US6109372A - Rotary steerable well drilling system utilizing hydraulic servo-loop - Google Patents

Rotary steerable well drilling system utilizing hydraulic servo-loop Download PDF

Info

Publication number
US6109372A
US6109372A US09/268,596 US26859699A US6109372A US 6109372 A US6109372 A US 6109372A US 26859699 A US26859699 A US 26859699A US 6109372 A US6109372 A US 6109372A
Authority
US
United States
Prior art keywords
tool collar
rotary tool
hydraulic
offsetting mandrel
tubular rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US09/268,596
Inventor
Alain P. Dorel
Shu-Kong Chang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schlumberger Technology Corp
Original Assignee
Schlumberger Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Technology Corp filed Critical Schlumberger Technology Corp
Priority to US09/268,596 priority Critical patent/US6109372A/en
Assigned to SCHLUMBERGER TECHNOLOGY CORPORATION reassignment SCHLUMBERGER TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHANG, SHU-KONG, DOREL, ALAIN P.
Priority to AU14961/00A priority patent/AU734258B2/en
Priority to CA002298375A priority patent/CA2298375C/en
Priority to GB0003417A priority patent/GB2347951B/en
Priority to BR0000998-9A priority patent/BR0000998A/en
Priority to NO20001305A priority patent/NO20001305L/en
Priority to CN00104162.2A priority patent/CN1222676C/en
Publication of US6109372A publication Critical patent/US6109372A/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/08Measuring diameters or related dimensions at the borehole
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/04Directional drilling
    • E21B7/06Deflecting the direction of boreholes

Definitions

  • This invention relates generally to methods and apparatus for drilling wells, particularly wells for the production of petroleum products, and more specifically concerns an actively controlled rotary steerable drilling system that can be connected directly to a rotary drill string or can be connected in a rotary drill string in assembly with a mud motor and/or thruster and/or flexible sub to enable drilling of deviated wellbore sections and branch bores.
  • This invention also concerns methods and apparatus enabling precision control of the direction of a wellbore being drilled.
  • This invention also concerns an actively controlled rotary steerable drilling system incorporating a hydraulically energized positioning mechanism for accomplishing automatic geostationary positioning of the axis of an offsetting mandrel and its drill bit during rotation of the offsetting mandrel and drill bit by a rotary drill string, mud motor or both.
  • This invention further concerns employment of coupling means in conjunction with the actively controlled rotary steerable drilling system for maintaining coupling of the drilling tool with the borehole wall during drilling.
  • An oil or gas well often has a subsurface section that is drilled directionally, i.e., inclined at an angle with respect to the vertical and with the inclination having a particular compass heading or azimuth.
  • wells having deviated sections may be drilled at any desired location, such as for "horizontal" borehole orientation or deviated branch bores from a primary borehole, for example, a significant number of deviated wells are drilled in the marine environment.
  • a number of deviated wells are drilled from a single offshore production platform in a manner such that the bottoms of the boreholes are distributed over a large area of a producing horizon over which the platform is typically centrally located and wellheads for each of the wells are located on the platform structure.
  • the capability provided by the rotary steerable drilling tool of this invention to steer the drill bit while the drill bit is being rotated by the collar of the tool enables drilling personnel to readily navigate the wellbore being drilled from one subsurface oil reservoir to another.
  • the rotary steerable drilling tool of the present invention enables steering of the wellbore both from the standpoint of inclination and from the standpoint of azimuth so that two or more subsurface zones of interest can be controllably intersected by the wellbore being drilled.
  • a typical procedure for drilling a directional borehole is to remove the drill string and drill bit by which the initial, vertical section of the well was drilled using conventional rotary drilling techniques, and run in a mud motor having a bent housing at the lower end of the drill string which drives the bit in response to circulation of drilling fluid.
  • the bent housing provides a bend angle such that the axis below the bend point, which corresponds to the rotation axis of the bit, has a "toolface angle" with respect to a reference, as viewed from above.
  • the toolface angle or simply “toolface” establishes the azimuth or compass heading at which the deviated borehole section will be drilled as the mud motor is operated.
  • the mud motor and drill bit are lowered, with the drill string non-rotatable to maintain the selected toolface, and the drilling fluid pumps, "mud pumps", are energized to develop fluid flow through the drill string and mud motor, thereby imparting rotary motion to the mud motor output shaft and the drill bit that is fixed thereto.
  • the presence of the bend angle causes the bit to drill on a curve until a desired borehole inclination has been established.
  • the drill string is then rotated so that its rotation is superimposed over that of the mud motor output shaft, which causes the bend section to merely orbit around the axis of the borehole so that the drill bit drills straight ahead at whatever inclination and azimuth have been established.
  • the same directional drilling techniques can be used as the maximum depth of the wellbore is approached to curve the wellbore to horizontal and then extend it horizontally into or through the production zone.
  • Measurement while drilling "MWD" systems are commonly included in the drill string above the mud motor to monitor the progress of the borehole being drilled so that corrective measures can be instituted if the various borehole parameters indicate variance from the projected plan.
  • a non-rotating drill string may cause increased frictional drag so that there is less control over the "weight on bit” and the rate of drill bit penetration can decrease, which can result in substantially increased drilling costs.
  • a non-rotating drill string is more likely to get stuck in the wellbore than a rotating one, particularly where the drill string extends through a permeable zone that causes significant build up of mud cake on the borehole wall.
  • a patent of interest in regard to the subject matter of the present invention is U.S. Pat. No. 5,113,953.
  • the '953 patent presents a directional drilling apparatus and method in which the drill bit is coupled to the lower end of a drill string through a universal joint, and the bit shaft is pivotally rotated within the steerable drilling tool collar at a speed which is equal and opposite to the rotational speed of the drill string.
  • the present invention is significantly advanced as compared to the subject matter of the '953 patent in that the angle of the bit shaft or mandrel relative to the drill collar of the present invention is variable rather than fixed.
  • Other patents of interest in regard to the present invention are UK Patents GB 2 172 324 B, GB 2 172 325 B and GB 2 177 738 B.
