EP0201398B1 - Ensemble permettant d'effectuer des forages orientés - Google Patents
Ensemble permettant d'effectuer des forages orientés Download PDFInfo
- Publication number
- EP0201398B1 EP0201398B1 EP86400879A EP86400879A EP0201398B1 EP 0201398 B1 EP0201398 B1 EP 0201398B1 EP 86400879 A EP86400879 A EP 86400879A EP 86400879 A EP86400879 A EP 86400879A EP 0201398 B1 EP0201398 B1 EP 0201398B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- string
- assembly
- deflector
- flexible
- orientation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005553 drilling Methods 0.000 title claims description 56
- 239000000203 mixture Substances 0.000 title description 3
- 239000004020 conductor Substances 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 2
- 230000008093 supporting effect Effects 0.000 claims description 2
- 238000011068 loading method Methods 0.000 claims 1
- 230000002035 prolonged effect Effects 0.000 claims 1
- 239000000523 sample Substances 0.000 description 17
- 238000002347 injection Methods 0.000 description 14
- 239000007924 injection Substances 0.000 description 14
- 238000005259 measurement Methods 0.000 description 12
- 238000007792 addition Methods 0.000 description 10
- 238000005065 mining Methods 0.000 description 10
- 230000005540 biological transmission Effects 0.000 description 9
- 230000009471 action Effects 0.000 description 7
- 239000004459 forage Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 239000004606 Fillers/Extenders Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 239000003921 oil Substances 0.000 description 5
- 238000011144 upstream manufacturing Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 238000012856 packing Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 239000004959 Rilsan Substances 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 210000004907 gland Anatomy 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229920002647 polyamide Polymers 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920006231 aramid fiber Polymers 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000010292 electrical insulation Methods 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000002360 explosive Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000000630 rising effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- KRQUFUKTQHISJB-YYADALCUSA-N 2-[(E)-N-[2-(4-chlorophenoxy)propoxy]-C-propylcarbonimidoyl]-3-hydroxy-5-(thian-3-yl)cyclohex-2-en-1-one Chemical compound CCC\C(=N/OCC(C)OC1=CC=C(Cl)C=C1)C1=C(O)CC(CC1=O)C1CCCSC1 KRQUFUKTQHISJB-YYADALCUSA-N 0.000 description 1
- 241000531908 Aramides Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920000271 Kevlar® Polymers 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 241000897276 Termes Species 0.000 description 1
- 241001125843 Trichiuridae Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000003416 augmentation Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000002309 gasification Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 239000004761 kevlar Substances 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000003129 oil well Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000007420 reactivation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000012783 reinforcing fiber Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000004441 surface measurement Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B17/00—Drilling rods or pipes; Flexible drill strings; Kellies; Drill collars; Sucker rods; Cables; Casings; Tubings
- E21B17/20—Flexible or articulated drilling pipes, e.g. flexible or articulated rods, pipes or cables
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B7/00—Special methods or apparatus for drilling
- E21B7/04—Directional drilling
- E21B7/06—Deflecting the direction of boreholes
- E21B7/068—Deflecting the direction of boreholes drilled by a down-hole drilling motor
Definitions
- the present invention relates to an assembly for performing oriented drilling.
- One of the objectives of the assembly according to the present invention is to make it possible, from existing or drilled vertical wells, to produce horizontal or inclined drains with precisely controlled orientation and connected to the vertical well by a section with a small radius of curvature (20 to 30 meters).
- the present invention also makes it possible to drill multiple drains in several directions from a vertical well of common access.
- the present invention uses an assembly making it possible to drive a tool in rotation about an axis linked to said tool from a column, called a drive column, rotating at its lower end around a second axis, said axes being substantially concurrent at the same point A and forming an angle a between them.
- This assembly is characterized in that it comprises in combination a deflector, or elbow, remote-controlled adapted to create an angle deviation a, means for controlling the value of said angle a, guide means allowing the rotation of said tool and from said column at its lower end around said axes relative to said deflector and means for controlling the polar position of said deflector relative to said second axis.
- the means for controlling the polar position of said deflector may include a measurement probe integral with said deflector, said probe being marked angularly relative to the latter, a second column, said polar orientation column integral in orientation with said deflector rising to the surface, the lower part of said orientation column being flexible.
- the polar orientation column may include in its center an electrical conductor adapted to transmit the measurement signals from the probe to the surface and the remote control signals from the surface to the deflector.
- the drive column may have a flexible lower part, the lower end of which may be extended by a flexible extension and be fixed to said tool.
- the flexible part of said column may be coaxial and external to the flexible section of the polar orientation column.
- the drive column and the polar orientation column may each comprise a substantially rigid part and these substantially rigid parts may be coaxial and connected to the surface, the substantially rigid part of the drive column may be connected, at the surface, to a rotating head.
- the drive column can be connected to a downhole motor.
- This downhole motor may be a multi-lobed helical volumetric motor whose rotary external body is connected to said drive column and whose non-rotating internal body is integral at its lower part with the flexible orientation column and at its upper part of the rigid upper part of the polar orientation column.
- the flexible part of the drive column may have a perfectly smooth internal wall and an external wall provided with at least one rib wound in a helix.
- the deflector may comprise two bodies articulated with respect to each other about an axis or a ball joint, the upper body forming an extension of the measurement probe and of the orientation column, the lower body supporting the pivoting of rotation of the drilling tool and means adapted to control the angle established between the two bodies.
- the means for controlling the angle established between the two bodies may include a screw jack which governs the distance between a first point belonging to the lower body and a second point belonging to the upper body.
- the measurement probe may be placed inside a centering module adapted to keep the longitudinal axis of the probe substantially parallel to the mean axis of the well at its level.
- the measurement probe may be placed inside an internal centering body secured to the top of the base of the flexible orientation column and to the bottom of the upper body of the deflector.
- the internal centering body can be placed coaxially inside an external centering body, which can itself be centered and aligned in the well by lower and upper centering shoes.
- Said external centering body may be integral in the upper part of the foot of the main hose, lower part of the drive column, and connected in the lower part to the drilling tool by a drive spacer assembly comprising a flexible rotary joint.
- the centering and alignment of the internal centering body inside the external centering body and the centering of the drive spacer around the lower (s) and upper (s) body of the deflector may be ensured by at least three pivotings radial.
- the longitudinal forces of thrust or traction between the main hose and the drilling tool may be transmitted via the central core constituted by the internal centering body and the deflector and by two axial pivotings arranged respectively at the head and at the foot of this central core.
- Appropriate conduits at the foot of the main hose, as well as flexible bellows insulation around the deflector, can ensure that between the head of the centering module and the tool, the circulation of drilling mud takes place only in the central part of the device, and that all the radial and axial pivots work in a clean environment lubricated by oil.
- the assembly according to the present invention may include orientation means located on the surface at the upper end of said orientation column.
- the present invention very often requires the use of a flexible lower column only over a length limited to the development of the horizontal drain and of the curved connection to the vertical section of the well.
- connection between the flexible lower column and the surface, through the vertical section of the well, can be carried out by conventional rigid drilling rods.
- the possibility of placing immediately behind the drilling tool a device for controlling the tool, precise and with a large clearance, continuously remote controllable from the surface allows perfect control of the trajectory of the tool, and thereby a good mastery of the profile of the well drilled.
- the present invention makes it possible to cope safely, easily and essentially by the usual methods, with the potential difficulties inherent in all horizontal drilling, in particular: drilling under limit pressure balance; the arrival of pressurized fluids; traffic losses; differential bonding; jamming.
- the present invention allows the optimization of the transmission of thrust and torque from the vertical section of the packing to the drilling tool, through the flexible lower column.
- the reference 1 designates a geological formation in which a horizontal drain 2 must be drilled.
- the present invention allows the control, at any time, of the radius of curvature of the trajectory of the drilled well and thereby has many advantages, as explained below.
- the distance L6 designates the distance separating the surface well 3 from plumb with the start of the horizontal drain 2 to be drilled in the case of the implementation of conventional conventional drilling techniques.
- the distance L7 designates the same distance in the case of the implementation of the assembly according to the present invention.
- the distance L7 is much less than the distance L6 and that the surface well 5 used for the implementation of the assembly according to the present invention is practically vertical to the start of the horizontal drain.
- the present invention allows precise control of the trajectory of a borehole and makes it possible to rectify it almost instantaneously with a minimum of delay, this thanks to the control and control at all times of the positioning of the tool in the well.
- the present invention makes it possible to vary the radius of the curve of the trajectory of the drilled well by a large range.
- the vertical packing may be rigid.
- the reference 213 designates the well drilled, the reference 206 the drilling tool.
- the lower end 201, of a drive column 211 rotates around an axis 202 and rotates around an axis 203 the tool 206, by means of a flexible sleeve or flexible joint 204.
- This flexible joint forms an extension of the drive column.
- the axes 202 and 203 are substantially concurrent at a point A and form between them a deflection angle a.
- Guide means 221 and 223 allow the tool 206 and the lower part 201 of the drive column 211 to rotate respectively around the axes 203 and 202 relative to the deflector 208.
- the deflector is kept stationary in rotation thanks to a so-called orientation column 210.
- the reference 7 designates a deviation and measurement instrument.
- This instrument comprises a variable angle bend or deflector 8 located inside the lower end of a flexible joint 9 forming a flexible extension of the drive column, immediately behind the tool 6; the radial or polar orientation of this elbow 8 is controlled by a flexible polar orientation column 10 at least on its lower part.
- This column is substantially coaxial with the flexible joint 9, itself connected to a main drive hose 11, possibly extended to the surface by a rigid extension.
