WO2019037958A1 - Procédé et installation de bétonnage d'un site souterrain - Google Patents
Procédé et installation de bétonnage d'un site souterrain Download PDFInfo
- Publication number
- WO2019037958A1 WO2019037958A1 PCT/EP2018/069368 EP2018069368W WO2019037958A1 WO 2019037958 A1 WO2019037958 A1 WO 2019037958A1 EP 2018069368 W EP2018069368 W EP 2018069368W WO 2019037958 A1 WO2019037958 A1 WO 2019037958A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- concrete
- liquid
- tube
- column
- site
- Prior art date
Links
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D15/00—Handling building or like materials for hydraulic engineering or foundations
- E02D15/02—Handling of bulk concrete specially for foundation or hydraulic engineering purposes
- E02D15/04—Placing concrete in mould-pipes, pile tubes, bore-holes or narrow shafts
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21F—PROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
- G21F9/00—Treating radioactively contaminated material; Decontamination arrangements therefor
- G21F9/28—Treating solids
- G21F9/30—Processing
- G21F9/301—Processing by fixation in stable solid media
- G21F9/302—Processing by fixation in stable solid media in an inorganic matrix
- G21F9/304—Cement or cement-like matrix
Definitions
- the invention relates to a method and an installation for the concreting of a site located in an underground site at great depth. More particularly, although not exclusively, the invention relates to a method and an installation for the concreting, at great depth, radioactive waste storage cells, connecting galleries and access galleries to these storage caverns, access to these galleries being done by drilling.
- the invention aims to remedy these technical problems by providing means to ensure, reliably and securely and over a very long period, the descent and transport of concrete from the surface to the gallery and waste disposal cells located at great depths.
- This object is achieved by means of a concreting process of an underground site comprising the vertical conveyance of a concrete from a feeding site located at an altitude higher than the underground site to the underground site by a power supply.
- continuous concrete flow of a transport tube between the feed site and the underground site, the descent of a concrete column in the conveying tube and the removal of concrete from a lower end of said column of concrete for distributing the concrete in the underground site characterized in that initially filled the delivery tube with a column of liquid and a movable shutter positioned at the top of the column of liquid, it is then exercised during the descent of the concrete column in the conveying tube, a vertical counter-pressure on said shutter by adjusting the height of the liquid column and / or the pressure of the liquid in the conveying tube in order to to control the descent of the concrete column.
- the height of the liquid column and / or the pressure of the liquid is adjusted by pulling or withdrawing the liquid at a lower end of the conveying tube. It is possible in particular to implement a gravity withdrawal, by controlling the opening of a valve located at the lower end of the delivery tube, and taking advantage of the gravitational force applied by the concrete column on the shutter, pushing the latter.
- a bidirectional pump can also be used to extract the liquid at a controlled rate. According to another characteristic, it stops the drawing or withdrawal of the liquid when the movable shutter reaches the base of the conveying tube.
- the continuous supply of concrete is made by injection of pressurized concrete from the surface at the latest as soon as the concrete column reaches the base of the tube.
- the method of the invention comprises a phase of interruption of concreting of the underground site, including a stop of the injection of the concrete and a cleaning of the tube by raising the shutter mobile and pressurized liquid to the feeding site.
- the cleaning liquid is recycled in the process after decantation and filtration.
- the height of the column of liquid and / or the pressure of the liquid is adjusted as a function of one or more parameters measured by sensors or calculated, the parameter or parameters including at least one of the following parameters: - the speed of the moving shutter; the position of the movable shutter; the quantity or flow of concrete entering the pipe; the density of concrete penetrating the transport tube; - the viscosity of the concrete penetrating the transport tube; the temperature of the concrete penetrating the transport tube; the temperature of the liquid; the pressure of the liquid.
- the height of the column of liquid and / or the pressure of the liquid is controlled by varying the opening of a valve and / or by varying the flow rate of a pump. a liquid circuit.
- the conveying tube is cooled by an upward flow of compressed air in a chamber surrounding the delivery tube.
- Another object of the invention is a concreting installation of an underground site, comprising at least one vertical bore receiving a conveying tube for the transfer of concrete from a feeding site located at an altitude greater than subterranean site to the underground site, characterized in that it further comprises a movable shutter housed in the conveying tube and a liquid circuit for filling the delivery tube with liquid under the shutter and extracting the conveying tube the liquid under the shutter by exerting a vertical counterpoise on said shutter.
- the liquid circuit is connected to a lower end of the conveying tube.
- the liquid circuit comprises a conduit for supplying the pressurized liquid housed in a second vertical borehole.
- the liquid circuit comprises a conduit for supplying the pressurized liquid housed in a single bore also containing the conveying tube.
- the liquid circuit is a closed circuit comprising means for recycling the liquid.
- the bore is provided with a lining defining a cylindrical chamber around the conveying tube in which are disposed detection and measurement instruments.
- the installation comprises at least two double-hatch stop drawers, a first of the two stop drawers being surface-mounted on an upper end of the tube supplying the concrete supply. from an injection pump and a second of the two stop drawers being mounted at the bottom of the well on a lower end of the conveying tube, coupled to a concrete return pump.
- the installation comprises, in addition, a third stopper mounted in the gallery downstream of the second drawer and ensuring the distribution of concrete.
- the liquid circuit comprises at least one pump ensuring the pressurization of the liquid which is fed to the surface, by one or more tanks for the storage and recycling of the liquid.
- a complementary feature relates to the structure of the movable shutter which comprises a cylindrical body carrying circumferential ribs whose diameter substantially corresponds to the inner diameter of the conveying tube and provided with an insert detectable by electromagnetic means, d ' an ogive base with a thrust face and a frustoconical head.
- the method and the concrete installation according to the invention ensure continuous lubrication of the conveying tube leading to a regular descent, controlled and controlled concrete and subsequent cleaning of the tube using a liquid circuit closed, without risk of spreading or pushing concrete.
- the liquid used in the hydraulic circuit thus provides three functions, respectively, retarder of the concrete column, autonomous lubrication of the routing tube during descent and cleaning at the end of concreting.
- This liquid is preferably water (or an aqueous fluid), which is taken up, sanitized, which provides a substantial saving of charges, simplifies the casting process at the bottom of the well and preserves the environment .
- the method of the invention is very low water consumption because the liquid circuit is equipped with filtering means and recycling.
- the method of the invention minimizes the risk of spreading and leaking liquids or water at the bottom of the well which makes the concreting process particularly clean.
- the method of the invention limits the risk of segregation of the concrete, to avoid cement deposits and to overcome the use of a slurry.
- the concrete installation of the invention is, in addition, self-lubricating because the concrete conveying tube is constantly immersed or in contact with the fresh concrete.
- the invention also provides for the joint presence of means ensuring the rapid detection and real-time malfunctions and means exerting necessary corrective actions including, partial or total emptying of the transport tube and the rise of the concrete towards the surface in case of refusal of the spoiled.
- FIGS. 1A and 1B show synoptic views of two embodiments of the installation for implementing the method of the invention, respectively, to a borehole and two boreholes connected in a U.
- Figure 2 is a schematic side view of the lower part of the borehole at the underground gallery giving access to storage cells.
- Figures 3A and 3B show top and bottom views of an embodiment of the movable shutter used in the installation of the invention.
- FIG. 4 represents a detail sectional view of a borehole according to an alternative embodiment of the installation of the invention with the movable shutter.
- Figures 1A and 1B illustrate a preferred embodiment of the concreting process of the invention with a single drilling installation F ( Figure 1A) or two holes Fl, F2 U-connected ( Figure 1B) .
- the method of the invention is more particularly intended for the concreting of an underground site used for the storage of radioactive waste.
- the underground storage site generally consists of storage cells (not shown) arranged in a network of access and connection galleries located at great depth.
- the mechanical reinforcement of these storage cells and the different galleries is made by concrete conveyed by means of the installation schematically represented in the figure
- the context is different from the traditional uses encountered in civil engineering because the routing of concrete spread over a very long period. This does not allow any human intervention which makes the process and installation difficult to manage.
- the concrete is then directed over a few hundred meters or even several kilometers horizontally.
- the solution adopted by the invention is to convey the concrete B using at least one bore in which is housed a so-called routing tube intended to last for several years with frequent periods of intense concreting.
- the concrete installation according to the invention must therefore meet the following criteria: be simple and durable structure using corrosion resistant materials such as stainless steels, ensure a way of conveying concrete allowing a descent at constant speed so that it does not segregate or that there is a risk of blockage of the drilling does not occur during the descent, be equipped with a detection system to monitor and control the routing of the concrete so as to prevent any malfunctions, have a capacity for rapid commitment of corrective actions to evacuate the concrete and clean the tube that could be obstructed.
- the concreting installation of the invention therefore comprises, in the traditional way, at least one vertical drilling F receiving a tube A for the routing concrete B from a feeding site to an underground site at a lower altitude than the feeding site.
- the feed site is located near a CB concrete plant (preferably positioned at the surface) and ensures the continuous supply of concrete B of the A routing pipe to the underground site located at great depth.
- the tube A conveys, meanwhile, the descent of the concrete column B and is connected to a device for removing the concrete from a lower end of this column to distribute the concrete in the underground site (see Figure 2).
- the installation of the invention furthermore specifically comprises a movable shutter 1 (FIGS. 3A, 3B and 4), for example in the form of shells, housed in the conveying tube A and a liquid circuit L (or hydraulic circuit), intended to control the rate of descent of the concrete B in the tube A by ensuring, on the one hand, the pressurization of the liquid exerting a vertical thrust on the shutter 1 and, on the other hand, the withdrawal of this liquid.
- a movable shutter 1 for example in the form of shells, housed in the conveying tube A and a liquid circuit L (or hydraulic circuit), intended to control the rate of descent of the concrete B in the tube A by ensuring, on the one hand, the pressurization of the liquid exerting a vertical thrust on the shutter 1 and, on the other hand, the withdrawal of this liquid.
- the liquid circuit (or hydraulic circuit CH) is connected to the conveying tube A concrete near the bottom of the well and consists of a closed circuit comprising at least one hydraulic pump PHI, PH2 ensuring the setting pressure and withdrawal of the liquid L.
- the hydraulic pumps PHI, PH2 are supplied at the surface by at least one tank (or tank) C1, C2 liquid.
