Figure imgb0571
    steht und R8 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht oder
    R1 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 steht und R8 für eine Gruppe der Formel
    Figure imgb0572
    steht oder
    R1 und R8 unabhängig voneinander für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) gemäß Anspruch 7 stehen und R13 für H oder eine C1-C25-Alkylgruppe steht,
    handelt.
  12. Verbindung nach einem der Ansprüche 1 bis 8, bei der es sich um eine Verbindung der Formel
    Figure imgb0573
    wobei
    X für O oder S steht,
    R1 für eine Gruppe der Formel
    Figure imgb0574
    steht und R3 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) steht oder
    R1 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) steht und R3 für eine Gruppe der Formel
    Figure imgb0575
    steht oder
    R1 für eine Gruppe der Formel
    Figure imgb0576
    steht und R3 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) steht oder
    R1 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) steht
    und R3 für eine Gruppe der Formel
    Figure imgb0577
    steht oder
    R1 und R3 unabhängig voneinander für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) stehen oder
    R1 für eine Gruppe der Formel (XIIIa), (XIIIb), (XIIIc), (XIIId), (XIIIf), (XIIIg), (XIIIs) oder (XIIIt) steht und R3 für H steht, oder
    eine Verbindung der Formel
    Figure imgb0578
    wobei
    X1 für O oder S steht,
    R1 für eine Gruppe der Formel
    Figure imgb0579
    steht und R3 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) steht oder
    R1 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) steht
    und R3 für eine Gruppe der Formel
    Figure imgb0580
    steht oder
    R1 für eine Gruppe der Formel
    Figure imgb0581
    steht und R3 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) steht oder
    R1 für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) steht und R3 für eine Gruppe der Formel
    Figure imgb0582
    steht oder
    R1 und R3 unabhängig voneinander für eine Gruppe der Formel (XIIa), (XIIb), (XIIc), (XIId), (XIIf), (XIIg) oder (XIIv) stehen oder
    R3 für eine Gruppe der Formel (XIIIa), (XIIIb), (XIIIc), (XIIId), (XIIIf), (XIIIg), (XIIIs) oder (XIIIt) steht und R1 für H steht und R13 für eine C1-C25-Alkylgruppe steht,
    handelt.
  13. Elektronische Vorrichtung, umfassend eine Verbindung nach einem der Ansprüche 1 bis 12.
  14. Elektronische Vorrichtung nach Anspruch 13, bei der es sich um eine Elektrolumineszenzvorrichtung handelt.
  15. Elektronentransportschicht, Lochblockierungsschicht oder Emissionsschicht, umfassend eine Verbindung nach einem der Ansprüche 1 bis 12.
  16. Emissionsschicht nach Anspruch 15, umfassend eine Verbindung nach einem der Ansprüche 1 bis 12 als Wirtsmaterial in Kombination mit einem phosphoreszierenden Emitter.
  17. Apparatur, ausgewählt aus der Gruppe bestehend aus stationären Bildschirmen, mobilen Bildschirmen, Beleuchtungseinheiten, Tastaturen, Kleidungsstücken, Möbeln und Tapeten, umfassend die organische elektronische Vorrichtung nach Anspruch 13 oder 14 oder die Elektronentransportschicht, Lochblockierungsschicht und/oder Emissionsschicht nach Anspruch 15.
  18. Verwendung der Verbindungen der Formel I nach einem der Ansprüche 1 bis 12 für elektrophotographische Photorezeptoren, photoelektrische Umwandler, organische Solarzellen, Schaltelemente, organische lichtemittierende Feldeffekttransistoren, Bildsensoren, Farbstofflaser, Elektrolumineszenzvorrichtungen, als Transportmaterial in einer Lochblockierungsschicht und/oder Emissionsschicht und/oder als Elektronenblockierungsschicht.
EP15709513.4A 2014-03-17 2015-03-13 Dibenzofurane und dibenzothiophene Active EP3119770B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14160197 2014-03-17
PCT/EP2015/055319 WO2015140073A1 (en) 2014-03-17 2015-03-13 New dibenzofurans and dibenzothiophenes