- the assembly comprising the flexible joint, the main drive hose and the rigid extension constitute a column for driving the tool in rotation
- the assembly comprising the flexible joint and the main drive hose may qualify as a flexible part of the drive column.
- the axis around which the lower end of the drive column rotates it is the axis of the lower end of the main hose.
- the bend or deflector 8 makes it possible to print radial deviations from the tool 6 in determined controllable directions, resulting in different degrees of curvature, or in straightness, of the well profile and in controlling its azimuth.
- the instrument 7 also includes a directional measurement probe 12 housed in the center of the orientation column, immediately behind the deflector 8 (or approximately 2 to 3 meters behind the tool).
- This speed of response makes it possible to correct the profile if necessary without delay, by acting on the angle and on the orientation of the deflector 8.
- This rapid looping between the creation of the hole 13, the measurement of its profile, and the reaction on the deflector 8, constitute one of the major innovations of the system compared to the other known horizontal drilling systems. It is he who opens the possibility of producing profiles with small radii of curvature, possibly complex, and yet with precision, either to faithfully execute a determined profile, or to follow, upon discovery, the practical profile of a given layer. .
- the precision of the directional measurement implies a satisfactory centering of the measurement probe 12 in the hole, as well as a certain smoothing of unduly short and insignificant undulations of the latter.
- the probe 12 is aligned in a rigid extension 14 of the orientation column 10, this extension which can be described as an internal centered body is itself centered in a module or centralizing body and external stabilizer 15 of length 3 to 4 meters, inserted between the main hose 11 and the deflector module 8.
- This external centering body 15 may include lower 115 and upper 116 centering shoes.
- the probe 12 can measure the radial or polar orientation of the deflector with respect to the high generatrix of the hole or with respect to magnetic north (in Anglo-Saxon term " tool face "), to allow this radial orientation to be maintained or corrected, by surface action on the orientation column.
- the probe 12 may include magnetometers for measuring the azimuth and the "tool face”. These magnetometers must be distant from significant magnetic masses: for this purpose, the centering module 15 and the rigid extension 14 of the orientation column may be made of non-magnetic metal.
- a technological solution proposed and shown in FIG. 2 includes the use of an articulated toggle joint 16, the flexion or deflection of which is controlled by a greatly increased electric actuator 17: this fact, combined with the short lever arm of the deflector, causes the torque necessary for the actuator motor to overcome the deflection forces is low and the power required for the motor is also low, and can be of the order of 1/4 kW.
- An electric cable which can be a single conductor 18, located in the center of the orientation column 10 and its extension to the surface transmits the electric power and the remote controls to the deflector 8 (discontinuous actions) and goes up, in digital mode , the signals from the directional measurement probe 12 for decoding and surface treatment (continuous transmission). It is well known to those skilled in the art to carry out transfers of electrical power and electrical signals from a single conductor.
- the flow of mud is directed towards the center, inside the column extender, through orifices 19 and thus channeled to the center of the tool 6.
- the annular space 20 around the column extender and the deflector 8 is filled with oil which can be in equilibrium with the mud, thanks to devices well known to those skilled in the art. This oil provides effective lubrication of the centering bearings 21, 22 and 23 and of the axial stops upstream 24 and downstream 25.
- a semi-rigid metallic membrane 28 connects the upstream 29 and downstream 30 elements of the toggle 16 around the deflector 8; this membrane may be formed by a metal bellows.
- the thrust transmission from the main hose 11 to the tool-holder endpiece 32 can preferably be done through the extension of the orientation column 14 and the deflector 8 via the upstream axial stops 24 and downstream 25.
- the joint flexible 9 will not have to bear this thrust. However, it supports rotation, torque, and bending combined, generating fatigue effects: consequently, this flexible joint 9 can be considered as a wearing part which it is allowed to replace periodically.
- the axial stop 24 may be placed substantially in the vicinity of the radial stop 22. In this case the transmission of the axial thrust to the tool will be done via the centering module 15 instead of being done via the extension 14 of the orientation column.
- the main hose 11 has, among other functions, that of transmitting to the tool 6 rotation, torque, and axial thrust and of conveying the drilling mud towards the bottom. It must allow the ascent of the mud and the cuttings in the ring finger of the hole.
- This main hose will preferably be designed to minimize the risks of differential bonding, it will have to resist the traction necessary to extract the lining from the drain with the possible help of rotation and circulation combined in case of jamming and finally it will preferably be easily storable and transportable on the surface.
- main hose 11 may include a spiraled outer rib 33 made of polyamide loaded with reinforcing fibers (aramid fibers, for example the fiber designated by "Kevlar” from the Dupont de Nemours Company), located on its outskirts.
- reinforcing fibers aramid fibers, for example the fiber designated by "Kevlar” from the Dupont de Nemours Company
- the only function of the flexible column 10 is to transmit the orientation torque from the surface to the deflector 8 and to maintain this orientation during drilling. Its diametrical dimensions must provide, in its center, the passage of the electrical transmission cable 18 and, externally, an annular 34 sufficient in the main hose 11 for the passage of the downward flow of the drilling mud, indicated by the arrow 35.
- This hose 10, permanently installed inside the main hose 11 will nevertheless be easily removable for inspection, maintenance and to allow, if necessary, access to the interior of the main hose 11 during operations (for example for unscrewing with explosive, in Anglo-Saxon terms "back-off", above the background instrument).
- the frictions resulting from the rotation of the main hose around the stationary orientation hose are those of plastic material. (such as the material sold under the brand rilsan) on itself, with the interposition of the descending drilling mud, not or little loaded with solids. This friction, and the wear of the surfaces, are therefore low.
- the electrical transmission cable 18, possibly a single conductor, can be permanently installed in the center of the orientation hose.
- the lower part it is connected to the measurement probe 12, during the assembly of the main flexible assembly 11 - orientation hose 10 on the bottom instrument 7.
- a connector 36 possibly a single contact, housed in the center of the combined end piece of main hose 11 and orientation hose 10.
- the connection of cable 18 to probe 12 can be achieved by a connector 37.
- the main hose 11 is extended to the surface by a main train 38 , possibly rigid, possibly consisting of drill rods 39 and conventional drill rods 40.
- the orientation hose 10 can be extended in the center of the main landing gear 38 by an orientation column 41, possibly rigid, consisting of drill rods conventional mining type with constant external diameter, commonly called “flush mining rod” by those skilled in the art.
- the assembly comprising the orientation hose and the possibly rigid column constitutes the polar orientation column or more simply the orientation column.
- the tool and bottom instrument assembly having been pre-assembled is placed on corners.
- the main flexible assembly 11 - orientation hose 10 - central cable 18, is connected to the bottom instrument 7 and then lowered, by unwinding from the storage drum 44 (FIG. 5) of the flexible assembly, to poses on corners of the upper combined nozzle.
- drill rods 39 and main rods 40 are then successively connected and lowered, until the tool is brought close to the start of drilling dimension of the drain (vertical bottom of hole in the case of a "new" well ; lateral opening pre-executed in the production casing, in the case of wells "taken up”).
- the last added drill rod 45 (at the top of the train) is placed on corners 46, 47, its top projecting, above the corners, for example, from 0.3 to 0.4 meters.
- the flexible orientation column 10 is then extended to the surface by introduction, screwing, and successive descent of sections of mining rods with constant external diameter, commonly called mining rod "flush" by the skilled person, and constituting the column upper orientation 41 (fitting for connections on a wedge box installed on the top of the upper main rod).
- orientation rod 48 is accompanied by the connection of the foot of the upper orientation column 41 to the top of the orientation hose 10 by means of a simple fitting nozzle with square or hexagonal section, at reference 49.
- the length of the last added rod is such that its top exceeds that of the upper main rod, for example from 0.3 to 0.6 meters.
- the extension 50 of the electric cable is then introduced into the center of the column and lowered by unwinding: a possibly single-contact plug 36, at its foot, ballasted with a load bar, is connected, for example, by simple fitting, at the end of the descent , on the head plug of the flexible assembly
- the total length of the cable may, depending on the depth of the well, be made up of several sub-sections, and may have a significant excess length compared to the length of the rigid train.
- the cable extension ends with a plug, possibly a single contact, 52 which comes to rest in a support end piece at the top of the upper rod of the orientation column.
- a set of two paired sections of main rods 54 and orientation 55 is prepared in the rat hole (in English term "rat hole"), the bottom of the latter being arranged so that the mining rod 55 is offset, upwards, relative to the main rod, for example 0.2 meters.
- the motorized injection head 42 (in Anglo-Saxon terms “power swivel”), with its screwing tip on the rods and driving the drill train in rotation, is provided with an upper column extension 60 orientation 41, entered in the orienter 43 of "tool face", analogous to a small caliber hydraulic wrench.
- the Orienter 43 is supported by a jack 61 with vertical clearance which can be approximately 0.5 meters, itself anchored on the frame of the motorized head 42.
- a cable gland 62 with hydraulic control (of the "snubbing" lubricator type) , above the "power swivel”, allows sealing on the upper extension (outside polished chrome) of the orientation column.
- the upper extension 60 of the orientation column is permanently fitted with the upper extension of the electric cable, terminated in the lower part by a single-contact plug, and in the upper part by a rotary contact 65. Above this rotary contact, the cable surface follows the mud injection hose, and is connected to the equipment for receiving surface measurements and the deflector's remote control.
- the upper extension 60 of the orientation column is positioned to protrude under the nozzle of the injection head, for example 0.1 meter, while the support cylinder is in the middle position.
- the injection head 42 is brought to the vertical of the rat hole and positioned using the muffle to locate the foot of the upper extension 60 of the orientation column above the mining rod 55, for example at 10- 15 cm.