- Additional filtration and / or settling means D coupled to a valve V allow the liquid L to be recycled into the installation, as illustrated by the dashed lines in FIGS. 1A, 1B.
- the action of at least one hydraulic pump makes it possible to generate the counter-thrust on the shutter 1 in order to balance the system (Jurin tube). This pump can operate in depression to facilitate the descent of the concrete column B as it can operate at high pressure to raise the shutter 1 and all or part of the concrete column B to the surface, if necessary.
- a manometer or pressure sensor (pressuremeter) CP associated with a purge PS ( Figures 1A and 1B), is disposed in the underground gallery or on the surface to measure the discharge pressure of the liquid L in the hydraulic circuit CH.
- the drill head is adapted to receive a volume of concrete in continuous flow, possibly under pressure.
- the concrete conveying device consists of an outer liner C steel ( Figure 4) for the protection of the borehole F and the inner tube A for conveying concrete made of stainless steel and ensuring the transit of concrete B.
- Stainless steel reduces friction, reduces viscosity and minimizes corrosion.
- the tube A is cooled by a rising air flow S, possibly compressed, which passes into the annular enclosure E around the outer wall of the tube A and which is taken from an air intake PA connected to the base of tube A (FIGS. 1A, 1B).
- a rising air flow S possibly compressed
- This optical fiber monitors the temperature distributed over the entire length of the tube, but also to measure the mechanical deformation of the latter.
- pressure sensors not shown
- These sensors can be arranged at regular intervals every 5 to 10 meters.
- the instruments M, P also allow to monitor the kinetics and kinematics of the movable shutter 1, as described below. They thus make it possible to know the progress of the descent of the concrete column B in the tube A and to control the three essential and successive operations of the process which will be described in detail later, namely; the lubrication of the internal concrete pipe, the descent of the concrete column and the cleaning of the pipe after concreting of the underground storage site.
- the movable shutter 1 is intended to be introduced into the tube A for routing at the drilling head and is positioned at the top of the liquid column L. This shutter separates the cement phase from the liquid phase (aqueous) L and descends vertically under the weight of the concrete column B.
- the movable shutter 1 one embodiment of which in the form of a shell is illustrated in FIGS. 2A and 2B, comprises a cylindrical body 11 provided with circumferential ribs 12 whose diameter substantially corresponds to the inner diameter of the tube, a head 13 and a frustoconical base 14 having a thrust or traction face for the liquid delivered by the hydraulic circuit.
- the base 14 has, preferably, a beveled profile or ogive to facilitate the descent of the shutter 1 in the tube A.
- the head 13 has a truncated or truncated face intended to support the base of the column. concrete B.
- the ribs 12 in the form of radial fins improve the scraping of the wall of the tube A during cleaning of the installation and ensures an axial retention of the shutter 1 during its descent as well as a stability during the equilibrium of the pressures.
- the frustoconical base 14 has an interior cavity 140 optimizing the application of the counter-thrust force exerted on the shutter F by the liquid L under pressure ( Figure 4).
- the body 11 of the shutter 1 is provided with an insert, for example, in the form of a ring G mounted here between the ribs 12, which is electromagnetically detectable by the M instruments previously described.
- This insert is integrated from a functional point of view into the electronic circuit Y of control-command or supervision of the installation in order to follow the movement of the movable shutter 1 in the tube A of routing as well as the detection of its passage through the stop drawer.
- the transmission of the detection signal of the insert thus allows the operator to actuate, from the surface, the opening or closing of the valves of the stop spool situated at the base of the bore F.
- the insert with electromagnetic properties is, for example, in the form of a ball embedded in the body of the movable shutter 1.
- the installation is also equipped with at least two double-hatch stoppers T1, T2.
- a first stopper T1 is mounted at the surface or at the concrete feed site on an upper end of the delivery tube A.
- a second stopper T2 is mounted at the bottom of the well on a lower end. of the transport tube, possibly coupled to a PB2 concrete return pump ( Figures 1A, 1B and 2).
- the installation further comprises a third stopper T3 mounted in the gallery downstream of the second drawer and ensuring the distribution of the concrete to the storage site, as illustrated by FIGS. 1A, 1B.
- the equipment located at the base of the borehole and, in particular, the stop drawers are sized and adapted to receive the column of concrete under pressure.
- a complementary filter is mounted at the bottom of the well, in the reception gallery of the concrete, to purify the liquid of the primary hydraulic circuit.
- the latter is provided with a concrete injection pump PBl surface whose power is about 200 KW.
- the pump PB2 for the recovery and distribution of concrete is placed in the access tunnel to the disposal cells and has a power of about 400 KW.
- the detection system connects the hydraulic pump PHI for pressurizing the liquid, the concreting pump PB1 ensuring the injection of the concrete and the stop drawers T1, T2, T3 with hydraulic control located respectively on the surface. and in the underground concrete receiving gallery.
- the installation is monitored and controlled with all its components from the surface from a dedicated CO control station.
- the control system is automatable and centralized. All the information Y acquired along the concrete conveying tube is stored continuously in a central datalogger. Any sufficiently significant malfunction thus leads to immediate intervention by the watch operator in the control station.
- the hydraulic circuit CH (solid line) comprises a liquid supply conduit L housed in a single bore F also containing the tube A conveying concrete B. This duct is then disposed in the vicinity of or around the inner tube A for conveying the concrete.
- the hydraulic circuit CH (always in solid line) comprises a duct supplying liquid housed in a vertical bore F2 disposed at a distance from the bore Fl in which the concrete conveying tube A is arranged.
- the liquid pipe of the bore Fl is connected to the lower part of the tube A for conveying the concrete and thus to the bore F1 by forming a double-bore U.
- the wells must be watertight and sufficiently resistant to hold the hydraulic pressure.
- this method provides, to convey the concrete vertically from a feeding site located at an altitude higher than the underground site and to the underground site by a continuous supply of concrete a transport tube A disposed within the borehole F and ensuring the descent of a concrete column B and then removing the concrete from a lower end of the concrete column to distribute the concrete in the underground site.
- the concrete is taken from the bottom of the well from the lower end of this column to transport it to storage cells.
- the method of the invention aims to overcome the technical problems generally encountered in such operations.
- the method consists, more particularly, in initially filling the concrete delivery tube with a liquid L (preferably water) before introducing a movable shutter 1 of the type described above and illustrated by the Figures 2A and 2A.
- a liquid L preferably water
- the method of the invention provides for adjusting the height of the liquid column and / or the pressure of the liquid as a function of one or more parameters that are measured by appropriate or calculated sensors. These parameters include at least one of the following parameters: - the speed of the moving shutter; the position of the movable shutter; the quantity or flow of concrete entering the pipe; the density of concrete penetrating the transport tube; - the viscosity of the concrete penetrating the transport tube; the temperature of the concrete penetrating the transport tube; the temperature of the liquid; the pressure of the liquid.
- the final step of the process is to take the concrete at the base of the conveying tube to bring it and distribute it in the underground storage gallery where are the cells containing the waste to be concreted.
- the operator is able to detect malfunctions of the installation, to trigger live openings and closures of the drawers, to adjust the flow rates of the pumps and refit the shutter 1 to remove the concrete column from the borehole as quickly as possible.
- the single borehole or the two U-holes are pre-filled completely with L liquid (phase at rest).
- the inner tube A conveying the concrete is constantly lubricated by the liquid L and it is therefore not necessary to use the cementitious slip.
- the trap door Tl stop located on the surface is in the closed position to prevent the flow of concrete.
- the shutter trap T2 located at the base of the routing tube A is also in the closed position so that the liquid can not drain into the concrete pump PB1.
- the hatch of the stopper T1 located on the surface opens to allow the flow of concrete while the other door closes.
- the shutter trap T2 located at the base of the casing, opens so that clean liquid L can pass into the primary hydraulic circuit to ensure against thrust during the steps following.
- the second step begins with the introduction into the inner tube A for conveying the concrete and from the feed site and, generally, from the surface, the movable shutter 1.
- This step is continued by the continuous supply, for example, from the surface and the central CB, the internal concrete conveying tube B gravity or injection pressure using a pump if necessary.
- the vertical routing of the concrete is facilitated by the slow descent of the column of liquid in the tube, managed by the activation of the hydraulic pump PHI in depressurization thus causing the suction of the liquid towards the bottom of the tube A and favoring the descent of the shutter 1.
- the flow rate of the concrete injection pump PB1 is increased to increase the pressure of the concrete column and facilitate its descent into the conveying tube.
- the operator From the CO central control station located on the surface, the operator ensures the proper balance between the heights and / or the respective pressures of the concrete column B and the liquid column L and ensures maintain a steady rate of descent of the concrete.
- Optical and / or electromagnetic sensors (for example of the type previously described sensors P, M), arranged at the stop drawer T2, detect the passage of the movable shutter 1 whose position coincides with the level phase separation between liquid L and concrete B.
- the lower end of the routing tube A is connected to the stopper T2 by means of a welded male flange A2 and A3 collars.
- a receptacle A1 of the movable shutter 1 (shell) provided with a CE lifting angle for the intervention of a forklift (not shown) circulating in the underground gallery of the site .
- the passage of the shutter 1 through the drawer T2 then triggers an alarm signal which is transmitted to the control station CO located on the surface and which signals the operator the arrival of the concrete at the base of the tube routing A.
- the operator stops the hydraulic pump No. 1 to stop the withdrawal of the liquid. If necessary, the concrete column is then balanced with the pressure of the liquid.
- the single-drawer hydraulic control slide drawer T2 (calibrated preferably at 120 bar), which was previously closed to allow the circulation of the liquid, opens to release the concrete which is then poured into a holding tank and / or directly in a tank (not shown) supplying the distribution pump PB2. This stage continues as long as the concrete is lowered and the installation can then operate in steady state, if necessary, for a very long period, taking into account the volumes of concrete required for the concreting campaigns of the storage site. construction is progressive.
- the descent of the concrete is ensured continuously thanks to the pressure exerted by the concrete pump PB1 located at the feed site located, for example, on the surface and which is fed by the concrete plant CB.
- the double hydraulically controlled stopper Tl located on the surface and the drawer T2 located in the receiving gallery are open to let the concrete.
