EP3119735A1 - Installation de production d'explosif par melange avec un reactif de gazeification - Google Patents

Installation de production d'explosif par melange avec un reactif de gazeification

Info

Publication number
EP3119735A1
EP3119735A1 EP15719775.7A EP15719775A EP3119735A1 EP 3119735 A1 EP3119735 A1 EP 3119735A1 EP 15719775 A EP15719775 A EP 15719775A EP 3119735 A1 EP3119735 A1 EP 3119735A1
Authority
EP
European Patent Office
Prior art keywords
pipe
matrix
upstream
explosive
mixer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15719775.7A
Other languages
German (de)
English (en)
Other versions
EP3119735B1 (fr
Inventor
Gilles Jauffret
Cédric GENRE
Didier HUMBERT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitrates et Innovation SAS
Original Assignee
Nitrates et Innovation SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitrates et Innovation SAS filed Critical Nitrates et Innovation SAS
Priority to PL15719775T priority Critical patent/PL3119735T3/pl
Publication of EP3119735A1 publication Critical patent/EP3119735A1/fr
Application granted granted Critical
Publication of EP3119735B1 publication Critical patent/EP3119735B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B23/00Compositions characterised by non-explosive or non-thermic constituents
    • C06B23/002Sensitisers or density reducing agents, foam stabilisers, crystal habit modifiers
    • C06B23/004Chemical sensitisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/40Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable
    • B65H75/42Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable attached to, or forming part of, mobile tools, machines or vehicles
    • B65H75/425Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material mobile or transportable attached to, or forming part of, mobile tools, machines or vehicles attached to, or forming part of a vehicle, e.g. truck, trailer, vessel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H75/00Storing webs, tapes, or filamentary material, e.g. on reels
    • B65H75/02Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks
    • B65H75/34Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables
    • B65H75/38Cores, formers, supports, or holders for coiled, wound, or folded material, e.g. reels, spindles, bobbins, cop tubes, cans, mandrels or chucks specially adapted or mounted for storing and repeatedly paying-out and re-storing lengths of material provided for particular purposes, e.g. anchored hoses, power cables involving the use of a core or former internal to, and supporting, a stored package of material
    • B65H75/44Constructional details
    • B65H75/4457Arrangements of the frame or housing
    • B65H75/446Arrangements of the frame or housing for releasably or permanently attaching the frame to a wall, on a floor or on a post or the like
    • B65H75/4463Swivelling attachment
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B47/00Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase
    • C06B47/14Compositions in which the components are separately stored until the moment of burning or explosion, e.g. "Sprengel"-type explosives; Suspensions of solid component in a normally non-explosive liquid phase, including a thickened aqueous phase comprising a solid component and an aqueous phase
    • C06B47/145Water in oil emulsion type explosives in which a carbonaceous fuel forms the continuous phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42DBLASTING
    • F42D1/00Blasting methods or apparatus, e.g. loading or tamping
    • F42D1/08Tamping methods; Methods for loading boreholes with explosives; Apparatus therefor
    • F42D1/10Feeding explosives in granular or slurry form; Feeding explosives by pneumatic or hydraulic pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/33Hollow or hose-like material