- the upper extension 60 is then approached then engaged and screwed onto the mining rod 55 by combining the rotation of the orienter 43 and the translation of its support cylinder 61, which allows a fine approach and avoids the risks of deterioration of the mining rod threads 55.
- the electrical cable connection 56 is established simultaneously. The blocking is done at the maximum admissible torque for threading, a torque which can be automatically measured by the guide 43 or applied by keys.
- the jaws of the orienter 43 are then loosened and separated from the upper extension 60 of the orientation column.
- the injection head 42 is lowered using the muffle and the nozzle of the injection head is engaged and screwed onto the main rod 54 by rotation of the head. Locking can be completed with conventional keys.
- the support cylinder 61 is put in the high position.
- the orienting jaws 43 are tightened on the upper extension 60.
- the set of addition rods 53 thus connected to the injection head is extracted from the rat hole and brought with the aid of the muffle above the drilling train 38 on standby on corners 46, 47, maintaining a space between main rod 45 on corners and main adding rod 54, this space may be approximately 0.5 meters.
- the upper extension 60 of the orientation column 41 is lowered and approached then connected to the orientation column on standby in the drilling train 38 by actions of the orienter 43 and its support jack 61.
- the orienting jaws are loosened, and the main adding rod 53 is approached and connected to the main landing gear 38 on corners 46, 47 by actions of the muffle and of the injection head, the blocking can be completed by the keys .
- the support cylinder 61 is positioned for setting the orientation column 41 under tension under its own weight (slight sliding possible of the sliding fitting at the foot of the column).
- the cable gland 62 is closed on the upper orientation extender.
- each addition 53 can be made by sections of 2 or 3 rods of 9 meters, or by 27 meters: there will therefore be 11 to 18 additions to operate for a drain of 300 to 500 meters.
- the movement for driving the tool comes from a downhole motor (see FIG. 6).
- the main hose 11 is rotated by a downhole motor 66, preferably of the volumetric type connected at the head of the flexible train 11.
- This motor 66 is used in the inverted position relative to the conventional mode: it is the external body 67, normally stator, which is connected to the main hose 11 and which becomes the rotor or rotating element.
- the central shaft 68 With lobes, becomes stator: the end piece 70, normally a tool holder, of this central shaft 68 is in the upper position, and connected to the drill set 69 and conventional stems rising to the surface .
- the other, normally free, end 71 of the central shaft 68 is connected to the orientation hose 72: the latter can therefore be oriented by action on the upper rod train 73 which, apart from the orientation movements, remains stationary angularly.
- the central shaft 68 of the downhole motor as well as its extension in its pivoting and its precession gimbals may be arranged to provide a central passage in which is housed an extension 75 of the electrical transmission cable 74.
- the electrical connection to the surface is formed by a possibly mono-conductor cable 77, connected in the lower part to the extender 75 in the engine, by a possibly mono-contact plug which can be ballasted with a load bar.
- each rod element is equipped with a central cable with plug.
- the rotary drilling embodiment has great flexibility in adapting rotation speeds and torques to terrain and drilling conditions. There is no limitation in maximum torques other than that imposed by the resistance limits of the rods. So the capacity to fight against conditions of jamming or intense friction is high.
- Such an embodiment allows complete independence of the mechanical parameters of the drilling and of the mud flow rates and pressures.
- the entire electrical connection between the bottom and the surface is done without mud which, according to the embodiment described as rotary drilling, facilitates obtaining and maintaining good electrical insulation at the connections and eliminates the problems of Erosion and deterioration of cables in the mud flow.
- the rotary embodiment avoids the problems linked to the cable placed in the annular of a well or to frequent cable maneuvers.
- the embodiment according to the present invention qualified as rotary drilling allows, if necessary, in particular in the case of jamming impossible to solve by rotation-traction-circulation, to completely extract the central orientation column, including the flexible part, at the same time as the electric cable and the measuring probe, thus freeing the center of the main landing gear to the deflector and allowing the execution of an unscrewing with explosives and the possible recovery of most of the undercarriage, including all or part of the main hose, depending on the level of jamming.
- this embodiment makes it possible, in the event of loss of circulation, to inject clogging products.
- this embodiment has drawbacks relative to the downhole engine version which resides in particular in the relative complexity of the composition of the rigid drilling train as a whole and of its implementation. This is to be tempered, however, in consideration of the simplicity, classurgi, and robustness of the individual components of this drill string.
- the embodiment according to the present invention which comprises a downhole motor, has advantages relative to the so-called rotary version including, in particular, that of the simplicity of the composition of the rigid drilling train, and of its implementation.
- the maximum torque that can be supplied by the downhole motor is necessarily limited. For example, with 9-lobe motors, currently available on the market, you can only count on 400 to 500 mkg.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Mechanical Engineering (AREA)
- Earth Drilling (AREA)
Description
- La présente invention concerne un ensemble permettant d'effectuer des forages orientés.
- L'un des objectifs de l'ensemble selon la présente invention est de permettre, à partir de puits verticaux existants ou forés, de réaliser des drains horizontaux ou inclinés à orientation précisément contrôlée et raccordés au puits vertical par une section à faible rayon de courbure (20 à 30 métres).
- Cet objectif ne peut être atteint par aucun système existant, opérationnel ou expérimental:
- - le forage horizontal (classique) utilisant les tiges de forage classiques implique des profils de transition de la section verticale à la section horizontale développés sur plusieurs centaines de mètres,
- - le forage à faible rayon de courbure utilisant des tiges épaisses articulées ne permet pas de contrôler efficacement et avec précision l'orientation du drain horizontal.
- L'art antérieur peut être illustré par les brevets américains suivants US-A 2 198 016 et US-A 1 850 403, par le brevet belge BE-A 865 955, par le brevet allemand DE-A 3 306 405 ainsi que par l'article intitulé "Récents développements en forage téléguidé", paru dans la "Revue de l'institut Français du Pétrole", Vol. 38, N. 1 de Janvier-Février 1983 aux pages 63 à 81.
- La présente invention peut être utilisée préférentiellement:
- a) pour la réalisation de drains horizontaux dans des réservoirs pétroliers peu profonds où le forage horizontal (classique) est inapplicable techniquement ou économiquement (nombreux gisements d'huiles lourdes et sables bitumineux);
- b) pour la réactivation de puits pétroliers existants anciens ne produisant plus par suite d'envahissement (eau ou gaz) ou d'épuisement relatif. L'intérêt de cette application, par rapport à la solution courante de forage de puits verticaux intermédiaires, augmente avec la profondeur des gisements;
- c) pour la réalisation de drains horizontaux dans la zone centrale à l'aplomb des plateformes de forage-production en mer, où l'accès en forage horizontal (classique) n'est pas possible;
- d) pour l'augmentation du rythme d'exploitation de gisements à horizons multiples superposés en exploitant successivement les différents horizons par des drains horizontaux forés depuis un puits vertical unique;
- e) pour la réalisation de drains suivant les sinuosités de filons de minerais, minces et sensiblement horizontaux (lixiviation in situ - gazéification du charbon in situ).
- La présente invention permet également de forer des drains multiples dans plusieurs directions à partir d'un puits vertical d'accès commun.
- Pour atteindre ces objectifs, la présente invention utilise un ensemble permettant d'entraîner un outil en rotation autour d'un axe lié audit outil à partir d'une colonne, dite colonne d'entraînement, tournant à son extrémité inférieure autour d'un deuxième axe, lesdits axes étant sensiblement concourants en un même point A et formant entre eux un angle a.
- Cet ensemble se caractérise en ce qu'il comporte en combinaison un déflecteur, ou coude, télécommandé adapté à créer une déviation d'angle a, des moyens de contrôle de la valeur dudit angle a, des moyens de guidage permettant la rotation dudit outil et de ladite colonne à son extrémité inférieure autour desdits axes relativement audit déflecteur et des moyens de contrôle de la position polaire dudit déflecteur relativement audit deuxième axe.
- Lorsque cet ensemble est appliqué au cas d'un forage effectué à partir de la surface, les moyens de contrôle de la position polaire dudit déflecteur pourront comporter une sonde de mesure solidaire dudit déflecteur, ladite sonde étant repérée angulairement relativement à celui-ci, une deuxième colonne dite colonne d'orientation polaire solidaire en orientation dudit déflecteur remontant jusqu'en surface, la partie inférieure de ladite colonne d'orientation étant flexible.
- Dans le cas où le déflecteur est télécommandé électriquement et où la sonde fournit des signaux électriques, la colonne d'orientation polaire pourra comporter en son centre un conducteur électrique adapté à transmettre les signaux de mesure de la sonde vers la surface et les signaux de télécommande de la surface vers le déflecteur.
- La colonne d'entraînement pourra comporter une partie inférieure flexible dont l'extrémité inférieure pourra se prolonger par une extension flexible et se fixer audit outil. La partie flexible de ladite colonne pourra être coaxiale et extérieure à la section flexible de la colonne d'orientation polaire.
- La colonne d'entraînement et la colonne d'orientation polaire pourront comporter chacune une partie sensiblement rigide et ces parties sensiblement rigides pourront être coaxiales et reliées à la surface, la partie sensiblement rigide de la colonne d'entraînement pourra être reliée, en surface, à une tête rotative.
- La colonne d'entraînement pourra être reliée à un moteur de fond.
- Ce moteur de fond pourra être un moteur volumétrique hélicoïdal multilobes dont le corps externe rotatif est connecté à ladite colonne d'entraînement et dont le corps interne non-tournant est solidaire en sa partie inférieure de la colonne d'orientation flexible et en sa partie supérieure de la partie supérieure rigide de la colonne d'orientation polaire.