- the PB2 concrete pump coupled to a third drawer drawer T3 hydraulically controlled and double drawer ensures the distribution and selective distribution of concrete in the various galleries and storage cells.
- the operator monitors the descent of the concrete by reading and continuous analysis of the control parameters of the concrete column, as defined above and measured along the routing tube A.
- the invention provides the possibility of proceeding to a phase of interruption of concreting of the underground site.
- it stops the injection of concrete and cleaning the transport tube by raising the movable shutter and pressurized liquid to the feed site.
- concreting operations of the underground site are completed, it is proceeded to the closure of the access door connecting the drawer T1 to the pump PB1 concrete injection.
- the stopping of the concreting thus condemns the hatch reserved for the feeding of the routing tube A (hydraulic double-slider stop Tl).
- the emptying tube is carried out as completely as possible by leaving the concrete column down by simple gravity.
- the routing tube inside the borehole is then isolated and is ready for cleaning which is provided by the remonstrated liquid under pressure.
- the trapdoor of the double stopper valve T2 is then open allowing the liquid to circulate while the hydraulic pump PHI is actuated.
- the liquid L under pressure raises the shutter 1 with the liquid column from the base of the borehole to the surface. It is possible to add a foam ball to the transport tube to reinforce scraping and to increase cleaning efficiency.
- the cleaning fluid loaded with cement and used flows into the settling tank C2 and is cleared by passing through a filtration system D equipped with a particulate filter, a gate valve.
- a filtration system D equipped with a particulate filter, a gate valve.
- guillotine V and the hydraulic pump PH2 which is arranged between the settling tank C1 and the hydraulic pump PHI (see Figures 1A and 1B).
- This liquid can then be introduced back into the primary circuit by activating the hydraulic pump PHI.
- the routing tube A is then filled with liquid again and is ready for a second concrete campaign.
- the management of malfunctions of the installation is carried out in the following manner according to characteristic aspects of the method of the invention.
- the drilling and, more particularly, the conveying tube can be cooled by an air flow, possibly compressed, directed from below upwards so as not to disturb or alter the conventional ventilation circuit / cycle of underground installations.
- the descent speed of the concrete column can be accelerated by opening the stop drawers and / or by operating the hydraulic pump PHI.
- the process can be slowed down by closing the stop drawers and / or by operating the hydraulic pump No. 1.
- the decision to stop the process and, in particular, the routing of the concrete can be taken by the operator very quickly from the information and signals sent by the detection and measurement instruments integrated into the borehole.
- the operator can then proceed with the drain as complete as possible of the routing tube A and recover the concrete B in a tank disposed in the gallery. This action leads to an optimal lightening of the concrete column thus allowing the hydraulic counter-thrust system to be more efficient.
- the pressurization of the liquid by activation of the hydraulic pump PHI allows to go up the concrete column in whole or in part reactively and quickly.
- the unblocking of the concrete column is carried out from the bottom upwards and not in the opposite direction which would lead to a detrimental clamping of the concrete in the conveying tube.
- the dimensional characteristics mentioned below correspond to a preferred embodiment of the installation for an implementation of the concreting process of the invention under the following conditions.
- the injection of a density concrete 2,4 with a flow rate of 25 m / h in a concrete conveying tube 506 meters deep and 152.5 mm internal diameter.
- the descent speed of the concrete column is 60 km / h and the column mass of 21.6 tons for a volume of 9 m 3 .
- the static pressure at the base of the borehole is 120 bar.
- the installation comprises the following main equipment:
- liquid C1, C2 (water) tanks ⁇ high pressure metal pipes (stainless steel) with a diameter of at least 120 mm and a thickness of 8.8 mm.
- the inner diameter of the conveying tube A is between 120 mm and 200 mm and is preferably 152.5 mm with an outside diameter of 177.8 mm.
- the inside diameter of the liner C of the bore F is 200 and 300 mm and is preferably 224.4 mm with an outside diameter of 244.5 mm.
- the intermediate cylindrical space intended to house the M, P control and control instruments is therefore 46.6 mm.
- the linear mass of the routing tube A stainless steel is 52.12kg / m and that of the liner C (also stainless steel) of 59.57 kg / m.
- the pressure of the liquid L (for example water) in the borehole increases by 1 bar every 10 meters. For a water column of 500 meters, the pressure is therefore 51 bar taking into account an atmospheric pressure of lbar.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
- Lining And Supports For Tunnels (AREA)
Abstract
L'invention concerne; - d'une part, un procédé de bétonnage d'un site souterrain comprenant l'acheminement vertical d'un béton (B) depuis un site d'alimentation situé à une altitude supérieure au site souterrain vers le site souterrain par une alimentation continue en béton d'un tube (A) d'acheminement entre le site d'alimentation et le site souterrain, la descente d'une colonne de béton dans le tube d'acheminement et le prélèvement du béton à partir d'une extrémité inférieure de ladite colonne de béton pour distribuer le béton dans le site souterrain, caractérisé en ce qu'on remplit initialement le tube d'acheminement avec une colonne de liquide (L) et un obturateur mobile (1) positionné au sommet de la colonne de liquide, on exerce ensuite, lors de la descente de la colonne de béton dans le tube d'acheminement, une contre-poussée verticale sur ledit obturateur en ajustant la hauteur de la colonne de liquide et/ou la pression du liquide dans le tube d'acheminement en vue de contrôler la descente de la colonne de béton et, - d'autre part, une installation de bétonnage d'un site souterrain situé à grande profondeur.
Description
PROCÉDÉ ET INSTALLATION DE BÉTONNAGE D'UN SITE SOUTERRAIN
[0001] L'invention concerne un procédé et une installation pour le bétonnage d'un chantier situé dans un site souterrain à grande profondeur. [0002] Plus particulièrement, bien que de manière non exclusive, l'invention concerne un procédé et une installation pour le bétonnage, à grande profondeur, des alvéoles de stockage de déchets radioactifs, des galeries de liaison et des galeries d'accès à ces alvéoles de stockage, l'accès à ces galeries se faisant par un forage.
EXPOSÉ DE L'INVENTION [0003] Dans le domaine du génie civil, les opérations de coulée du béton sont effectuées au moyen de procédés et d'installations traditionnels comprenant, notamment, des stations de pompage et des conduites flexibles assurant l'acheminement du béton de la centrale jusqu'au site de construction de l'ouvrage.
[0004] Dans les cas les plus courants, l'acheminement du béton, depuis la centrale à béton jusqu'au site destiné au bétonnage, requiert l'utilisation de camions. Ce mode de transport, bien qu'envisageable dans le cas du bétonnage d'un site de stockage souterrain de déchets radioactifs, nécessiterait cependant une rampe d'accès très longue pour atteindre le site situé à grande profondeur ce qui entraînerait un rallongement significatif du temps de transport, augmenterait les risques en termes d'incendie et multiplierait les ruptures de charges. Selon l'invention, il est donc prévu de procéder à un acheminement direct du béton en utilisant un forage vertical.
[0005] De tels procédés et installations sont déjà utilisés tant pour la construction d'ouvrages verticaux de grandes dimensions (immeubles, usines, tours ,....) que pour la rénovation ou la réalisation de tunnels et de ponts de grandes longueurs. Néanmoins, les procédés et installations connus sont destinés à acheminer le béton par voie horizontale ou ascendante, mais rarement par voie descendante.
[0006] En cas de dysfonctionnement de ces installations, l'intervention humaine est généralement possible car ces installations sont aisément accessibles par le
personnel de maintenance qui dispose d'un espace environnant suffisant pour travailler.
[0007] Par ailleurs, bien que les opérations de bétonnage soient assez consommatrices d'eau, en particulier, pour le nettoyage du site, la gestion des eaux usées est généralement possible dans le respect des règles environnementales.
[0008] On constate également que ces chantiers de génie civil sont généralement de courte durée (de quelques mois à une ou deux années) et, en conséquence, les entreprises ne souhaitent pas engager de lourds investissements dans les installations qui restent donc toujours rudimentaires et provisoires. [0009] Dans le domaine pétrolier, l'injection en grande profondeur est réservée uniquement à l'utilisation de mortiers ou de coulis cimentaires, qui, compte tenu de leur composition, restent assez homogènes. Dans le cas des bétons, le risque de blocage par accumulation des granulats dans les tubes d'acheminement est plus grand. Le béton risque, par ailleurs, de ségréger entraînant une séparation de la phase granulaire de la phase cimentaire.
[0010] Dans le cas particulier d'un chantier situé dans un forage de grande profondeur (plus de 500 mètres en vertical et en horizontal), comme cela est le cas pour les puits de stockage de déchets nucléaires à moyenne et haute activité, l'acheminement du béton depuis la surface soulève des problèmes spécifiques. [0011] En premier lieu, dans l'hypothèse où le béton est acheminé par des puits de forage, toute intervention humaine sur la conduite est impossible ce qui rend difficile la gestion et la maintenance de l'installation, notamment, en cas de ségrégation du béton ou de colmatage des conduites.
[0012] En outre, du fait que les campagnes de bétonnage s'étendent sur de très longues périodes (au minimum dix ans), que les débits de béton sont importants (de l'ordre de 60 m3/h en période de pointe) et que le béton présente une formulation spécifique et complexe qui doit conserver ses propriétés pendant plusieurs heures le temps de sa mise en œuvre, les difficultés évoquées précédemment pour le contrôle de la descente du béton dans le puits sont accrues car un dysfonctionnement de
l'installation peut alors avoir des conséquences néfastes sur l'avancement progressif du chantier, ainsi que sur le fonctionnement, la fiabilité et la sécurité du site de stockage.
[0013] Dans de telles circonstances, il peut s'avérer nécessaire et urgent d'arrêter la descente du béton et, le cas échéant, de le faire remonter en surface avant de procéder au nettoyage du puits.
[0014] Les procédés et installations traditionnels sont manifestement inadaptés à satisfaire ces exigences sévères et à remplir de telles conditions de mise en œuvre.
[0015] L'invention vise à remédier à ces problèmes techniques en proposant des moyens propres à assurer, de manière fiable et sécurisée et sur une très longue période, la descente et l'acheminement du béton depuis la surface jusqu'à la galerie et aux alvéoles de stockage des déchets situées à grande profondeur.