Definitions

  • the present invention relates to the field of the preparation and implementation of explosive products including explosive emulsions used in the extraction of raw material and mining industry.
  • a discontinuous aqueous phase consisting of various oxidizing salts in aqueous solution.
  • ammonium nitrate sodium nitrate
  • calcium nitrate The most frequently used oxidizing raw materials in this industry are: ammonium nitrate, sodium nitrate, calcium nitrate. With regard to fuels, it is gas oil that is either pure or mixed with new or used mineral oils, especially recycled motor oil.
  • the present invention relates to the manufacture of explosive charges from an emulsion or matrix that is sensitized by mixing with reagents that react with the emulsion and generate a chemical gasification. More particularly, but in a nonlimiting manner, for reacting with ammonium of said emulsion matrix (hereinafter M), a gasification reagent (hereinafter R) based on sodium nitrite or equivalent is used. in the presence of a catalyst such as an acid, especially acetic acid of the following chemical reaction: NH 4 + + NO 2 - ⁇ N 2 + 2H 2 O
  • the present invention relates more particularly to the implementation of these products in a hole in which a priming charge and a detonator wire are placed and in which the explosive products (emulsion mixture + gasification reagent) are transferred using a flexible hose.
  • EP338707 describes an installation in which the two emulsion and gasification reagent components are mixed at a sort of rigid lance or gun which is introduced in small quantities into a hole. It is not an installation in which products are remotely stored in larger quantities in a truck and transferred using pipe (s) unwound (s) from a reel to a load hole . This type of installation can only be used to load holes with small diameters (less than 50mm) as it is repeated several times in this document.
  • the present invention relates more particularly to a process in which the emulsion and porosity reactants are mixed at the site of use of the explosive and more particularly in a hole, in particular a borehole, which the an explosive charge is supplied by means of a transfer line from an installation where the emulsion matrix is made and / or stored at a distance from the hole.
  • the hole has a depth of 5 to 30m and a diameter of 5 to 50 cm.
  • the basic raw material, the emulsion matrix can be produced on site by a modular plant as described in PCT / FR2014 / 050032 or by mobile installation called UMFE (Mobile Explosive Manufacturing Unit) therefore trucks carrying materials useful for manufacturing that go to the site of use (mines, quarries or construction site) for the production of explosives.
  • UMFE Mobile Explosive Manufacturing Unit
  • the reactants and catalyst are introduced together and mixed with the emulsion matrix in a static mixer upstream of the loading line whose downstream end is introduced into the mine hole for pump the explosive product.
  • a static mixer upstream of the loading line whose downstream end is introduced into the mine hole for pump the explosive product.
  • Gasification begins after the introduction of the gasification reagent and the mixture begins to be explosive from the introduction of the gasification reagent therefore in the transfer pipe which creates pressure increase constraints in the pipe and risks to safety because the pipe is filled with explosive.
  • one can not vary the density in real time during filling of the hole because there is a relatively large and reliably indeterminable product contained in the pipe to be taken into account.
  • Another problem underlying the present invention relates to the implementation of explosive mixtures of different densities during filling according to the depth of the hole or between different holes.
  • it is advantageous to be able to produce a product of higher density, about 1.2 in the bottom of the hole and a lightened density of about 0.8 at the top of the column.
  • the downhole is more difficult to destroy and requires more explosive volumetric energy than the upper parts, and an optimal explosion in a borehole than the explosive energy column.
  • the rock mass to be destroyed varies in composition and volume between the borehole and the free surface, depending on the depth and also because of the deviations resulting from the inclination of the substantially cylindrical borehole, and from one hole to another because of the different inclinations varying from 0 to 25 ° of the said holes and the heterogeneity of the rock mass composition.
  • the justification for making an explosive product lower in density is also to reduce the cost of shooting because if the density decreases, this means that there is less mass of product and therefore a lower cost of explosive product.
  • US 2003/029346 and WO 97/24298 disclose a method for producing explosive products by mixing an emulsion and a gasification reagent.
  • US 2003/029346 and WO 97/24298 it is mentioned that the relative amounts of an emulsion and a gasification reagent are varied in order to vary the density of the mixture obtained.
  • US 2003/0229346 the modes of transfer of the explosive product and / or of the two components (emulsion and gasification reagent) are not discussed.
  • the two components (emulsion and gasification reagent) are hand-mixed in Example 1 or using a spray nozzle Example 2).
  • this embodiment has the following drawbacks.
  • this complex helical component pipe is relatively expensive and fragile.
  • the outer pipe containing the most dangerous product, namely the gasification reagent is exposed in the outer part of the pipe which undergoes fatigue and wear due to friction against the walls of the hole, when its winding and unwinding and manipulation in the hole.
  • the arrival of the reagent transfer pipe R inside the supply pipe of the matrix M is incompatible with the shortening of the pipe at this position.
  • the gasification reagent must be conveyed over a helical path and therefore over a longer distance of pipe than the straight central pipe of the emulsion because of the helical disposition of the peripheral pipe which requires losses of load and therefore greater pumping force.
  • FR 2 131329 discloses a method for facilitating the transfer of a viscous explosive into a cavity, by conveying two fluids in coaxial pipes to form a viscous explosive by mixing in a static mixer at its downstream end.
  • the pipe is not implemented from a drum on which it is wound at one end and then unwound.
  • the feeding and the implementation of coaxial pipes that can be rolled up and unrolled on a drum raise difficulties because of the twisting of said pipes during the windings and unwinding of said pipes on said winder including twists at the parts of pipes not wound upstream of the drum because these pipe parts are rotated on themselves relative to said axis of rotation of said drum.
  • the object of the present invention is therefore to provide an improved installation and method for the production of explosive product comprising the implementation of flexible loading pipes in a hole from a drum on which they are wound which are more suitable and therefore more reliable. , more secure and simpler to implement and implement on the one hand and which allow to:
  • the present invention provides an installation for producing explosive product in situ by mixing (a) a viscous product, called a matrix, comprising an inverse emulsion of an aqueous phase of oxidant and oily phase of fuel and (b) ) a liquid product containing a chemical compound capable of reacting with said matrix to increase its explosive character by gasification, called a gasification reagent, said installation comprising at least:
  • a first transfer circuit of said matrix comprising at least a first pipe at least partially flexible cooperating with a first pump and a first valve, able to transfer said matrix separately to a first mixer, preferably a first static mixer , and
  • a second transfer circuit of said gasification reagent comprising at least a second pipe at least partially flexible cooperating with a second pump and a second valve, able to transfer said gasification reagent separately to said first mixer, and
  • said second pipe is disposed entirely inside the first pipe forming a set of coaxial pipes, said first mixing device being disposed inside the first pipe at its downstream end, said second pipe terminating just upstream of said pipe; first mixer.
  • the outer diameter of said second pipe is smaller than the internal diameter of said first pipe so that said matrix is conveyed without contact with the gasification reagent, in the annular space between the two pipes on the one hand, and on the other hand, the matrix flow makes it possible to arrange the second pipe substantially coaxially with the first pipe without the need for a centralizer, the gasification reagent being conveyed separately without contact with the matrix until it opens in the static mixer in which an intimate mixture of the two products is produced to produce the explosive product at the outlet of the static mixer at the downstream end of the first pipe.
  • upstream and downstream the position with reference to the flow direction of the fluids within the pipes from the tanks to the first mixer and to the outlet opening into the dispensing hole of the explosive product at the outlet of the first mixer.
  • downstream end of the coaxial pipe assembly is inserted into a hole to be filled with explosive material exiting said first mixer.
  • the first pipe is in contact with the outside and in particular the walls of the hole during operations protecting the other equipment and in particular avoiding damage to the detonator wire, among others; and, on the other hand, by controlling the relative flow rates of the matrix and the gasification reagent, controlling in almost real time the density of the explosive product obtained, as the hole is filled continuously and thus varying the density of the product.
  • explosive product namely its explosive power according to the depth at which it is arranged in the hole or from one hole to another in different holes as explained below in connection with the method according to the invention.
  • static mixer is understood herein to mean, in a manner known to those skilled in the art, a device containing mechanical elements able to create a modification in the movement of a moving fluid traveling through it creating vortex movements allowing the mixing without adding energy to move said mechanical elements other than that provided by the movement of the fluid.
  • the static mixers consist of a tube containing one or more three-dimensional structures favoring the appearance of vortices during the passage of a flow of fluid in the longitudinal direction of the tube.
  • the coaxial pipe assembly is connected to a reel drum, and is at least partially or coactably wound on said reel drum, the downstream end of the coaxial pipe assembly being disposed in or out of above an explosion hole, preferably a substantially cylindrical borehole wherein an explosive charge and a detonator connected to the surface with a detonator wire have been placed.
  • a reel drum of 30 to 80 cm in diameter is used for 10 turns of winding pipes 30 to 100m long with external diameters of first pipe 30 to 50mm and internal diameters of 25 to 40mm and external diameters.
  • second pipe from 5 to 15 mm with an internal diameter of 3 to 10mm.
  • said first and second pipes are connected coaxially to each other at their upstream ends by a first connecting piece comprising a sleeve with an external cylindrical wall and an internal bent piece, said first connecting piece. preferably being integral with a winding drum on which is winded at least in part or able to be wound up said set of coaxial pipes, said first connecting piece comprising:
  • a first inlet orifice forming an upstream opening of said sleeve and arranged axially in a longitudinal direction (XX '), the cylindrical wall of said sleeve, said first inlet orifice being connected to a part, preferably a rigid part, of the said first transfer circuit of said matrix, and
  • a second inlet orifice disposed laterally at the level of the cylindrical wall of said sleeve, forming an upstream opening of said bent piece passing through the cylindrical wall of said sleeve and disposed perpendicular to said longitudinal direction (XX '), said second orifice inlet portion being connected to a portion, preferably a rigid portion, of said second transfer circuit of said gasification reagent, and
  • a first outlet orifice forming an opening downstream of said sleeve and disposed axially in said longitudinal direction (XX ') of the cylindrical wall of said sleeve, said first outlet orifice being connected by a first rotary joint fitting to the upstream end; a rigid portion of said first pipe upstream of a said winding drum, a rigid portion of said first pipe upstream of a said winding drum, and
  • a second outlet orifice arranged axially in said longitudinal direction (XX ') of the cylindrical wall of said sleeve, forming an opening downstream of said bent piece inside said sleeve, said second outlet orifice being connected by a second connection with rotating joints at the upstream end of said second transfer pipe of said gasification reagent.
  • said first and second circuits are separated and extend from said first and second reservoirs in different directions and said first part provides the coaxial connection of the first and second two pipes downstream thereof, the two flows of said matrix and said reagent, however, remaining separated to the first mixer.
  • Said first pipe or outer pipe is secured to said second pipe or inner pipe only at a connecting piece and supply upstream of said drum described above.
  • the attachment of the upstream ends of said first and second pipes to said first and second outlets of said first connecting piece is via two first and second rotary joint couplings each allowing separately the rotation on itself with respect to said longitudinal axis (XX ') of the upstream ends of said first and second pipes respectively, said first connecting piece and said rotary joint fittings being arranged upstream of said winding drum; so that said first and second outlets are arranged in the axis of rotation XX 'of said drum.
  • This feature is particularly advantageous because it avoids the twists of said first and second pipes during winding and unwinding of said pipes on said winder when the upstream uncoiled portions of said pipes are rotated on itself with respect to said axis of rotation of said drum in a differentiated manner.
  • Fittings of the type referred to as "rotary joint coupling” are well known to those skilled in the art, and consist essentially of two parts interconnected by O-rings and sets of ball bearings allowing the rotary movement of one of them relative to the other about a common axis, each part being adapted to be connected to a separate element.
  • it is a tubular connecting piece adapted to be connected to tubular elements.
  • said second pipe comprises at its end downstream, inside said first pipe, a valve adapted to open and let the flow of said gasification reagent under the pressure of said flow when the second pump is actuated and able to remain closed and prevent gasification reagent leakage when the second pump is deactivated.
  • This characteristic is important to allow a reliable and accurate control of the variation in real time during filling of the hole of the density of the explosive product obtained by mixing said matrix and said gasification reagent. More particularly, according to other characteristics:
  • said first pipe comprises at least one rigid part bent of first pipes assembled to a flexible part of first pipe in a leaktight and reversible manner by a collar, said rigid bent part extending in part upstream of said drum and being integral with said it and adapted to be rotated about the axis of rotation of said drum when said drum is actuated in rotation, said flexible portion of first pipe being able to be wound around said drum, and
  • said second pipe comprises two flexible parts interconnected by a rigid and reversible connection of the double union type, the flexible portion of said second pipe disposed upstream of said double union connection being shorter than the flexible portion of said second pipe disposed downstream, said double union type connection being disposed at or upstream of said drum, preferably near said collar.
  • a hollow tubular abutment comprising a longitudinal central opening is removably the downstream end of the first pipe for retaining said first mixer inside the first pipe by passing the explosive product through the central opening of said stop, a thread on a cylindrical outer wall for screwing and so fix removably said abutment against the inner wall of said first pipe, preferably with a screw wrench adapted to cooperate with the downstream end of said longitudinal central opening to screw inside said first pipe or unscrew the said stop to take it out of said first pipe.
  • said first mixer is a static mixer comprising a plurality of fins each having a helical surface, preferably extending in its axial direction over a length corresponding to a pitch of the corresponding helical curve, said helical surfaces being supported by a same reinforcing rod to which they are attached juxtaposed in the longitudinal direction of said first pipe, said successive helical surfaces being angularly offset in rotation with respect to their common virtual axis helical surface substantially coinciding with a longitudinal axis of said first pipe coaxial axis with said first pipe, the diameter of said helical surfaces being substantially identical or just sufficiently smaller than the internal diameter of the first pipe to allow the rotation of said fins so the effect of the pressure of the flows of matrix and reagent mixed through them.
  • an automated central control and control unit comprising electronic means controlled by software with a keyboard / or graphical interface, makes it possible to control and control the respective quantities and flow rates of said matrix and / or preferably said gasification reagent. and varying the density of the explosive product obtained by controlling and controlling first and / or second valves and / or controlling the speeds of said first and / or second pumps, preferably said central unit being supported on a motor vehicle, more preferably said vehicle supporting said first and second tanks and said first and second pump.
  • the present invention also provides a method for producing an explosive product in situ using an installation according to the invention comprising the steps in which: 1) a viscous product of said matrix is transferred, and a liquid product of said reagent gasification, in said first and second coaxial pipes, and
  • the pipe can be removed gradually as the hole is filled by wrapping the pipe on the drum.
  • the method according to the invention therefore makes it possible to modify, almost in real time, the density of the product and therefore the mass energy of the explosive, the latter being inversely proportional to its density, and more particularly to varying the density of the explosive.
  • product allows to have a high density, in the bottom of the hole and a lightened density in the column in height.
  • holes 5 to 30 m deep and 5 cm to 20 cm in diameter are formed, and at least two, preferably 4, amounts of explosive product are defined for 4 density values corresponding to mass energies of 2 to 5 MJ. / kg (10 6 J / kg), in particular densities of 0.5 to 1.5.
  • the amount of explosive product substantially corresponds to the amount of said matrix because the relative amount of reagent is of the order of 0.1 to 2% only relative to the weight of explosive product obtained.
  • the quantities and flow rates of said matrix and of said gasification reagent are controlled and controlled so as to produce an explosive product of determined value density at the outlet of the first mixer. More particularly, the density of the explosive product obtained during filling is varied according to the quantity of explosive product deposited and / or the depth at which the explosive product is deposited in the same hole or from one hole to another in different holes. More particularly, selected quantities of explosive products having different specific density values are respectively selected and controlled to be successively deposited in a hole being filled, preferably continuously.
  • one chooses from a plurality of predetermined density values corresponding to mass explosive energies of 2 to 5 MJ / Kg (10 6 J / Kg), preferably densities between 0.5 and 1.5.
  • the amount of explosive product substantially corresponds to the amount of said matrix in the relative amount of reagent is of the order of 0.1 to 2%.
  • step 1) the said matrix and said gasification reagent are separately transferred from said first and second reservoirs respectively into first pipe and respectively second pipe cooperating with a first pump and a first valve and respectively a second pump and a second valve, and a constant flow rate of said matrix is controlled and controlled by controlling the speed of the first pump and / or the opening of said first valve, and the flow rate of said gasification reagent is varied in controlling the speed of the second pump and / or the opening of said second valve.
  • the values of a and b depend on the composition of said porosity reactants and said matrix. Charts provide graphs of said reactant flow rates in L / min relative to flow values of said matrix in Kg / min. Thus, for a set d matrix rate value, it is sufficient to vary the rate of gasification reagent.
  • gaseous reactive solution with a density of 0.5 to 1.5 based on sodium nitrite and / or sodium thiocyanate at a flow rate of 0.1 to 2 L / min;
  • the downstream end of the first pipe is worn and / or damaged, the following steps are carried out: a) said first mixer is removed from said first pipe, b) the downstream end of the first used pipe is cut off and / or damaged, c) replacing said first mixer inside said first pipe, d) disassembling the upstream end of the flexible portion of said first pipe, and extracting an upstream portion of said second pipe and disassembles a first upstream portion of the second portion downstream of a second flexible hose, and e) exits the first pipe and shortens said second downstream portion of the second flexible pipe, then it is placed in said first pipe and is connected again at the upstream portion of the second pipe remained inside a rigid upstream portion of the first pipe.
  • FIG. 1 represents a mobile unit for the manufacture of explosives 1 (abbreviated "UMFE”), namely a truck 1 carrying the equipment of the installation according to the present invention on its rear chassis 1a, and
  • UMFE explosives 1
  • FIG. 1A shows the deployment of a set of coaxial pipes 6 unwound from a reel 5 at the rear of said truck
  • FIG. 1B represents a sectional view of a borehole 11 made in a rock mass 15 in which the product is deposited 10, the open down end of the set of coaxial pipes 6 according to the invention disposed in the hole, and
  • FIG. 2 represents a circuit diagram of the equipment of the installation according to the present invention with a view to implementing the method according to the invention
  • FIG. 3 represents the detail of a perspective view of the winder 5
  • FIG. 3A shows a vertical sectional view at the level of the first rigid portion 6ia of the outer pipe 6i of the coaxial pipe assembly 6, and
  • FIGS. 4A and 4B are cross-sectional views of a said first connecting piece 3 and a set of two joints with rotating joints 4 1 and 4 2 , and
  • FIG. 4C is a view showing the mounting of said second pipe or the inner pipe reagent transfer gasification 6 2 of said first connection part 3 and the second coupling rotary joint 4 2, and