- La partie flexible de la colonne d'entraînement pourra comporter une paroi interne parfaitement lisse et une paroi externe munie d'au moins une nervure enroulée en hélice.
- Le déflecteur pourra comporter deux corps articulés l'un par rapport à l'autre autour d'un axe ou d'une rotule, le corps supérieur formant prolongement de la sonde de mesure et de la colonne d'orientation, le corps inférieur supportant la pivoterie de rotation de l'outil de forage et des moyens adaptés à contrôler l'angle établi entre les deux corps.
- Les moyens de contrôle de l'angle établi entre les deux corps pourront comporter un vérin à vis qui régit la distance entre un premier point appartenant au corps inférieur et un deuxième point appartenant au corps supérieur.
- La sonde de mesure pourra être placée à l'intérieur d'un module centreur adapté à maintenir l'axe longitudinal de la sonde sensiblement parallèle à l'axe moyen du puits à son niveau.
- La sonde de mesure pourra être placée à l'intérieur d'un corps centreur interne solidaire vers le haut de la base de la colonne flexible d'orientation et vers le bas du corps supérieur du déflecteur.
- Le corps centreur interne pourra être placé coaxialement à l'intérieur d'un corps centreur externe, lui-même pouvant être centré et aligné dans le puits par des sabots de centrage inférieurs et supérieurs.
- Ledit corps centreur externe pourra être solidaire en partie haute du pied du flexible principal, partie inférieure de la colonne d'entraînement, et relié en partie basse à l'outil de forage par un ensemble formant entretoise d'entraînement comportant un joint rotatif flexible.
- Le centrage et l'alignement du corps centreur interne à l'intérieur du corps centreur externe et le centrage de l'entretoise d'entraînement autour des corps inférieur(s) et supérieur(s) du déflecteur pourront être assurés par au moins trois pivoteries radiales.
- Les efforts longitudinaux de poussée ou de traction entre le flexible principal et l'outil de forage pourront être transmis par l'intermédiaire du noyau central constitué par le corps centreur interne et le déflecteur et de deux pivoteries axiales disposées respectivement en tête et au pied de ce noyau central.
- Des conduits appropriés au pied du flexible principal, ainsi qu'une isolation par soufflet flexible autour du déflecteur pourront assurer qu'entre la tête du module centreur et l'outil, la circulation de la boue de forage s'effectue uniquement dans la partie centrale du dispositif, et que toutes les pivoteries radiales et axiales travaillent en milieu propre et lubrifié par de l'huile.
- L'ensemble selon la présente invention pourra comporter des moyens d'orientation situés en surface à l'extrémité supérieure de ladite colonne d'orientation.
- Ainsi, la présente invention ne nécessite bien souvent l'utilisation d'une colonne inférieure flexible que sur une longueur limitée au développement du drain horizontal et du raccordement courbe à la section verticale du puits.
- La liaison entre la colonne inférieure flexible et la surface, au travers de la section verticale du puits, peut être réalisée par des tiges de forage rigides classiques.
- Selon la présente invention il est possible de mesurer en continu, au cours du forage, des paramètres directionnels du drain, à une très faible distance en arrière de l'outil de forage.
- Selon la présente invention, la possibilité de placer immédiatement derrière l'outil de forage un dispositif de pilotage de l'outil, précis et à grand débattement, télécommandable en continu depuis la surface, permet une maitrise parfaite de la trajectoire de l'outil, et par là une bonne maitrise du profil du puits foré.
- De plus, la présente invention permet de faire face en sécurité, aisément et essentiellement par les méthodes usuelles, aux difficultés potentielles inhérentes à tous forages horizontaux, notamment: au forage sous équilibre de pression limite; aux venues de fluides sous pression; aux pertes de circulation; au collage différentiel; aux coincements.
- Enfin, la présente invention permet l'optimisation de la transmission de poussée et de couple depuis la section verticale de la garniture jusqu'à l'outil de forage, au travers de la colonne inférieure flexible.
- La présente invention sera mieux comprise et ses avantages apparaîtront plus clairement à la description qui suit d'un exemple particulier, nullement limitatif, illustré par les figures ci-annexées, parmi lesquelles:
- - la figure 1 compare le profil d'un puits foré suivant les techniques usuelles conventionnelles et le profil d'un puits foré suivant les techniques selon la présente invention, ces deux puits étant destinés à la mise en place d'un drain horizontal dans une même formation géologique,
- - la figure 2 montre en détail un mode de réalisation de l'ensemble selon la présente invention,
- - les figures 3 et 4 illustrent un mode d'entraînement de l'outil en rotation par une colonne rigide aboutissant en surface,
- - la figure 5 représente un exemple de mise en place du dispositif selon la présente invention,
- - la figure 6 représente un autre mode de réalisation selon la présente invention, et
- - la figure 7 montre schématiquement un mode simple de réalisation de la présente invention.
- Sur la figure 1, la référence 1 désigne une formation géologique dans laquelle doit être foré un drain horizontal 2.
- La présente invention permet le contrôle, à tout instant, du rayon de courbure de la trajectoire du puits foré et par là présente de nombreux avantages, comme cela est exposé ci-après.
- Sur cette figure, la distance L6 désigne la distance séparant le puits de surface 3 de l'aplomb du début du drain horizontal 2 à forer dans le cas de la mise en oeuvre des techniques de forage usuelles conventionnelles.
- La distance L7 désigne la même distance dans le cas de la mise en oeuvre de l'ensemble selon la présente invention.
- On s'aperçoit, sans équivoque possible, que la distance L7 est très inférieure à la distance L6 et que le puits de surface 5 utilisé pour la mise en oeuvre de l'ensemble selon la présente invention est pratiquement à l'aplomb du début du drain horizontal.
- Indépendamment de cet avantage, la présente invention permet un contrôle précis de la trajectoire d'un forage et permet de rectifier celle-ci presque instantanément avec un minimum de retard, ceci grâce au contrôle et à la maîtrise à tout instant du positionnement de l'outil dans le puits. De plus, la présente invention permet de faire varier d'une grande plage le rayon de courbe de la trajectoire du puits foré.
- Après forage et tubage conventionnels de la partie verticale du puits (ou à partir du fond d'un puits existant, par side strack) le forage courbe, puis horizontal est réalisé à l'aide d'un outil conventionnel entraîné en rotation et recevant une poussée depuis la garniture ou colonne verticale, par l'intermédiaire de la garniture ou colonne inférieure flexible. La garniture verticale peut être rigide.
- Sur la figure 7, la référence 213 désigne le puits foré, la référence 206 l'outil de forage.
- L'extrémité inférieure 201, d'une colonne d'entraînement 211, tourne autour d'un axe 202 et entraîne en rotation autour d'un axe 203 l'outil 206, grâce à un manchon flexible ou joint flexible 204.
- Ce joint flexible forme une extension de la colonne d'entraînement. Les axes 202 et 203 sont sensiblement concourants en un point A et forment entre eux un angle de déviation a.
- C'est l'organe déflecteur 208 qui permet de réaliser la déviation d'angle a.
- Des moyens de guidage 221 et 223 permettent à l'outil 206 et à la partie inférieure 201 de la colonne d'entraînement 211 de tourner respectivement autour des axes 203 et 202 relativement au déflecteur 208.
- Dans le cas de la figure 7, le déflecteur est maintenu immobile en rotation grâce à une colonne dite d'orientation 210.
- Sur l'exemple de la figure 2, la référence 7 désigne un instrument de déviation et de mesure. Cet instrument comporte un coude à angle variable ou déflecteur 8 localisé à l'intérieur de l'extrémité inférieure d'un joint flexible 9 formant une extension flexible de la colonne d'entraînement, immédiatement derrière l'outil 6; l'orientation radiale ou polaire de ce coude 8 est contrôlée par une colonne d'orientation polaire 10 flexible au moins sur sa partie inférieure. Cette colonne est sensiblement coaxiale au joint flexible 9, lui-même relié à un flexible principal d'entraînement 11, éventuellement prolongé jusqu'en surface par une extension rigide.
- L'ensemble comportant le joint flexible, le flexible principal d'entraînement et l'extension rigide constituent une colonne d'entraînement en rotation de l'outil, de même, l'ensemble comportant le joint flexible et le flexible principal d'entraînement pourra être qualifié de partie flexible de la colonne d'entraînement. Toutefois, dans ce cas, lorsqu'il est fait référence à l'axe autour duquel tourne l'extrémité inférieure de la colonne d'entraînement, il s'agit de l'axe de l'extrémité inférieure du flexible principal.
- Le coude ou déflecteur 8 permet d'imprimer des déviations radiales à l'outil 6 dans des directions déterminées contrôlables, résultant en différents degrés de courbure, ou en rectitude, du profil de puits et en contrôle de son azimut.
- L'instrument 7 comporte également une sonde de mesures directionnelles 12 logée au centre de la colonne d'orientation, immédiatement derrière le déflecteur 8 (soit à environ 2 à 3 mètres derrière l'outil).
- Elle permet de mesurer, à courte distance derrière toute section de drain venant d'être forée, l'inclinaison et l'azimut de cette section.
- Cette rapidité de réponse permet de corriger le profil si besoin est sans retard, par action sur l'angle et sur l'orientation du déflecteur 8. Ce bouclage rapide entre la création du trou 13, la mesure de son profil, et la réaction sur le déflecteur 8, constituent une des novations majeures du système par rapport aux autres systèmes de forages horizontaux connus. C'est lui qui ouvre la possibilité de réaliser des profils à faibles rayons de courbure, éventuellement complexes, et cependant avec précision, soit pour exécuter fidèlement un profil déterminé, soit pour suivre, à la découverte, le profil pratique d'une couche donnée.