[0016] Ce but est atteint au moyen d'un procédé de bétonnage d'un site souterrain comprenant l'acheminement vertical d'un béton depuis un site d'alimentation situé à une altitude supérieure au site souterrain vers le site souterrain par une alimentation continue en béton d'un tube d'acheminement entre le site d'alimentation et le site souterrain, la descente d'une colonne de béton dans le tube d'acheminement et le prélèvement du béton à partir d'une extrémité inférieure de ladite colonne de béton pour distribuer le béton dans le site souterrain, caractérisé en ce qu'on remplit initialement le tube d'acheminement avec une colonne de liquide et un obturateur mobile positionné au sommet de la colonne de liquide, on exerce ensuite, lors de la descente de la colonne de béton dans le tube d'acheminement, une contre-poussée verticale sur ledit obturateur en ajustant la hauteur de la colonne de liquide et/ou la pression du liquide dans le tube d'acheminement en vue de contrôler la descente de la colonne de béton.
[0017] Selon une caractéristique avantageuse de ce procédé, on ajuste la hauteur de la colonne de liquide et/ou la pression du liquide par tirage ou soutirage du liquide à une extrémité inférieure du tube d'acheminement. On peut notamment mettre en œuvre un soutirage gravitaire, en contrôlant l'ouverture d'une vanne située à
l'extrémité inférieure du tube d'acheminement, et en mettant à profit la force gravitaire appliquée par la colonne de béton sur l'obturateur, repoussant ce dernier. On peut également utiliser une pompe bidirectionnelle qui extrait le liquide avec un débit contrôlé. [0018] Selon une autre caractéristique, on stoppe le tirage ou soutirage du liquide lorsque l'obturateur mobile atteint la base du tube d'acheminement.
[0019] Selon encore une autre caractéristique, l'alimentation continue en béton est faite par injection de béton sous pression depuis la surface au plus tard dès que la colonne de béton atteint la base du tube. [0020] Selon d'autres caractéristiques, le procédé de l'invention comporte une phase d'interruption du bétonnage du site souterrain, comportant un arrêt de l'injection du béton et un nettoyage du tube d'acheminement par remontée de l'obturateur mobile et du liquide sous pression jusqu'au site d'alimentation.
[0021] De préférence, on recycle le liquide de nettoyage dans le procédé après décantation et filtration.
[0022] Selon encore une autre caractéristique du procédé de l'invention, on ajuste la hauteur de la colonne de liquide et/ou la pression du liquide en fonction d'un ou plusieurs paramètres mesurés par des capteurs ou calculés, le ou les paramètres incluant au moins l'un des paramètres suivants : - la vitesse de l'obturateur mobile ; la position de l'obturateur mobile ; la quantité ou le débit de béton pénétrant dans le tube d'acheminement ; la densité du béton pénétrant dans le tube d'acheminement ; - la viscosité du béton pénétrant dans le tube d'acheminement ; la température du béton pénétrant dans le tube d'acheminement ;
la température du liquide ; la pression du liquide.
[0023] Selon une caractéristique spécifique du procédé, on contrôle la hauteur de la colonne de liquide et/ou la pression du liquide en faisant varier l'ouverture d'une vanne et/ou en faisant varier le débit d'une pompe d'un circuit de liquide.
[0001] Selon encore une autre caractéristique, on refroidit le tube d'acheminement par un flux ascendant d'air comprimé dans une enceinte entourant le tube d'acheminement. [0002] Un autre objet de l'invention est une installation de bétonnage d'un site souterrain, comprenant au moins un forage vertical recevant un tube d'acheminement pour le transfert du béton depuis un site d'alimentation situé à une altitude supérieure au site souterrain jusqu'au site souterrain, caractérisée en ce qu'elle comprend, en outre, un obturateur mobile logé dans le tube d'acheminement et un circuit de liquide pour remplir de liquide le tube d'acheminement sous l'obturateur et extraire du tube d'acheminement le liquide sous l'obturateur en exerçant une contre-poussée verticale sur ledit obturateur.
[0003] Selon une caractéristique avantageuse de l'installation de l'invention, le circuit de liquide est raccordé à une extrémité inférieure du tube d'acheminement. [0004] Selon une première variante de l'installation de l'invention, le circuit de liquide comprend un conduit d'amenée du liquide sous pression logé dans un second forage vertical.
[0005] Selon une seconde variante de l'installation de l'invention, le circuit de liquide comprend un conduit d'amenée du liquide sous pression logé dans un forage unique renfermant également le tube d'acheminement.
[0006] De préférence, le circuit liquide est un circuit fermé comprenant des moyens de recyclage du liquide.
[0007] Selon encore une autre caractéristique, le forage est pourvu d'un chemisage délimitant une enceinte cylindrique autour du tube d'acheminement dans laquelle sont disposés des instruments de détection et de mesure.
[0008] Selon d'autres caractéristiques avantageuses, l'installation comprend au moins deux tiroirs d'arrêt à double-trappe, un premier des deux tiroirs d'arrêt étant monté en surface sur une extrémité supérieure du tube assurant l'alimentation en béton à partir d'une pompe d'injection et un second des deux tiroirs d'arrêt étant monté au fonds du puits sur une extrémité inférieure du tube d'acheminement, couplée à une pompe de reprise du béton. [0009] Selon une variante spécifique, l'installation comprend, en outre, un troisième tiroir d'arrêt monté dans la galerie en aval du second tiroir et assurant la distribution du béton.
[0010] Selon encore une autre variante, le circuit de liquide comprend au moins une pompe assurant la mise sous pression du liquide qui est alimentée en surface, par un ou plusieurs réservoirs destinés au stockage et au recyclage du liquide.
[0011] Une caractéristique complémentaire concerne la structure de l'obturateur mobile qui comprend un corps cylindrique portant des nervures circonférentielles dont le diamètre correspond sensiblement au diamètre intérieur du tube d'acheminement et pourvu d'un insert détectable par des moyens électromagnétiques, d'une base en ogive offrant une face de poussée et d'une tête tronconique.
[0012] Le procédé et l'installation de bétonnage selon l'invention permettent d'assurer une lubrification continue du tube d'acheminement conduisant à une descente régulière, contrôlée et maîtrisée du béton puis un nettoyage ultérieur du tube en utilisant un circuit de liquide fermé, sans risque d'épandage ou de refoulement du béton.
[0013] Le liquide utilisé dans le circuit hydraulique assure ainsi trois fonctions, respectivement, de ralentisseur de la colonne de béton, de lubrification autonome du tube d'acheminement en cours de descente et de nettoyage en fin de bétonnage.
[0014] Ce liquide est, de préférence, de l'eau (ou un fluide aqueux), qui est reprise, assainie, ce qui procure une économie substantielle de charges, simplifie le procédé de coulée au fond du puits et préserve l'environnement.
[0015] Par conséquent, le procédé de l'invention est très peu consommateur d'eau car le circuit de liquide est équipé de moyens de filtrage et de recyclage.
[0016] Par ailleurs, le procédé de l'invention permet de minimiser les risques d'épandage et de fuite de liquides ou d'eau au fond du puits ce qui rend le procédé de bétonnage particulièrement propre.
[0017] Qui plus est, le procédé de l'invention permet de limiter les risques de ségrégation du béton, d'éviter les dépôts cimentaires et de s'affranchir de l'utilisation d'une barbotine.
[0018] L'installation de bétonnage de l'invention est, en outre, autolubrifiante car le tube d'acheminement du béton est constamment immergé ou en contact avec le béton frais. [0019] L'invention prévoit également la présence conjointe de moyens assurant la détection rapide et en temps réel des dysfonctionnements et de moyens exerçant les actions correctives nécessaires y compris, la vidange partielle ou totale du tube d'acheminement et la remontée du béton vers la surface en cas de refus de la gâchée.
[0020] Tous les composants et paramètres du procédé et de l'installation de l'invention sont, en outre, gérés de façon fiable, automatique et centralisée depuis la surface.
BRÈVE DESCRIPTION DES FIGURES
[0021] D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui va suivre, en référence aux figures annexées et détaillées ci-après.
Les figures 1A et 1B représentent des vues synoptiques de deux modes de réalisation de l'installation pour une mise en œuvre du procédé de
l'invention, respectivement, à un forage et à deux forages raccordés en U.
La figure 2 est une vue de côté schématique de la partie basse du forage au niveau de la galerie souterraine donnant accès aux alvéoles de stockage.
Les figures 3A et 3B représentent des vues de dessus et de dessous d'un mode de réalisation de l'obturateur mobile utilisé dans l'installation de l'invention.
La figure 4 représente une vue de détail en coupe d'un forage selon une variante de réalisation de l'installation de l'invention avec l'obturateur mobile.
[0022] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques sur l'ensemble des figures.
DESCRIPTION DÉTAILLÉE DE MODES DE RÉALISATION
[0023] Naturellement, les modes de réalisation illustrés par les figures présentées ci-dessus ne sont donnés qu'à titre d'exemples non limitatifs. Il est explicitement prévu que l'on puisse combiner entre eux ces différents modes et variantes pour en proposer d'autres.
[0024] Les figures 1A et 1B illustrent un mode de mise en œuvre préférentiel du procédé de bétonnage de l'invention avec une installation à un seul forage F (figure 1A) ou à deux forages Fl, F2 raccordés en U (figure 1B). Le procédé de l'invention est plus particulièrement destiné au bétonnage d'un site souterrain utilisé pour le stockage de déchets radioactifs. Le site de stockage souterrain est généralement constitué d'alvéoles de stockage (non représentées) disposées au sein d'un réseau de galeries d'accès et de liaison situées à grande profondeur. Le renforcement mécanique de ces alvéoles de stockage et des différentes galeries est réalisé par du béton acheminé au moyen de l'installation schématiquement représentée sur la figure
[0025] Dans le cas d'un bétonnage à grande profondeur, le contexte est différent des usages traditionnellement rencontrés dans le génie civil car l'acheminement du béton s'étale sur une très longue période. Ceci n'autorise aucune intervention humaine ce qui rend le procédé et l'installation difficiles à gérer. Le béton est ensuite dirigé sur quelques centaines de mètres voire plusieurs kilomètres en horizontal.