  • the '738 patent is entitled "Control of drilling courses in the drilling of boreholes" and discloses a control stabilizer 20 having four actuators 44.
  • the actuators are in the form of flexible hoses or tubes which are selectively inflated to apply a lateral force to the drill collar as shown at 22 for the purpose of deflecting the drill collar and thus altering the course of the borehole being drilled.
  • the '324 patent is of interest to the present invention in that it discloses a steerable drilling tool having stabilizers 18 and 20, with a control module 22 located between them for effecting controlled deflection of the drilling tube 10 for altering the course of the wellbore being drilled.
  • the '325 patent is of interest to the present invention in that it discloses a steerable drilling tool having a housing 31 that contains sensing means and is maintained essentially stationary during drilling by a wall contact assembly 33. Movement of the drilling tube 10 relative to the wall contact assembly is accomplished by applying different pressures, in a controlled manner, to each of four actuators 44. Steering of the drill bit, according to the '325 patent, is accomplished by sensing the position of the rotary tool collar and generating navigation signals.
  • the present invention achieves steering of the drill bit by hydraulically maintaining the longitudinal axis of an offsetting mandrel, to which the drill bit is attached, in geostationary position and oriented about a knuckle or pivot mount within a rotatable tool collar which is in direct rotary driving relation with the offsetting mandrel.
  • the offsetting mandrel is kept positioned at the desired inclination and azimuth during its rotation by the hydraulically energized steering system of the rotary steerable drilling tool for steering of the wellbore being drilled along a desired course.
  • a substantially non-rotatable sliding sleeve is employed to provide a housing for navigation sensors and electronics as well as telemetry systems, and for maintaining a coupling relationship with the formation during drilling.
  • the sliding sleeve is supported in rotatable relation about a portion of the rotary tool collar and is maintained in mechanically coupled and substantially non-rotatable relation with the wall of the borehole being drilled by a plurality of elastic blade members which project radially outwardly from the sleeve.
  • the present invention may also be connected in assembly with a controllable mud motor, a thruster apparatus, a flexible sub or any combination thereof. Additionally, the actively controlled rotary steerable drilling system of the present invention enables directionally controlled drilling to be selectively powered by a rotary drill string, a mud motor, or both, and provides for precision control of weight on bit and accuracy of drill bit orientation during drilling.
  • U.S. Pat. No. 5,265,682 discloses a system for maintaining a downhole instrumentation package in a roll stabilized orientation by means of an impeller.
  • the roll stabilized instrumentation is used for modulating fluid pressure to a set of radial pistons which are sequentially activated to urge the bit in a desired direction.
  • the drill bit steering system of the '682 patent most notably differs from the concept of the present invention in the different means that is utilized for deviating the drill bit in the desired direction.
  • the '682 patent describes a mechanism which uses pistons which react against the borehole wall to force the bit in a desired lateral direction within the borehole. Since the hydraulic components of the steerable drilling system of the '682 patent are exposed to the drilling fluid, and since the rotating pads of the rotating tool are exposed to contact with the borehole wall, the service live of such a drilling tool will be limited.
  • the rotary steerable drilling tool of the present invention has no hydraulic components or force transmitting pad that are exposed to the drilling fluid or the borehole wall.
  • the rotary steerable drilling tool of the present invention incorporates an automatically energized, sensor responsive hydraulic system to maintain the offsetting mandrel of the drilling system in geostationary and angularly oriented relation with the rotatable tool collar to deviate from the main borehole direction and to keep the drill bit pointing in a desired borehole direction.
  • the hydraulic offsetting mandrel positioning system of the present invention accomplishes pivotal positioning of the offsetting mandrel axis about its knuckle or universal joint support within the drill collar so that the offsetting mandrel is kept positioned in geostationary relation with the formation being drilled while it is being rotated by the rotary tool collar.
  • various navigation sensors and electronics of the tool are located within a substantially non-rotatable sliding sleeve which is mounted for relative rotation about the rotary tool collar of the drilling tool, rather than in a rotating component, such as the tool collar, to enable simplification of the electronics of the navigation sensors to ensure the accuracy and extended service life thereof.
  • an actively controlled rotary steerable drilling tool having a rotary tool collar that is rotatably driven by a rotary drive component, such as the output shaft of a mud motor or a rotary drill string, that is driven by the rotary table of a drilling rig.
  • a rotary drive component such as the output shaft of a mud motor or a rotary drill string
  • An offsetting mandrel also sometimes referred to herein as a bit shaft, is mounted within the rotatable tool collar by means of a universal mount or knuckle joint and is rotatable directly by the rotary tool collar for the purpose of drilling.
  • a lower section of the offsetting mandrel projects from the lower end of the rotary tool collar and provides a connection to which the drill bit is threadedly connected.
  • the offsetting mandrel axis is maintained and pointed in a given direction which is inclined by a variable angle with respect to the axis of the rotary drive component of the tool during rotation of the offsetting mandrel by the rotary drive component, thus allowing the drill bit to drill a curved wellbore on a curve that is determined by the selected angle.
  • a straight bore can be drilled by setting the angle between the offsetting mandrel axis and the tool axis to zero.
  • the angle between the axis of the rotary tool collar and the axis of the offsetting mandrel is maintained by a plurality of hydraulic pistons which are located within the rotary tool collar and are selectively controlled and positioned by sensor responsive servo-loop activated servo-valves to maintain the axis of the offsetting mandrel geostationary and at predetermined angles of inclination and azimuth. Additionally, these predetermined angles of inclination and azimuth are selectively controllable responsive to surface generated control signals, computer generated signals, sensor generated signals or a combination thereof.
  • the rotary steerable drilling tool of this invention is adjustable while the tool is located downhole and during drilling for controllably changing the angle of the offsetting mandrel relative to the rotatable collar as desired for the purpose of controllably steering the drill bit being rotated by the offsetting mandrel of the tool.
  • Torque is transmitted from the rotary tool collar to the offsetting mandrel directly through an articulatable driving connection that is established by the knuckle joint connection of the offsetting mandrel within the tool collar.