Publications (2)

Publication Number Publication Date
EP3119770A1 EP3119770A1 (de) 2017-01-25
EP3119770B1 true EP3119770B1 (de) 2018-05-02

Family

ID=50277129

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15709513.4A Active EP3119770B1 (de) 2014-03-17 2015-03-13 Dibenzofurane und dibenzothiophene

Country Status (4)

Country Link
US (1) US10217946B2 (de)
EP (1) EP3119770B1 (de)
TW (1) TWI663162B (de)
WO (1) WO2015140073A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648997B2 (ja) * 2014-07-09 2020-02-19 三星電子株式会社Samsung Electronics Co., Ltd. 縮合環化合物及びそれを含む有機発光素子
KR102168778B1 (ko) * 2015-04-27 2020-10-22 코니카 미놀타 가부시키가이샤 유기 일렉트로루미네센스 소자용 재료, 유기 일렉트로루미네센스 소자, 표시 장치 및 조명 장치
JP2016207954A (ja) * 2015-04-28 2016-12-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子及び有機エレクトロルミネッセンス素子材料
JPWO2016190014A1 (ja) * 2015-05-22 2018-03-15 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子用材料の製造方法及び有機エレクトロルミネッセンス素子
JP6647514B2 (ja) * 2015-12-04 2020-02-14 東洋紡株式会社 有機発光素子ならびにそれに用いる発光材料および化合物
WO2017104242A1 (ja) * 2015-12-15 2017-06-22 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
EP3190164B1 (de) * 2016-01-05 2019-07-24 Samsung Electronics Co., Ltd Zusammensetzung, dünnschicht mit der zusammensetzung und organische lichtemittierende vorrichtung mit der zusammensetzung oder der dünnschicht
KR20230010818A (ko) * 2016-04-11 2023-01-19 메르크 파텐트 게엠베하 디벤조푸란 및/또는 디벤조티오펜 구조를 포함하는 헤테로시클릭 화합물
TWI745476B (zh) 2016-11-09 2021-11-11 德商麥克專利有限公司 用於有機電激發光裝置之材料
JP7127295B2 (ja) * 2017-03-13 2022-08-30 Jnc株式会社 フルオロジベンゾフラン環を有する化合物、液晶組成物および液晶表示素子
US20200006687A1 (en) * 2017-03-21 2020-01-02 Konica Minolta, Inc. Organic electroluminescence element
WO2018174678A1 (ko) * 2017-03-24 2018-09-27 희성소재(주) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
KR101943428B1 (ko) 2017-03-24 2019-01-30 엘티소재주식회사 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
US10221153B2 (en) 2017-05-03 2019-03-05 Saint Louis University Dibenzothiophene compounds
CN107235891B (zh) * 2017-05-24 2020-02-21 北京八亿时空液晶科技股份有限公司 一种4-溴咔唑的制备方法
KR102170390B1 (ko) * 2018-07-25 2020-10-27 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4427947B2 (ja) 2002-11-18 2010-03-10 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
TW200619300A (en) 2004-08-31 2006-06-16 Sumitomo Chemical Co Luminescent-polymer composition and luminescent -polymer device
JP4830126B2 (ja) * 2008-03-22 2011-12-07 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子及び表示装置
US20100295027A1 (en) 2009-05-22 2010-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
CN102823015B (zh) 2010-03-31 2014-05-14 出光兴产株式会社 有机电致发光元件用材料和使用其的有机电致发光元件
KR101862881B1 (ko) 2010-03-31 2018-05-31 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그것을 이용한 유기 전기발광 소자
WO2012096241A1 (ja) * 2011-01-12 2012-07-19 コニカミノルタホールディングス株式会社 有機エレクトロルミネッセンス素子、照明装置及び表示装置
JP6056763B2 (ja) 2011-10-21 2017-01-11 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子
CN107501244B (zh) 2011-11-22 2022-05-03 出光兴产株式会社 芳香族杂环衍生物、有机电致发光元件用材料以及有机电致发光元件
US9530969B2 (en) 2011-12-05 2016-12-27 Idemitsu Kosan Co., Ltd. Material for organic electroluminescence device and organic electroluminescence device
WO2013145923A1 (ja) 2012-03-30 2013-10-03 出光興産株式会社 有機エレクトロルミネッセンス素子
CN102850334A (zh) 2012-08-28 2013-01-02 李崇 一种以二苯并呋喃为核心骨架的衍生物化合物及其在oled上的应用
KR101672074B1 (ko) 2013-05-07 2016-11-02 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 전자 소자
JP6494219B2 (ja) 2013-10-04 2019-04-03 キヤノン株式会社 静電気からの保護機能を有する発光装置及び撮像装置
US10403825B2 (en) * 2014-02-27 2019-09-03 Universal Display Corporation Organic electroluminescent materials and devices