[0026] La solution retenue par l'invention consiste à acheminer le béton B en utilisant au moins un forage dans lequel est logé un tube A dit d'acheminement prévu pour durer plusieurs années avec de fréquentes périodes d'intense bétonnage.
[0027] Du fait que les débits de béton pourront être ponctuellement importants, selon les campagnes de bétonnage, avec des débits de l'ordre de 60 m3/h, un dysfonctionnement de l'installation peut entraîner des conséquences fâcheuses dans le fonctionnement du stockage.
[0028] L'installation de bétonnage selon l'invention doit donc répondre aux critères suivants : être de structure simple et pérenne en utilisant des matériaux résistants à la corrosion tels que des aciers inox, assurer un mode d'acheminement du béton permettant une descente à vitesse constante de façon à ce que celui-ci ne ségrège pas ou que des risques de blocage du forage ne se produisent pas au cours de la descente, être équipée d'un système de détection permettant de surveiller et de contrôler l'acheminement du béton de façon à prévenir les éventuels dysfonctionnements, disposer d'une capacité d'engagement rapide d'actions correctives pour évacuer le béton et nettoyer le tube qui pourrait être obstrué.
[0029] L'installation de bétonnage de l'invention comprend donc, de manière traditionnelle, au moins un forage vertical F recevant un tube A pour l'acheminement
du béton B depuis un site d'alimentation jusqu'à un site souterrain situé à une altitude inférieure au site d'alimentation.
[0030] Le site d'alimentation est situé à proximité d'une centrale à béton CB (positionnée, de préférence, en surface) et assure l'alimentation continue en béton B du tube d'acheminement A conduisant jusqu'au site souterrain situé à grande profondeur.
[0031] Le tube A d'acheminement assure, quant à lui, la descente de la colonne de béton B et est raccordé à un dispositif permettant le prélèvement du béton à partir d'une extrémité inférieure de cette colonne pour distribuer le béton dans le site souterrain (voir figure 2).
[0032] Lorsque le procédé s'applique au bétonnage d'un site souterrain destiné au stockage de déchets, l'acheminement du béton est assuré jusqu'aux alvéoles de stockage via le forage F et des galeries souterraines via un réseau de tuyauteries ou de convoyeurs (chariots ou godets mobiles). [0033] Afin de remplir le cahier des charges défini ci-dessus, l'installation de l'invention comprend, en outre et spécifiquement, un obturateur mobile 1 (figures 3A, 3B et 4), par exemple sous forme d'obus, logé dans le tube d'acheminement A et un circuit de liquide L (ou circuit hydraulique), destiné à contrôler la vitesse de descente du béton B dans le tube A en assurant, d'une part, la mise sous pression du liquide exerçant une contre-poussée verticale sur l'obturateur 1 et, d'autre part, le soutirage de ce liquide.
[0034] Le circuit de liquide (ou circuit hydraulique CH) est raccordé au tube d'acheminement A du béton au voisinage du fond du puits et est constitué d'un circuit fermé comprenant au moins une pompe hydraulique PHI, PH2 assurant la mise sous pression et le soutirage du liquide L. Les pompes hydrauliques PHI, PH2 sont alimentées en surface, par au moins un réservoir (ou citerne) Cl, C2 de liquide. Des moyens complémentaires de filtration et/ou de décantation D couplés à une vanne V permettent le recyclage du liquide L dans l'installation, comme illustré par les lignes en traits pointillés sur les figures 1A, 1B.
[0035] L'action d'au moins une pompe hydraulique permet de générer la contre- poussée sur l'obturateur 1 afin d'équilibrer le système (tube de Jurin). Cette pompe peut fonctionner en dépression pour faciliter la descente de la colonne de béton B comme elle peut fonctionner en haute pression pour faire remonter l'obturateur 1 et tout ou partie de la colonne de béton B vers la surface, si nécessaire.
[0036] Un manomètre ou un capteur de pression (pressiomètre) CP, associé à une purge PS (figures 1A et 1B), est disposé dans la galerie souterraine ou en surface afin de mesurer la pression de refoulement du liquide L dans le circuit hydraulique CH.
[0037] La tête de forage est adaptée pour recevoir un volume de béton transitant en continu, éventuellement sous pression.
[0038] Le dispositif d'acheminement du béton est constitué d'un chemisage externe C en acier (figure 4) pour la protection du forage F et du tube interne A d'acheminement du béton réalisé en acier inox et assurant le transit du béton B. L'acier inox permet de réduire les frottements, de diminuer les forces de viscosité et de minimiser la corrosion.
[0039] Dans le cas d'une usure (prématurée ou normale) du tube interne A d'acheminement, il est possible de l'extraire du forage et de le ramener en surface pour le réparer ou le remplacer.
[0040] Dans le mode de réalisation de la figure 1A et comme illustré par la vue en coupe de la figure 4, l'espace vide situé entre la paroi externe du tube interne A d'acheminement du béton et la paroi interne du chemisage C du forage F délimite alors une enceinte annulaire ou cylindrique intercalaire E dans laquelle sont disposés des instruments de détection et de mesure électromagnétique M. Ces instruments permettent de suivre la descente du béton B en continu et de s'assurer du bon fonctionnement de l'installation.
[0041] Le tube A est refroidi par un flux d'air ascendant S, éventuellement comprimé, qui passe dans l'enceinte annulaire E autour de la paroi externe du tube A et qui est prélevé depuis une prise d'air PA raccordée à la base du tube A (figures 1A, 1B).
[0042] Selon une variante de l'installation de l'invention illustrée par la figure 4, il est prévu de déployer en spirale une fibre optique P auto-porteuse autour du tube A d'acheminement. Cette fibre optique assure le suivi de la température de manière répartie sur la totalité de la longueur du tube, mais également de mesurer les déformations mécaniques de ce dernier. Il est aussi possible de prévoir la pose de capteurs de pression (non représentés) disposés sur la surface externe du tube d'acheminement. Ces capteurs peuvent être disposés à intervalles réguliers tous les 5 à 10 mètres.
[0043] Les instruments M, P permettent aussi de suivre la cinétique et la cinématique de l'obturateur mobile 1, comme décrit ci-après. Ils permettent ainsi de connaître l'état d'avancement de la descente de la colonne de béton B dans le tube A et de commander les trois opérations essentielles et successives du procédé qui seront décrites en détail par la suite, à savoir ; la lubrification du tube interne d'acheminement du béton, la descente de la colonne de béton puis le nettoyage du tube après le bétonnage du site souterrain de stockage.
[0044] L'obturateur mobile 1 est destiné à être introduit dans le tube A d'acheminement en tête de forage et est positionné au sommet de la colonne de liquide L. Cet obturateur sépare la phase cimentaire de la phase liquide (aqueuse) L et descend verticalement sous le poids de la colonne de béton B. [0045] L'obturateur mobile 1 dont un mode de réalisation sous forme d'un obus est illustré par les figures 2A et 2B, comprend un corps cylindrique 11 pourvu de nervures circonférentielles 12 dont le diamètre correspond sensiblement au diamètre intérieur du tube, d'une tête 13 et d'une base tronconique 14 offrant une face de poussée ou de traction pour le liquide délivré par le circuit hydraulique. [0046] La base 14 a, de préférence, un profil biseauté ou en ogive pour faciliter la descente de l'obturateur 1 dans le tube A. La tête 13 offre une face tronquée ou tronconique destinée à venir soutenir la base de la colonne de béton B.
[0047] Les nervures 12 en forme d'ailettes radiales améliorent le raclage de la paroi du tube A lors du nettoyage de l'installation et assure un maintien axial de
l'obturateur 1 lors de sa descente ainsi qu'une stabilité lors de l'équilibre des pressions.
[0048] La base tronconique 14 présente une cavité intérieure 140 optimisant l'application de la force de contre-poussée exercée sur l'obturateur F par le liquide L sous pression (figure 4).
[0049] Selon une variante de l'invention illustrée par la figure 4, le corps 11 de l'obturateur 1 est pourvu d'un insert, par exemple, sous forme d'une bague G montée ici entre les nervures 12, qui est détectable de façon électromagnétique par les instruments M précédemment décrits. Cet insert est intégré d'un point de vue fonctionnel dans le circuit électronique Y de contrôle-commande ou de supervision de l'installation en vue d'assurer le suivi de la course de l'obturateur mobile 1 dans le tube A d'acheminement ainsi que la détection de son passage à travers le tiroir d'arrêt. La transmission du signal de détection de l'insert permet ainsi à l'opérateur d'actionner, depuis la surface, l'ouverture ou la fermeture des vannes du tiroir d'arrêt situé à la base du forage F.
[0050] Selon une variante non représentée, l'insert à propriétés électromagnétiques est, par exemple, sous forme d'une bille noyée dans le corps de l'obturateur mobile 1.
[0051] L'installation est aussi équipée d'au moins deux tiroirs d'arrêt à double- trappe Tl, T2. Un premier tiroir d'arrêt Tl est monté en surface ou au niveau du site d'alimentation en béton, sur une extrémité supérieure du tube d'acheminement A. Un second tiroir d'arrêt T2 est monté au fonds du puits sur une extrémité inférieure du tube d'acheminement, éventuellement couplée à une pompe de reprise du béton PB2 (figures 1A, lB et 2). [0052] Le cas échéant, l'installation comprend, en outre, un troisième tiroir d'arrêt T3 monté dans la galerie en aval du second tiroir et assurant la distribution du béton vers le site de stockage, comme illustré par les figures 1A, 1B.
[0053] Les équipements situés à la base du forage et, notamment, les tiroirs d'arrêt sont dimensionnés et adaptés pour recevoir la colonne de béton sous pression.
[0054] Le cas échéant, un filtre complémentaire est monté au fond du puits, dans la galerie d'accueil du béton, pour purifier le liquide du circuit hydraulique primaire.
[0055] Comme décrit plus loin en référence à un mode de réalisation préférentiel de l'installation, cette dernière est pourvue d'une pompe PBl d'injection du béton en surface dont la puissance est d'environ 200 KW. La pompe PB2 de reprise et de distribution du béton est placée dans la galerie d'accès aux alvéoles de stockage et a, quant à elle, une puissance d'environ 400 KW.