  • the hydraulic mandrel positioning pistons are servo-controlled to guarantee that the predetermined toolface is maintained in the presence of external disturbances. Since it should always remain geostationary, the offsetting mandrel is maintained in its geostationary position within the rotary tool collar by hydraulically energized pistons that are mounted for movement within the tool collar. This feature is accomplished by automatic servo-controlled hydraulic actuation of the positioning pistons which are precisely controlled responsive to signals from various navigation sensors and responsive to various forces that tend to alter the orientation of the axes of the sliding tool collar and the offsetting mandrel.
  • the tool has the capability of selectively incorporating many electronic sensing, measuring, feedback and positioning systems.
  • a three-dimensional positioning system of the tool can employ magnetic sensors for sensing the earth's magnetic field and can employ a resolver, three-axis accelerometers and gyroscopic sensors for accurately determining the position of the tool at any point in time.
  • the rotary steerable drilling tool will typically be provided with a three-axis accelerometer and a resolver.
  • a single gyroscopic sensor can also be incorporated within the tool to provide rotational speed feedback and to assist in stabilization of the mandrel, although a plurality of gyroscopic sensors may be employed as well without departing from the spirit and scope of this invention.
  • the signal processing system of the electronics on-board the tool achieves real-time position measurement while the offsetting mandrel of the tool is rotating.
  • the sensors and electronics processing system of the tool also provide for continuous measurement of the azimuth and the actual angle of inclination as drilling progresses so that immediate corrective measures can be taken in real time, without necessitating interruption of the drilling process.
  • the tool incorporates a position based control loop using magnetic sensors, accelerometers or gyroscopic sensors to provide position signals for controlling axial orientation of the offsetting mandrel.
  • the tool may incorporate a measurement while drilling (MWD) system for feedback, gamma ray detectors, resistivity logging, density and porosity logging, sonic logging, and a system for borehole imaging, look ahead and look around instrumentation, inclination at the bit measurement, bit rotational speed measurement, and measurement of vibration below the motor sensors, weight on bit, torque on bit, and bit side force.
  • MWD measurement while drilling
  • the electronics and control instrumentation of the rotary steerable drilling tool provides the possibility for programming the tool from the surface so as to establish or change the tool azimuth and inclination and to establish or change the bend angle relation of the offsetting mandrel to the tool collar.
  • the electronic memory of the on-board electronics of the tool is capable of retaining, utilizing, and transmitting a complete wellbore profile and accomplishing geosteering downhole so the tool can be employed from kick-off to extended reach drilling.
  • a flexible sub may be employed with the tool to decouple the rotary steerable drilling tool from the rest of the bottom hole assembly and drill string and allow navigation by the electronics of the rotary steerable drilling system.
  • the actively controlled rotary steerable drilling tool may also be provided with a telemetry system to transmit bidirectionally through the flexible sub and other measurement subs to the MWD system logging and drilling information that is obtained during drilling operations.
  • the tool may incorporate transmitters and receivers located in predetermined axially spaced relation to thus cause signals to traverse a predetermined distance through the subsurface formation adjacent the wellbore and thus measure its resistivity while drilling activity is in progress.
  • the electronics of the resistivity system of the tool are mounted within a substantially non-rotatable sliding sleeve which is disposed in rotatable relation with the rotary collar of the tool.
  • the substantially non-rotatable sliding sleeve is coupled with the formation during drilling by a plurality of elastic coupling blades which also serve to restrain rotation of the sliding sleeve. This feature causes the sleeve to slide along the borehole wall so that the sleeve is essentially static or may rotate only a few turns per hour rather than being rotated along with the rotary components of the tool.
  • the navigation sensors and the electronics system of the tool are protected from potential rotational induced interference or damage as drilling operations occur.
  • a hydraulic pump is provided within the rotary tool collar of the rotary steerable drilling tool to develop hydraulic pressure in the on-board hydraulic system of the tool to provide for operation of hydraulically energized pistons for controllable positioning of the offsetting mandrel relative to the rotary tool collar.
  • the hydraulic pump is driven by the flowing drilling fluid.
  • the pressurized hydraulic fluid is controllably applied to piston chambers responsive to sensor signal induced actuation of servo-valves to maintain the axis of the offsetting mandrel geostationary and at desired angles of inclination and azimuth during drilling.
  • Hydraulic pressure generated by the hydraulic pump may also be employed in an on-board system including linear variable differential transformers (LVDT's) to sense displacement of the mandrel actuation pistons and to provide displacement signals that are processed and utilized for controlling hydraulic actuation of the pistons.
  • LVDT's are also employed to measure radial displacement of the elastic coupling members for identifying the precise position of the actively controlled rotary steerable drilling tool with respect to the centerline of the wellbore being drilled.
  • the offsetting mandrel positioning system employs a universal offsetting mandrel support in the form of any suitable universal joint or knuckle joint to provide the offsetting mandrel with efficient support in both axial direction and torque and at the same time to minimize friction at the universal joint.
  • Friction at the universal joint is also minimized by ensuring the presence of lubricating oil about the components thereof and by excluding drilling fluid from the universal joint while permitting significant steering control movement of the offsetting mandrel relative to the rotary tool collar as drilling is in progress.
  • the universal joint may conveniently take the form of a spline type joint, a universal joint incorporating splines and rings, or a universal joint incorporating a plurality of balls which permit relative angular positioning of the axis of the offsetting mandrel with respect to the axis of the rotary drive component that extends into and is concentric with the tool collar.
  • Electrical power for control and operation of the solenoid valves and the electronics system of the drilling tool is generated by an on-board alternator which is also powered by the flowing drilling fluid via a turbine or positive displacement motor which is exposed to the flowing drilling fluid.
  • the electrical output of the alternator may also be utilized for maintaining the electrical charge of a battery pack that provides electrical power for operation of the on-board electronics and for operation of various other on-board electronic equipment during times when the alternator is not being powered by flowing fluid.