  • FIGS. 5A, 5B and 5C show different views relating to the introduction of the first static mixer 7 inside and at the downstream end of the first pipe 6i downstream of the valve 6 4 of the downstream end 6 4 of the second hose 6 2 .
  • a facility 1 for producing explosive products in situ that is to say at the site of use of the explosive, namely, more precisely at a borehole 11 according to the invention, comprises the following equipment arranged as follows: a truck 1 supports on its rear chassis the first reservoir 1-1 containing a product consisting mainly of an explosive emulsion called "matrix", and
  • a second reservoir 1-2 containing a gasification reagent, especially based on sodium nitrite and thiocyanate, and
  • a third reservoir 1-3 containing a reaction catalyst, namely an acid, in particular acetic acid, intended to catalyze the reaction of the matrix with the gasification reagent to release a gas as described below, and fourth water tank 1-4, and
  • a reaction catalyst namely an acid, in particular acetic acid
  • the truck 1 also supports on its chassis the following different pumps:
  • a first pump 2-1 disposed at the outlet of the first reservoir 1-1 and intended to transfer the matrix of the first reservoir 1-1 towards the borehole 11 via a first circuit comprising a matrix transfer line; la then a set of coaxial pipes 6 described below, and
  • a second pump 2-2 disposed at the outlet of the second reservoir 1-2 intended to transfer the gasification reagent from its second reservoir 1-2 into a second circuit comprising a reagent transfer line 1b towards the set of coaxial pipes 6 as described below, and
  • a third pump 2-3 intended to transfer the catalyst from its reservoir 1-3 into the first reservoir 1-1
  • a pump 2-5 and / or extraction screw intended to transfer the nitrate from the fifth reservoir 1-5 to said first reservoir 2-1
  • a pump 2-4 intended to transfer water from the fourth reservoir 1-4 in a circuit 1a to the first transfer circuit 1a of the matrix so as to lubricate the viscous product constituted by the matrix and facilitate its transfer within the a first transfer pipe 6i as described below.
  • the junction of the water circuit 1c on the first matrix circuit la is by a piece ld denominated "lubrication water injector ring".
  • the function of the water is only the lubrication of the matrix for a reduction of the losses of charges.
  • the pipe constituting a first matrix transfer circuit connects the first tank 1-1 to a first external hose 6i of the hose assembly 6 wound on a reel 5.
  • the second gasification reagent transfer circuit 1b comprises pipes from the second reservoir 1-2 to a second internal gasification reagent transfer pipe 6 2 of the pipe assembly 6 wound on the reel 5.
  • the second pipe 6 2 is arranged inside. of the first pipe 6i and is positioned substantially coaxially inside the pipe 6i when due to the flow of matrix passing in the annular space between the first pipe 6i and the second pipe 6 2 when transferring said matrix to the borehole 11.
  • the truck 1 also supports a static mixer called “second mixer” static 2-6, upstream of the coaxial pipe assembly 6.
  • the truck 1 also supports on its rear chassis the valves comprising:
  • the truck 1 also supports on its rear chassis the central control unit 9 comprising a keyboard 9a and / or a graphic interface 9b, cooperating with software capable of controlling the actuation of said pumps and said valves.
  • the gasification reagent transfer circuit 1b joins the first matrix transfer circuit 1a downstream of the second mixer 2-6 at a connecting part referred to as the first connecting piece 3 which ensures the connection between the first pipe 1a and the second pipe 1b just upstream of the set of coaxial pipes 6 wound on the winder 5, so that the flow of gasification reagent is transferred into the second inner pipe 6 2 and the flow of matrix from the first circuit is transferred inside the first pipe 6i and outside the second pipe 6 2 in the annular space between the inner wall of the first pipe 6i and the second pipe 6 2 , such as described below.
  • the valve V3 makes it possible, by forcing the circulation of the gasification reagent to the shunt lb-1, to obtain a first mode of operation of the plant according to a traditional method in which the gasification reagent and the matrix are mixed within the mixer. 2-6 upstream of the set of transfer pipes 6 to the borehole 11.
  • the explosive product 10 produced within the mixer 2-6 is conveyed over a long distance, that is to say along a long pipe joining the borehole 11.
  • the chassis 1 of the truck 1 also supports upstream of the second pump 2-2 and downstream of the second tank 1-2 a filter 2- 5. In addition, the chassis also supports it:
  • a flowmeter 2-2a of the variable-section type as sold by the company KROHNE (FR) under the reference H250 / RR / MXX / ESK, the second pump 2-2 being the piston type in particular as sold by the company CAT PUMPS (USA) under the reference CAT2XX, and
  • the first pump 2-1 is a so-called progressive cavity volumetric pump driven by a hydraulic motor of the type sold by DANFOSS under the reference for example OMS160EM151F-3023. More particularly, the pump sends pulsed signals according to a known fixed number of pulses per revolution to the speed sensor 2-la so that the quantity of product dispensed by the pump can be known by calibration according to the number of revolutions of said first pump.
  • a pressure sensor of the matrix fluid la-1 Downstream of the first pump 2-1, are also mounted on the first circuit 1-a different sensors namely, a pressure sensor of the matrix fluid la-1, a temperature sensor la-2, and a detection sensor of absence of flow of matrix flow la-3.
  • the pressure of the matrix flow in the pipe 1a must not exceed 20 bars and the temperature must remain below 70 ° C for safety reasons, at the risk that the explosive emulsion becomes too sensitive. Indeed, the explosive emulsion becomes more sensitive to rapid decomposition when the pressure and the temperature increase. To better understand this risk, the limit pressure of 20bar was determined using a specific safety device called MBP ("Minimum Burning Pressure").
  • MBP Minimum Burning Pressure
  • a device 2-2b cooperating with the second pump 2-2 is a safety valve used to lower the pressure when the pressure is above a threshold level.
  • a second gasification reagent transfer pipe is disposed within a first die transfer pipe 6-1, to form a pipe assembly 6 according to the following arrangement.
  • the two independent matrix transfer pipes 1a and transfer gasification reagent 1b meet at a first original connecting piece 3 according to the present invention described in FIGS. 4A, 4B and 4C.
  • the first connecting piece 3 comprises a main sleeve with an outer cylindrical wall 3a open at its upstream ends 3ia and downstream 3ib thus forming a first inlet orifice 3ia with a circular section upstream and a first outlet orifice 3ib downstream with a circular section. , both arranged along a longitudinal axis XX 'of said envelope 3a corresponding to the axis of rotation of the drum 5.
  • the first inlet port 3ia has a thread 3 3 a so that the threaded end of a lay nipple at the downstream end of the first channel matrix transfer can be screwed.
  • the upstream end of the first pipe 6i and the upstream end of the second pipe 6 2 are mounted coaxially on 3iB first outlet and second outlet respectively 2b coaxial 3 at the downstream end of said first connecting piece 3 via a first rotary joint connection 4i and respectively a second rotary joint connection 4 2 .
  • the first outlet port comprises a threaded outer surface 3 3 b on the outer surface of the downstream end of the wall of cylindrical casing 3a which can be screwed into the female end of a first connector to 4i rotary joint including the downstream end has an external peripheral thread 4iC on which a female connector 6id will be screwed to the upstream end of a first rigid portion 6-la of the first pipe 6i.
  • FIG. 4B shows the known structure of this type of first rotary joint coupling 4i comprising O-ring seals 4id and ball bearings 4ie ensuring the cooperation between two tubular pieces 4a and 4b juxtaposed in the axial direction.
  • Said first part 4 ⁇ has an upstream socket end screwed onto the external thread 3 b 3 of the male end of the part 3 forming the first 3iB outlet.
  • a second portion 4ib downstream of the first rotary joint connection 4i comprises at its downstream end, the external thread 4iC cooperating with the end fitting 6id of the first pipe 6i.
  • 4 roulements ball bearings and 4id O-rings allow the rotation of the first rotary part 4ib of the first rotary joint connection 4i around the common axis XX 'of the first connecting piece 3 and the rotating connection 4i with respect to the first
  • the upstream end of the first pipe 6i can turn on itself in case of torsion when it is wound on the reel 5 as described below.
  • the envelope wall 3a contains an internal bent piece 3b having a first tubular portion extending in a direction perpendicular to the longitudinal axis XX 'of the wall 3a and defining a second inlet orifice 3 2 through said wall 3 -a and on which is screwed the threaded end of a terminal connector lb 'of the second conduit lb of gasification reagent feed.
  • the bent piece 3b also comprises a tubular part arranged axially in the interior of the workpiece 3 and forming a second output port 3 2b onto which is screwed a first upstream fixed part 2 to 4 of a second coupling rotating seal 4 2 comprising a second part 2 swallows 4 rotatably juxtaposed in the axial longitudinal direction XX '.
  • Said first upstream 4 2 piece cooperates with the second part swallows 4 2 b by seals and bearings (not shown), allowing rotation of said second part 4 2 b of the second ratio-turn 4 of gasket 2 around the XX axis.
  • the upstream end of the second pipe 6 2 is fixed to said second rotatable member 4 2b of the second coupling rotary joint 4 2, via an end connector piece 6 2 tbsp.
  • the first connecting piece 3 and the two joints with rotating joints 4i and 4 2 are arranged just upstream of a drum winder 5 supported by a structure or beam 5a.
  • a flexible end 6ib is wound of the first pipe 6i connected to an upstream rigid portion 6ia by a removable collar 6iC.
  • the upstream rigid portion 6ia of the first pipe 6i secured to both of the first connecting piece 3 via the first rotary joint connection 4i and also integral with the winding drum 5 is thus rotated with the winding drum 5 about the axis. of common rotation XX 'of the drum winder 5 and said joints with rotating joint 4i and 4 2 and the connection piece 3.
  • the rigid part 6ia has different bends, so that its upstream part (upstream of the drum) is arranged in the axial direction XX 'of the first connection piece 3 while its downstream part at the collar 6iC is arranged in one direction tangential to a cylindrical portion 5-1 of the drum drum 5 or follows the curve of said cylindrical portion of the drum on which can wind the second flexible portion 6ib of the first pipe 6i when actuated in rotation the drum winder 5.
  • This double union connection 6 3 is of the type well known to those skilled in the art such as for example a reference double union connection SS-400-6 marketed by the company SWAGELOK (USA) also called under the name "Tube fitting".
  • This type of double union connection 6 3 cooperates with end connection pieces 6 2 d and 6 2 e at the ends respectively of the first upstream flexible parts 6 2 a and downstream 6 2 b of the second pipe 6 2 .
  • the double union 6 3 is arranged just downstream of the collar 6iC so that when the collar 6iC is opened and / or withdrawn to separate the two parts of the first pipe 6ia and 6ib, the second pipe 6 2 can be extracted and uncouple the two parts 6 and 6 2 2 a b 2 and second pipe 6 easily shorten as necessary the downstream portion 6 2b when it has previously been made to shorten the waste downstream end of the flexible portion 6iB first pipe 6i as described below.
  • the downstream end of the second pipe 6 2 comprises an anti-return valve 6 4 , for example of the type marketed by Swagelok under the reference SS-4-HC-1-4.
  • the valve 6 4 is located as close technically as possible to the upstream end of a first static mixer 7 disposed at the downstream end of the first pipe 6i.
  • the valve 6 4 opens under the pressure of gasification reagent running through the pipe 6 2 when the pump 2 2 works; and the valve 6 4 closes when the second pump 2-2 stops and the gasification reagent flow pressure decreases.
  • the valve 6 4 is connected to a fitting 6 2f at the downstream end of the inner pipe 6 2 by a second connector to 6 4 to double union.
  • thermoplastic hose of external diameter 42 mm and internal diameter 32 mm, 30 to 100 m long.
  • thermoplastic pipes of external diameter of 13.2 mm and internal diameter of 8.3 mm will be used.
  • the first mixer 7 consists of eight fins with a helical surface 7a juxtaposed in the direction XiXi 'of the first mixer and the first hose 6i, on a rod 7b.
  • the rod 7b forms undulations so that the entire surface of each helical fin is fixed on said rod in the longitudinal direction ⁇ 'of the first pipe 6i and the first mixer 7 inserted inside the first pipe 6i.
  • the rod 7b thus constitutes a reinforcement of this type of fixation.
  • the fins 7a are juxtaposed against each other in the longitudinal direction ⁇ ', but the different portions of helical surfaces are not helically continuous, that is to say that they are angularly offset so as to optimize the performances said mixer in particular shifted at 90 ° successively relative to the axis XiX.
  • the addition of the rod 7b supporting the helical fins 7a is an original feature of the present invention because under the conditions of implementation inside a small diameter pipe according to the present invention, the static mixer is under pressure. important. And it was found that in the absence of a support rod, a simple welding at the ends of the fins 7a to keep them connected to each other as in the prior art is insufficient.
  • the helical elements have a diameter of substantially 30mm, a helical surface thickness of about 2mm, a length of about 50mm and an angular offset of about 90 °, the total length of the mixer being about 400mm.
  • the flow of gasification reagent leaving the valve 6 4 and the flow of matrix arriving at the valve 6 4 outside thereof, can mix intimately at the first mixer 7, by the helical shape of the fins whose diameter is just smaller than the internal diameter of the first pipe 6i.
  • the different helical elements are successively reversed.
  • the rotation of the product caused by the shape of the helical modules 7a accentuates the mixing phenomena.
  • the helical elements 7a are not themselves in motion and in any case, no source of power is required other than that provided by said pumps to overcome the pressure drop induced by the baffles that form the successions of said helical elements 7a.
  • the downstream end of the first pipe 6i downstream of the first static mixer 7 is equipped with a stop 8 comprising a threaded outer surface 8a adapted to be screwed against the inner wall 6ie of the end. swallow 6if of the first pipe 6i.
  • the explosive product fluid obtained by mixing the matrix and the gasification reagent within the first static mixer 7 can flow through a central cylindrical orifice 8b of the abutment 8.
  • a key 8i having lugs 8ia cooperating with notches 8bl at the periphery of the downstream end of the abutment 8 allows to screw and unscrew the abutment 8 at will.
  • the central orifice 8b of the abutment piece 8 allows wide passage of the explosive product and avoids undesirable effects that may result from an increase in the nuisance pumping or blocking pressure related to the accumulation of explosive products at this level.
  • the inner diameter of the central opening of the abutment piece 8 is about 20 mm.
  • the stop 8 has the essential function of holding the static mixer 7 within the downstream end of the first pipe 6i.
  • the unscrewing of the abutment 8 makes it possible to release the first mixer 7 from the downstream end of the first pipe 6i and thus to be able to cut the downstream end of the pipe 6i when it is damaged after a certain number of uses because the outer surface of the downstream end of the hose 6i in contact with the walls of the drill holes 11 formed of rock mass 15 tend to damage the downstream end of the hose 6i during the operation as described below.
  • the second pipe 6 2 is removed from the inside of the first pipe 6i by uncoupling at the collar 1c as described above or by disconnecting the pipe 1b and closing said second inlet port 2 has a cap and orienting the valve V3 three channels so that all the gasification reagent passes through the lbi pipe and mixes with the matrix upstream flow of the second mixer 2.
  • the explosive product is transferred via the conduit 6i to a borehole in which the downstream end 6if of the hose 6i is disposed.
  • the static mixer 7 in practice extends over a length of 0.5 to 1 meter so that the explosive product produced is in reduced quantity inside the first hose 6i.
  • the static mixer 7 in practice extends over a length of 0.5 to 1 meter so that the explosive product produced is in reduced quantity inside the first hose 6i.
  • a method according to the invention is implemented in which the density of the explosive product produced continuously is varied during the filling of a borehole 11 in a single pass, that is to say, without having to raise the pipe 6 during filling, as described below.
  • the emulsion consists of the following components:
  • nonionic surfactants 1%,
  • ammonium nitrate and / or calcium and / or sodium approximately 75%
  • ammonium and / or calcium nitrates are added in a proportion of 15 to 35% and a catalyst for example of acetic acid in a proportion of 0.5 to 2%. to which one can also add aluminum (in the form of powder of particle size between about ⁇ and 2mm) in a content of 1 to 10% by weight also.
  • This matrix is thus obtained according to the present description within the first reservoir 1-1.
  • An example of a matrix formulation is therefore: mineral oil and / or motor oil: 4.55%, - gas oil: 0.7%
  • a gasification reagent which is here in particular an aqueous solution of about 20% of sodium nitrite and 80% of water may include catalysts such as sodium thiocyanate , sodium formate, zinc nitrate and / or calcium nitrate.
  • the method of sensitizing the matrix consists of a chemical reaction between said gasification reagent and the ammonium nitrate contained in said matrix.
  • This chemical reaction releases a gas, in this case nitrite reacted with nitrate to form nitrogen gas, which generates sensitization of the product by the creation of "hot spots", that is to say interstices in the mixture product allowing the propagation of the shock wave, therefore the detonation of the explosive product.
  • the product is therefore explosive because of this sensitization.
  • the increase in the quantity of gas bubbles decreases the density of the product and therefore the explosive energy obtained for a constant volume of hole (volume energy).
  • the density of the basic emulsion (not supplemented) described above is for example about 1.4 to 1.6 and the density of the supplemented emulsion defining said matrix as described above, before mixing with the gasification reagent is 0.8 to 1.3.
  • the density of the gasification reaction mixture product within said first mixer is from 1.25 to 1.45 according to the respective proportions of quantities and / or flow rates of said matrix and said gasification reagent and the density of the explosive product after gasification. is from 0.8 to 1.2.
  • the average energy of an explosive product of density 1.2 is 3.7 MJ / kg, ie 4.44 MJ / L.
  • the explosive energy will be 1.85 to 5.55 MJ / L.
  • the automated control and control unit 9 makes it possible to control the proportional valves VI and V2 regulating the flows of matrix and gasification reagent, and the actuation and speed of the motors of the pumps 2-1 and 2-2.
  • the flow rates X and Y are provided by calibrating the pump 2-2 speed sensor 2-2 for the values of X (kg / min) and by the flow meter 2-2a for the gasification reagent Y flow (L / 2). min).
  • the operator driving the selected plant will select the desired explosive product densities as well as the corresponding quantities for each density based on his needs analysis in the relevant borehole given the surrounding rock mass environment. the hole to be felled.
  • X being constant, the flow rate of gasification reagent is determined automatically from the chart according to the desired density.
  • the operator will choose up to four different densities called dl, d2, d3 and d4.
  • the densities d1 to d4 of explosive products to be produced and the corresponding quantities are entered at the level of the central unit 9 via a touch pad 9a appearing on the screen of the graphic interface 9b. The operator can then start a pumping cycle.
  • the centralized and automated control unit 9 then automatically controls the regulation of the flow and therefore the flow rate of reagent R2 for a given matrix flow M.
  • the production cycle of a cylindrical hole 20 m deep and 115 mm in diameter will be performed as follows for a supplemented matrix having a density, in the example below, of about 1.3 :
  • the automated central unit 9 thus makes it possible to control and control the gasification reagent flow rate values as described above, simply by adjusting the speed of the hydraulic motor of the second pump 2-2 transferring the gasification reagent, and by maintaining a substantially constant flow rate of 125 kg / min of said matrix.
  • Such control and flow regulation of the gasification reagent makes it possible to vary, almost in real time, the product density value obtained at the outlet of the first static mixer 7 and discharged directly into the borehole, because of the automation of the control and regulation of the flow of gasification reagent by the central unit 9.
  • the CPU 9 may offer additional advantageous features such as the import and export of data, instructions and results in terms of quantity, throughput and density.
  • the method according to the invention is also advantageous in that it gives rise to an improvement in safety, the mixture product becoming explosive only at the end of the hose 6 lf thus avoiding the transport over a long distance of dangerous product at inside the pipe.
  • the coaxial introduction system of the gasification reagent to bring it into contact with said matrix promotes a faster and more efficient intimate mixing of the two components, which induces, not only: the possibility of optimally varying in real time the density of the product obtained in mixture with the matrix, but also
  • the quantity of product contained within the downstream end of the pipe 6i is limited to the explosive product produced gasified in the second downstream portion of the static mixer, or for a mixer 50 cm long in a pipe 6i 32 mm in internal diameter, an amount less than 0.5 kg of a relatively negligible value compared to the amounts of explosive products of different densities that it is necessary to introduce, one can thus consider that the variation of density is thus obtained almost in real time by modification of the ratios of flow of reagent of gasification and matrix.
  • the measurement of the density can be carried out by weighing in the open air in a calibrated pot of known volume.
  • the process for producing a variable density explosive product according to the present invention therefore consists in varying the gasification of the explosive product in the blasthole, in a manner that is almost instantaneous in order to obtain a differentiation of the density of explosive product in the column. within the borehole, while performing only one loading pass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Accessories For Mixers (AREA)