[0056] Le système de détection relie la pompe hydraulique PHI de mise en pression du liquide, la pompe de bétonnage PBl assurant l'injection du béton et les tiroirs d'arrêt Tl, T2, T3 à commande hydraulique situés, respectivement, en surface et dans la galerie souterraine de réception du béton. [0057] L'installation est surveillée et commandée avec tous ses composants depuis la surface à partir d'un poste CO de contrôle dédié.
[0058] Le système de commande est automatisable et centralisé. Toutes les informations Y acquises le long du tube d'acheminement du béton sont stockées en continu dans une centrale d'acquisition. Tout dysfonctionnement suffisamment significatif conduit ainsi à une intervention immédiate de l'opérateur de veille dans le poste de contrôle.
[0059] Dans une première variante de réalisation (figure 1A), le circuit hydraulique CH (en trait plein) comprend un conduit d'amenée du liquide L logé dans un forage unique F renfermant également le tube A d'acheminement du béton B. Ce conduit est alors disposé au voisinage ou autour du tube interne A d'acheminement du béton.
[0060] Dans une seconde variante de réalisation de l'installation de l'invention (figure 1B), le circuit hydraulique CH (toujours en trait plein) comprend un conduit
d'amenée du liquide logé dans un forage vertical F2 disposé à distance du forage Fl dans lequel est disposé le tube A d'acheminement du béton. Le conduit de liquide du forage Fl est raccordé à la partie basse du tube A d'acheminement du béton et donc au forage Fl en formant un double-forage en U. [0061] Dans tous les cas, les forages doivent être étanches et suffisamment résistants pour tenir la pression hydraulique.
[0062] Le procédé de bétonnage mis en œuvre dans le cadre de l'invention avec l'installation définie ci-dessus comportent des étapes successives qui vont maintenant être décrites en détail dans ce qui suit. [0063] De manière traditionnelle, ce procédé prévoit, d'acheminer verticalement le béton depuis un site d'alimentation situé à une altitude supérieure au site souterrain et vers le site souterrain par une alimentation continue en béton d'un tube d'acheminement A disposé à l'intérieur du forage F et assurant la descente d'une colonne de béton B puis d'effectuer le prélèvement du béton à partir d'une extrémité inférieure de la colonne de béton pour distribuer le béton dans le site souterrain.
[0064] Lorsque le site souterrain est destiné au stockage de déchets, on prélève le béton au fond du puits à partir de l'extrémité inférieure de cette colonne pour le transporter jusqu'aux alvéoles de stockage.
[0065] Le procédé de l'invention vise à surmonter les problèmes techniques rencontrés généralement dans de telles opérations. Dans ce but, le procédé consiste, plus particulièrement, à remplir initialement le tube d'acheminement du béton avec un liquide L (de préférence de l'eau) avant d'y introduire un obturateur mobile 1 du type décrit précédemment et illustré par les figures 2A et 2A.
[0066] Il est ensuite prévu d'alimenter en continu le tube d'acheminement par injection de béton puis d'exercer, lors de la descente continue de la colonne de béton dans le tube d'acheminement, une contre-poussée verticale ascendante sur l'obturateur qui est positionné au sommet de la colonne de liquide en ajustant la hauteur de la colonne de liquide et/ou la pression du liquide dans le tube d'acheminement en vue de contrôler la descente du béton.
[0067] On ajuste la hauteur de la colonne de liquide et/ou la pression du liquide par soutirage du liquide à une extrémité inférieure du tube d'acheminement en faisant varier l'ouverture d'une vanne et/ou en faisant varier le débit d'une pompe montée sur le circuit hydraulique, en vue de contrôler, notamment, la vitesse de descente de la colonne de béton.
[0068] Le procédé de l'invention prévoit d'ajuster la hauteur de la colonne de liquide et/ou la pression du liquide en fonction d'un ou plusieurs paramètres qui sont mesurés par des capteurs appropriés ou calculés. Ces paramètres incluent au moins l'un des paramètres suivants : - la vitesse de l'obturateur mobile ; la position de l'obturateur mobile ; la quantité ou le débit de béton pénétrant dans le tube d'acheminement ; la densité du béton pénétrant dans le tube d'acheminement ; - la viscosité du béton pénétrant dans le tube d'acheminement ; la température du béton pénétrant dans le tube d'acheminement ; la température du liquide ; la pression du liquide.
[0069] L'étape finale du procédé consiste à prélever le béton à la base du tube d'acheminement pour l'amener et le distribuer dans la galerie souterraine de stockage où se trouvent les alvéoles contenant les déchets à bétonner.
[0070] Depuis son poste CO de commande, l'opérateur est en mesure de détecter les dysfonctionnements de l'installation, de déclencher en direct les ouvertures et les fermetures des tiroirs d'arrêt, de régler en direct les débits des pompes et de
remonter l'obturateur 1 pour évacuer le plus rapidement possible la colonne de béton du forage.
[0071] Lors de l'étape initiale de mise en charge et de lubrification, le forage unique ou les deux forages en U sont préalablement remplis entièrement de liquide L (phase au repos).
[0072] Le tube interne A d'acheminement du béton est donc constamment lubrifié par le liquide L et il n'est donc pas nécessaire d'utiliser de la barbotine cimentaire.
[0073] En phase de charge hydraulique du forage F, la trappe du tiroir d'arrêt Tl situé en surface est en position de fermeture pour éviter l'écoulement du béton.
[0074] La trappe du tiroir d'arrêt T2 situé à la base du tube d'acheminement A est également en position fermée de façon à ce que le liquide ne puisse pas se vidanger dans la pompe à béton PB1.
[0075] En début de descente du béton, la trappe du tiroir d'arrêt Tl situé en surface s'ouvre pour permettre l'écoulement du béton tandis que l'autre trappe se ferme.
[0076] La trappe du tiroir d'arrêt T2, situé à la base du tubage, s'ouvre de façon à ce que du liquide L propre puisse passer dans le circuit hydraulique primaire en vue d'assurer la contre-poussée lors des étapes suivantes. [0077] La seconde étape débute par l'introduction dans le tube interne A d'acheminement du béton et depuis le site d'alimentation et, généralement, depuis la surface, de l'obturateur mobile 1.
[0078] Cette étape se poursuit par l'alimentation continue, par exemple, depuis la surface et la centrale CB, du tube interne d'acheminement en béton B de façon gravitaire ou par injection sous pression au moyen d'une pompe si nécessaire.
[0079] L'acheminement vertical du béton se trouve facilité par la lente descente de la colonne de liquide dans le tube, gérée par l'activation de la pompe hydraulique
PHI en dépressurisation provoquant ainsi l'aspiration du liquide vers le bas du tube A et favorisant la descente de l'obturateur 1.
[0080] Si nécessaire, on augmente le débit de la pompe d'injection de béton PB1 pour augmenter la pression de la colonne de béton et faciliter sa descente dans le tube d'acheminement.
[0081] Parallèlement, on ajuste la pression du liquide à partir de la surface du puits et on effectue son soutirage à partir de la base du tube A d'acheminement en béton.
[0082] Depuis le poste central CO de commande situé en surface, l'opérateur s'assure de l'équilibre convenable entre les hauteurs et/ou les pressions respectives de la colonne de béton B et de la colonne de liquide L et veille à conserver un rythme de descente régulier du béton.
[0083] Des capteurs optiques et/ou électromagnétiques (par exemple du type des capteurs précédemment décrits P, M), disposés au niveau du tiroir d'arrêt T2, détectent le passage de l'obturateur mobile 1 dont la position coïncide avec le niveau de séparation de phase entre le liquide L et le béton B.
[0084] Comme illustré par la figure 2, l'extrémité inférieure du tube d'acheminement A est raccordée au tiroir d'arrêt T2 au moyen d'une bride mâle soudée A2 et de colliers A3. Sous le tiroir d'arrêt T2, est monté un réceptacle Al de l'obturateur mobile 1 (obus) pourvu d'une cornière de levage CE pour l'intervention d'un chariot élévateur (non représenté) circulant dans la galerie souterraine du chantier.
[0085] Le passage de l'obturateur 1 à travers le tiroir T2 déclenche alors un signal d'alarme qui est transmis au poste CO de commande situé en surface et qui signale à l'opérateur l'arrivée du béton à la base du tube d'acheminement A.
[0086] Lorsque l'obturateur mobile atteint la base du tube d'acheminement, l'opérateur stoppe la pompe hydraulique n°l pour arrêter le soutirage du liquide. Le cas échéant, on équilibre alors la colonne de béton avec la pression du liquide.
[0087] Le tiroir d'arrêt à commande hydraulique à simple tiroir T2 (taré de préférence à 120 bars), qui était jusqu'à présent fermé pour permettre la circulation du liquide, s'ouvre pour libérer le béton qui se déverse alors dans une cuve d'attente et/ou directement dans une cuve (non représentées) alimentant la pompe de distribution PB2. Cette étape se poursuit aussi longtemps que dure la descente du béton et l'installation peut fonctionner alors en régime permanent, le cas échéant, pendant une très longue période, compte tenu des volumes de béton nécessaires aux campagnes de bétonnage du site de stockage dont la construction est progressive.
[0088] La descente du béton est assurée de façon continue grâce à la pression exercée par la pompe à béton PB1 située au niveau du site d'alimentation situé, par exemple, en surface et qui est alimenté par la centrale à béton CB.
[0089] Le double tiroir d'arrêt à commande hydraulique Tl situé en surface et le tiroir T2 situé dans la galerie de réception sont ouverts pour laisser passer le béton.
[0090] Dans la galerie de réception du béton, la pompe à béton PB2 couplée à un troisième tiroir d'arrêt T3 à commande hydraulique et double tiroir assure la distribution et la répartition sélective du béton dans les différentes galeries et alvéoles de stockage.
[0091] Depuis le poste CO de contrôle en surface, l'opérateur surveille la descente du béton par lecture et analyse continue des paramètres de contrôle de la colonne de béton, tels que définis précédemment et mesurés le long du tube d'acheminement A.
[0092] L'invention prévoit la possibilité de procéder à une phase d'interruption du bétonnage du site souterrain. Dans cette phase, on effectue alors l'arrêt de l'injection du béton puis le nettoyage du tube d'acheminement par remontée de l'obturateur mobile et du liquide sous pression jusqu'au site d'alimentation. [0093] Lorsque les opérations de bétonnage du site souterrain se terminent, on procède à la fermeture de la trappe d'accès reliant le tiroir Tl à la pompe PB1 d'injection de béton. L'arrêt du bétonnage condamne ainsi la trappe réservée à l'alimentation du tube d'acheminement A (double-tiroir d'arrêt Tl à commande hydraulique).