  • FIG. 1 is a schematic illustration showing a well being drilled in accordance with the present invention and showing deviation of the lower portion of the wellbore by the actively controlled rotary steerable drilling system and method thereof;
  • FIG. 2 is a sectional view showing a rotary steerable drilling system constructed in accordance with the principles of the present invention
  • FIG. 3 is a sectional view showing a part of the actively controlled rotary steerable drilling system of the present invention and showing the drilling fluid energized system for generation of electrical energy and hydraulic pressure and further showing a substantially non-rotatable sliding sleeve disposed in rotatable relation with the rotary tool collar and maintained in substantially static relation with the formation being drilled by a plurality of elastic coupling blades; and
  • FIG. 4 is a hydraulic and electronic schematic illustration showing a hydraulic servo-loop that provides for sensor signal responsive control of the hydraulic piston actuation system of the rotary steerable drilling tool.
  • the actively controlled rotary steerable drilling system of the present invention consists of four basic sections, an offsetting mechanism, a sliding sleeve, a control system and a power generation system.
  • the offsetting mechanism integrates the bit shaft or offsetting mandrel and the rotary tool collar.
  • the offsetting mandrel is coupled to the tool collar through a universal joint which enables the rotary tool collar to impart driving rotation to the offsetting mandrel and the drill bit that is connected at the forward end of the offsetting mandrel.
  • the universal joint permits maintenance of selected angular positioning of the offsetting mandrel relative to the tool collar as the tool collar imparts rotation to the offsetting mandrel.
  • This feature permits torque and weight forces to be transmitted from the tool collar to the offsetting mandrel while keeping the offsetting mandrel pointed in a given direction for drilling a deviated, i.e., curved wellbore.
  • the direction of the offsetting mandrel is kept fixed in space by the action of four hydraulic pistons actuated by two servo-valves.
  • Sliding Sleeve--A sliding sleeve is mounted for relative rotation about a section of the rotary tool collar and is coupled to the wall of the borehole by a plurality of, typically three, elastic blades that project outwardly from the sliding sleeve and maintain the sliding sleeve in substantially non-rotatable relation with the borehole wall.
  • the sliding sleeve provides support for navigation sensors including a three-axis servo-accelerometer and a resolver and provides support for position signal acquisition electronics.
  • the sliding sleeve also supports a rotating transformer to transmit accelerometer measurements to the rotating section of the drilling tool.
  • a caliper measurement of the borehole being drilled can also be integrated within the rotary steerable drilling system by measuring the axial displacement of each of the three elastic coupling blades relative to the sliding sleeve.
  • the steering control system of the rotary steerable drilling tool of the present invention is in the form of a hydraulic servo-loop, also referred to as a control loop, which is integrated with the navigation sensors and electronics of the tool.
  • the hydraulic servo-loop includes a resolver to detect the orientation of the drill collar relative to the sliding sleeve and also includes a three-axis accelerometer to detect the orientation of the sliding sleeve relative to the gravity field.
  • the hydraulic servo-loop also includes two LVDT's to detect the radial positions of the hydraulic pistons relative to the hydraulic cylinders of the rotary tool collar within which the pistons are movably retained.
  • Two electrically controlled servo-valves are also incorporated within the hydraulic servo-loop to synchronize the hydraulic pistons relative to the rotary tool collar.
  • the hydraulic servo-loop also includes signal acquisition and control electronics for the navigation sensors and servo-valves.
  • Power Generation--Power from the flowing drilling fluid is converted to mechanical power by using a positive displacement motor (PDM) or turbine.
  • PDM positive displacement motor
  • the output shaft of the PDM or turbine is coupled to a pump (gear or piston pump) which provides hydraulic power to the servo-valves.
  • An alternator is also coupled to the PDM or turbine output shaft to provide electrical power for operation of the electronics and sensors of the rotary steerable drilling system.
  • the actively controlled rotary steerable drilling system of the present invention is also capable of being linked with a system for measurement while drilling (MWD) or logging while drilling (LWD).
  • MWD measurement while drilling
  • LWD logging while drilling
  • Two-way communication with a MWD/LWD tool may be achieved by using induction type transmission through the formation being drilled.
  • the two-way communication system of the rotary steerable drilling system of the present invention also allows integration of a mud motor between the MWD/LWD tool and the rotary steerable drilling system, so that the mud motor can be used to provide rotary power for rotation of the tool collar and to provide the drilling tool with adequate torque and weight for efficient steerable drilling.
  • the hydraulic power needed to synchronize the four hydraulic pistons and to achieve and maintain bit offset is delivered by the PDM or turbine through the hydraulic pump and the two servo-valves.
  • the orientation of the offsetting mandrel relative to the gravity field is obtained from two sets of measurements.
  • the rotation of the rotary tool collar relative to the gravity field (tool face) is determined with the combined measurements of the rotation of the tool collar relative to the sliding sleeve (resolver) and the rotation of the sliding sleeve relative to the gravity field (accelerometers).
  • the signal from the radial accelerometers can be easily filtered to reject noise induced by shocks and vibrations in order to keep only the DC component of the signal.
  • the position of the offsetting mandrel relative to the rotary tool collar is determined from the combined measurements of the displacement of the two sets of hydraulic pistons. This displacement is measured with two LVDT's located inside the piston chamber.
  • the amplitude of the displacement of pistons along the X and Y axes relative to the rotary tool collar is sinusoidal and the difference in phase between X and Y displacements is 90°:
  • a wellbore 1 is shown being drilled by a rotary steerable drilling tool embodying the principles of the present invention and shown generally at 10.
  • the rotary steerable drilling tool 10 is connected at the lower end of a drill string shown generally at 2 that extends upwardly to the surface where it is driven by the rotary table of a typical drilling rig (not shown). It should be borne in mind that a rotary drill string is not necessary for practice of the present invention.
  • the rotary drilling tool may also be driven by the rotary output shaft of a mud motor which is connected to a non-rotatable drill string.