Abstract

La présente invention concerne une installation de production in situ de produit explosif (10) par mélange (a) d'une matrice à base d'émulsion et d'un réactif de gazéification, comprenant au moins un premier réservoir (1-1) contenant la dite matrice, et un deuxième réservoir (1-2) contenant ledit réactif de gazéification, et un premier tuyau (61) au moins en partie flexible coopérant avec une première pompe (2-1) et une première vanne (V1), apte à transférer la dite matrice séparément jusqu'à un premier mélangeur, de préférence un premier mélangeur statique (7), et - un deuxième circuit (1b) de transfert de dit réactif de gazéification comprenant au moins un deuxième tuyau (62) au moins en partie flexible coopérant avec une deuxième pompe (2-2) et une deuxième vanne (V2), apte à transférer le dit réactif de gazéification séparément jusqu'au dit premier mélangeur (7), caractérisé en ce que le dit deuxième tuyau (62) est disposé entièrement à l'intérieur du premier tuyau (6) formant un ensemble (6) de tuyaux coaxiaux, ledit premier dispositif de mélange étant disposé à l'intérieur du premier tuyau à son extrémité avale (61f), ledit deuxième tuyau se terminant juste en amont dudit premier mélangeur.

Description

INSTALLATION DE PRODUCTION D'EXPLOSIF PAR MELANGE AVEC UN REACTIF DE GAZEIFICATION
La présente invention concerne le domaine de la préparation et mise en œuvre des produits explosifs notamment des émulsions explosives utilisées dans l'industrie d'extraction de matière première et minière.
Ces produits sont systématiquement constitués à partir d'une émulsion de base dite inverse ou « eau dans huile » aussi appelée « matrice » obtenue par un mélange de : - une phase continue organique, constituée mélange de divers combustibles tel que huiles minérales, gasoil, et
- une phase aqueuse discontinue constituée de divers sels comburants en solution aqueuse.
Les matières premières comburantes les plus fréquemment utilisées dans cette industrie sont : le nitrate d'ammonium, le nitrate de sodium, le nitrate de calcium. En ce qui concerne les combustibles il s'agit du gasoil soit pur soit en mélange avec des huiles minérales neuves ou usagées, notamment d'huile moteur recyclée.
Pour conférer à ce mélange des caractéristiques de détonation améliorée, il faut, de manière connue, disperser en son sein de manière homogène des « porosités ». A ce jour, la méthode majoritairement employée dans l'industrie pour la sensibilisation des émulsions vrac ou en cartouches est la gazéification par voie chimique. Cela consiste à générer chimiquement et de manière la plus homogène possible des bulles de gaz dans le milieu. Les « porosités » ainsi obtenues vont former des points chauds, initiateurs de la détonation et ainsi contribuer à entretenir la propagation d'une onde de choc issue du système d'amorçage. Il existe d'autres moyens, bien connu pour créer ces « porosités » dans l'émulsion. On peut notamment disperser des corps creux de petite taille, comprise entre quelques dizaines et quelques centaines de microns. On peut citer parmi ceux-là les microbilles de verre, les billes de polymères thermoplastiques ou de polystyrène expansées.
La présente invention concerne la fabrication de charges explosives à partir d'une émulsion ou matrice que l'on sensibilise par mélange avec des réactifs qui réagissent avec l'émulsion et génèrent une gazéification par voie chimique. Plus particulièrement, mais de manière non limitative, pour réagir avec de l'ammonium de la dite matrice émulsion (ci-après M), on met en œuvre un réactif de gazéification (ci-après R) à base de nitrite de sodium ou équivalent en présence d'un catalyseur tel qu'un acide, notamment de l'acide acétique de la réaction chimique suivante : NH4+ + NO2" ► N2 + 2 H20
Cette réaction chimique génère de l'azote gazeux qui conduit à une diminution de la densité finale du produit de mélange obtenu. Généralement on passe d'une densité initiale di de la matrice M d i = 1 à 2 que l'on diminue à une valeur dj= 0.5 à 1.5 en fonction de la proportion de réactif R/M, typiquement d i = 1. et dj= 1.2 à 0.9.
Dans la suite du texte on entend ici par matrice ou émulsion, l'émulsion elle-même complétée par un composant catalyseur et de préférence aussi de l'eau pour servir de lubrifiant faciliter le déplacement de l'émulsion visqueuse au sein de la conduite de chargement.
En effet, la présente invention concerne plus particulièrement la mise en œuvre de ces produits au sein d'un trou dans lequel on place une charge d'amorçage et un fil de détonateur et dans lequel les produits explosifs (mélange émulsion + réactif de gazéification) sont transférés à l'aide d'une conduite flexible de chargement. Dans EP338707, on décrit une installation dans laquelle on mélange les deux composants émulsion et réactif de gazéification au niveau d'une sorte de lance rigide ou pistolet que l'on introduit en petites quantités dans un trou. Il ne s'agit pas d'une installation dans laquelle les produits sont stockés à distance en plus grandes quantités dans un camion et transférées à l'aide de tuyau(x) déroulé(s) depuis un enrouleur jusqu'à un trou de charge. Ce type d'installation ne peut être utilisé que pour charger des trous de petits diamètres (inférieurs à 50mm) comme il est insisté à plusieurs reprises dans ce document. Cette installation ne convient donc pas pour charger des trous avec des produits stockés à distance dans un camion et transférées au trou de charge à l'aide d'un tuyau déroulé depuis un enrouleur. En outre, les deux composants (émulsion et réactif de gazéification) sont introduits avec une pompe à deux corps et deux pistons laquelle ne permet pas de faire varier la proportion relative de deux composants dans le mélange en cours de remplissage du trou.
La présente invention concerne plus particulièrement un procédé dans lequel on réalise le mélange de l'émulsion et des réactifs de porosité sur le site de mise en œuvre de l'explosif et plus particulièrement dans un trou, notamment un trou de mine, que l'on alimente en charge explosive à l'aide d'une conduite de transfert depuis une installation où est fabriqué et/ou stockés la matrice émulsion à distance du trou. Typiquement le trou présente une profondeur de 5 à 30m et un diamètre de 5 à 50 cm. La matière première de base, la matrice émulsion, peut être produite sur site par une usine modulaire telle que décrite dans PCT/FR2014/050032 ou par l'intermédiaire d'installation mobile dénommée UMFE (Unité Mobile de Fabrication d'Explosif) donc des camions transportant des matériels utiles pour la fabrication qui se rendent sur le site d'utilisation (mines, carrières ou chantier de Travaux Publics) pour la production d'explosif. Le transfert et le mélange des 2 composants, émulsion d'une part et réactif de gazéification d'autre part pose un certain nombre de difficultés suivantes.
Habituellement, comme dans WO 97/24298 et EP 612971, les réactifs et catalyseur sont introduits ensemble et mélangés avec la matrice émulsion dans un mélangeur statique en amont de la conduite de chargement dont l'extrémité avale est introduite dans le trou de mines pour y transférer par pompage le produit explosif. La raison en est qu'il est ainsi possible de véhiculer le mélange dans une seule conduite que l'on déroule à partir d'un tambour d'enroulement à son extrémité amont situé à distance du trou typiquement de 30 à 100 m. D'autre part, on évite ainsi de placer à l'intérieur du trou des pièces métalliques tel que le mélangeur statique lequel par l'encombrement qu'il génère, gênerait ou rendrait plus difficile les manipulations dans le trou et surtout pour éviter des chocs avec le massif rocheux de ma paroi du trou pouvant provoquer des étincelles à proximité de la charge d'amorçage et/ou pouvant au contact du fil de détonateur endommagé celui-ci.
Dans US 5524 523, on décrit une installation de transfert des composants jusque dans le trou avec un conduit 12 contenant 3 tuyaux disposés côte à côte, parallèlement, un premier le tuyau 16 d'alimentation en en émulsion de base déjà en mélange avec un réactif de gazéification dénommé « gassing solution », les autres tuyaux servant à apporter d'autres additifs comme des produits dits de bourrage (« stemming »). Dans US 5524 523, émulsion et réactif de gazéification sont donc transférés déjà en mélange (non séparément) dans le même conduit 16 avant d'être introduits dans un mélangeur statique situé en sortie à l'extrémité avale du conduit 20 au sein duquel le mélange et la réaction des deux composants est achevée. Cette introduction des deux composants ensemble (émulsion et réactif de gazéification) en amont d'une même conduite présente cependant plusieurs inconvénients. La gazéification commence après l'introduction du réactif de gazéification et le mélange commence à être explosif à partir de l'introduction du réactif de gazéification donc dans la conduite de transfert ce qui crée des contraintes de montée en pression dans la conduite et des risques au regard de la sécurité car la conduite est remplie d'explosif. En outre, on ne peut pas faire varier la densité en temps réel en cours de remplissage du trou, car il y a une quantité relativement importante et indéterminable de façon fiable de produit contenue dans la conduite à prendre en compte. Et, de ce fait, si on veut faire varier la densité en temps réel du produit final arrivant dans le trou, en fonction de la puissance de l'explosion à produire, comme c'est le cas en pratique, il y a une quantité incertaine de réactif contenue dans la conduite difficile à estimer. Il n'est donc pas possible de contrôler de façon fiable et précise la valeur de la densité du produit arrivant dans le trou à partir de la composition introduite du fait de la diminution de la densité dans la conduite.
Un autre problème à la base de la présente invention concerne la mise en œuvre de produits explosif de mélange de densités différentes au cours du remplissage selon la profondeur du trou ou entre des trous différents. En pratique, il est avantageux de pouvoir réaliser un produit de densité plus élevée, environ 1.2 dans le fond du trou et une densité allégée d'environ 0.8 au sommet de la colonne. En effet, le fond de trou est plus difficile à détruire et requiert davantage d'énergie volumique explosive que les parties supérieures, et une d'explosion optimale dans un trou de mine que l'énergie explosive en colonne. D'autre part, le massif rocheux à détruire varie dans sa composition et son volume entre le trou de mine et la surface libre, selon la profondeur et aussi du fait des déviations résultant de l'inclinaison du trou de forage sensiblement cylindrique, et d'un trou à l'autre du fait des inclinaisons différentes variables de 0 à 25° des dits trous et de l'hétérogénéité de la composition massif rocheux.
La justification de faire un produit explosif plus faible en densité est aussi de diminuer le coût de revient du tir car si la densité diminue, cela signifie qu'il y a moins de masse de produit et donc un cout moindre de produit explosif.
Il est donc avantageux de pouvoir adapter l'énergie de l'explosif au massif rocheux de manière simple. US 2003/029346 et WO 97/24298 décrivent un procédé de production de de produits explosifs par mélange d'une émulsion et d'un réactif de gazéification. Dans US 2003/029346 et WO 97/24298, il est mentionné de faire varier les quantités relatives d'une émulsion et d'un réactif de gazéification en vue de faire varier la densité du mélange obtenu. Toutefois, dans US 2003/0229346, les modalités de transfert du produit explosif et/ou de des deux composants (émulsion et réactif de gazéification) ne sont pas abordées. En outre, les deux composants (émulsion et réactif de gazéification) sont mélangés à la main (« hand-held mixer ») à l'exemple 1 ou à l'aide d'une buse de pulvérisation («spray nozzle ») à l'exemple 2). Et, dans WO 97/24298, on décrit une installation embarquée sur un camion (« mobile manufacturing unit »), sur lequel les deux composants (émulsion et réactif de gazéification) sont transférés séparément vers un mélangeur statique embarqué sur le camion avant de transférer le produit explosif obtenu via un unique tuyau souple vers un trou de mine. Cette introduction des deux composants ensemble (émulsion et réactif de gazéification) en amont et transfert au sein d'une même conduite présente cependant les inconvénients explicités ci-dessus.
En conséquence, dans ces documents US 2003/0229346 et WO 97/24298, on ne décrit pas les conditions de mise en œuvre pour permettre de changer de façon précise et fiable, en temps réel, la densité du produit final en sortie de la conduite de transfert dans le trou en cours de remplissage sans avoir à purger et/ou sortir le tuyau du trou. En effet, dans la technique antérieure, comme dans US
2003/0229346 et WO 97/24298, la production de lots produit explosif de densités différentes n'est pas possible sans sortir le tuyau et purger le tuyau de chargement véhiculant sur une longue distance de produit explosif mélangé en amont à une distance relativement importante du trou. Selon le procédé standard, il faut donc faire des remplissages successifs de produits ayant des densités différentes en sortant le tuyau du trou et en le purgeant entre deux procédures de remplissage dans le même trou pour évacuer le produit explosif ayant une densité différente avant de produire un produit de densité différente pour éviter les mélanges de produits de densité différentes. Ceci est trop contraignant en temps et donc ne peut pas en pratique être réalisé. Donc avec le dispositif mis en œuvre classiquement, on réalise un produit à densité moyenne 1.2 pour toute la charge d'explosif. Il y a donc trop d'énergie volumique (produit de la densité et de l'énergie massique) consommée dans la colonne alors qu'une énergie explosive plus élevée au fond du trou et moins élevée en hauteur serait préférable.
Il est donc très avantageux de pouvoir faire varier la densité du produit dans un même cycle de production en temps réel de façon précise et faible.
Dans WO/2008039823, on décrit une installation dans laquelle on transfère les deux composants dans deux tuyaux séparés avec un tuyau externe hélicoïdal entourant le tuyau central principal de plus grand diamètre. L'extrémité avale du petit tuyau traverse la paroi et rejoint l'intérieur du plus grand tuyau de manière à ce que leurs extrémités avales coaxiales débouche dans une même buse. Ainsi on peut mélanger les deux composants le plus proche possible du trou dans une buse externe de mélange.
Mais, ce mode de réalisation présente les inconvénients suivants. Tout d'abord, ce tuyau complexe à composante hélicoïdale est relativement coûteux et fragile. En effet, en particulier, le tuyau externe contenant le produit le plus dangereux à savoir le réactif de gazéification est exposé en partie externe du tuyau laquelle subit fatigue et usure du fait de frottements contre les parois du trou, lors de son enroulement et déroulement et manipulation dans le trou. D'autre part, en pratique, on est amené à raccourcir régulièrement l'extrémité avale du tuyau laquelle se dégrade du fait frottements dans le trou lors des mises en place et retrait notamment par enroulement depuis un tambour d'enroulement à son extrémité amont. Or, l'arrivée du tuyau de transfert de réactif R à l'intérieur du tuyau d'amenée de la matrice M est incompatible avec le raccourcissement du tuyau à cette position. D'autre part encore, le réactif de gazéification doit être véhiculé sur un trajet hélicoïdal et donc sur une plus longue distance de tuyau que le tuyau central rectiligne de l'émulsion du fait de la disposition hélicoïdale du tuyau périphérique ce qui requiert des pertes de charge et donc force de pompage plus importantes.
Enfin, aucune disposition n'est décrite dans la technique WO 2008/039823 pour gérer la quantité respective de réactif et d'émulsion de base ou matrice ni leur mélange intime dans un mélangeur statique qui ne soit pas exposé dans le trou.
FR 2 131329 décrit un procédé pour faciliter le transfert d'un explosif visqueux dans une cavité, en véhiculant deux matières fluides dans des tuyaux coaxiaux pour former un dit explosif visqueux par mélange dans un mélangeur statique à son extrémité avale. Dans FR 2 131 329, le tuyau n'est pas mis en œuvre à partir d'un tambour sur lequel il est enroulé à une extrémité puis déroulé. L'alimentation et la mise en œuvre de tuyaux coaxiaux susceptibles d'être enroulés et déroulés sur un tambour soulèvent des difficultés à cause des torsions des dits tuyaux lors des enroulements et déroulements de dits tuyaux sur ledit enrouleur notamment des torsions au niveau des parties de tuyaux non enroulées en amont du tambour car ces parties de tuyaux sont entraînées en rotation sur elles-mêmes par rapport audit axe de rotation dudit tambour. Dans FR 2 131 329, il n'est pas mentionné de mélanger une émulsion explosive avec un réactif de gazéification ni a fortiori de faire varier la densité du mélange obtenu en continu et en temps réel en cours de dépose et remplissage d'un trou de mine en contrôlant les quantités relatives de réactif et d'émulsion mises en œuvre.
Dans WO 2014/123562 non publié à la date de priorité de la présente demande, on décrit une installation et un procédé dans lesquels on véhicule une émulsion et un réactif de gazéification dans un ensemble de deux tuyaux séparés mais solidarisés entre eux depuis un tambour d'enroulement sur un camion jusqu'à une buse 90 coopérant avec un mélangeur statique 60 disposés à l'extérieur de l'extrémité avale des tuyaux au niveau d'un trou de mine à remplir en produit explosif. Les complications de torsions des deux tuyaux sont résolues en mettant en œuvre deux tuyaux solidarisés entre eux sur toute leur longueur. Sur la figure 2, le petit tuyau est inclus dans l'épaisseur du grand tuyau.
Ce mode de réalisation présente les inconvénients suivants. Tout d'abord, ces tuyaux solidarisés entre eux sur toute leur longueur sont relativement coûteux et fragile. En effet, en particulier, le petit tuyau contenant le produit le plus dangereux à savoir le réactif de gazéification est peu protégé du fait qu'il est inclus dans l'épaisseur du grand tuyau véhiculant l'émulsion. Or, ce grand tuyau subit fatigue et usure du fait de frottements contre les parois du trou, lors de son enroulement et déroulement et manipulation dans le trou. D'autre part, l'arrivée du tuyau de transfert de réactif en périphérie du tuyau d'amenée de la matrice émulsion requiert la mise en œuvre d'une buse de raccordement 90 et d'un mélangeur statique 60 disposés à l'extérieur des tuyaux à leur extrémité avale et donc constituant des pièces métallique exposées dans le trou. Or, il est souhaitable d'éviter de placer à l'intérieur du trou des pièces métalliques tel que le mélangeur statique lequel peut donner lieu à des chocs avec le massif rocheux de la paroi du trou pouvant provoquer des étincelles à proximité de la charge d'amorçage et/ou pouvant au contact du fil de détonateur endommagé celui-ci. Enfin, aucune disposition n'est décrite dans WO 2014/123562 pour gérer de façon fiable la variation précise des quantités respectives de réactif et d'émulsion de base ou matrice notamment en sortie du petit tuyau.