- La précision de la mesure directionnelle implique un centrage satisfaisant de la sonde de mesure 12 dans le trou, ainsi qu'un certain lissage d'ondulations trop courtes et non significatives de ce dernier. A cet effet, la sonde 12 est alignée dans un prolongateur rigide 14 de la colonne d'orientation 10, ce prolongateur qui pourra être qualifié de corps centré interne est lui-même centré dans un module ou corps centreur et stabilisateur externe 15 de longueur de 3 à 4 mètres, inséré entre le flexible principal 11 et le module déflecteur 8.
- Ce corps centreur externe 15 pourra comporter des sabots de centrage inférieurs 115 et supérieurs 116.
- En plus de l'inclinaison et de l'azimut du profil du drain, la sonde 12 peut mesurer l'orientation radiale ou polaire du déflecteur par rapport à la génératrice haute du trou ou par rapport au nord magnétique (en terme anglo-saxon "tool face"), afin de permettre le maintien de cette orientation radiale ou sa correction, par action en surface sur la colonne d'orientation.
- La sonde 12 peut comporter des magnétomètres pour la mesure de l'azimut et du "tool face". Ces magnétomètres doivent être éloignés de masses magnétiques notables: à cet effet, le module centreur 15 et le prolongateur rigide 14 de la colonne d'orientation pourront être en métal amagnétique.
- Différents modes de réalisation du déflecteur 8 sont possibles:
- Une solution technologique proposée et représentée sur la Fig. 2 comporte l'utilisation d'une genouillère articulée 16 dont la flexion ou déviation est contrôlée par un vérin électrique fortement démultiplié 17: ce fait, combiné au court bras de levier du déflecteur, entraîne que le couple nécessaire au moteur du vérin pour vaincre les efforts de déflec- tion est faible et la puissance nécessaire au moteur est également faible, et peut être de l'ordre de 1/4 de kW.
- Un câble électrique qui peut être monoconducteur 18, localisé au centre de la colonne d'orientation 10 et de son extension jusqu'à la surface transmet la puissance électrique et les télécommandes jusqu'au déflecteur 8 (actions discontinues) et remonte, en mode numérique, les signaux de la sonde 12 de mesure directionnelle pour décodage et traitement en surface (transmission continue). Il est bien connu de l'homme de l'art d'effectuer des transferts de puissance électrique et de signaux électrique à partir d'un monoconducteur.
- L'alimentation en boue de forage pour irrigation de l'outil 6, lavage du trou et équilibrage des pressions de formation, se fait par l'espace annulaire entre la paroi externe de la colonne d'orientation 10 et la paroi interne du flexible principal 11: ainsi le frottement entre ces parois, au cours de la rotation du flexible principal 11 autour de la colonne d'orientation 10 est un frottement lubrifié.
- Juste à l'amont du module centreur 15, le flux de boue est dirigé vers le centre, à l'intérieur du prolongateur de colonne, par des orifices 19 et canalisé ainsi jusqu'au centre de l'outil 6. L'espace annulaire 20 autour du prolongateur de colonne et du déflecteur 8 est rempli d'huile qui pourra être en équipres- sion avec la boue ceci grâce à des dispositifs bien connus de l'homme de l'art. Cette huile assure une lubrification efficace des roulements de centrage 21, 22 et 23 et des butées axiales amont 24 et aval 25.
- Des joints tournants d'étanchéité 26 et 27 amont et aval isolent l'huile de la boue. Une membrane métallique semi-rigide 28 relie les éléments amont 29 et aval 30 de la genouillère 16 autour du déflecteur 8; cette membrane pourra être constituée par un soufflet métallique. Un joint flexible 9, résistant au différentiel de pression entre sa face interne et sa face externe (égal à la chute de pression dans l'outil), relie le module centreur 15 à l'embout porte-outil 32.
- La transmission de poussée du flexible principal 11 à l'embout porte-outil 32 pourra se faire préférentiellement au travers du prolongateur de colonne d'orientation 14 et du déflecteur 8 par l'intermédiaire des butées axiales amont 24 et aval 25. Ainsi le joint flexible 9 n'aura pas à supporter cette poussée. Il supporte cependant rotation, couple, et flexion combinés, générateurs d'effets de fatigue: par suite, ce joint flexible 9 peut être considéré comme une pièce d'usure dont il est admis d'opérer le remplacement périodiquement. Bien entendu, la butée axiale 24 pourra être placée sensiblement au voisinage de la butée radiale 22. Dans ce cas la transmission de la poussée axiale à l'outil se fera via le module centreur 15 au lieu de se faire via le prolongateur 14 de la colonne d'orientation.
- Le flexible principal 11 a, parmi d'autres fonctions, celle de transmettre à l'outil 6 rotation, couple, et poussée axiale et de véhiculer vers le fond la boue de forage. Il devra permettre la remontée de la boue et des déblais dans l'annulaire du trou.
- Ce flexible principal sera de préférence conçu pour minimiser les risques de collage différentiel, il devra résister à la traction nécessaire pour extraire la garniture du drain avec l'aide éventuelle de rotation et circulation combinées en cas de coincement et enfin il sera de préférence aisément stockable et transportable en surface.
- Il pourra être constitué d'une structure (conventionnelle) existant sur le marché et commercialisée par la Société COFLEXIP. De telles structures comportent généralement:
- - un tube interne en plastique,
- - une carcasse en fil d'acier agrafé à profil "Zeta",
- - une gaine plastique intermédiaire,
- - deux nappes croisées d'armures d'acier au pas d'environ 45°, et
- - une gaine externe en plastique (Rilsan).
- Suite à un mode particulier de réalisation du flexible principal 11, selon la présente invention, celui-ci pourra comporter une nervure externe spiralée 33 en polyamide chargé de fibres de renfort (fibres d'aramide, par exemple la fibre désignée par "Kevlar" de la Société Dupont de Nemours), placée à sa périphérie.
- Cette nervure 33, au rôle essentiel, remplit des fonctions multiples:
- - son diamètre externe étant proche de celui du trou (et du dernier tubage ou d'un tubage ou liner guide temporaire dans la section verticale du puits), elle assure le guidage du flexible 11 et évite son flambage en compression lorsqu'il transmet la poussée à l'outil;
- - par effet de vissage dans le trou et dans la boue (analogue à celui d'une tarière), elle aide à la transmission de la poussée venant du lest présent dans la portion verticale du puits et elle génère elle-même une certaine poussée additionnelle;
- - cet effet facilite aussi l'évacuation des déblais en évitant leur sédimentation sur les génératrices basses du trou et en induisant leur translation vers la surface;
- - elle contribue également à maintenir le trou "ouvert" par son action continue d'alésage,
- - enfin, la nervure isole le flexible proprement dit du trou. Elle évite ainsi les risques de collage différentiel et les risques de détérioration de la gaine externe du flexible 11 par abrasion ou accrochages,
- - par contre, étant en contact de frottement permanent avec les parois de trou et de tubage, et malgré sa constitution en polyamide chargé de fibres d'aramide (anti-usure et à faible frottement), cette nervure aura une durée de vie plus courte que celle du flexible proprement dit: elle devra donc pouvoir être remplacée ou rechargée périodiquement.
- La seule fonction de la colonne flexible 10 est de transmettre depuis la surface le couple d'orientation au déflecteur 8 et de maintenir cette orientation durant le forage. Ses dimensions diamétrales doivent ménager, en son centre, le passage du câble de transmissions électrique 18 et, extérieurement, un annulaire 34 suffisant dans le flexible principal 11 pour le passage du flot descendant de la boue de forage, indiqué par la flèche 35.
- Elle pourra être constituée par une structure conventionnelle et simple du type de celle commercialisée par la Société COFLEXIP. Elle pourra comporter, notamment, une carcasse interne en feuillard métallique agrafé, deux couches croisées d'armures acier à pas relativement court (optimisation de la résistance en couple), et une enveloppe externe.
- Ce flexible 10, installé à demeure à l'intérieur du flexible principal 11 sera néanmoins aisément amovible pour inspection, entretien et pour permettre, si nécessaire, l'accès à l'intérieur du flexible principal 11 en cours d'opérations (par exemple pour un dévissage à l'explosif, en terme anglo-saxon "back-off", au-dessus de l'instrument de fond).
- On notera que les frottements découlant de la rotation du flexible principal autour du flexible d'orientation stationnaire sont ceux de matière plastique (tel le matériau commercialisé sous la marque rilsan) sur elle-même, avec interposition de la boue de forage descendante, pas ou peu chargée en solides. Ces frottements, et les usures des surfaces, sont donc faibles.
- Le câble électrique de transmissions 18, éventuellement monoconducteur, pourra être installé à demeure au centre du flexible d'orientation.
- En partie basse, il est raccordé à la sonde de mesure 12, lors de l'assemblage de l'ensemble flexible principal 11 - flexible d'orientation 10 sur l'instrument de fond 7. En partie haute, il se termine par un connecteur 36, éventuellement monocontact, logé au centre de l'embout combiné de flexible principal 11 et de flexible d'orientation 10. Le raccordement du câble 18 à la sonde 12 peut être réalisé par un connecteur 37.
- Concernant la liaison par colonne dans la garniture de la section verticale du puits, deux systèmes de garniture peuvent être à considérer suivant le mode de réalisation de la rotation en forage. Ces deux modes de réalisation sont représentés aux figures 3, 4 et 6.