  • a rotary drill string may be employed and a mud motor may be connected within it so that the rotary drill string may be operated at a desired rotary speed and the drill bit driven by the mud motor may be operated at a different rotary speed.
  • the drill string 2 typically incorporates a drill pipe 4 having one or more drill collars 5 connected therein for the purpose of applying weight to the drill bit and for stabilizing the drill string.
  • the wellbore 1 is shown as having a vertical or substantially vertical upper portion and a deviated, curved or horizontal lower section 7 which is being drilled under the control of the actively controlled rotary steerable drilling tool 10. The lower section 7 of the wellbore will have been deviated from the vertical upper section by the steering activity of the drilling tool 10 in accordance with the principles set forth herein.
  • the drill string immediately adjacent the rotary steerable drilling tool 10, may incorporate a flexible sub 8, which can provide the rotary steerable drilling system with enhanced accuracy of drilling.
  • drilling fluid or "mud” is circulated by surface pumps (not shown) down through the drill string 2 where it exits through jets that are defined in the drill bit 20 and returns to the surface through an annulus 21 between the drill string 2 and the wall of the wellbore 1.
  • the rotary steerable drilling tool 10 is constructed and arranged to cause the drill bit 20 to drill along a curved path that is designated by the control settings of the drilling tool. Referring to FIG.
  • the angle of the offsetting mandrel 14 supporting the drill bit 20 in controlled angular relation with respect to the rotatable tubular tool collar 12 of the drilling tool 10 is maintained even though the drilling tool and drill bit are being rotated by the drill string, mud motor or other rotary drive mechanism, thereby causing the drill bit to be steered for drilling a curved wellbore section.
  • Steering of the drilling tool is selectively accomplished from the standpoint of inclination and from the standpoint of azimuth, i.e., left and right.
  • the offsetting mandrel position settings of the rotary steerable drilling tool may be changed as desired, such as by mud pulse telemetry, to cause the drill bit to selectively alter the course of the wellbore being drilled to thereby direct the deviated wellbore with respect to X, Y and Z axes for precision steering of the drill bit and thus precision control of the wellbore being drilled.
  • the actively controlled rotary steerable drilling tool 10 incorporates a rotary tool collar 12 that is rotatable by any suitable means such as the rotary output of a mud motor or a rotatable drill string.
  • the offsetting mandrel 14 is supported by a universal joint shown generally at 16 which enables the offsetting mandrel 14 to be rotated along with the tool collar 12 during drilling and permits the offsetting mandrel to be pivoted about a pivot point P relative to the tool collar to thereby enable controllable geostationary orientation of the offsetting mandrel as it is rotated by the rotary tool collar 12 to thus permit the borehole being drilled to be controllably deviated from the axis of the main wellbore.
  • geostationary positioning of the offsetting mandrel 14 relative to the rotary tool collar 12 is controllably established by an offsetting mechanism shown generally at 18.
  • the offsetting mandrel is continuously positioned relative to the velocity of rotation by the offsetting mechanism 18, so that as the offsetting mandrel is rotated, it is kept pointed in a predetermined direction of azimuth and inclination. This feature enables the wellbore being drilled to be steered in a predetermined manner such as might be needed for drilling branch bores from main wellbores or steering a wellbore being drilled to intersection with a subsurface anomaly of interest.
  • the offsetting mandrel 14 is rotatably driven by the rotating tool collar 12 in a manner such that the rotary force of the tool collar is imparted directly to the offsetting mandrel so that the offsetting mandrel and its drill bit are driven directly as the tool collar 12 is rotated.
  • the universal joint 16 connecting the offsetting mandrel 14 with the rotary tool collar permits upwardly directed thrust force of the drill bit 20 reacting with the formation being drilled to be transferred from the offsetting mandrel 14 through the universal joint 16 to the tool collar 12.
  • the offsetting mandrel 14 is shown to be of tubular form, thus defining a flow passage 22 through which drilling fluid is permitted to flow as it progresses to the flow passage system 24 of the drill bit 20.
  • the rotary steerable drilling tool 10 defines an annular space 26 which contains a protective fluid medium such as lubricating oil, and thus is referred to herein as an oil chamber.
  • a protective fluid medium such as lubricating oil
  • the various components of the offsetting mechanism and the universal joint are therefore protected by the protective fluid medium for the purpose of isolating these components from the corrosive and erosive drilling fluid and thus enhancing the service life of the rotary steerable drilling mechanism.
  • the oil or other protective fluid medium within the chamber 26 is sealed with respect to the downhole drilling fluid environment by bellows seal assemblies to be discussed in detail below.
  • the oil within the oil chamber 26 is not only a lubricating medium but also functions in concert with the bellows seals to isolate the offsetting mechanism of the rotary steerable drilling tool from contamination by the drilling fluid.
  • the offsetting mandrel 14 defines an external circular groove 28 which receives at least two thrust force transfer segments 30.
  • the thrust force transfer segments 30 are retained within the circular groove 28 by the circular retainer flange 32 of a thrust force transfer element 34.
  • the thrust force transfer element 34 defines a curved axial end surface 36 which is positioned in force transmitting contact with a concave tapered surface 38 of a thrust force transmitting ring 40.
  • the thrust force transmitting ring 40 is shouldered within a thrust force transfer sleeve 42 which is in turn shouldered against an internal shoulder 44 of the tool collar 12.
  • the thrust force transfer sleeve 42 is secured against axial movement relative to the tool collar 12 by a retainer element 46.
  • the thrust force transfer sleeve 42 also defines an internal opening 48 which is of sufficient dimension to permit the range of pivotal movement that the offsetting mandrel 14 is allowed relative to the tool collar 12.
  • the internal opening 48 is defined in part by a flared or tapered surface 50 which ensures that the thrust force transfer sleeve 42 will not interfere with positioning of the offsetting mandrel 14 within the rotary tool collar 12.
  • a retainer ring 52 is located in contact with the circular retainer flange 32 of the thrust force transfer element 34 and assists the retainer flange 32 in capturing the thrust force transfer segments 30 within the circular groove 28 of the offsetting mandrel 14.