[0094] On effectue la vidange aussi complète que possible du tube d'acheminement en laissant descendre la colonne de béton par simple gravité.
[0095] Puis, on ouvre la seconde trappe du tiroir T2 dédié au circuit hydraulique pour permettre la remontée et la circulation du liquide L. [0096] La trappe du tiroir T2 situé au fond du puits est alors fermée condamnant ainsi l'accès à la pompe à béton PB2 située dans la galerie.
[0097] Le tube d'acheminement à l'intérieur du forage est alors isolé et est prêt pour le nettoyage qui est assuré par la remontrée du liquide sous pression.
[0098] La trappe du double tiroir d'arrêt T2 est alors ouverte permettant au liquide de circuler tandis que la pompe hydraulique PHI est actionnée. Le liquide L sous pression fait remonter l'obturateur 1 avec la colonne de liquide de la base du forage jusqu'à la surface. Il est possible d'adjoindre dans le tube d'acheminement une balle en mousse pour renforcer le raclage et accroître l'efficacité du nettoyage.
[0099] La laitance qui s'est déposée sur les parois du tube d'acheminement est alors remontée par l'obturateur.
[00100] A la sortie du tube, le liquide de nettoyage chargé en ciment et usé se déverse dans la citerne de décantation C2 et est éclairci en passant dans un système de filtration D équipé d'un filtre à particules, d'une vanne à guillotine V et de la pompe hydraulique PH2 qui est disposée entre la citerne de décantation Cl et la pompe hydraulique PHI (voir figures 1A et 1B).
[00101] Ce liquide peut être ensuite introduit à nouveau dans le circuit primaire en activant la pompe hydraulique PHI.
[00102] Le tube d'acheminement A est alors à nouveau rempli de liquide et est prêt pour une seconde campagne de bétonnage. [00103] La gestion des dysfonctionnements de l'installation est effectuée de la façon suivante selon des aspects caractéristiques du procédé de l'invention.
[00104] Ainsi, en cas d'échauffement prématuré du béton, le forage et, plus particulièrement le tube d'acheminement, peut être refroidi par un flux d'air, éventuellement comprimé, dirigé de bas en haut pour ne pas perturber ou altérer le circuit/cycle de ventilation conventionnelle des installations souterraines. [00105] La vitesse de descente de la colonne de béton peut être accélérée par ouverture des tiroirs d'arrêt et/ou en actionnant la pompe hydraulique PHI.
[00106] En cas de ralentissement du béton dans le tube d'acheminement (par exemple, du fait de la formation de nids de granulats), d'accumulation ou de blocage du béton, la mise en action immédiate des pompes hydrauliques permet une remontée rapide du liquide sous pression dans le tube. La remontée du liquide permet un débourrage plus efficace du béton si celui-ci concentre les granulats.
[00107] Inversement, en cas de débit de béton trop important, le procédé peut être ralenti par fermeture des tiroirs d'arrêt et/ou en actionnant la pompe hydraulique n°l. [00108] La décision de stopper le procédé et, notamment, l'acheminement du béton, peut être prise par l'opérateur très rapidement à partir des informations et des signaux envoyés par les instruments de détection et de mesure intégrés dans le forage.
[00109] Depuis le poste CO de contrôle en surface, l'opérateur peut alors procéder à la vidange aussi complète que possible du tube d'acheminement A et récupérer le béton B dans une cuve disposée dans la galerie. Cette action conduit à un allégement optimal de la colonne de béton permettant alors au système de contre-poussée hydraulique d'être plus performant.
[00110] En cas de blocage du béton dans le tube d'acheminement (par exemple, s'il se produit une accumulation de granulats dans le tube), la mise en pression du liquide par activation de la pompe hydraulique PHI permet de remonter la colonne de béton en tout ou partie de façon réactive et rapide.
[00111] Dans ce cas, il est possible d'actionner la pompe à béton PB1 en complément de la poussée ascendante exercée par la colonne de liquide pour faciliter sa remontée du béton le long du tube.
[00112] Le déblocage de la colonne de béton est effectué du bas vers le haut et non dans le sens inverse qui conduirait à un serrage préjudiciable du béton dans le tube d'acheminement.
[00113] Les caractéristiques dimensionnelles mentionnées ci-après correspondent à un mode préférentiel de réalisation de l'installation pour une mise en œuvre du procédé de bétonnage de l'invention dans les conditions suivantes. [00114] On effectue l'injection d'un béton de densité 2,4 avec un débit de 25 m /h dans un tube d'acheminement du béton de 506 mètres de profondeur et de 152,5 mm de diamètre intérieur.
[00115] Dans ces conditions, la vitesse de descente de la colonne de béton est de 60 km/h et la masse de la colonne de 21,6 tonnes pour un volume de 9 m3. La pression statique à la base du forage est de 120 bars.
[00116] L'installation comprend les équipements principaux suivants :
■ une pompe à béton PB1 équipée de deux moteurs de 160 kW (ce matériel permet d'obtenir une pression hydraulique maximale de de 290 bars correspondant à une pression de 200 bars dans le béton), ■ une pompe à eau PHI équipée d'un moteur de 150 kW utilisé comme moyen générateur de contre poussée ainsi que comme moyen de nettoyage des conduites,
■ un tiroir à commande hydraulique Tl dimensionné à 130 bars,
■ une prise d'air PA comprimé à 6 bars,
■ des citernes de liquide Cl, C2 (eau) de 30 m ,
■ des tuyauteries métalliques (acier inox) haute pression de diamètre 120 mm minimum et d'épaisseur 8,8 mm.
[00117] Le diamètre intérieur du tube d'acheminement A est compris entre 120 mm et 200 mm et est, de préférence, de 152,5 mm avec un diamètre extérieur de 177,8 mm. Le diamètre intérieur du chemisage C du forage F est compris en 200 et 300 mm et est, de préférence, de 224,4 mm avec un diamètre extérieur de 244,5 mm. Dans ce contexte, l'espace cylindrique intercalaire destiné à loger les instruments M, P de contrôle et de commande est donc de 46,6 mm.
[00118] La masse linéaire du tube d'acheminement A en acier inox est de 52,12kg/m et celle du chemisage C (également en inox) de 59,57 kg/m.
[00119] La pression du liquide L (par exemple de l'eau) dans le forage augmente de 1 bar tous les 10 mètres. Pour une colonne d'eau de 500 mètres, la pression est donc de 51 bars en tenant compte d'une pression atmosphérique de lbar.
Claims
1 . Procédé de bétonnage d'un site souterrain comprenant l'acheminement vertical d'un béton depuis un site d'alimentation situé à une altitude supérieure au site souterrain vers le site souterrain par une alimentation continue en béton (B) d'un tube d'acheminement (A) entre le site d'alimentation et le site souterrain, la descente d'une colonne de béton (B) dans le tube d'acheminement et le prélèvement du béton à partir d'une extrémité inférieure de ladite colonne de béton pour distribuer le béton dans le site souterrain, caractérisé en ce qu'on remplit initialement le tube d'acheminement (A) avec une colonne de liquide (L) et un obturateur mobile (1) positionné au sommet de la colonne de liquide, on exerce ensuite, lors de la descente de la colonne de béton dans le tube d'acheminement, une contre-poussée verticale sur ledit obturateur en ajustant la hauteur de la colonne de liquide et/ou la pression du liquide dans le tube d'acheminement en vue de contrôler la descente de la colonne de béton.
2. Procédé selon la revendication 1, caractérisé en ce qu'on ajuste la hauteur de la colonne de liquide et/ou la pression du liquide par soutirage du liquide (L) à une extrémité inférieure du tube d'acheminement (A).
3. Procédé selon la revendication 2, caractérisé en ce qu'on stoppe le tirage ou soutirage du liquide lorsque l'obturateur mobile (1) atteint la base du tube d'acheminement (A).
4. Procédé selon l'une des revendications précédentes, caractérisé en ce que l'alimentation continue en béton (B) est faite par injection de béton sous pression depuis la surface au plus tard dès que la colonne de béton atteint la base du tube (A).
5. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comporte une phase d'interruption du bétonnage du site souterrain, comportant un arrêt de l'injection du béton et un nettoyage du tube
d'acheminement (A) par remontée de l'obturateur mobile (1) et du liquide (L) sous pression jusqu'au site d'alimentation.
6. Procédé selon la revendication précédente, caractérisé en ce qu'on recycle le liquide (L) après décantation et filtration.
7. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on ajuste la hauteur de la colonne de liquide et/ou la pression du liquide en fonction d'un ou plusieurs paramètres mesurés par des capteurs ou calculés, le ou les paramètres incluant au moins l'un des paramètres suivants :
la vitesse de l'obturateur mobile ;
la position de l'obturateur mobile ;
la quantité ou le débit de béton pénétrant dans le tube d'acheminement ;
la densité du béton pénétrant dans le tube d'acheminement ;
la viscosité du béton pénétrant dans le tube d'acheminement ;
la température du béton pénétrant dans le tube d'acheminement ;
la température du liquide ;
la pression du liquide.
8. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on contrôle la hauteur de la colonne de liquide et/ou la pression du liquide en faisant varier l'ouverture d'une vanne et/ou en faisant varier le débit d'une pompe d'un circuit hydraulique.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on refroidit le tube d'acheminement (A) par un flux ascendant d'air comprimé (S) dans une enceinte (E) entourant ledit tube d'acheminement (A).
10. Installation de bétonnage d'un site souterrain, comprenant au moins un forage vertical (F, Fl, F2)) recevant un tube (A) d'acheminement du béton (B) depuis un site d'alimentation situé à une altitude supérieure au site souterrain jusqu'au
site souterrain, caractérisée en ce qu'elle comprend, en outre, un obturateur mobile (1) logé dans le tube d'acheminement (A) et un circuit hydraulique (CH) pour remplir d'un liquide (L) le tube d'acheminement sous l'obturateur (F) et extraire du tube d'acheminement (A) le liquide (L) sous l'obturateur en exerçant une contre-poussée verticale sur ledit obturateur.