- Si le mouvement destiné à entraîner l'outil provient de la surface (Figs. 3 et 4), (ce mode est couramment qualifié de forage en rotary), le flexible principal 11 est prolongé, jusqu'en surface, par un train principal 38, éventuellement rigide, constitué éventuellement de masses-tiges 39 et de tiges de forage classiques 40. Le flexible d'orientation 10 peut être prolongé au centre du train principal 38 par une colonne d'orientation 41, éventuellement rigide, constituée de tiges de forage classiques de type minier à diamètre externe constant, couramment appelée "tige minière flush" par l'homme du métier.
- L'ensemble comportant le flexible d'orientation et la colonne éventuellement rigide constitue la colonne d'orientation polaire ou plus simplement la colonne d'orientation.
- La rotation, et l'injection de boue de forage, sont assurées par une tête motorisée classique 42 (en termes anglo-saxons "Power Swivel") connectée sur le train principal 38. En son centre passe et se prolonge la colonne rigide d'orientation 41 et 10 dont le sommet est connecté à un orienteur 43 de la colonne d'orientation, monté sur le bâti de la tête motorisée 42.
- L'assemblage de la garniture décrite précédemment en début de forage du drain peut s'effectuer de la manière indiquée ci-après.
- L'ensemble outil et instrument de fond ayant été pré-assemblé est posé sur coins.
- L'ensemble flexible principal 11 - flexible d'orientation 10 - câble central 18, est raccordé à l'instrument de fond 7 puis descendu, par déroulement depuis le touret de stockage 44 (figure 5) de l'ensemble flexible, jusqu'à pose sur coins de l'embout combiné supérieur.
- La ou les masses-tiges 39 et tiges principales 40 sont alors successivement raccordées et descendues, jusqu'à amenée de l'outil à proximité de la cote de début de forage du drain (fond de trou vertical dans le cas de puits "neuf"; ouverture latérale pré- exécutée dans le tubage de production, dans le cas de puits "repris"). La dernière tige 45 de forage ajoutée (en sommet de train) est posée sur coins 46, 47, son sommet dépassant, au-dessus des coins, par exemple, de 0,3 à 0,4 mètre.
- La colonne flexible d'orientation 10 est alors prolongée jusqu'en surface par introduction, vissage, et descente successive de tronçons de tiges minières à diamètre externe constant, couramment appelée tige minière "flush" par l'homme de métier, et constituant la colonne d'orientation supérieure 41 (pose pour raccordements sur une boîte à coins installée sur le sommet de la tige principale supérieure).
- Le dernier ajout de tige 48 d'orientation s'accompagne du raccordement du pied de la colonne d'orientation supérieure 41 sur le sommet du flexible d'orientation 10 par l'intermédiaire d'un embout à simple emmanchement à section carrée ou hexagonale, au niveau de la référence 49. La longueur de la dernière tige ajoutée est telle que son sommet dépasse celui de la tige principale supérieure par exemple de 0,3 à 0,6 mètre.
- Le prolongateur 50 de câble électrique est alors introduit au centre de la colonne et descendu par déroulement: une fiche éventuellement monocontact 36, à son pied, lestée par une barre de charge, se raccorde, par exemple, par simple emmanchement, en fin de descente, sur la fiche de tête de l'ensemble flexible La longueur totale du câble peut, suivant la profondeur du puits, être constituée de plusieurs sous sections, et peut présenter une surlongueur notable par rapport à la longueur du train rigide.
- Cette surlongueur se loge par mise en sinusoïde 51 dans la partie inférieure de la colonne supérieure d'orientation 41, sans risque de détérioration par érosion puisque la circulation de boue est extérieure à cette colonne d'orientation. On notera que, pour la même raison, les problémes d'isolation électrique, en particulier aux raccordements par fiches monocontact, sont grandement facilités.
- A sa partie supérieure, le prolongateur de câble se termine par une fiche, éventuellement monocontact, 52 qui vient reposer dans un embout support au sommet de la tige supérieure de la colonne d'orientation.
- Le début du forage, puis son approfondissement, s'opèrent suivant une même procédure, mettant en oeuvre des "éléments d'ajout" 53 constitués par des sections apairées en longueur de tiges de forage 54 et de tiges minières 55, ces dernières étant équipées de tronçons de câble électrique prolongateur 56, montés à demeure et terminés à chaque extrémité par des fiches éventuellement monocontact 57 et 58 ancrées aux extrémités de la tige minière 55.
- Un ensemble de deux sections apairées de tiges principales 54 et d'orientation 55 est préparé dans le trou de rat (en terme anglo-saxon "rat hole"), le fond de ce dernier étant aménagé pour que la tige minière 55 soit décalée, vers le haut, par rapport à la tige principale, par exemple de 0,2 mètre.
- La tête d'injection motorisée 42 (en termes anglo-saxons "power swivel"), avec son embout de vissage sur les tiges et d'entraînement en rotation du train de forage, est munie d'un prolongateur supérieur 60 de colonne d'orientation 41, saisi dans l'orienteur 43 de "tool face", analogue à une clé hydraulique de serrage de petit calibre. L'orienteur 43 est supporté par un vérin 61 à débattement vertical qui peut être d'environ 0,5 mètre, lui-même ancré sur le bâti de la tête motorisée 42. Un presse-étoupe 62 à commande hydraulique (du type lubricator de "snubbing"), au-dessus de la "power swivel", permet de réaliser l'étanchéité sur le prolongateur supérieur (à l'extérieur chromé poli) de la colonne d'orientation.
- Le prolongateur supérieur 60 de la colonne d'orientation est équipé à demeure du prolongateur supérieur de câble électrique, terminé en partie inférieure par une fiche monocontact, et en partie supérieure par un contact tournant 65. Au-dessus de ce contact tournant, le câble de surface suit le flexible d'injection de boue, et est connecté aux équipements de réception des mesures en surface et de télécommande du déflecteur.
- Ainsi équipée, la tête d'injection motorisée accrochée au moufle mobile par des bras d'élévateur 63 et 64 qualifiés de "long links" en termes anglo-saxons, est prête pour la manoeuvre.
- Le prolongateur supérieur 60 de colonne d'orientation est positionné pour dépasser sous l'embout de la tête d'injection, par exemple de 0,1 mètre, alors que le vérin support est en position milieu. La tête d'injection 42 est amenée à la verticale du trou de rat et positionnée à l'aide du moufle pour situer le pied du prolongateur supérieur 60 de colonne d'orientation au-dessus de la tige minière 55, par exemple à 10-15 cm.
- Le prolongateur supérieur 60 est alors approché puis engagé et vissé sur la tige minière 55 en combinant la rotation de l'orienteur 43 et la translation de son vérin support 61, qui permet une approche fine et évite les risques de détérioration des filetages de tiges minières 55. La connexion de câble électrique 56 s'établit simultanément. Le blocage est fait au couple maximum admissible au filetage, couple qui peut être automatiquement dosé par l'orienteur 43 ou appliqué par des clés.
- Les mors de l'orienteur 43 sont ensuite desserrés et écartés du prolongateur supérieur 60 de colonne d'orientation. La tête d'injection 42 est descendue à l'aide du moufle et l'embout de la tête d'injection est engagé et vissé sur la tige principale 54 par rotation de la tête. Le blocage peut être achevé avec les clés conventionnelles.
- Le vérin support 61 est mis en position haute.
- Les mors d'orienteur 43 sont resserrés sur le prolongateur supérieur 60.
- L'ensemble des tiges d'ajout 53 ainsi connecté à la tête d'injection est extrait du trou de rat et amené à l'aide du moufle au-dessus du train de forage 38 en attente sur coins 46, 47, en maintenant un espace entre tige principale 45 sur coins et tige principale d'ajout 54, cet espace pourra être d'environ 0,5 mètre.
- La prolongation supérieure 60 de la colonne d'orientation 41 est descendue et approchée puis connectée sur la colonne d'orientation en attente dans le train de forage 38 par actions de l'orienteur 43 et de son vérin-support 61.
- Les mors d'orienteur sont desserrés, et la tige principale d'ajout 53 est approchée et connectée sur le train principal 38 sur coins 46, 47 par actions du moufle et de la tête d'injection, le blocage peut être achevé par les clés.
- Le vérin-support 61 est positionné pour mise de la colonne d'orientation 41 en tension sous son propre poids (léger coulissement possible de l'emmanchement glissant en pied de colonne).
- Le presse-étoupe 62 est fermé sur le prolongateur supérieur d'orientation.
- Le forage peut débuter.
- Les procédures pour déconnexion de la tête d'injection motorisée 42 à l'issue de la première passe de forage et pour les ajouts suivants utilisent les mêmes principes, inversés pour les déconnexions, que ceux décrits ci-dessus. Il en va de même pour les extractions des tiges d'ajout 53 lors des remontées et sorties du trou.
- On notera que chaque ajout 53 peut s'opérer par tronçons de 2 ou 3 tiges de 9 mètres, soit par 27 mètres: il y aura donc 11 à 18 ajouts à opérer pour un drain de 300 à 500 mètres.
- Selon un autre mode de réalisation, le mouvement pour entraîner l'outil provient d'un moteur de fond (voir figure 6).
- La mise en rotation du flexible principal 11 est assurée par un moteur de fond 66, de préférence du type volumétrique connecté en tête du train flexible 11. Ce moteur 66 est utilisé en position inversée par rapport au mode conventionnel: c'est le corps extérieur 67, normalement statorique, qui est connecté au flexible principal 11 et qui devient l'élément rotori- que ou tournant.
- L'arbre central 68, à lobes, devient statorique: l'embout 70, normalement porte-outil, de cet arbre central 68 est en position supérieure, et connecté au train de masse-tiges 69 et de tiges conventionnelles remontant jusqu'en surface.