  • the retainer ring 52 defines a spherical concave surface segment 54 which is in force transmitting contact with a convex spherical surface segment 56 of a pivot control ring 58.
  • the ring-like elements 40, 34, 52 and 58 are maintained in force transmitting engagement with one another and with the force transmitting segments 30 by the action of Belleville springs 60 and 62.
  • the Belleville springs 60, 62 also yield sufficiently to permit pivotal movement of the offsetting mandrel 14 about the pivot point P and to allow thrust force transfer element 34 and retainer ring 52 to move laterally along with the offsetting mandrel while the corresponding thrust force transmitting ring 40 and pivot control ring 58 remain essentially static within the thrust force transfer sleeve 42.
  • upward thrust forces are transferred from the offsetting mandrel 14 to the rotary tool collar 12 via the thrust force transfer segments 30, the thrust force transfer element 34 and the thrust force transmitting ring 40, as well as the upper end section of the thrust force transfer sleeve 42.
  • a universally driven element 64 is located with its inner circular periphery 66 disposed in non-rotatable relation with a driven section 68 of the offsetting mandrel 14.
  • the universally driven element 64 is secured against axial movement from its seated position on the offsetting mandrel 14 by a circular retainer ring 70 that is received within an external retainer groove defined within the offsetting mandrel.
  • the universally driven element 64 may have a splined connection with the offsetting mandrel 14 or it may be keyed to the offsetting mandrel so that a non-rotatable relation is established.
  • the universally driven element 64 defines an external ring-like section 72 having a multiplicity of driven teeth in the form of gear teeth or splines.
  • the tool collar 12 defines a corresponding multiplicity of internal drive teeth or splines 74 which establish rotary drive connection with the teeth or splines of the external ring-like section 72.
  • the splines or gear toothed drive relationship between the tool collar 12 and the offsetting mandrel 14 is designed to permit pivotal movement of the offsetting mandrel 14 about the pivot point P while a direct rotary driving relationship is maintained between the offsetting mandrel 14 and the rotary tool collar 12.
  • a sealing assembly for the lower or forward end of the drilling tool is shown generally at 76 and incorporates a seal bellows 78 having an upper bellows support ring 80 which is seated in sealed relation about an outer seal surface 82 of the offsetting mandrel 14.
  • the upper bellows support ring 80 is shouldered downwardly against a circular shoulder 84 of the offsetting mandrel 14.
  • the opposite, or lower end, of the seal bellows 78 is secured to a bellows mounting and sealing ring 86 which is retained in sealed relation with a tubular seal mount 88 by a snap ring type retainer element 90 that is received within an internal groove within the tubular seal mount.
  • the tubular seal mount 88 is secured by a thread connection 92 within the lower, or forward end, of the tool collar 12 and is further secured by the lower retainer flange 94 of a tubular end cap 96.
  • the tubular end cap 96 is threadedly connected to the tool collar 12 by a thread connection 98.
  • the offsetting mandrel 14 is sealed with respect to the tubular tool collar 12 by an upper bellows seal 100.
  • the tubular end cap 96 may be provided with external spiral or fluted geometry that functions to assist the flow of drilling fluid upward through the annulus between the rotary steerable drilling tool and the wall of the wellbore being drilled.
  • the rotary steerable drilling tool of the present invention will be provided with an offsetting mechanism having the capability of maintaining the offsetting mandrel 14 in geostationary position relative to the formation being drilled and offset from the main wellbore above the location of the drilling tool.
  • the rotary steerable drilling tool is provided with a hydraulically energized system for positioning the offsetting mandrel relative to the rotary tool collar and for maintaining geostationary position of the offsetting mandrel during rotation of the tool collar and during rotation of the offsetting mandrel by the rotary tool collar.
  • the rotary tool collar 12 defines two pairs of hydraulic cylinders with each pair of hydraulic cylinders being diametrically opposed from one another. As shown in FIG.
  • one pair of diametrically opposed hydraulic cylinders is indicated at 102 and 104.
  • the diametrically opposed hydraulic cylinders are also shown in FIG. 4 as are diametrically opposed hydraulic cylinders 106 and 108.
  • Hydraulic pistons 110, 112, 114, and 116 are movable within their respective hydraulic cylinders for the purpose of imparting positioning control to the offsetting mandrel 14 relative to the rotary tool collar 12.
  • an outer bearing race 118 is positioned for force transmitting contact with each of the four hydraulic pistons. As shown in FIG. 4, this outer bearing race 118 may define flat surfaces, such as shown at 120, to establish an efficient force transmitting surface engagement between the hydraulic pistons and the outer bearing race.
  • An inner bearing race 122 is secured in non-rotatable relation with offsetting mandrel 14 by a splined connection 124 as shown in FIG. 2.
  • geostationary axial positioning of the offsetting mandrel is established hydraulically under the control of servo-valves that are selectively actuated responsive to appropriate position sensing signals.
  • hydraulic pressure induced energy for controlling the position of the offsetting mandrel 14 is generated by a hydraulic pump 126 which is located within a pump receptacle 128 defined within the rotary tool collar 12.
  • the hydraulic pump 126 is driven by any suitable rotary drive mechanism with which the rotary steerable drilling tool 10 may be provided. As shown in FIG.
  • a positive displacement motor (PDM) or turbine 130 is rotatably driven by drilling fluid flowing from a tool flow passage 132 through the pump to thereby provide for driving rotation of a PDM or turbine output shaft 134.
  • the PDM or turbine output shaft 134 is sealed with respect to an internal housing 136 about which a drilling fluid passage 138 is defined.
  • the drilling fluid passage 138 may be defined by an annular space between an internal wall 140 of the tool collar 12 and the internal housing 136. This feature enables drilling fluid flow about the internal housing 136 to provide for cooling of the mechanical and electrical components that are located within the internal housing.
  • the output shaft 134 of the PDM or turbine 130 is sealed with respect to the rotatable tool collar 12 by a sealing element 142 to thereby prevent drilling fluid from contaminating the electrical and mechanical components that are located within the internal housing 136.