Le but de la présente invention est donc de fournir une installation et un procédé de production de produit explosif améliorés comprenant la mise en œuvre de conduites flexibles de chargement dans un trou depuis un tambour sur lequel elles sont enroulées qui soient plus adaptés et donc plus fiables, plus sécurisés et plus simples à réaliser et mettre en œuvre d'une part et qui permettent de :
- mettre les deux composants en contact optimal l'un avec l'autre pour mélanger au niveau d'un mélangeur statique dans le trou en aval de la conduite de transfert déroulée depuis un tambour enrouleur,
- raccourcir sans difficultés les conduites de transfert lorsque leurs extrémités se dégrade par usure et frottement dans le trou, et
- changer de façon fiable et précise , en temps réel la densité du produit final en cours de chargement et production en sortie de la conduite de transfert dans le trou en cours de remplissage du trou en continu sans avoir à purger et/ou sortir le tuyau du trou, et
- tout en évitant les risques générer par la présence éventuelle de pièce métallique exposée non protégées dans le trou. Pour ce faire, la présente invention fournit une installation de production in situ de produit explosif par mélange (a) d'un produit visqueux, dénommé matrice, comprenant une émulsion inverse d'une phase aqueuse de comburant et phase huileuse de combustible et (b) un produit liquide contenant un composé chimique apte à réagir avec la dite matrice pour en augmenter le caractère explosif par gazéification, dénommé réactif de gazéification, la dite installation comprenant au moins :
- un premier réservoir contenant la dite matrice à base de dite émulsion explosive, et - un deuxième réservoir contenant ledit réactif de gazéification, et
- un premier circuit de transfert de dite matrice comprenant au moins un premier tuyau au moins en partie flexible coopérant avec une première pompe et une première vanne, apte à transférer la dite matrice séparément jusqu'à un premier mélangeur, de préférence un premier mélangeur statique, et
- un deuxième circuit de transfert de dit réactif de gazéification comprenant au moins un deuxième tuyau au moins en partie flexible coopérant avec une deuxième pompe et une deuxième vanne, apte à transférer le dit réactif de gazéification séparément jusqu'au dit premier mélangeur, et
-le dit deuxième tuyau est disposé entièrement à l'intérieur du premier tuyau formant un ensemble de tuyaux coaxiaux, ledit premier dispositif de mélange étant disposé à l'intérieur du premier tuyau à son extrémité avale, ledit deuxième tuyau se terminant juste en amont dudit premier mélangeur.
On comprend que le diamètre externe du dit deuxième tuyau est inférieur au diamètre interne du dit premier tuyau de sorte que la dite matrice est véhiculée sans contact avec le réactif de gazéification, dans l'espace annulaire entre les deux tuyaux d'une part, et d'autre part le flux de matrice permet de disposé le deuxième tuyau sensiblement co- axialement au premier tuyau sans qu'il soit besoin de centraliseur, le réactif de gazéification étant véhiculé séparément sans contact avec la matrice jusqu'à ce qu'il débouche dans le mélangeur statique au sein duquel un mélange intime des deux produit est réalisé pour produire le produit explosif en sortie du mélangeur statique à l'extrémité avale du premier tuyau.
Dans la présente description, on entend par « amont » et « aval », la position en référence au sens d'écoulement des fluides au sein des tuyaux depuis les réservoirs vers le premier mélangeur et vers la sortie débouchant dans le trou de dépose du produit explosif en sortie de premier mélangeur.
On comprend que -en opération- l'extrémité aval de l'ensemble de tuyaux coaxiaux est inséré dans un trou destiné à être rempli de produit explosif sortant dudit premier mélangeur.
Ainsi, d'une part, seul le premier tuyau est en contact avec l'extérieur et notamment les parois du trou pendant les opérations protégeant les autres matériel et évitant notamment d'endommager le fil de détonateur entre autres ; et, d'autre part, on peut en contrôlant les débits relatifs de matrice et réactif de gazéification contrôler quasiment en temps réel la densité du produit explosif obtenu, au fur et à mesure du remplissage du trou en continu et donc faire varier la densité du produit explosif , à savoir sa puissance explosive selon la profondeur à laquelle il est disposé dans le trou ou d'un trou à l'autre dans différents trous comme explicité ci-après en liaison avec le procédé selon l'invention.
On entend ici, de manière connue de l'homme de l'art, par « mélangeur statique », un dispositif contenant des éléments mécaniques aptes à créer une modification dans le mouvement d'un fluide en mouvement le parcourant créant des mouvements tourbillonnaires permettant le mélange sans apport d'énergie pour déplacer lesdits éléments mécaniques autre que celle apportée par le mouvement du fluide. Le plus souvent les mélangeurs statiques consistent en tube contenant une ou plusieurs structures tridimensionnelles favorisant l'apparition de tourbillons lors du passage d'un flux de fluide dans la direction longitudinal du tube.
Plus particulièrement, l'ensemble de tuyaux coaxiaux est relié à un tambour enrouleur, et est enroulé au moins en partie ou apte à être enroulé sur ledit tambour enrouleur, l'extrémité avale de l'ensemble de tuyaux coaxiaux étant disposé dans ou au-dessus d'un trou pour explosion, de préférence un trou de forage sensiblement cylindrique dans lequel on a placé une charge d'amorçage d'explosif et un détonateur relié en surface par un fil de détonateur.
Typiquement, on met en œuvre un tambour enrouleur de 30 à 80cm de diamètre pour 10 tours d'enroulement de tuyaux de 30 à 100m de long avec des diamètres externes de premier tuyau de 30 à 50mm et diamètres internes de 25 à 40mm et diamètres externes de deuxième tuyau de 5 à 15 mm avec un diamètre internes de 3 à 10mm.
Selon la présente invention, les dits premier et deuxième tuyaux sont connectés coaxialement l'un à l'autre à leurs extrémités amont par une première pièce de connexion comprenant un manchon à paroi cylindrique externe et une pièce coudée interne, la dite première pièce de connexion étant de préférence solidaire d'un tambour enrouleur sur lequel est enroulé au moins en partie ou apte à être enroulé le dit ensemble de tuyaux coaxiaux, la dite première pièce de connexion comprenant :
- un premier orifice d'entrée, formant une ouverture amont dudit manchon et disposée axialement dans une direction longitudinale (XX') la paroi cylindrique dudit manchon, ledit premier orifice d'entrée étant relié à une partie, de préférence une partie rigide, du dit premier circuit de transfert de dite matrice, et
- un deuxième orifice d'entrée, disposé latéralement au niveau de la paroi cylindrique dudit manchon, formant une ouverture amont de la dite pièce coudée traversant la paroi cylindrique dudit manchon et disposée perpendiculairement à la dite direction longitudinale (XX'), ledit deuxième orifice d'entrée étant relié à une partie, de préférence une partie rigide, du dit deuxième circuit de transfert de dit réactif de gazéification, et
- un premier orifice de sortie, formant une ouverture avale dudit manchon et disposée axialement dans ladite direction longitudinale (XX') de la paroi cylindrique dudit manchon, ledit premier orifice de sortie étant relié par un premier raccord à joints tournants à l'extrémité amont d'une partie rigide dudit premier tuyau en amont d'un dit tambour enrouleur, d'une partie rigide dudit premier tuyau en amont d'un dit tambour enrouleur, et
- un deuxième orifice de sortie, disposé axialement dans ladite direction longitudinale (XX') de la paroi cylindrique dudit manchon, formant une ouverture avale de la dite pièce coudée à l'intérieur dudit manchon, ledit deuxième orifice de sortie étant relié par un deuxième raccord à joints tournants à l'extrémité amont du dit deuxième tuyau de transfert de dit réactif de gazéification. On comprend qu'en amont de la dite première pièce de connexion les dits premier et deuxième circuits sont séparés et s'étendent depuis les dits premier et deuxième réservoirs dans des directions différentes et la dite première pièce assure la connexion coaxiale des deux premier et deuxième tuyaux en aval de celle-ci, les deux flux de dite matrice et dit réactif restant toutefois séparés jusqu'au premier mélangeur. Ledit premier tuyau ou tuyau externe est solidarisé au dit deuxième tuyau ou tuyau interne seulement au niveau d'une pièce de connexion et alimentation en amont du dit tambour décrite ci-dessus.
Selon la présente invention, la fixation des extrémités amont des dits premier et deuxièmes tuyaux sur les dits premier et deuxième orifices de sortie de la dite première pièce de connexion se fait par l'intermédiaire de deux premier et respectivement deuxième raccords à joints tournants autorisant chacun séparément la rotation sur elle-même par rapport audit axe longitudinal (XX') des extrémités amont des dits premier et respectivement deuxième tuyaux, les dits première pièce de connexion et dits raccords à joints tournants étant disposés en amont d'un dit tambour enrouleur de sorte que les dits premier et deuxième orifices de sortie sont disposés dans l'axe de rotation XX' du dit tambour. Cette caractéristique est particulièrement avantageuse car elle évite les torsions des dits premier et deuxième tuyaux lors des enroulements et déroulement de dits tuyaux sur ledit enrouleur lorsque les parties amont non enroulées des dits tuyaux sont entraînées en rotation sur elle-même par rapport audit axe de rotation dudit tambour de façon différentiée. Les raccords du type dénommé « raccord à joints tournants » sont bien connus de l'homme de l'art, et sont constitués essentiellement de deux pièces reliées entre-elles par des joints toriques et des jeux de roulements à billes autorisant le mouvement rotatif de l'une d'elles par rapport à l'autre autour d'un axe commun, chaque pièce étant apte à être raccordée à un élément distinct. Ici, il s'agit d'une pièce tubulaire de raccord apte à être raccordée à des éléments tubulaires.
On comprend que la fixation des extrémités des différents tuyaux sur la dite première pièce de connexion, éventuellement sur dits raccords à joints tournants, se fait par l'intermédiaire de raccord rigide. Plus particulièrement, le dit deuxième tuyau comprend à son extrémité avale, à l'intérieur du dit premier tuyau, un clapet apte à s'ouvrir et laisser le flux de dit réactif de gazéification sous la pression dudit flux lorsque la deuxième pompe est actionnée et apte à rester fermer et empêcher des fuites de réactif de gazéification lorsque la deuxième pompe est désactivée.
Cette caractéristique est importante pour permettre un contrôle fiable et précis de la variation en temps réel en cours de remplissage du trou de la densité du produit explosif obtenu par mélange de ladite matrice et du dit réactif de gazéification. Plus particulièrement, selon d'autres caractéristiques:
- le dit premier tuyau comprend au moins une partie rigide coudée de premier tuyaux assemblée à une partie flexible de premier tuyau de manière étanche et réversible par un collier, ladite partie rigide coudée s'étendant en partie en amont du dit tambour et étant solidaire de celui- ci et apte à être entraînée en rotation autour de l'axe de rotation dudit tambour lorsque ledit tambour est actionné en rotation, ladite partie flexible de premier tuyau étant apte à être enroulée autour du dit tambour, et
- ledit deuxième tuyau comprend deux parties flexibles reliées entre elles par un raccord étanche et réversible rigide du type à union double, la partie flexible de dit deuxième tuyau disposée en amont du dit raccord du type union double étant plus courte que la partie flexible de dit deuxième tuyau disposée en aval, ledit raccord du type à union double étant disposée au niveau du dit tambour ou en amont de celui-ci, de préférence à proximité du dit collier.
Ainsi, lorsque l'on veut raccourcir le dit deuxième tuyau du fait du raccourcissement réalisé à l'extrémité avale du premier tuyau lorsque celui-ci est usé et endommagée, il est aisé d'ouvrir le premier tuyau au niveau du dit collier en amont du tambour, de dérouler l'ensemble de tuyaux coaxiaux, et de sortir la partie avale de dit deuxième tuyau pour la raccourcir ; et ceci sans avoir à désaccoupler la partie amont du deuxième tuyau flexible au niveau du raccord à joint tournant ni sortir ledit premier mélangeur.
On peut aussi- lorsque l'on veut faire fonctionner une installation sans variation de densité - sortir complètement le deuxième tuyau, obturer ledit deuxième, orifice d'entrée et connecter une dérivation du deuxième circuit d'arrivée de réactif de gazéification sur le dit premier circuit en amont d'un deuxième mélangeur en amont dudit tambour. Il n'y a plus dans ce cas de circulation coaxiale de matrice et réactif de gazéification.
Les raccords du type dénommé à « union double » sont bien connus de l'homme de l'art, et sont constitués essentiellement de l'assemblage d'au moins trois paires de pièces de raccordement male/femelle fonctionnant par liaisons démontables. Plus particulièrement, une butée tubulaire creuse comprenant une ouverture centrale longitudinale est disposée de manière amovible à l'extrémité avale du premier tuyau pour retenir le dit premier mélangeur à l'intérieur du premier tuyau en laissant passer le produit explosif par l'ouverture centrale de la dite butée, un filetage sur une paroi externe cylindrique permettant de visser et ainsi fixer de manière amovible la dite butée contre la paroi interne dudit premier tuyau, de préférence à l'aide d'une clé de vissage apte à coopérer avec l'extrémité avale de ladite ouverture centrale longitudinale pour visser à l'intérieur dudit premier tuyau ou dévisser la dite butée pour la sortir dudit premier tuyau. Cette caractéristique permet de protéger le mélangeur statique et surtout de pouvoir le sortir facilement pour couper l'extrémité avale du premier tuyau lorsque celle-ci est endommagée ou usée, avant de réintroduire le dit premier mélangeur puis la dite butée.
Plus particulièrement, selon une caractéristique originale de l'invention, le dit premier mélangeur est un mélangeur statique comprenant une pluralité d'ailettes présentant chacune une surface hélicoïdale, de préférence s'étendant dans sa direction axiale sur une longueur correspondant à un pas de la courbe hélicoïdale correspondante, les dites surfaces hélicoïdales étant supportées par une même tige de renfort à laquelle elles sont fixées de façon juxtaposées dans la direction longitudinale du dit premier tuyau, les dites surfaces hélicoïdales successives étant décalées angulairement en rotation par rapport à leur axe virtuel commun de surface hélicoïdale coïncidant sensiblement avec un axe longitudinale du dit premier tuyau d'axe coaxial au dit premier tuyau, le diamètre des dites surfaces hélicoïdales étant sensiblement identique ou juste suffisamment inférieur au diamètre interne du premier tuyau pour autoriser la rotation des dites ailettes sous l'effet de la pression des flux de matrice et réactif en mélange les traversant. Ce type de mélangeur fabriqué selon l'invention est plus fiable mécaniquement et plus performant dans les conditions de mise en œuvre selon l'invention. Plus particulièrement, une unité centrale de commande et contrôle automatisé comportant des moyens électroniques pilotés par un logiciel avec une clavier été/ou interface graphique, permet de commander et contrôler les quantités et débits respectifs de dite matrice et/ou de préférence dit réactif de gazéification, et faire varier la densité du produit explosif obtenu, en commandant et contrôlant des première et/ou deuxième vannes et/ou contrôlant les vitesses des dites première et/ou deuxième pompes, de préférence la dite unité centrale étant supporté sur un véhicule motorisé, de préférence encore ledit véhicule supportant les dits premier et deuxième réservoirs et dites première et deuxième pompe.
La présente invention fournit aussi un procédé de production in situ de produit explosif à l'aide d'une installation selon l'invention comprenant les étapes dans lesquels : 1) on transfère un produit visqueux de dite matrice, et un produit liquide de dit réactif de gazéification, dans des dits premier et respectivement deuxième tuyau coaxiaux, et
2) on mélange la dite matrice et le dit réactif de gazéification dans un dit premier mélangeur, et 3) on dépose ledit produit explosif en sortie du dit premier mélangeur, dans un trou pour explosion, de préférence un trou de forage sensiblement cylindrique dans lequel on a précédemment placé une charge d'amorçage d'explosif et un détonateur relié à un fil de détonateur remontant en surface. Le procédé selon l'invention permet de faire varier les proportions respectives de réactif de gazéification et de matrice émulsion entrant dans le mélangeur pour changer en temps réel la densité du produit arrivant dans le trou et ce lors d'une seule et même procédure de remplissage. Ceci est rendu possible, entre autre, du fait que les réactifs R et matrice M sont mis en contact juste avant le mélangeur et que le produit explosif déposé dans le trou sort directement du dit mélangeur. Il est donc ainsi possible -selon l'invention- d'adapter automatiquement l'énergie de l'explosif au massif rocheux de manière simple en faisant un seul remplissage d'explosif en continu ou dans un même cycle de production, une seule séquence de pompage d'explosif , une seule séquence en continue signifiant ici que l'on met le tuyau de dépose dans le trou, puis actionne la pompe de transfert et dépose et ressort le tuyau qu'après remplissage du trou jusqu'au niveau souhaité.
Si le trou est profond, on peut retirer le tuyau progressivement au fur et à mesure du remplissage du trou en enroulant le tuyau sur le tambour.
Le procédé selon l'invention permet donc de modifier quasiment en temps réel la densité du produit et donc de l'énergie massique de l'explosif, celle-ci étant inversement proportionnelle à sa densité, et plus particulièrement, de faire varier la densité du produit permet d'avoir une densité élevée, dans le fond du trou et une densité allégée dans la colonne en hauteur.
Typiquement, on réalise des trous de 5 à 30 m de profondeur et de diamètre de 5cm à 20 cm, et on définit au moins deux de préférence 4 quantités de produit explosifs pour 4 valeurs de densité correspondant à des énergies massique de 2 à 5 MJ/kg (106J/Kg), notamment des densités de 0.5 à 1.5.
En pratique la quantité de produit explosif correspond sensiblement à la quantité de dite matrice car la quantité relative de réactif est de l'ordre de 0.1 à 2% seulement par rapport au poids de produit explosif obtenu.