- L'autre extrémité 71, normalement libre, de l'arbre central 68 est raccordée au flexible d'orientation 72: ce dernier peut donc être orienté par action sur le train de tiges supérieur 73 qui, hormis les mouvements d'orientation, demeure stationnaire angulairement. L'arbre central 68 du moteur de fond ainsi que son prolongement dans sa pivoterie et ses cardans de précession pourront être aménagés pour offrir un passage central dans lequel est logé un prolongateur 75 du câble de transmission électrique 74. Ce passage pourra être cylindrique et avoir un diamètre d'environ 1/2"(1" = 2,54 cm).
- Au-dessus du moteur de fond 66 et de ce prolongateur électrique, la liaison électrique jusqu'à la surface est constituée par un câble éventuellement monoconducteur 77, connecté en partie basse sur le prolongateur 75 dans le moteur, par une fiche éventuellement monocontact qui peut être lestée par une barre de charge.
- Ce câble peut être constitué de plusieurs manières:
- Il peut être unique ou continu, type câble de diagraphie, en terme anglo-saxon "wire line", introduit au travers d'un raccord à sortie latérale 78, permettant les ajouts de tiges 79 sans manoeuvre de câble.
- Il peut comporter un premier tronçon de câble de longueur ad-hoc, introduit au centre des tiges assemblées lorsque l'outil est à proximité du fond de trou avant début de forage du drain, plus un complément de câble type "wire line" au centre des tiges, raccordé au précédent par fiche éventuellement monocontact surmontée d'une barre de charge, et sortant en tête de train de tige au travers d'un presse-étoupe, ce complément de câble devant donc être manoeuvré lors de chaque ajout. Ainsi, par exemple, pour une longueur du drain comprise entre 300 et 500 mètres, il faudra manoeuvrer 11 à 18 fois le câble au total si les ajouts se font par triple, avec utilisation d'une tête d'injection.
- A la place du complément de câble, il est possible d'utiliser des éléments de tiges groupées par trois pour les ajouts, chaque groupe étant équipé d'un câble central avec fiches d'extrémité, éventuellement monocontact, installé à demeure.
- Bien entendu, on ne sortira pas du cadre de la présente invention si chaque élément de tige est équipé d'un câble central avec fiche.
- Le mode de réalisation de l'invention selon lequel le mouvement pour entraîner l'outil de forage est de type rotary, présente certains avantages qui sont donnés dans la suite de ce texte relativement au mode de réalisation comportant un moteur de fond.
- Le mode de réalisation de forage en rotary présente une grande souplesse d'adaptation des vitesses de rotation et des couples aux terrains et aux conditions de forage. Il n'y a pas de limitation en couples maximum autre que celle imposée par les limites de résistance des tiges. Donc la capacité de lutte contre les conditions de coincements ou de frottements intenses est élevée.
- Un tel mode de réalisation permet l'indépendance totale des paramètres mécaniques du forage et des débits et pressions de boue.
- L'ensemble de la liaison électrique entre le fond et la surface se fait hors boue ce qui, selon le mode de réalisation qualifié de forage en rotary, facilite l'obtention et le maintien de bonnes isolations électriques aux raccordements et élimine les problèmes d'érosion et de détériorations de câbles dans le courant de boue.
- Le mode de réalisation en rotary évite les problèmes liés au câble placé dans l'annulaire d'un puits ou aux manoeuvres fréquentes de câbles.
- Selon ce mode de réalisation, tous les composants du système, hormis quelques adaptations simples qui cependant utilisent des éléments connus sur la tête d'injection, sont tout à fait classiques.
- Le mode de réalisation selon la présente invention qualifié de forage en rotary permet, en cas de nécessité, en particulier dans le cas de coincement impossible à résoudre par rotation-traction-circulation, d'extraire complètement la colonne centrale d'orientation, y compris la partie flexible, en même temps que le câble électrique et la sonde de mesure, libérant ainsi le centre du train principal jusqu'au déflecteur et permettant l'exécution d'un dévissage à l'explosif et la récupération possible de la majeure partie du train, y compris tout ou partie du flexible principal, suivant le niveau de coincement.
- Enfin, ce mode de réalisation permet, en cas de perte de circulation, d'injecter des produits colma- tants.
- Cependant, ce mode de réalisation présente des inconvénients relativement à la version moteur de fond qui résident notamment dans la relative complexité de la composition du train de forage rigide dans son ensemble et de sa mise en oeuvre. Ceci est à tempérer cependant en considération de la simplicité, du classicisme, et de la robustesse des composants individuels de ce train de forage.
- Le mode de réalisation selon la présente invention, qui comporte un moteur de fond, présente des avantages relativement à la version dite en rotary dont, notamment, celui de la simplicité de la composition du train de forage rigide, et de sa mise en œuvre.
- Cependant, ce mode de réalisation à moteur de fond présente des limitations dont certaines sont énumérées dans la suite de ce texte.
- Ainsi, le couple maximum pouvant être fourni par le moteur de fond est nécessairement limité. Par exemple, avec les moteurs à 9 lobes, actuellement disponibles sur le marché, on ne peut escompter plus que 400 à 500 mkg.
- La comparaison ci-dessus conduit à préférer le mode rotary lorsque l'on a le choix.
Claims (16)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8507069 | 1985-05-07 | ||
FR8507069A FR2581698B1 (fr) | 1985-05-07 | 1985-05-07 | Ensemble permettant d'effectuer des forages orientes |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0201398A1 EP0201398A1 (fr) | 1986-12-17 |
EP0201398B1 true EP0201398B1 (fr) | 1989-03-08 |
Family
ID=9319124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP86400879A Expired EP0201398B1 (fr) | 1985-05-07 | 1986-04-23 | Ensemble permettant d'effectuer des forages orientés |
Country Status (6)
Country | Link |
---|---|
US (1) | US4858705A (fr) |
EP (1) | EP0201398B1 (fr) |
CA (1) | CA1265122A (fr) |
DE (1) | DE3662290D1 (fr) |
ES (1) | ES8705078A1 (fr) |
FR (1) | FR2581698B1 (fr) |
Families Citing this family (43)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE905960A (nl) * | 1986-12-17 | 1987-04-16 | Hydro Soil Services N V | Werkwijze voor het lichten van alle op de bodem van de zee, een rivier of een waterbekken rustende voorwerpen en hierbij gebruikte inrichting. |
FR2627649B1 (fr) * | 1988-02-22 | 1990-10-26 | Inst Francais Du Petrole | Methode et dispositif de transmission de l'information par cable et par ondes de boue |
US5419405A (en) * | 1989-12-22 | 1995-05-30 | Patton Consulting | System for controlled drilling of boreholes along planned profile |
US5220963A (en) * | 1989-12-22 | 1993-06-22 | Patton Consulting, Inc. | System for controlled drilling of boreholes along planned profile |
US4993503A (en) * | 1990-03-27 | 1991-02-19 | Electric Power Research Institute | Horizontal boring apparatus and method |
US5096002A (en) * | 1990-07-26 | 1992-03-17 | Cherrington Corporation | Method and apparatus for enlarging an underground path |
US5117927A (en) * | 1991-02-01 | 1992-06-02 | Anadrill | Downhole adjustable bent assemblies |
US5139094A (en) * | 1991-02-01 | 1992-08-18 | Anadrill, Inc. | Directional drilling methods and apparatus |
US5165491A (en) * | 1991-04-29 | 1992-11-24 | Prideco, Inc. | Method of horizontal drilling |
US5154243A (en) * | 1991-07-26 | 1992-10-13 | Dudman Roy L | Bent sub |
US5215151A (en) * | 1991-09-26 | 1993-06-01 | Cudd Pressure Control, Inc. | Method and apparatus for drilling bore holes under pressure |
US5230388A (en) * | 1991-11-08 | 1993-07-27 | Cherrington Corporation | Method and apparatus for cleaning a bore hole using a rotary pump |
US5209605A (en) * | 1991-11-08 | 1993-05-11 | Evi Cherrington Enviromental, Inc. | Gravel-packed pipeline and method and apparatus for installation thereof |
AU1321892A (en) * | 1991-12-09 | 1993-07-19 | Bob J. Patton | System for controlled drilling of boreholes along planned profile |
US5265687A (en) * | 1992-05-15 | 1993-11-30 | Kidco Resources Ltd. | Drilling short radius curvature well bores |
US5320179A (en) * | 1992-08-06 | 1994-06-14 | Slimdril International Inc. | Steering sub for flexible drilling |
US5297641A (en) * | 1992-12-28 | 1994-03-29 | Falgout Sr Thomas E | Drilling deviation control tool |
US5421420A (en) * | 1994-06-07 | 1995-06-06 | Schlumberger Technology Corporation | Downhole weight-on-bit control for directional drilling |
US5617926A (en) * | 1994-08-05 | 1997-04-08 | Schlumberger Technology Corporation | Steerable drilling tool and system |
US5484029A (en) * | 1994-08-05 | 1996-01-16 | Schlumberger Technology Corporation | Steerable drilling tool and system |
US5727641A (en) * | 1994-11-01 | 1998-03-17 | Schlumberger Technology Corporation | Articulated directional drilling motor assembly |
US5542482A (en) * | 1994-11-01 | 1996-08-06 | Schlumberger Technology Corporation | Articulated directional drilling motor assembly |
US5520256A (en) * | 1994-11-01 | 1996-05-28 | Schlumberger Technology Corporation | Articulated directional drilling motor assembly |