  • the rotary shaft sealing element 142 is the only rotary seal component of the rotary steerable drilling system that is exposed to the drilling fluid.
  • the output shaft 134 is connected in driving relation with an alternator 144 which provides an electrical output to power the electronic and electromechanical components of the drilling tool responsive to the flow of drilling fluid through the tool.
  • the alternator is in turn provided with an output shaft 146 which is connected in driving relation with the hydraulic pump 126 so that the pump is driven responsive to the flow of drilling fluid through the actively controlled rotary steerable drilling tool.
  • the hydraulic pump 126 may be a gear or piston pump as is suitable to the purposes of the user.
  • the hydraulic pump 126 provides a pressurized hydraulic fluid output 148 which is conducted to servo-valves 150 and 152 which are also shown in the electronic/hydraulic schematic illustration of FIG. 4.
  • hydraulic pump 126 Responsive to the PDM or turbine 130, hydraulic pump 126 provides hydraulic fluid under pressure to hydraulic supply line 154 which supplies pressurized hydraulic fluid to a hydraulic pressure control 156 via hydraulic line 158 and conducts pressurized hydraulic fluid to the servo-valves 150 and 152 via hydraulic supply lines 160 and 162.
  • pressurized hydraulic fluid supply to hydraulic cylinder 108 occurs via the servo-valve 152 and its hydraulic line 166, thus causing piston 116 to impart a force to the offsetting mandrel 14 along the X axis.
  • hydraulic fluid in hydraulic cylinder 106 is being returned via hydraulic line 170, servo-valve 152, and hydraulic return line 172 to the hydraulic reservoir 174.
  • the servo-valve 150 is also positionable to supply pressurized hydraulic fluid via line 164 to the hydraulic cylinder 104 thereby causing movement of the piston 112 to impart a force through the bearing assembly to the offsetting mandrel 14 to thus shift the offsetting mandrel along the Y axis.
  • positioning of the offsetting mandrel 14 is accomplished by operating the pistons 112 and 116 in 90 degree phase with one another.
  • This character of valve positioning is accomplished by an electronic circuit 176 which may be described as a 90 degree phase circuit.
  • the circuit 176 receives a signal via a signal conductor 178 from a controller 180 and then transmit signals via signal conductors 182 and 184 to the respective servo-valves 150 and 152.
  • the servo-valves are operated simultaneously in such manner that they are shifted in a manner maintaining the 90 degree phase relationship of the force transmitting pistons.
  • the rotary tool collar 12 defines a reduced diameter intermediate section 186 as illustrated in FIG. 3.
  • a coupling element in the form of a non-rotatable sliding sleeve 188 is located about the reduced diameter intermediate section and is supported in relatively rotatable relation therewith by bearing members 190 and 192.
  • the non-rotatable sliding sleeve is mechanically coupled with the wall "W" of the wellbore being drilled by a plurality of (preferably three) elastic blades such as shown at 194.
  • the elastic blades 194 are of curved configuration and are located with the intermediate portions 196 thereof projecting radially outwardly from the sliding sleeve 188 for forcible contact with the wellbore wall "W". End portions 200 and 201 of each of the elastic blades 194 are connected to the non-rotatable sliding sleeve 188 in any suitable manner.
  • the sliding sleeve 188 is maintained in substantially non-rotatable relation by the resistance of the elastic blades 194 with the wellbore wall "W" of the formation being drilled.
  • the sliding sleeve 188 will have three elastic blades defining a three touch-point geometry for coupling with the borehole wall, though it may have a greater number of elastic blades without departing from the scope of the present invention.
  • the non-rotatable sliding sleeve 188 may rotate slowly, perhaps only a few revolutions per hour.
  • Electronic position signals from the navigation sensors, a resolver 202, which is mounted to the rotary tool collar 12, and a three-axis accelerometer 204 which is mounted to the slidng sleeve 188 will not require filtering or other electronic processing to minimize sensor signal interference. Since the accelerometers are located on the sliding sleeve 188 and are directly coupled with the borehole wall by the elastic blades 194, no high bandwidth sensor is required.
  • the sliding, non-rotatable sleeve 188 will also employ a rotating transformer to transmit accelerometer measurements to the rotating section of the tool.
  • a caliper measurement can also be integrated by measuring the radial displacement of each of the typically three elastic blades 194 relative to the non-rotatable sliding sleeve 188 of the drilling tool 10. If one end of each of the elastic blades is axially movable relative to the non-rotatable sliding sleeve 188, then the caliper measurement of the borehole may be achieved by measuring axial displacement of the elastic blades relative to the sleeve 188.
  • the controller 180 of the hydraulic servo-control loop system shown schematically in FIG. 4 receives electronic signal input from the resolver 202 and the three-axis accelerometer 204 via signal conductors 206 and 208.
  • the controller 180 also receives signal input representing the radial positions of the hydraulic pistons 110 and 114 relative to the tool collar 12.
  • the hydraulic cylinders 102 and 104 incorporate piston position measuring devices such as LVDT's 210 and 212 which measure radial displacement of the respective pistons 110 and 112 and transmit position signals via signal conductors 214 and 216 to the controller 180.
  • These piston position signals are processed along with position signals from the resolver 202 and accelerometer 204 to yield the controller output signal that is fed via signal conductor 178 to the 90 degree phase circuit 176.
  • the present rotary steerable drilling system is based on hydraulic power controlled by servo-valves. No high power electronics are required.
  • the present invention provides an effective solution to many problems that plague the steerable drilling systems of the prior art.
  • the present invention does not require heat dissipation at high temperature when using PWM (pulse width modulation) power drives.
  • the present invention achieves integration of formation evaluation measurements with low level signals, for example, resistivity, laterolog, and induction measurements.
  • the control system of the present invention is low voltage, low power, and induces very low electromagnetic interferences.
  • the present invention substantially eliminates the use of rotary seals that are in contact with the drilling fluid.
  • the preferred embodiment set forth herein utilizes bellows seals to compensate for the oscillating motion of the offsetting mandrel relative to the rotary tool collar.