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
TW201605842A (zh) 2016-02-16
TWI663162B (zh) 2019-06-21
US20170098781A1 (en) 2017-04-06
EP3119770A1 (de) 2017-01-25
US10217946B2 (en) 2019-02-26
WO2015140073A1 (en) 2015-09-24

Similar Documents

Publication Publication Date Title
EP3119770B1 (de) Dibenzofurane und dibenzothiophene
EP3318566B1 (de) Azadibenzofurane für elektronische anwendungen
EP3072943B1 (de) Dibenzofuran/carbazol-substituierte benzonitrile
EP3075737B1 (de) Benzimidazolo[1,2-a]benzimidazol mit aryl- oder heteroarylnitrilgruppen für organische leuchtdioden
EP2651904B1 (de) Bispyrimidine für elektronische anwendungen
EP3232485A1 (de) Benzimidazo[1,2-a]benzimidazol-derivate für elektronische anwendungen
EP2776443A1 (de) 4h-imidazo[1,2-a]imidazole für elektronische anwendungen
EP3034507A1 (de) 1-funktionalisierte Dibenzofurane und Dibenzothiophene für organische Leuchtdioden (OLEDS)
EP3356368B1 (de) Benzimidazolo[1,2-a]benzimidazol mit benzimidazolo[1,2-a]benzimidazolylgruppen, carbazolylgruppen, benzofurangruppen oder benzothiophengruppen für organische leuchtdioden
EP3174885B1 (de) 2,9-funktionalisierte benzimidazolo[1,2-a]benzimidazole als wirte für organische lichtemittierende dioden (oleds)
WO2015014791A1 (en) Benzimidazolo[2,1-b][1,3]benzothiazoles for electronic applications
EP3150604A1 (de) Benzimidazolo[1,2-a]benzimidazol mit benzimidazolo[1,2-a]benzimidazolylgruppen, carbazolylgruppen, benzofurangruppen oder benzothiophengruppen für organische leuchtdioden
WO2017093958A1 (en) Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
EP3356369B1 (de) Triazingruppen tragende benzimidazolo[1,2-a]benzimidazol für organische leuchtdioden
EP3034506A1 (de) 4-funktionalisierte Carbazolderivate für elektronische Anwendungen
EP3070144B1 (de) Siebengliedrige ringverbindungen
EP3061759B1 (de) Nitrilsubstituierte dibenzofurane
WO2015114102A1 (en) Silyl substituted azadibenzofurans and azadibenzothiophenes
US10968229B2 (en) Seven-membered ring compounds
WO2016079667A1 (en) Indole derivatives for electronic applications
WO2016067261A1 (en) 5-((benz)imidazol-2-yl)benzimidazo[1,2-a]benzimidazoles for electronic applications

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20161007

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171017

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 995103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015010681

Country of ref document: DE

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180802

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180803

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 995103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015010681

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190313

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190313

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180903

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180502

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 10