1 1 . Installation de bétonnage selon la revendication précédente, caractérisée en ce que le circuit hydraulique (CH) est raccordé à une extrémité inférieure du tube (A) d'acheminement du béton.
12. Installation de bétonnage selon l'une des revendications 9 ou 10, caractérisée en ce que le circuit hydraulique (CH) comprend un conduit d'amenée du liquide (L) sous pression logé dans un second forage vertical (F2).
13. Installation de bétonnage selon l'une des revendications 9 ou 10, caractérisée en ce que le circuit hydraulique (CH) comprend un conduit d'amenée du liquide (L) sous pression logé dans un forage (F) unique renfermant le tube (A) d'acheminement du béton.
14. Installation de bétonnage selon l'une des revendications 9 à 12, caractérisée en ce que le circuit hydraulique (CH) est un circuit fermé comprenant des moyens de recyclage du liquide.
15. Installation de bétonnage selon l'une des revendications 9 à 13, caractérisé en ce que le forage est pourvu d'un chemisage (C) délimitant une enceinte cylindrique (E) autour du tube (A) d'acheminement dans laquelle sont disposés des instruments de détection et de mesure (M, P).
16. Installation de bétonnage selon l'une des revendications 9 à 14, caractérisée en ce qu'elle comprend au moins deux tiroirs d'arrêt (Tl, T2, T3) à double-trappe, un premier (Tl) des deux tiroirs d'arrêt étant monté en surface sur une extrémité supérieure du tube (A) assurant l'alimentation en béton à partir d'une
pompe (PB1) d'injection et un second (T2) des deux tiroirs d'arrêt étant monté au fonds du puits sur une extrémité inférieure du tube d'acheminement (A), couplée à une pompe (PB2) de reprise du béton.
17. Installation de bétonnage selon la revendication précédente, caractérisée en ce qu'elle comprend, en outre, un troisième tiroir d'arrêt (T3) monté en aval du second tiroir (T2) et assurant la distribution du béton (B).
18. Installation de bétonnage selon l'une des revendications 9 à 16, caractérisé en ce que le circuit hydraulique (CH) comprend au moins une pompe (PHI, PH2) assurant la mise sous pression du liquide (L) qui est alimentée en surface, par au moins un ou plusieurs réservoirs (Cl, C2) destinés au stockage et au recyclage dudit liquide.
19. Installation de bétonnage selon l'une des revendications 9 à 17, caractérisé en ce que ledit obturateur mobile (1) comprend un corps cylindrique (11) portant des nervures circonférentielles (12) dont le diamètre correspond sensiblement au diamètre intérieur du tube d'acheminement (A) et pourvu d'un insert (G) détectable de façon électromagnétique, d'une base (14) en ogive offrant une face de poussée et d'une tête (13) tronconique.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201880054659.1A CN110998031B (zh) | 2017-08-22 | 2018-07-17 | 用于对地下位置进行混凝土浇注的方法和设施 |
EP18742775.2A EP3673116B1 (fr) | 2017-08-22 | 2018-07-17 | Procédé et installation de bétonnage d'un site souterrain |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1757806A FR3070416B1 (fr) | 2017-08-22 | 2017-08-22 | Procede et installation de betonnage d’un site souterrain |
FR1757806 | 2017-08-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019037958A1 true WO2019037958A1 (fr) | 2019-02-28 |
Family
ID=60955134
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2018/069368 WO2019037958A1 (fr) | 2017-08-22 | 2018-07-17 | Procédé et installation de bétonnage d'un site souterrain |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP3673116B1 (fr) |
CN (1) | CN110998031B (fr) |
FR (1) | FR3070416B1 (fr) |
WO (1) | WO2019037958A1 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114215018A (zh) * | 2022-01-18 | 2022-03-22 | 中国水利水电第七工程局有限公司 | 一种混凝土浇筑施工保温棚 |
CN114892596A (zh) * | 2022-04-11 | 2022-08-12 | 河南水建集团有限公司 | 一种水利护坡斜面浇筑施工设备 |
CN117684753A (zh) * | 2024-02-01 | 2024-03-12 | 邢台炬能铁路电气器材有限公司 | 一种防飞溅式垂直输送混凝土装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004038172A1 (fr) * | 2002-10-23 | 2004-05-06 | Downhole Products Plc | Outil de regulation d'ecoulement de ciment |
EP2302642A1 (fr) * | 2009-09-23 | 2011-03-30 | Baltymore | Procédé de traitement de matériaux solides radioactifs |
CN202627535U (zh) * | 2012-06-13 | 2012-12-26 | 中国长江三峡集团公司 | 混凝土垂直输送管内缓降装置 |
CN103174142B (zh) * | 2013-03-01 | 2015-04-01 | 葛洲坝集团第五工程有限公司 | 一种混凝土垂直运输装置及混凝土垂直运输方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59179926A (ja) * | 1983-03-31 | 1984-10-12 | Shimizu Constr Co Ltd | コンクリ−トの水中打設工法 |
FI79597C (fi) * | 1985-11-07 | 1990-01-10 | Tampella Oy Ab | Foerfarande och apparat foer matning av betong i ett borrhaol vid betongbultning av berg. |
JPH01182412A (ja) * | 1988-01-14 | 1989-07-20 | Taisei Corp | 水中コンクリート打設方法 |
CN101597899A (zh) * | 2009-07-15 | 2009-12-09 | 交通部天津水运工程科学研究所 | 水下钻孔灌注桩的灌注方法 |
SG11201600527TA (en) * | 2013-11-25 | 2016-02-26 | Halliburton Energy Services Inc | Novel cement composition for lost circulation application |
-
2017
- 2017-08-22 FR FR1757806A patent/FR3070416B1/fr not_active Expired - Fee Related
-
2018
- 2018-07-17 EP EP18742775.2A patent/EP3673116B1/fr active Active
- 2018-07-17 WO PCT/EP2018/069368 patent/WO2019037958A1/fr unknown
- 2018-07-17 CN CN201880054659.1A patent/CN110998031B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004038172A1 (fr) * | 2002-10-23 | 2004-05-06 | Downhole Products Plc | Outil de regulation d'ecoulement de ciment |
EP2302642A1 (fr) * | 2009-09-23 | 2011-03-30 | Baltymore | Procédé de traitement de matériaux solides radioactifs |
CN202627535U (zh) * | 2012-06-13 | 2012-12-26 | 中国长江三峡集团公司 | 混凝土垂直输送管内缓降装置 |
CN103174142B (zh) * | 2013-03-01 | 2015-04-01 | 葛洲坝集团第五工程有限公司 | 一种混凝土垂直运输装置及混凝土垂直运输方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114215018A (zh) * | 2022-01-18 | 2022-03-22 | 中国水利水电第七工程局有限公司 | 一种混凝土浇筑施工保温棚 |
CN114215018B (zh) * | 2022-01-18 | 2023-05-09 | 中国水利水电第七工程局有限公司 | 一种混凝土浇筑施工保温棚 |
CN114892596A (zh) * | 2022-04-11 | 2022-08-12 | 河南水建集团有限公司 | 一种水利护坡斜面浇筑施工设备 |
CN117684753A (zh) * | 2024-02-01 | 2024-03-12 | 邢台炬能铁路电气器材有限公司 | 一种防飞溅式垂直输送混凝土装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3673116A1 (fr) | 2020-07-01 |
EP3673116B1 (fr) | 2021-08-04 |
FR3070416A1 (fr) | 2019-03-01 |
CN110998031B (zh) | 2021-12-10 |
FR3070416B1 (fr) | 2020-01-10 |
CN110998031A (zh) | 2020-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3673116B1 (fr) | Procédé et installation de bétonnage d'un site souterrain | |
EP3194713B1 (fr) | Système et procédé d'extraction de gaz d'un puits | |
CA2833650C (fr) | Dispositif d'extraction de materiau solide sur le fond d'une etendue d'eau et procede associe | |
EP0013854A1 (fr) | Procédé et dispositif de sécurité pour stockage souterrain d'un fluide sous pression | |
EA028107B1 (ru) | Термическая обработка бурового шлама, подаваемого из системы транспортирования бестарного материала, в условиях морского бурения | |
CN112424447A (zh) | 泵送系统 | |
EP3231786B1 (fr) | Mélangeur statique avec un dispositif de cisaillement et procédé de production d'explosif | |
FR2522076A1 (fr) | Procede et dispositif pour la commande sequentielle du mouvement vertical d'une boue | |
EP3334898B1 (fr) | Installation sous-marine de séparation gaz/liquide | |
CA2971753C (fr) | Dispositif d'evacuation de liquides accumules dans un puits | |
FR3096441A1 (fr) | Dispositif de récupération de fluide glycolé, de traitement du taux de glycol et de réinjection du fluide glycolé traité dans une installation de refroidissement | |
WO2015012719A1 (fr) | Procédé de remontée de milieux liquides vers la surface et dispositif de mise en œuvre | |
AU2017242643B2 (en) | Drilling method and shaft drilling system | |
AU2010261548A1 (en) | Hydraulic solid transportation system | |
EP3789098A1 (fr) | Système de collecte de particules solides s'accumulant au fond d'une station sous-marine de séparation huile/eau | |
FR2933077A1 (fr) | Systeme d'introduction de mortier dans un conteneur | |
FR2758852A1 (fr) | Procede de pompage d'un fluide | |
EP4379184A1 (fr) | Dispositif de couverture d'une tête et station de pompage d'un puits de forage | |
WO2017025689A1 (fr) | Méthode et installation sous-marine de séparation gaz/liquide | |
EP2689093B1 (fr) | Méthode d'installation assistée d'une colonne sous-marine montante | |
FR2878541A1 (fr) | Puits d'egout muni d'un dispositif de regulation et/ou de mesure de debit | |
CH667300A5 (en) | Reservoir water extraction system - uses telescopic pipe with strainer and float to take water from near surface level | |
OA19947A (fr) | Installation modulaire et procédé de séparation liquide/gaz, notamment des phases liquide et gazeuse d'un pétrole brut. | |
EP1541774A2 (fr) | Procède de decolmatage hydraulique d'un forage et dispositif associé |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18742775 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018742775 Country of ref document: EP Effective date: 20200323 |