Plus particulièrement, on commande et contrôle les quantités et débits de dite matrice et de dits réactif de gazéification de manière à produire un dit produit explosif de densité de valeur déterminée en sortie de premier mélangeur. Plus particulièrement, on fait varier la densité du produit explosif obtenu en cours de remplissage selon la quantité de produit explosif déposé et/ou selon la profondeur à laquelle on dépose le produit explosif dans un même trou ou d'un trou à l'autre dans différents trous. Plus particulièrement, on choisit et commande des quantités déterminées de produits explosifs ayant des valeurs de densité déterminées différentes respectivement à déposer successivement dans un trou en cours de remplissage, de préférence en continu.
De préférence, on choisit parmi une pluralité de valeurs de densité prédéterminées correspondant à des énergies explosive massique de 2 à 5 MJ/Kg (106 J/Kg), de préférence des densités entre 0.5 et 1.5.
En pratique la quantité de produit explosif correspond sensiblement à la quantité de dite matrice dans la quantité relative de réactif est de l'ordre de 0.1 à 2%.
Typiquement, pour des trous de 5 à 30 m de profondeur et de diamètre de 5cm à 20 cm, on définit 4 quantités de produit explosifs pour 4 valeurs de densité de 0.8 à 1.2.
Plus particulièrement, à l'étape 1), on transfère séparément les dite matrice et dit réactif de gazéification depuis des dits premier et respectivement deuxième réservoirs dans des premier tuyau et respectivement deuxième tuyau coopérant avec une première pompe et une première vanne et respectivement une deuxième pompe et une deuxième vanne, et on commande et contrôle un débit constant de dite matrice en contrôlant la vitesse de la première pompe et/ou l'ouverture de la dite première vanne, et on fait varier le débit de dit réactif de gazéification en en contrôlant la vitesse de la deuxième pompe et/ou l'ouverture de la dite deuxième vanne.
Plus particulièrement, on commande et contrôle un débit constant de dite matrice en contrôlant la vitesse de la première pompe à l'aide d'un capteur de vitesse de la dite première pompe, et on fait varier le débit de dit réactif de gazéification en en contrôlant la vitesse de la deuxième pompe à l'aide d'un débitmètre.
En effet, de façon connue de l'homme de l'art, des abaques permettent pour une valeur de densité donnée, les débits respectifs de réactif de gazéification y et de dite matrice x varient linéairement selon une formule y= ax + b. Les valeurs d a et b dépendent de la composition des dits réactifs de porosité et dite matrice. Des abaques fournissent des graphiques de dits débits de réactif en L/min par rapport à des valeurs de débit de dite matrice en Kg/min. Ainsi, pour une valeur de débit de matrice d fixée, il suffit de faire varier le débit de réactif de gazéification.
D'autre part, du fait que le produit visqueux est plus difficilement contrôlable et qu'il est plus aisé de faire varier et contrôler le dédit d'un fluide liquide, il est avantageux de travailler à flux de matrice constant et en faisant varier le débit de réactif de gazéification.
Typiquement ; en pratique, pour produire un produit explosif de densité de 0.5 à 1.5, on met en œuvre:
- une dite matrice de densité de 1 à 1.7 d'une émulsion de base dite inverse ou « eau dans huile » obtenue par un mélange de (a) une phase continue organique, constituée mélange d'huiles minérales et gasoil, et (b) une phase aqueuse discontinue de divers sels comburants en solution aqueuse à base de nitrate d'ammonium et/ou nitrate de sodium et/ou nitrate de calcium, à un débit de 25 à 300 Kg/min. (min. = minute), de préférence de 100 à 150 kg/min., et
- une solution dit réactif de gazéification de densité de 0.5 à 1.5 à base de nitrite de sodium et/ou thiocyanate de sodium, à un débit de 0.1 à 2 L/min ;
- dans un ratio de débit de réactif/ matrice variant de de 0.1 à 2 L/ lOOKg de la proportion. Plus particulièrement, lorsque l'extrémité avale du premier tuyau est usée et/ou endommagée, on réalise les étapes suivantes : a) on retire le dit premier mélangeur du dit premier tuyau, b) on coupe l'extrémité avale du premier tuyau usée et/ou endommagée, c) on replace le dit premier mélangeur à l'intérieur du dit premier tuyau, d) on désassemble l'extrémité amont de la partie flexible du dit premier tuyau, et on extrait une partie amont du dit deuxième tuyau et on désassemble une première partie amont de deuxième partie avale de deuxième tuyau flexible, et e) on sort du premier tuyau et on raccourcit la dite deuxième partie avale de deuxième tuyau flexible, puis on la replace dans le dit premier tuyau et on la raccorde à nouveau à la partie amont du deuxième tuyau restée à l'intérieur d'une partie amont rigide du premier tuyau.
D'autres caractéristiques et avantages de la présente invention ressortiront mieux à la lecture de la description qui va suivre, faite de manière illustrative et non limitative, en référence aux dessins annexés sur lesquels :
- la figure 1 représente une unité mobile de fabrication d'explosifs 1 (abrégée « UMFE ») à savoir un camion 1 transportant le matériel de l'installation selon la présente invention sur son châssis arrière la, et
- la figure 1A représente le déploiement d'un ensemble de tuyaux coaxiaux 6 déroulés depuis un enrouleur 5 à l'arrière dudit camion, et
- la figure 1B représente une vue en coupe d'un trou de forage 11 réalisé dans un massif rocheux 15 dans lequel est déposé du produit explosif 10, l'extrémité avale ouverte de l'ensemble de tuyaux coaxiaux 6 selon l'invention disposée dans le trou, et
- la figure 2 représente un schéma de montage des matériels de l'installation selon la présente invention en vue de la mise en œuvre du procédé selon l'invention, et
- la figure 3 représente le détail d'une vue en perspective de l'enrouleur 5, et
- la figure 3A représente une vue en coupe verticale au niveau de la première partie rigide 6ia du tuyau externe 6i de l'ensemble de tuyaux coaxiaux 6, et
- les figures 4A et 4B sont des vues en coupe d'une dite première pièce de connexion 3 et ensemble de deux raccords à joints tournants 4i et 42, et
- la figure 4C est une vue montrant le montage dudit deuxième tuyau ou tuyau interne de transfert de réactif de gazéification 62 sur ladite première pièce de connexion 3 et le deuxième raccord à joint tournant 42, et
- les figures 5A, 5B et 5C représentent différentes vues relatives à l'introduction du premier mélangeur statique 7 à l'intérieur et à l'extrémité avale du premier tuyau 6i en aval du clapet 64 de l'extrémité avale 64 du deuxième tuyau 62.
Description détaillée
Une installation 1 de production de produits explosifs 10 in situ c'est-à-dire sur le site d'utilisation de l'explosif, à savoir, plus précisément au niveau d'un trou de forage 11 selon l'invention, comporte les matériels suivants agencés de la manière suivante : - un camion 1 supporte sur son châssis arrière la un premier réservoir 1-1 contenant un produit constitué principalement d'une émulsion explosive dénommée « matrice », et
- un deuxième réservoir 1-2 contenant un réactif de gazéification notamment à base de nitrite de sodium et de thiocyanate, et
- un troisième réservoir 1-3 contenant un catalyseur de réaction, à savoir un acide notamment de l'acide acétique et destiné à catalyser la réaction de la matrice avec le réactif de gazéification pour dégager un gaz comme décrit ci-après, et - un quatrième réservoir d'eau 1-4, et
- un cinquième réservoir de nitrates 1-5.
Le camion 1 supporte également sur son châssis la les différentes pompes suivantes :
- une première pompe 2-1 disposée en sortie du premier réservoir 1-1 et destinée à transférer la matrice du premier réservoir 1-1 vers le trou de forage 11 par l'intermédiaire d'un premier circuit comprenant une canalisation de transfert de matrice la puis un ensemble de tuyaux coaxiaux 6 décrit ci-après, et
- une deuxième pompe 2-2 disposée en sortie du deuxième réservoir 1-2 destinée à transférer le réactif de gazéification depuis son deuxième réservoir 1-2 dans un deuxième circuit comprenant une canalisation de transfert de réactif lb vers l'ensemble de tuyaux coaxiaux 6 tel que décrit ci-après, et
- une troisième pompe 2-3 destinée à transférer le catalyseur depuis son réservoir 1-3 jusque dans le premier réservoir 1-1, et
- une pompe 2-5 et/ou vis d'extraction destinée à transférer le nitrate du cinquième réservoir 1-5 vers ledit premier réservoir 2-1 - une pompe 2-4 destinée à transférer l'eau du quatrième réservoir 1-4 dans un circuit le vers le premier circuit la de transfert de la matrice de façon à lubrifier le produit visqueux que constitue la matrice et faciliter son transfert au sein d'un premier tuyau de transfert 6i comme décrit ci-après.
La jonction du circuit d'eau le sur le premier circuit de matrice la se fait par une pièce ld dénommée « anneau injecteur d'eau de lubrification ». La fonction de l'eau est uniquement la lubrification de la matrice pour une diminution des pertes de charges. La canalisation constituant un premier circuit de transfert de matrice la relie le premier réservoir 1-1 à un premier tuyau flexible 6i externe de l'ensemble de tuyau 6 enroulé sur un enrouleur 5. Et, le deuxième circuit de transfert de réactif de gazéification lb comprend des canalisations depuis le deuxième réservoir 1-2 jusqu'à un deuxième tuyau 62 interne de transfert de réactif de gazéification de l'ensemble de tuyaux 6 enroulé sur l'enrouleur 5. Le deuxième tuyau 62 est disposé à l'intérieur du premier tuyau 6i et se positionne sensiblement de manière coaxiale à l'intérieur du tuyau 6i lorsque du fait du flux de matrice passant dans l'espace annulaire entre le premier tuyau 6i et le deuxième tuyau 62 lorsque l'on transfère ladite matrice vers le trou de forage 11.
Le camion 1 supporte également un mélangeur statique dénommé « deuxième mélangeur » statique 2-6, en amont de l'ensemble de tuyau coaxiaux 6. Le camion 1 supporte également sur son châssis arrière la des vannes comprenant :
- une première vanne VI en sortie du réservoir 1-1 monté sur la première canalisation la de transfert de matrice, et
- en aval de la première pompe 2-1, une deuxième vanne V2 en sortie du deuxième réservoir 1-2 de transfert de réactif de gazéification coopérant avec le deuxième circuit lb de transfert de réactif de gazéification en amont de la deuxième pompe 2-2, et
- une vanne d'isolement l-2a en amont du deuxième réservoir de réactif de gazéification 1-2, et - une troisième vanne V3, vanne trois voies permettant d'alimenter une canalisation de dérivation lb-1 du deuxième circuit lb de réactif de gazéification connecté à la première canalisation de transfert de matrice la en aval de la première vanne VI mais en amont dudit deuxième mélangeur statique 2-6. En amont du deuxième mélangeur 2-6 se trouve connectée une dérivation d'injection d'air le, rejoignant le premier circuit la de matrice en aval de la première vanne VI. On peut ainsi par envoi d'air comprimé, nettoyer l'ensemble du circuit en aval, à volonté, notamment entre deux utilisations. Le camion 1 supporte également sur son châssis arrière la une unité de commande centrale 9 comportant un clavier 9a et/ou une interface graphique 9b, coopérant avec un logiciel apte à commander l'actionnement des dites pompes et desdites vannes.
En aval de la troisième vanne V3, le circuit de transfert de réactif de gazéification lb rejoint le premier circuit de transfert de matrice la en aval du deuxième mélangeur 2-6 au niveau d'une pièce de connexion dénommée première pièce de connexion 3 qui assure la connexion entre la première canalisation la et la deuxième canalisation lb juste en amont de l'ensemble de tuyaux coaxiaux 6 enroulés sur l'enrouleur 5, de manière à ce que le flux de réactif de gazéification soit transféré dans le deuxième tuyau interne 62 et le flux de matrice provenant du premier circuit la soit transféré à l'intérieur du premier tuyau 6i et à l'extérieur du deuxième tuyau 62 dans l'espace annulaire entre la paroi interne du premier tuyau6i et le deuxième tuyau 62, tel que décrit ci-après. La vanne V3 permet, en forçant la circulation du réactif de gazéification vers la dérivation lb-1 d'obtenir un premier mode de fonctionnement de l'installation selon un procédé traditionnel dans lequel on mélange le réactif de gazéification et la matrice au sein du mélangeur 2-6 en amont de l'ensemble de tuyaux de transfert 6 jusqu'au trou de forage 11. Dans ce mode de réalisation traditionnel, le produit explosif 10 produit au sein du mélangeur 2-6 est véhiculé sur une longue distance, c'est-à-dire tout le long d'un long tuyau rejoignant le trou de forage 11. Le châssis la du camion 1 supporte également en amont de la deuxième pompe 2-2 et en aval du deuxième réservoir 1-2 un filtre 2-5. Par ailleurs, le châssis la supporte également :
- en aval de la deuxième pompe 2-2, un débitmètre 2-2a du type à section variable, tel que commercialisé par la société KROHNE (FR) sous la référence H250/RR/MXX/ESK, la deuxième pompe 2-2 étant du type à piston notamment telle que commercialisée par la société CAT PUMPS (USA) sous la référence CAT2XX, et
- un capteur de vitesse 2-la du type compte tours monté sur le moteur hydraulique de la pompe tel que commercialisé par la société DANFOSS (FR) sous la référence 151-5662 indiquant la vitesse de rotation de la première pompe 2-1, la première pompe 2-1 étant une pompe volumétrique dite à cavité progressive entraînée par un moteur hydraulique du type commercialisé par la société DANFOSS sous la référence par exemple OMS160EM151F-3023. Plus particulièrement, La pompe envoie des signaux puisés selon un nombre déterminé connu d'impulsion par tour au capteur de vitesse 2-la de sorte qu'on peut connaître la quantité de produit débité par la pompe, par étalonnage en fonction du nombre de tours de ladite première pompe.
En aval de la première pompe 2-1, sont également montés sur le premier circuit 1-a différents capteurs à savoir, un capteur de pression du fluide de matrice la-1, un capteur de température la-2, et un capteur de détection d'absence de débit de flux de matrice la-3. En effet, la pression du flux de matrice dans la canalisation la ne doit pas dépasser 20 bars et de même la température doit rester inférieure à 70 °C pour des raisons de sécurité, au risque que l'émulsion explosive ne devienne trop sensible. En effet, l'émulsion explosive devient plus sensible à la décomposition rapide lorsque la pression et la température augmentent. Pour mieux appréhender ce risque, on a déterminé la pression limite de 20bar à l'aide d'un dispositif spécifique de sécurité appelé MBP (« Minimum Burning Pressure »). Un dispositif 2-2b coopérant avec la deuxième pompe 2-2 est une soupape de sécurité servant à faire baisser la pression lorsque la pression se situe au-delà d'un niveau seuil.
Selon une caractéristique originale de la présente invention, un deuxième tuyau de transfert de réactif de gazéification est disposé à l'intérieur d'un premier tuyau 6-1 de transfert de matrice, pour former un ensemble de tuyau 6 selon la disposition suivante.
Les deux canalisations indépendantes de transfert de matrice la et transfert de réactif de gazéification lb se rejoignent au niveau d'une première pièce de connexion 3 originale selon la présente invention décrite sur les figures 4A, 4B et 4C.
La première pièce de connexion 3 comprend un manchon principal à paroi cylindrique externe 3a ouvert à ses extrémités amont 3ia et aval 3ib formant ainsi un premier orifice d'entrée 3ia à section circulaire en amont et un premier orifice de sortie 3ib en aval à section circulaire, disposés tous les deux selon un axe longitudinale XX' de ladite enveloppe 3a correspondant à l'axe de rotation du tambour 5.
Le premier orifice d'entrée 3ia comporte un filetage 33a de sorte que l'extrémité filetée d'un raccord lai fileté à l'extrémité avale de la première canalisation la de transfert de matrice peut y être fixé par vissage. En extrémité avale de la première pièce de connexion 3 l'extrémité amont du premier tuyau 6i et l'extrémité amont du deuxième tuyau 62 sont montées de manière coaxiale sur des premier orifice de sortie 3ib et respectivement deuxième orifice de sortie 32b coaxiaux à l'extrémité avale de ladite première pièce de connexion 3 via un premier raccord à joint tournant 4i et respectivement un deuxième raccord à joint tournant 42.
Le premier orifice de sortie 3ib comporte une surface externe filetée 33b à la surface externe de l'extrémité avale de la paroi d'enveloppe cylindrique 3a sur lequel on peut visser l'extrémité femelle d'un premier raccord à joint tournant 4i dont l'extrémité avale comporte un filetage périphérique externe 4iC sur lequel sera vissé un raccord femelle 6id à l'extrémité amont d'une première partie rigide 6-la du premier tuyau 6i. Sur la figure 4B, on a représenté la structure connue de ce type de premier raccord à joint tournant 4i comportant des joints toriques d'étanchéité 4id et des roulements à billes 4ie assurant la coopération entre deux pièces tubulaires 4ia et 4ib juxtaposés dans la direction axiale XX'. Ladite première pièce 4^ comporte une extrémité femelle amont vissée sur le filetage externe 33b de l'extrémité mâle de la pièce 3 formant le premier orifice de sortie 3ib. Une deuxième partie 4ib avale du premier raccord à joint tournant 4i comprend à son extrémité avale, le filetage externe 4iC coopérant avec le raccord d'extrémité 6id du premier tuyau 6i. Les roulements à billes 4^ et joints toriques 4id autorisent la rotation de la première partie rotative 4ib du premier raccord joint tournant 4i autour de l'axe XX' commun de la première pièce de connexion 3 et du raccord tournant 4i par rapport à la première partie 4ia fixe du raccord à joint tournant 4^ Ainsi, l'extrémité amont du premier tuyau 6i peut tourner sur elle-même en cas de torsion lors de son enroulement sur l'enrouleur 5 comme décrit ci-après. La paroi d'enveloppe 3a contient une pièce coudée interne 3b comportant une première partie tubulaire s'étendant dans une direction perpendiculaire à l'axe longitudinal XX' de la paroi 3a et définissant un deuxième orifice d'entrée 32a traversant ladite paroi 3-a et sur lequel est vissé l'extrémité filetée d'un raccord terminal lb' de la deuxième canalisation lb d'amené de réactif de gazéification.
La pièce coudée 3b comporte également une partie tubulaire disposée axialement dans l'intérieur de la pièce 3 et formant un deuxième orifice de sortie 32b sur lequel est vissé une première pièce fixe amont 42a d'un deuxième raccord à joint tournant 42 comprenant une deuxième pièce avale 42 rotative juxtaposée dans la direction longitudinale axiale XX'. Ladite première pièce amont 42a coopère avec la deuxième pièce avale 42b par des joints étanches et roulements à billes (non représentés), autorisant la rotation de ladite deuxième pièce 42b du deuxième rapport à joint tournant 42 autour de l'axe XX'. L'extrémité amont du deuxième tuyau 62 est fixée sur ladite deuxième pièce rotative 42b du deuxième raccord à joint tournant 42, par l'intermédiaire d'une pièce raccord d'extrémité 62c.
On peut utiliser des raccords à joint tournant de référence TP 1100M/F commercialisé par la société PACQUET INDUSTRIE (France).