US6092610A (en) * | 1998-02-05 | 2000-07-25 | Schlumberger Technology Corporation | Actively controlled rotary steerable system and method for drilling wells |
US6158529A (en) * | 1998-12-11 | 2000-12-12 | Schlumberger Technology Corporation | Rotary steerable well drilling system utilizing sliding sleeve |
US6109372A (en) * | 1999-03-15 | 2000-08-29 | Schlumberger Technology Corporation | Rotary steerable well drilling system utilizing hydraulic servo-loop |
DE60011587T2 (de) | 1999-11-10 | 2005-06-30 | Schlumberger Holdings Ltd., Road Town | Steuerungsverfahren für steuerbares bohrsystem |
US7136795B2 (en) | 1999-11-10 | 2006-11-14 | Schlumberger Technology Corporation | Control method for use with a steerable drilling system |
CA2567855C (fr) | 1999-12-06 | 2009-09-08 | Precision Drilling Corporation | Installation de forage a tiges helicoidales |
US6536539B2 (en) | 2000-06-30 | 2003-03-25 | S & S Trust | Shallow depth, coiled tubing horizontal drilling system |
DE10149018B4 (de) | 2001-10-04 | 2007-05-24 | Tracto-Technik Gmbh | Verfahren zum Richtungsbohren |
US7188685B2 (en) | 2001-12-19 | 2007-03-13 | Schlumberge Technology Corporation | Hybrid rotary steerable system |
WO2003096075A1 (fr) | 2002-05-13 | 2003-11-20 | Camco International (Uk) Limited | Reetalonnage de capteurs de fond |
US7730965B2 (en) | 2002-12-13 | 2010-06-08 | Weatherford/Lamb, Inc. | Retractable joint and cementing shoe for use in completing a wellbore |
USRE42877E1 (en) | 2003-02-07 | 2011-11-01 | Weatherford/Lamb, Inc. | Methods and apparatus for wellbore construction and completion |
GB2424432B (en) | 2005-02-28 | 2010-03-17 | Weatherford Lamb | Deep water drilling with casing |
FR2898935B1 (fr) | 2006-03-27 | 2008-07-04 | Francois Guy Jacques Re Millet | Dispositif d'orientation d'outils de forage |
US7857052B2 (en) | 2006-05-12 | 2010-12-28 | Weatherford/Lamb, Inc. | Stage cementing methods used in casing while drilling |
US8276689B2 (en) | 2006-05-22 | 2012-10-02 | Weatherford/Lamb, Inc. | Methods and apparatus for drilling with casing |
US9347290B2 (en) | 2011-03-28 | 2016-05-24 | R. Mickal Taylor | Fluid-saving pump down tool |
CA2975908C (fr) * | 2012-02-17 | 2019-07-09 | Halliburton Energy Services, Inc. | Systemes de forage directionnel |
US9556677B2 (en) | 2012-02-17 | 2017-01-31 | Halliburton Energy Services, Inc. | Directional drilling systems |
US20240093623A1 (en) * | 2021-06-16 | 2024-03-21 | Radjet Services Us, Inc. | Method and system for reducing friction in radial drilling and jet drilling operations |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA623157A (en) * | 1961-07-04 | G. James William | Deflecting tool | |
US1850403A (en) * | 1931-10-08 | 1932-03-22 | Robert E Lee | Mechanism for drilling angular channels |
US2198016A (en) * | 1938-08-18 | 1940-04-23 | James C Rogers | Lateral drill mechanism |
US2672321A (en) * | 1948-12-10 | 1954-03-16 | John A Zublin | Apparatus for drilling oriented drain holes |
US3382938A (en) * | 1966-10-03 | 1968-05-14 | Edward B Williams Iii | Drill collar |
US3667556A (en) * | 1970-01-05 | 1972-06-06 | John Keller Henderson | Directional drilling apparatus |
US3903974A (en) * | 1974-03-12 | 1975-09-09 | Roy H Cullen | Drilling assembly, deviation sub therewith, and method of using same |
US4143722A (en) * | 1977-08-25 | 1979-03-13 | Driver W B | Downhole flexible drive system |
BE865955A (fr) * | 1978-04-13 | 1978-07-31 | Foraky | Perfectionnements aux installations de forage |
BE865954A (fr) * | 1978-04-13 | 1978-07-31 | Foraky | Perfectionnements aux installations de forage |
US4436168A (en) * | 1982-01-12 | 1984-03-13 | Dismukes Newton B | Thrust generator for boring tools |
DE3306405A1 (de) * | 1983-02-24 | 1984-08-30 | Manfred 2305 Heikendorf Schmidt | Verfahren und vorrichtung von leitungsstraengen im erdreich |
DE3412219A1 (de) * | 1984-04-02 | 1985-10-10 | Witte Bohrtechnik GmbH, 3060 Stadthagen | Vorrichtung zum unterirdischen rohrvortrieb im bereich unbegehbarer rohrdurchmesser |
-
1985
- 1985-05-07 FR FR8507069A patent/FR2581698B1/fr not_active Expired
-
1986
- 1986-04-23 EP EP86400879A patent/EP0201398B1/fr not_active Expired
- 1986-04-23 DE DE8686400879T patent/DE3662290D1/de not_active Expired
- 1986-05-06 ES ES554695A patent/ES8705078A1/es not_active Expired
- 1986-05-07 CA CA000508606A patent/CA1265122A/fr not_active Expired - Fee Related
-
1988
- 1988-04-01 US US07/176,452 patent/US4858705A/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
FR2581698B1 (fr) | 1987-07-24 |
DE3662290D1 (en) | 1989-04-13 |
EP0201398A1 (fr) | 1986-12-17 |
ES554695A0 (es) | 1987-04-16 |
ES8705078A1 (es) | 1987-04-16 |
CA1265122A (fr) | 1990-01-30 |
FR2581698A1 (fr) | 1986-11-14 |
US4858705A (en) | 1989-08-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0201398B1 (fr) | Ensemble permettant d'effectuer des forages orientés | |
CA2647397C (fr) | Dispositif d'orientation d'outils de forage | |
CA1128925A (fr) | Raccord coude a angle variable pour forages diriges | |
EP0526294B1 (fr) | Système pour effectuer des mesures ou interventions dans un puits foré ou en cours de forage | |
CA2034001C (fr) | Dispositif pour guider un outil de forage dans un puits et exercer sur lui une force hydraulique | |
EP0526293B1 (fr) | Méthode et dispositif pour effectuer des mesures et/ou interventions dans un puits foré ou en cours de forage | |
EP0190529B1 (fr) | Dispositif d'actionnement à distance à commande de débit, en particulier pour l'actionnement d'un stabilisateur d'un train de tiges de forage | |
CA1315190C (fr) | Dispositif et methode pour effectuer des operations et/ou interventions dans un puits | |
CA1193541A (fr) | Methode et dispositif pour effectuer, a l'aide d'outils specialises des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales | |
CA2518879C (fr) | Methode et systeme de forage avec circulation inverse | |
US4040495A (en) | Drilling apparatus | |
FR2713697A1 (fr) | Ensemble de forage de fond de puits. | |
CA2006920C (fr) | Equipement pour garniture de forage comportant un element a actionner, un moteur et des moyens de commande | |
CA2276851C (fr) | Dispositif et methode de controle de la trajectoire d'un forage | |
EP0136935A1 (fr) | Dispositif de forage et de mise en production pétrolière multidrains | |
FR2867627A1 (fr) | Appareil et methode de production d'energie electrique dans un sondage | |
EP0212316B1 (fr) | Colonne de forage pour forage à déviations, procédé d'utilisation de cette colonne et dispositif déviateur utilisé dans cette colonne | |
FR2751373A1 (fr) | Perfectionnement aux appareils de circulation de fluide | |
EP1525371A1 (fr) | Conduite de guidage telescopique de forage en mer | |
EP0376805A1 (fr) | Garniture de forage à trajectoire contrôlée comportant un stabilisateur à géométrie variable et utilisation de cette garniture | |
CA1155390A (fr) | Dispositif assurant le deplacement d'un element dans un conduit rempli d'un liquide | |
CA2006927C (fr) | Garniture de forage a trajectoire controlee comportant un element coude a angle variable et utilisation de cette garniture | |
FR2522059A2 (fr) | Methode et dispositif pour effectuer, a l'aide d'outils specialises, des operations telles que des mesures, dans des portions de puits fortement inclinees sur la verticale, ou horizontales | |
EP0296207B1 (fr) | Methode et dispositif pour effectuer des mesures et/ou interventions dans un puits soumis a compression hydraulique | |
EP0165154B1 (fr) | Méthode et dispositif pour effectuer à l'aide d'outils spécialisés des opérations telles que des mesures, dans des portions de puits fortement inclinées sur la verticale, ou horizontales |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE GB IT NL |
|
PUAB | Information related to the publication of an a document modified or deleted |
Free format text: ORIGINAL CODE: 0009199EPPU |
|
PUAF | Information related to the publication of a search report (a3 document) modified or deleted |
Free format text: ORIGINAL CODE: 0009199SEPU |
|
R17D | Deferred search report published (corrected) |
Effective date: 19861217 |
|
RA1 | Application published (corrected) |
Date of ref document: 19861217 Kind code of ref document: A1 |
|
17P | Request for examination filed |
Effective date: 19870318 |
|
17Q | First examination report despatched |
Effective date: 19880623 |
|
ITF | It: translation for a ep patent filed | ||
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE GB IT NL |
|
REF | Corresponds to: |
Ref document number: 3662290 Country of ref document: DE Date of ref document: 19890413 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
ITTA | It: last paid annual fee | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 19930325 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 19930419 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 19930430 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 19930526 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Effective date: 19940423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Effective date: 19940430 |
|
BERE | Be: lapsed |
Owner name: INSTITUT FRANCAIS DU PETROLE Effective date: 19940430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Effective date: 19941101 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 19940423 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Effective date: 19950103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20050423 |