La première pièce de connexion 3 et les deux raccords à joints tournant 4i et 42 sont disposés juste en amont d'un tambour enrouleur 5 supportés par une structure ou poutre 5a. Sur le tambour enrouleur 5, on enroule une partie flexible avale 6ib du premier tuyau 6i reliée à une partie rigide amont 6ia par un collier amovible 6iC.
La partie rigide amont 6ia du premier tuyau 6i solidaire à la fois de la première pièce de connexion 3 via le premier raccord à joint tournant 4i et solidaire également du tambour enrouleur 5 est donc entraînée en rotation avec le tambour enrouleur 5 autour de l'axe de rotation XX' commun du tambour enrouleur 5 et desdits raccords à joint tournant 4i et 42 et de la pièce de connexion 3. La partie rigide 6ia présente différents coudes, de sorte que sa partie amont ( en amont du tambour) est disposée selon la direction axiale XX' de la première pièce de connexion 3 tandis que sa partie avale au niveau du collier 6iC est disposée dans une direction tangentielle d'une partie cylindrique 5-1 du tambour enrouleur 5 ou suit la courbe de ladite partie cylindrique du tambour sur laquelle peut s'enrouler la deuxième partie flexible 6ib du premier tuyau 6i lorsqu'on actionne en rotation le tambour enrouleur 5.
Le deuxième tuyau 62 disposé à l'intérieur du premier tuyau 6i mais comporte deux parties flexibles 62a et 62b reliées entre-elles par un raccord à union double 63. Ce raccord à union double 63 est du type bien connu de l'homme de l'art tel que par exemple un raccord à union double de référence SS-400-6 commercialisé par la société SWAGELOK (USA) aussi dénommé sous l'appellation « tube fitting ». Ce type de raccord à union double 63 coopère avec des pièces de raccord d'extrémités 62d et 62e aux extrémités respectivement des premières parties flexibles amont 62a et aval 62b du deuxième tuyau 62. Le raccord union double 63 est disposé juste en aval du collier 6iC de sorte que lorsque l'on ouvre et/ou retire le collier 6iC pour séparer les deux parties de premier tuyau 6ia et 6ib, on peut extraire le deuxième tuyau 62 et désaccoupler les deux parties 62a et 62b de deuxième tuyau 62 et ainsi facilement raccourcir autant que de besoin la partie avale 62b lorsque l'on a précédemment été amené à raccourcir l'extrémité avale usée de la partie flexible 6ib du premier tuyau 6i comme décrit ci- après.
L'extrémité avale du deuxième tuyau 62 comporte un clapet anti retour 64, par exemple du type commercialisé par la société SWAGELOK sous la référence SS-4-HC-1-4.
Le clapet 64 se trouve situé le plus près techniquement possible de l'extrémité amont d'un premier mélangeur statique 7 disposée à l'extrémité avale du premier tuyau 6i. Le clapet 64 s'ouvre sous la pression de réactif de gazéification parcourant le tuyau 62 quand la pompe 22 fonctionne; et le clapet 64 se ferme quand la deuxième pompe 2-2 s'arrête et que la pression de flux de réactif de gazéification diminue. Comme représenté sur la figure 4C, le clapet 64 est relié à un raccord 62f à l'extrémité avale de la conduite interne 62 par un deuxième raccord à union double 64a.
Pour la partie flexible 6ib de premier tuyau 6i, on peut utiliser un flexible thermoplastique de diamètre externe de 42 mm et de diamètre interne de 32 mm, de 30 à 100 m de long. Pour le deuxième tuyau 62, on utilisera des conduites thermoplastiques de diamètre externe de 13,2 mm et diamètre interne de 8.3 mm.
Le premier mélangeur 7 est constitué de huit ailettes à surface hélicoïdale 7a fixées de manière juxtaposées dans la direction XiXi' du premier mélanger et du premier tuyau 6i, sur une tige 7b. La tige 7b forme des ondulations de sorte que toute la surface de chaque ailette hélicoïdale se trouve fixée sur ladite tige dans la direction longitudinale ΧιΧι' du premier tuyau 6i et du premier mélangeur 7 inséré à l'intérieur du premier tuyau 6i. La tige 7b est donc ondulée de sorte à suivre le contour ou le = profil des éléments hélicoïdaux 7a. La tige 7b constitue donc un renfort de par ce type de fixation. Les ailettes 7a sont juxtaposées les unes contre les autres dans la direction longitudinale ΧιΧι', mais les différentes portions de surfaces hélicoïdales ne sont pas continues hélicoïdalement, c'est-à-dire sont qu'elles sont décalées angulairement de façon à optimiser les performances dudit mélangeur notamment décalés à 90° successivement par rapport à l'axe XiX .
L'ajout de la tige 7b supportant les ailettes hélicoïdales 7a est une caractéristique originale de la présente invention car dans les conditions de mise en œuvre à l'intérieur d'un tuyau de faible diamètre selon la présente invention, le mélangeur statique subit des pressions importantes. Et il a été constaté qu'en l'absence de tige support, un simple soudage aux extrémités des ailettes 7a pour les maintenir reliées entre-elles comme dans la technique antérieure est insuffisant.
Plus précisément, les éléments hélicoïdaux présentent un diamètre de sensiblement 30mm, une épaisseur des surfaces hélicoïdales d'environ 2mm, une longueur d'environ 50mm et un décalage angulaire d'environ 90°, la longueur totale du mélangeur étant d'environ 400mm.
Le flux de réactif de gazéification sortant du clapet 64 et le flux de matrice arrivant au niveau du clapet 64 à l'extérieur de celui-ci, peuvent se mélanger intimement au niveau du premier mélangeur 7, de par la forme hélicoïdale des ailettes dont le diamètre est juste inférieur au diamètre interne du premier tuyaux 6i .
De préférence, les différents éléments hélicoïdaux sont à pas à sens inversé successivement. L'écoulement de matière à travers le mélangeur statique dans la direction longitudinale ΧιΧι', devient laminaire et est divisé en courants partiels par un premier élément hélicoïdal 7a, puis redivisé au passage d'un élément hélicoïdal 7a suivant et ainsi de suite. La rotation du produit provoquée par la forme des modules hélicoïdaux 7a accentue les phénomènes de mélange. En principe, les éléments hélicoïdaux 7a ne sont pas eux-mêmes en mouvement et en tout état de cause, aucune source de puissance n'est requise autre que celle apportée par lesdites pompes pour vaincre la perte de charge induite par les chicanes que forment les successions de dits éléments hélicoïdaux 7a.
Selon une caractéristique originale de la présente invention, l'extrémité avale du premier tuyau 6i en aval du premier mélangeur statique 7 est équipée d'une butée 8 comportant une surface externe fileté 8a apte à être vissée contre la paroi interne 6ie de l'extrémité avale 6if du premier tuyau 6i. Le fluide de produit explosif obtenu par mélange de la matrice et du réactif de gazéification au sein de premier mélangeur statique 7 peut s'écouler à travers un orifice cylindrique central 8b de la butée 8. Comme représenté sur la figure 5C, une clé 8i comportant des ergots 8ia coopérant avec des encoches 8bl à la périphérie de l'extrémité avale de la butée 8 permet de visser et dévisser la butée 8 à volonté.
L'orifice central 8b de la pièce de de butée 8 permet le passage large du produit explosif et évite des effets indésirables pouvant résulter d'une augmentation de la pression de pompage ou de blocage intempestifs liés à l'accumulation de produits explosifs à ce niveau. En pratique, le diamètre interne de l'ouverture centrale de la pièce de butée 8 est d'environ 20 mm. La butée 8 a pour fonction essentielle de retenir le mélangeur statique 7 au sein de l'extrémité avale du premier tuyau 6i. Le dévissage de la butée 8 permet de sortir le premier mélangeur 7 de l'extrémité avale du premier tuyau 6i et ainsi de pouvoir couper l'extrémité avale du tuyau 6i lorsque celle-ci est endommagée après un certain nombre d'utilisations du fait que la surface externe de l'extrémité avale du tuyau 6i en contact avec les parois des trous de forage 11 constituées de massif rocheux 15 ont tendance à endommager l'extrémité avale du tuyau 6i pendant l'opération comme décrit ci-après.
On peut également retirer le premier mélangeur 7, si on ne souhaite pas mettre en œuvre un procédé selon l'invention faisant varier la densité du produit explosif produit en continu lors d'un cycle de production. Dans ce cas, on retire le deuxième tuyau 62 de l'intérieur du premier tuyau 6i en réalisant le désaccouplement au niveau du collier le comme décrit ci-dessus ou en déconnectant le conduit lb et en fermant ledit deuxième orifice d'entrée 32a par un bouchon et en orientant la vanne trois voies V3 de sorte que tout le réactif de gazéification passe par la canalisation lbi et se mélange au flux de matrice en amont du deuxième mélangeur 26. En sortie de deuxième mélangeur, le produit explosif est transféré via le conduit 6i à un trou de forage dans lequel l'extrémité avale 6if du tuyau 6i est disposée. Le mélangeur statique 7 en pratique s'étend sur une longueur de 0,5 à 1 mètre de sorte que le produit explosif produit se trouve en quantité réduite à l'intérieur du premier flexible 6i. Ainsi, il est possible de faire varier la composition et donc la densité du produit explosif 10, quasiment en continu et en temps réel en sortie du tuyau 6i en adaptant les proportions relatives de débit et/ou de composition de réactif de gazéification et de matrice transférés dans lesdits premier et deuxième tuyaux, comme décrit dans le procédé de production de produit explosif décrit ci-après. Avantageusement, on met en œuvre un procédé selon l'invention dans lequel on fait varier la densité du produit explosif produit en continu lors du remplissage d'un trou de forage 11 en un seul passage, c'est-à-dire, sans avoir à relever le tuyau 6 en cours de remplissage, comme décrit ci-après. L'émulsion est constituée de composants suivants :
- huile minérale et/ou de vidange de moteur : 6,5 %,
- gasoil : environ 1%,
- agents tensioactifs non ioniques: 1%,
- nitrates d'ammonium et/ou de calcium et/ou sodium : environ 75%,
- eau : environ 15 à 20 %.
A l'émulsion ci-dessus ainsi obtenue, on ajoute des nitrates d'ammonium et/ou de calcium dans une proportion de 15 à 35% et un catalyseur par exemple d'acide acétique dans une proportion de 0,5 à 2%, auquel on peut également rajouter de l'aluminium (sous forme de poudre de granulométrie comprise entre environ ΙΟΟμιτι et 2mm) dans une teneur de 1 à 10 % en poids également. On obtient ainsi, ladite matrice selon la présente description au sein du premier réservoir 1-1.
Un exemple de formulation de matrice est donc : - huile minérale et/ou de vidange moteur : 4.55%, - gasoil : 0.7%
- agents tensio-actif : 0.7%
- nitrate d'ammonium en solution : 52.5%
- eau : 11.55%
- nitrate d'ammonium solide en poudre : 30%
A cette matrice, s'ajoute selon le procédé de la présente invention, un réactif de gazéification qui est ici notamment une solution aqueuse d'environ 20% de nitrite de sodium et 80% d'eau pouvant comprendre des catalyseurs tels que thiocyanate de sodium, formiate de sodium, nitrate de zinc et/ou nitrate de calcium.
Le procédé de sensibilisation de la matrice consiste en une réaction chimique entre ledit réactif de gazéification et le nitrate d'ammonium contenu dans ladite matrice. Cette réaction chimique dégage un gaz, en l'espèce le nitrite réagi avec le nitrate pour former de l'azote gazeux, qui engendre une sensibilisation du produit par la création de « points chauds », c'est-à-dire d'interstices dans le produit de mélange permettant la propagation de l'onde de choc, donc la détonation du produit explosif. Le produit est donc rendu explosif du fait de cette sensibilisation. L'augmentation de la quantité de bulles de gaz diminue la masse volumique du produit et donc l'énergie explosive obtenue pour un volume constant de trou (énergie volumique).
La densité de l'émulsion de base (non supplémentée) ci-dessus décrite est par exemple d'environ 1.4 à 1.6 et la densité de l'émulsion supplémentée définissant ladite matrice telle que décrite ci-dessus, avant mélange avec le réactif de gazéification est de 0.8 à 1.3.
La densité du produit de mélange avant réaction de gazéification au sein dudit premier mélangeur est de 1,25 à 1,45 selon les proportions respectives de quantités et/ou débits de dite matrice et dit réactif de gazéification et la densité du produit explosif après gazéification est de 0,8 à 1,2. L'énergie moyenne d'un produit explosif 10 de densité 1.2 est de 3,7 MJ/kg soit 4,44 MJ/L. Ainsi, pour un produit explosif de densité de 0,5 à 1,5 l'énergie explosive sera de 1,85 à 5,55 MJ/L.
Pour un débit Y de réactif de gazéification en L/min (produit/liquide) en fonction d'un débit de matrice X en kg/min de produit visqueux, la relation Y = aX + b est donnée par des abaques avec des valeurs de a et b différentes selon les valeurs de densité d du produit explosif obtenu après gazéification résultant de la réaction entre ladite matrice et le réactif de gazéification par mélange intime au sein du mélangeur statique. Ainsi, les valeurs différentes de a et b sont par exemple ici :
- pour d = 0,8, Y = 0,0117X + 0,002, et
- pour d = 0,9, Y = 0,0085X + 0,0012, et
- pour d = 1, Y = 0,006X, et
- pour d = 14, Y = 0,0039X + 0,0019, et
- pour d = 1,2, Y = 0,0021X.
Il existe donc une relation linéaire entre X et Y suivant la densité finale du produit explosif 10 résultant de la réaction par mélange intime des deux produits. L'unité de contrôle et commande automatisée 9 permet de contrôler les vannes proportionnelles VI et V2 régulant les débits de matrice et de réactif de gazéification, et l'actionnement et vitesse des moteurs des pompes 2-1 et 2-2. Les débits X et Y sont fournis par étalonnage du capteur de vitesse 2-2a de la pompe 2-2 pour les valeurs de X (kg/min) et par le débitmètre 2-2a pour le débit Y de réactif de gazéification (L/min).
En pratique, du fait que le réactif de gazéification R2 est en plus faible quantité et sous forme liquide il est plus facile d'en contrôler le débit de sorte qu'on opère avec un débit de matrice constant X = 125 kg/min. Ainsi, l'opérateur conduisant l'installation choisi les densités successives de produit explosif 10 souhaitées ainsi que les quantités correspondantes pour chaque densité en fonction de son analyse des besoins dans le trou de forage concerné compte tenu de l'environnement de massif rocheux 15 autour du trou à abattre. X étant constant, Y le débit de réactif de gazéification est déterminé automatiquement à partir de l'abaque en fonction de la densité souhaitée. En pratique, pour chaque trou de mine 11, l'opérateur choisira jusqu'à quatre densités différentes appelées dl, d2, d3 et d4. Les densités dl à d4 de produits explosifs à réaliser et les quantités correspondantes sont entrées au niveau de l'unité centrale 9 via un clavier tactile 9a apparaissant à l'écran de l'interface graphique 9b. L'opérateur peut alors lancer un cycle de pompage.
L'unité de commande centralisée et automatisée 9 commande alors automatiquement la régulation du flux et donc du débit de réactif R2 pour un débit de matrice M donné. Ainsi, par exemple, le cycle de production d'un trou cylindrique de 20 m de profondeur et 115mm de diamètre suivant sera réalisé comme suit pour une matrice supplémentée présentant une densité, dans l'exemple ci-après, d'environ 1,3 :
- on charge 20 kg de produits explosifs de densité 1,2 à une valeur de 0,21 L/min avec par exemple un débit de réactif de gazéification de 0,21 L/min, et
- on change de consigne et on donne l'ordre de charger 25 kg de produit explosif 10 de densité 1 qui viendront donc se déposer pardessus les 20 kg de produits explosifs de densité 1,2 précédemment déposés au fond du trou depuis l'extrémité avale du tuyau 6 en mettant en œuvre par exemple un débit de réactif de gazéification de 0,60 L/min ; puis - on charge 50 kg de produits explosifs à densité de 0,9, pardessus le produit explosif précédemment déposé, en mettant en œuvre par exemple un débit de réactif de gazéification de 0,80 L/min, puis
- on charge au sommet de la colonne, 30 kg de produit explosif 10 de densité d = 0,8, obtenu en transférant par exemple un débit de réactif de gazéification de 0,90 L/min.
L'unité centrale automatisée 9 permet donc de commander et contrôler les valeurs de débit de réactif de gazéification comme décrit ci-dessus, simplement en réglant la vitesse du moteur hydraulique de la deuxième pompe 2-2 transférant le réactif de gazéification, et en maintenant un débit sensiblement constant de 125 kg/min de dite matrice. Un tel contrôle et régulation de débit du réactif de gazéification permet de faire varier, quasiment en temps réel la valeur de densité de produit obtenu en sortie de premier mélangeur statique 7 et déversé directement dans le trou de forage, du fait de l'automatisation du contrôle et de la régulation du débit de réactif de gazéification par l'unité centrale 9.
L'unité centrale 9 peut offrir des fonctions supplémentaires avantageuses telles que l'importation et l'exportation des données, de consignes et de résultats en termes de quantité, débit et densité.
Le procédé selon l'invention est aussi avantageux en ce qu'il engendre une amélioration au niveau de la sécurité, le produit de mélange ne devenant explosif uniquement au bout du tuyau flexible 6lf évitant donc le transport sur une longue distance de produit dangereux au sein du tuyau.
Le système d'introduction coaxiale du réactif de gazéification pour l'amener au contact de ladite matrice favorise un mélange intime plus rapide et plus efficace des deux composants ce qui induit, non seulement : - la possibilité de faire varier en temps réel de façon optimale la densité du produit obtenu en mélange avec la matrice, mais aussi
- l'amélioration de la sécurité du procédé et enfin,
- une plus grand fiabilité mécanique de l'installation dans la mesure où aucun matériel n'est requis à l'extérieur du tuyau de dépose du produit explosif pouvant être en contact avec les autres composants nécessaires pour générer l'explosion que sont la charge d'amorçage 12, le détonateur 13 et surtout le fil de détonateur 14 qui est souvent source d'accident en cas de choc de produits métalliques à proximité. En ce qui concerne la variation de la densité du produit obtenu quasiment en temps réel, il y a lieu d'observer que la quantité de produit contenu au sein de l'extrémité avale du tuyau 6i se limite au produit explosif produit gazéifié dans la deuxième partie avale du mélangeur statique, soit pour un mélangeur de 50 cm de long dans un tuyau 6i de 32 mm de diamètre interne, une quantité inférieure à 0.5kg d'une valeur relativement négligeable par rapport aux quantités de produits explosifs de différentes densités qu'il y a lieu d'introduire, on peut donc considérer que la variation de densité est ainsi obtenue quasiment en temps réel par modification des ratios de débit de réactif de gazéification et de matrice.
La mesure de la densité peut s'effectuer par pesée à l'air libre dans un pot calibré de volume connu.
Le procédé de production de produit explosif à densité variable selon la présente invention, consiste donc à faire varier la gazéification du produit explosif dans le trou de mine, de façon quasiment instantanées afin d'obtenir une différenciation de la densité de produit explosif dans la colonne au sein du trou de mine, tout en ne réalisant qu'une seule passe de chargement.

Claims

REVENDICATIONS
1. Installation de production in situ de produit explosif (10) par mélange (a) d'un produit visqueux, dénommé matrice, comprenant une émulsion inverse d'une phase aqueuse de comburant et phase huileuse de combustible et (b) un produit liquide contenant un composé chimique apte à réagir avec la dite matrice pour en augmenter le caractère explosif par gazéification, dénommé réactif de gazéification, la dite installation comprenant au moins : - un premier réservoir (1-1) contenant la dite matrice à base de dite émulsion explosive, et
- un deuxième réservoir (1-2) contenant ledit réactif de gazéification, et
- un premier circuit (la) de transfert de dite matrice comprenant au moins un premier tuyau (6i) au moins en partie flexible coopérant avec une première pompe (2-1) et une première vanne (VI), apte à transférer la dite matrice séparément jusqu'à un premier mélangeur, de préférence un premier mélangeur statique (7), et
- un deuxième circuit (lb) de transfert de dit réactif de gazéification comprenant au moins un deuxième tuyau (62) au moins en partie flexible coopérant avec une deuxième pompe (2-2) et une deuxième vanne (V2), apte à transférer le dit réactif de gazéification séparément jusqu'au dit premier mélangeur (7), et
- le dit deuxième tuyau(62) est disposé entièrement à l'intérieur du premier tuyau (6i) formant un ensemble (6) de tuyaux coaxiaux, ledit premier mélangeur étant disposé à l'intérieur du premier tuyau à son extrémité avale (6if), ledit deuxième tuyau se terminant juste en amont dudit premier mélangeur, et
-l'ensemble de tuyaux coaxiaux (6) est relié à un tambour enrouleur (5), et est enroulé au moins en partie ou apte à être enroulé sur ledit tambour enrouleur, l'extrémité avale de l'ensemble de tuyaux coaxiaux (6) étant disposé dans ou au-dessus d'un trou pour explosion (11) , de préférence un trou de forage sensiblement cylindrique dans lequel on a placé une charge d'amorçage d'explosif (12) et un détonateur (13) relié en surface par un fil de détonateur (14) caractérisé en ce que les dits premier et deuxième tuyaux sont connectés coaxialement l'un à l'autre à leurs extrémités amont par une première pièce de connexion (3) comprenant un manchon à paroi cylindrique externe (3a) et une pièce coudée interne (3b), la dite première pièce de connexion étant de préférence solidaire d'un tambour enrouleur (5), la dite première pièce de connexion comprenant :
- un premier orifice d'entrée (3ia), formant une ouverture amont dudit manchon et disposée axialement dans une direction longitudinale (XX') la paroi cylindrique dudit manchon, ledit premier orifice d'entrée étant relié à une partie, de préférence une partie rigide, du dit premier circuit de transfert de dite matrice, et
- un deuxième orifice d'entrée (32a), disposé latéralement au niveau de la paroi cylindrique dudit manchon, formant une ouverture amont de la dite pièce coudée (3b) traversant la paroi cylindrique dudit manchon et disposée perpendiculairement à la dite direction longitudinale (XX'), ledit deuxième orifice d'entrée étant relié à une partie, de préférence une partie rigide, du dit deuxième circuit de transfert de dit réactif de gazéification, et
- un premier orifice de sortie (3ib), formant une ouverture avale dudit manchon et disposée axialement dans ladite direction longitudinale (XX') de la paroi cylindrique dudit manchon, ledit premier orifice de sortie étant relié par un premier raccord à joints tournants (4 à l'extrémité amont d'une partie rigide (6ia) dudit premier tuyau en amont d'un dit tambour enrouleur, et - un deuxième orifice de sortie (32b) disposé axialement dans ladite direction longitudinale (XX') de la paroi cylindrique dudit manchon, formant une ouverture avale de la dite pièce coudée (3b) à l'intérieur dudit manchon, ledit deuxième orifice de sortie étant relié par un deuxième raccord à joints tournants (42) à l'extrémité amont du dit deuxième tuyau de transfert de dit réactif de gazéification, - la fixation des extrémités amont des dits premier et deuxièmes tuyaux sur les dits premier et deuxième orifices de sortie de la dite première pièce de connexion (3) se faisant par l'intermédiaire de deux premier et respectivement deuxième raccords à joints tournants (4i,42) autorisant chacun séparément la rotation sur elle-même par rapport audit axe longitudinal (XX') des extrémités amont des dits premier et respectivement deuxième tuyaux, les dits première pièce de connexion (3) et dits premier et deuxième raccords à joints tournants (4i,42) étant disposés en amont d'un dit tambour enrouleur de sorte que les dits les dits premier et deuxièmes orifice de sortie (3ib,32b) sont disposés dans l'axe de rotation (XX') du dit tambour.
2. Installation selon la revendication 1, caractérisé en ce que le dit deuxième tuyau (62) comprend à son extrémité avale, à l'intérieur du dit premier tuyau, un clapet (64) apte à s'ouvrir et laisser le flux de dit réactif de gazéification sous la pression dudit flux lorsque la deuxième pompe est actionnée et apte à rester fermer et empêcher des fuites de réactif de gazéification lorsque la deuxième pompe est désactivée.
3. Installation selon l'une des revendications 1 ou 2, caractérisé en ce que :
- le dit premier tuyau comprend au moins une partie rigide coudée (6ia) de premier tuyau assemblée à une partie flexible (6ib) de premier tuyau de manière étanche et réversible par un collier (6iC), ladite partie rigide coudée s'étendant en partie en amont du dit tambour et étant solidaire de celui-ci et apte à être entraînée en rotation autour de l'axe de rotation dudit tambour lorsque ledit tambour est actionné en rotation, ladite partie flexible de premier tuyau étant apte à être enroulée autour du dit tambour, et - ledit deuxième tuyau comprend deux parties flexibles (62a, 62b) reliées entre elles par un raccord étanche et réversible rigide du type à union double (63), la partie flexible (62a) de dit deuxième tuyau disposée en amont du dit raccord du type union double (63) étant plus courte que la partie flexible de dit deuxième tuyau disposée en aval(62b), ledit raccord du type à union double (63) étant disposé au niveau du dit tambour ou en amont de celui-ci, de préférence à proximité du dit collier.
4. Installation selon l'une des revendications 1 à 3, caractérisé en ce que une butée tubulaire creuse (8) comprenant une ouverture centrale longitudinale (8b) est disposée de manière amovible à l'extrémité avale du premier tuyau pour retenir le dit premier mélangeur à l'intérieur du premier tuyau en laissant passer le produit explosif par l'ouverture centrale (8b) de la dite butée, un filetage (8a) sur une paroi externe cylindrique permettant de visser et ainsi fixer de manière amovible la dite butée contre la paroi interne (61e) dudit premier tuyau, de préférence à l'aide d'une clé de vissage (81) apte à coopérer avec l'extrémité avale de ladite ouverture centrale longitudinale pour visser à l'intérieur dudit premier tuyau ou dévisser la dite butée pour la sortir dudit premier tuyau.
5. Installation selon l'une des revendications 1 à 4, caractérisé en ce que le dit premier mélangeur (7) est un mélangeur statique comprenant une pluralité d'ailettes (7a) présentant chacune une surface hélicoïdale, de préférence s'étendant dans sa direction axiale sur une longueur correspondant à un pas de la courbe hélicoïdale correspondante, les dites surfaces hélicoïdales étant supportées par une même tige de renfort (7b) à laquelle elles sont fixées de façon juxtaposées dans la direction longitudinale du dit premier tuyau, les dites surfaces hélicoïdales successives étant décalées angulairement en rotation par rapport à leur axe virtuel commun de surface hélicoïdale coïncidant sensiblement avec un axe longitudinale du dit premier tuyau d'axe coaxial au dit premier tuyau, le diamètre des dites surfaces hélicoïdales étant sensiblement identique ou juste suffisamment inférieur au diamètre interne du premier tuyau pour autoriser la rotation des dites ailettes sous l'effet de la pression des flux de matrice et réactif en mélange les traversant.
6. Installation selon l'une des revendications 1 à 5, caractérisé en ce qu'une unité centrale de commande et contrôle (9) automatisé comportant des moyens électroniques pilotés par un logiciel avec une clavier été/ou interface graphique, permet de commander et contrôler les quantités et débits respectifs de dite matrice et/ou de préférence dit réactif de gazéification, et faire varier la densité du produit explosif obtenu, en commandant et contrôlant des première et/ou deuxième vannes et/ou contrôlant les vitesses des dites première et/ou deuxième pompes, de préférence la dite unité centrale étant supporté sur un véhicule motorisé (10), de préférence encore ledit véhicule supportant les dits premier et deuxième réservoirs et dites première et deuxième pompe.
7. Procédé de production in situ de produit explosif (10) à l'aide d'une installation selon l'une des revendications 1 à 6, comprenant les étapes dans lesquels : 1) on transfère un produit visqueux de dite matrice, et un produit liquide de dit réactif de gazéification, dans des dits premier et respectivement deuxième tuyau coaxiaux, et
2) on mélange la dite matrice et le dit réactif de gazéification dans un dit premier mélangeur, et 3) on dépose ledit produit explosif en sortie du dit premier mélangeur, dans un trou pour explosion (11), de préférence un trou de forage sensiblement cylindrique dans lequel on a précédemment placé une charge d'amorçage d'explosif (12) et un détonateur (13) relié à un fil de détonateur (14) remontant en surface.
8. Procédé selon la revendication 7 caractérisé en ce qu'on commande et contrôle les quantités et/ou débits de dite matrice et de dits réactif de gazéification de manière à produire un dit produit explosif de densité de valeur déterminée en sortie de premier mélangeur.
9. Procédé selon la revendication 8 caractérisé en ce qu'on fait varier la densité du produit explosif obtenu en cours de remplissage selon la quantité de produit explosif déposé et/ou selon la profondeur à laquelle on dépose le produit explosif dans un même trou ou d'un trou à l'autre dans différents trous.
10. Procédé selon la revendication 9 caractérisé en ce qu'on choisit et commande automatiquement des quantités déterminées de produits explosifs ayant des valeurs de densité déterminées différentes respectivement à déposer successivement dans un trou en cours de remplissage, de préférence en continu.
11. Procédé selon la revendication 9 ou 10, caractérisé en ce qu'à l'étape 1), on transfère séparément les dite matrice et dit réactif de gazéification depuis des dits premier et respectivement deuxième réservoirs dans des premier tuyau et respectivement deuxième tuyau coopérant avec une première pompe (2-1) et une première vanne (Vl)et respectivement une deuxième pompe (2-2) et une deuxième vanne (V2), et on commande et contrôle un débit constant de dite matrice en contrôlant la vitesse de la première pompe (2-1) et/ou l'ouverture de la dite première vanne (VI), et on fait varier le débit de dit réactif de gazéification en en contrôlant la vitesse de la deuxième pompe (2-2) et/ou l'ouverture de la dite deuxième vanne (V2).
12. Procédé selon la revendication 11, caractérisé en ce qu'on commande et contrôle un débit constant de dite matrice en contrôlant la vitesse de la première pompe (2-1) à l'aide d'un capteur de vitesse (2- la) de la dite première pompe, et on fait varier le débit de dit réactif de gazéification en en contrôlant la vitesse de la deuxième pompe (2-2) à l'aide d'un débitmètre (2-2a).
13. Procédé selon la revendication 7 à 12 caractérisé en ce qu'on met en œuvre : - une dite matrice de densité de 1 à 1.7 d'une émulsion de base dite inverse ou « eau dans huile » obtenue par un mélange de (a) une phase continue organique, constituée mélange d'huiles minérales et gasoil, et (b) une phase aqueuse discontinue de divers sels comburants en solution aqueuse à base de nitrate(s) d'ammonium et/ou sodium et/ou calcium, à un débit de 25 à 300 Kg/minet
- une solution dit réactif de gazéification de densité de 0.5 à 1.5 à base de nitrite et/ou thiocyanate de sodium, à un débit de 0.1 à 2 L/min ;
- dans un ratio de débit de réactif/ matrice variant de de 0.1 à 2 L/ lOOKg de la proportion.
14. Procédé selon l'une des revendications 7 à 13 caractérisé en ce qu'on réalise les étapes suivantes, lorsque l'extrémité avale du premier tuyau est usée et/ou endommagée: a) on retire le dit premier mélangeur du dit premier tuyau, b) on coupe l'extrémité avale du premier tuyau usée et/ou endommagée, c) on replace le dit premier mélangeur à l'intérieur du dit premier tuyau, d) on désassemble l'extrémité amont de la partie flexible du dit premier tuyau, et on extrait une partie amont du dit deuxième tuyau et on désassemble une première partie amont (62a) de deuxième partie avale (62b) de deuxième tuyau flexible, et e) on sort du premier tuyau et on raccourcit la dite deuxième partie avale (62b) de deuxième tuyau flexible, puis on la replace dans le dit premier tuyau et on la raccorde à nouveau à la partie amont du deuxième tuyau restée à l'intérieur d'une partie amont rigide du premier tuyau.
EP15719775.7A 2014-03-21 2015-03-17 Installation de production d'explosif par melange avec un reactif de gazeification Active EP3119735B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL15719775T PL3119735T3 (pl) 2014-03-21 2015-03-17 Instalacja do wytwarzania materiału wybuchowego poprzez wymieszanie z czynnikiem nagazowania

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1452356A FR3018808B1 (fr) 2014-03-21 2014-03-21 Installation de production d'explosif par melange avec un reactif de gazeification
PCT/FR2015/050645 WO2015140461A1 (fr) 2014-03-21 2015-03-17 Installation de production d'explosif par melange avec un reactif de gazeification

Publications (2)

Publication Number Publication Date
EP3119735A1 true EP3119735A1 (fr) 2017-01-25
EP3119735B1 EP3119735B1 (fr) 2019-03-27

Family

ID=51483514

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15719775.7A Active EP3119735B1 (fr) 2014-03-21 2015-03-17 Installation de production d'explosif par melange avec un reactif de gazeification

Country Status (6)

Country Link
EP (1) EP3119735B1 (fr)
ES (1) ES2731580T3 (fr)
FR (1) FR3018808B1 (fr)
PL (1) PL3119735T3 (fr)
PT (1) PT3119735T (fr)
WO (1) WO2015140461A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12024997B2 (en) 2020-11-10 2024-07-02 Dyno Nobel Asia Pacific Pty Limited Systems and methods for determining water depth and explosive depth in blastholes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR116643A1 (es) * 2018-10-15 2021-05-26 Tradestar Corp Controladores y métodos para sistemas de carga explosiva a granel

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2131329A5 (fr) * 1971-01-18 1972-11-10 Ici Australia Ltd
SE400262B (sv) * 1975-10-01 1978-03-20 Nitro Nobel Ab Slangmatningsvinda
US4099542A (en) * 1976-06-09 1978-07-11 Fmc Corporation Marine loading arm jumper assembly
MW1689A1 (en) 1988-04-21 1989-12-13 Aeci Ltd Loading of boreholes with exploves
SE505963C2 (sv) * 1993-02-25 1997-10-27 Nitro Nobel Ab Sätt för laddning av borrhål med sprängämne
ZA942276B (en) * 1993-04-08 1994-10-11 Aeci Ltd Loading of boreholes with flowable explosive
US5411105A (en) * 1994-06-14 1995-05-02 Kidco Resources Ltd. Drilling a well gas supply in the drilling liquid
AU3277495A (en) * 1995-07-25 1997-02-26 Downhole Systems Technology Canada Safeguarded method and apparatus for fluid communication usig coiled tubing, with application to drill stem testing
AUPN737395A0 (en) * 1995-12-29 1996-01-25 Ici Australia Operations Proprietary Limited Process and apparatus for the manufacture of emulsion explosive compositions
NO307717B1 (no) * 1997-09-12 2000-05-15 Dyno Ind Asa Fremgangsmåte for lading og sensitivisering av et slurrysprengstoff i et borhull
US6982015B2 (en) * 2001-05-25 2006-01-03 Dyno Nobel Inc. Reduced energy blasting agent and method
JP2003325536A (ja) 2002-05-09 2003-11-18 Showa Ika Kohgyo Co Ltd インプラント用のスクリュー
CA2663958C (fr) 2006-09-26 2015-12-08 Parker-Hannifin Corporation Tuyau mixte de mine
RS58012B1 (sr) * 2013-02-07 2019-02-28 Dyno Nobel Inc Sistemi za isporuku eksploziva i s tim povezani postupci
CN203212502U (zh) * 2013-04-18 2013-09-25 湖南长斧众和科技有限公司 一种乳化炸药装药机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12024997B2 (en) 2020-11-10 2024-07-02 Dyno Nobel Asia Pacific Pty Limited Systems and methods for determining water depth and explosive depth in blastholes

Also Published As

Publication number Publication date
WO2015140461A1 (fr) 2015-09-24
FR3018808B1 (fr) 2017-07-21
PL3119735T3 (pl) 2019-09-30
PT3119735T (pt) 2019-06-24
ES2731580T3 (es) 2019-11-18
FR3018808A1 (fr) 2015-09-25
EP3119735B1 (fr) 2019-03-27

Similar Documents

Publication Publication Date Title
EP3119736B1 (fr) Procede de production d'explosif par melange avec un reactif de gazeification
EP0201398B1 (fr) Ensemble permettant d'effectuer des forages orientés
EP2646725B1 (fr) Support en mer equipe d'un dispositif de stockage et de guidage de conduites flexibles.
EP3231786B1 (fr) Mélangeur statique avec un dispositif de cisaillement et procédé de production d'explosif
EP3119735B1 (fr) Installation de production d'explosif par melange avec un reactif de gazeification
CA2105858A1 (fr) Reacteur melangeur tournant immerge, notamment pour la fermentation anaerobie des ordures menageres humidifiees
JP2010533808A (ja) 水域の底から物質を抽出するための装置、及び関連した方法
CN1922383B (zh) 输送未经处理的钻屑的系统、罐和输出装置
EP2845844B1 (fr) Installation modulaire de fabrication d'un précurseur d'émulsion explosive
WO2019037958A1 (fr) Procédé et installation de bétonnage d'un site souterrain
CA2006558C (fr) Dispositif de decokage et son utilisation
FR2504844A1 (fr) Systeme de maconnage pour boulon de voute, notamment de galerie de mine
WO2009092884A2 (fr) Procede de coulee d'un materiau explosif et dispositif de coulee mettant en œuvre un tel procede
EP3334898A1 (fr) Installation sous-marine de séparation gaz/liquide
RU2723791C1 (ru) Смесительно-зарядная система
FR3014475B1 (fr) Injection d'un fluide dans un reservoir d'hydrocarbures
EP3265642B1 (fr) Installation comprenant au moins deux liaisons fond-surface comprenant des risers verticaux relies par des barres
WO2015086785A2 (fr) Freinage d'un fluide dans un reservoir d'hydrocarbures
FR3131857A1 (fr) Installation de stockage et d’utilisation de polymeres hydrosolubles
WO2023036864A1 (fr) Système d'extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales
FR3040067A1 (fr) Methode et installation sous-marine de separation gaz/liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160805

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180327

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20181010

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190214

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1112872

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602015027121

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: BOVARD AG PATENT- UND MARKENANWAELTE, CH

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Ref document number: 3119735

Country of ref document: PT

Date of ref document: 20190624

Kind code of ref document: T

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20190614

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190628

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1112872

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2731580

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20191118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190727

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602015027121

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

26N No opposition filed

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: 1 TERASSE BELLINI TOUR INITIALE, 92935 PARIS LA DEFENSE (FR)

REG Reference to a national code

Ref country code: LU

Ref legal event code: HC

Owner name: NITRATES & INNOVATION; FR

Free format text: FORMER OWNER: NITRATES&INNOVATION

Effective date: 20210216

VS25 Lapsed in a validation state [announced via postgrant information from nat. office to epo]

Ref country code: MA

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: BE

Ref legal event code: PD

Owner name: NITRATES & INNOVATION; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: NITRATES&INNOVATION

Effective date: 20210315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190327

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602015027121

Country of ref document: DE

Representative=s name: CBDL PATENTANWAELTE GBR, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

Owner name: INNOVATION & INDUSTRIE

Effective date: 20230622

REG Reference to a national code

Ref country code: LU

Ref legal event code: HC

Owner name: INNOVATION & INDUSTRIE; FR

Free format text: FORMER OWNER: NITRATES & INNOVATION

Effective date: 20230621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602015027121

Country of ref document: DE

Owner name: INNOVATION & INDUSTRIE, FR

Free format text: FORMER OWNER: NITRATES&INNOVATION, PARIS, FR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 9

Ref country code: DE

Payment date: 20230412

Year of fee payment: 9

Ref country code: CH

Payment date: 20230429

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230424

Year of fee payment: 9

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME

Effective date: 20230728

REG Reference to a national code

Ref country code: BE

Ref legal event code: HC

Owner name: INNOVATION & INDUSTRIE; FR

Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), CHANGE OF OWNER(S) NAME; FORMER OWNER NAME: NITRATES & INNOVATION

Effective date: 20231221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240325

Year of fee payment: 10

Ref country code: LU

Payment date: 20240327

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20240326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240327

Year of fee payment: 10

Ref country code: PT

Payment date: 20240326

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240326

Year of fee payment: 10

Ref country code: PL

Payment date: 20240327

Year of fee payment: 10

Ref country code: IT

Payment date: 20240326

Year of fee payment: 10

Ref country code: FR

Payment date: 20240321

Year of fee payment: 10

Ref country code: BE

Payment date: 20240327

Year of fee payment: 10