  • the only rotary seal of the rotary steerable drilling system of the present invention is located in the power generation module, between the positive displacement motor (PDM) that is driven by the flowing drilling fluid and the alternator. According to the present invention it is not necessary to provide a source of hydraulic power from the surface.
  • the hydraulic power system of the present invention is contained within the rotary steerable drilling tool and converts mechanical power from the flowing drilling fluid, directly via a PDM, to hydraulic power from the hydraulic pump.
  • the hydraulic control loop of the rotary steerable drilling tool is automatically operable responsive to the signals of navigation sensors and control electronics for maintaining the offsetting mandrel oriented or pointed in a predetermined direction with its axis geostationary so that the drill bit supported thereby will drill a curved wellbore having a predetermined inclination and azimuth.
  • the stabilization sensors used to detect the orientation of the offsetting mandrel are a resolver and at least one accelerometer. As the accelerometers are located on a non-rotating sliding sleeve that is directly coupled to the borehole by elastic coupling elements, no high bandwidth sensor is required. Bit offset is directly controlled by two servo-valves which are electrically controlled responsive to signals from navigation sensors which are processed by the electronics package on-board the rotary steerable drilling system. No additional steering system is required.
  • certain steerable drilling systems have steering components that are in contact with the corrosive and erosive drilling fluid so that the service life thereof is compromised by the drilling fluid.
  • the steering components of the rotary steerable drilling system of the present invention are protected from the drilling fluid.
  • the hydraulic pistons are located internally of the drilling tool and are isolated from the drilling fluid.
  • Virtually all of the movable mechanical components for positioning and rotary driving of the offsetting mandrel, such as the hydraulic pistons, servo-valves, and universal joint, are located within an internal chamber of the drilling tool which is filled with oil or other protective fluid medium so that these components are not exposed to drilling fluid.
  • the service life of these components of the rotary steerable drilling system is not compromised by the drilling fluid.

Abstract

An actively controlled rotary steerable drilling system for directional drilling of wells including a tubular rotary tool collar having rotatably mounted thereabout a substantially non-rotatable sliding sleeve incorporating a plurality of elastic coupling members to maintain the sliding sleeve in coupled relation with the borehole wall during drilling. An offsetting mandrel is supported within the tool collar by a knuckle joint for pivotal movement and is rotatably driven by the tool collar and has a lower end extending from the collar and adapted for support of a drill bit. To achieve controlled steering of the rotating drill bit, orientation of the drilling tool is sensed by navigation sensors and the offsetting mandrel is maintained geostationary and selectively axially inclined relative to the tool collar by orienting it about the knuckle joint responsive to navigation sensors. An alternator and a hydraulic pump, located within the tool collar, are driven by a power source driven by the flowing drilling fluid to produce electric power and hydraulic pressure for supplying electrical power for the electronics package of the tool and for actuation of hydraulic system components. Hydraulic cylinder and piston assemblies, actuated by tool position signal responsive servo-valves, control the angular position of the offsetting mandrel with respect to the tool collar. The hydraulic pistons are servo-controlled responsive to signal input from the navigation sensors and from other tool position sensing systems which provide real-time position signals to the hydraulic position control system.

Description

BACKGROUND OF THE INVENTION
1. Field of the Invention
This invention relates generally to methods and apparatus for drilling wells, particularly wells for the production of petroleum products, and more specifically concerns an actively controlled rotary steerable drilling system that can be connected directly to a rotary drill string or can be connected in a rotary drill string in assembly with a mud motor and/or thruster and/or flexible sub to enable drilling of deviated wellbore sections and branch bores. This invention also concerns methods and apparatus enabling precision control of the direction of a wellbore being drilled. This invention also concerns an actively controlled rotary steerable drilling system incorporating a hydraulically energized positioning mechanism for accomplishing automatic geostationary positioning of the axis of an offsetting mandrel and its drill bit during rotation of the offsetting mandrel and drill bit by a rotary drill string, mud motor or both. This invention further concerns employment of coupling means in conjunction with the actively controlled rotary steerable drilling system for maintaining coupling of the drilling tool with the borehole wall during drilling.
2. Description of the Related Art
An oil or gas well often has a subsurface section that is drilled directionally, i.e., inclined at an angle with respect to the vertical and with the inclination having a particular compass heading or azimuth. Although wells having deviated sections may be drilled at any desired location, such as for "horizontal" borehole orientation or deviated branch bores from a primary borehole, for example, a significant number of deviated wells are drilled in the marine environment. In such case, a number of deviated wells are drilled from a single offshore production platform in a manner such that the bottoms of the boreholes are distributed over a large area of a producing horizon over which the platform is typically centrally located and wellheads for each of the wells are located on the platform structure.
In circumstances where the well being drilled is of complex trajectory, the capability provided by the rotary steerable drilling tool of this invention to steer the drill bit while the drill bit is being rotated by the collar of the tool enables drilling personnel to readily navigate the wellbore being drilled from one subsurface oil reservoir to another. The rotary steerable drilling tool of the present invention enables steering of the wellbore both from the standpoint of inclination and from the standpoint of azimuth so that two or more subsurface zones of interest can be controllably intersected by the wellbore being drilled.
A typical procedure for drilling a directional borehole is to remove the drill string and drill bit by which the initial, vertical section of the well was drilled using conventional rotary drilling techniques, and run in a mud motor having a bent housing at the lower end of the drill string which drives the bit in response to circulation of drilling fluid. The bent housing provides a bend angle such that the axis below the bend point, which corresponds to the rotation axis of the bit, has a "toolface angle" with respect to a reference, as viewed from above. The toolface angle, or simply "toolface", establishes the azimuth or compass heading at which the deviated borehole section will be drilled as the mud motor is operated. After the toolface has been established by slowly rotating the drill string and observing the output of various orientation devices, the mud motor and drill bit are lowered, with the drill string non-rotatable to maintain the selected toolface, and the drilling fluid pumps, "mud pumps", are energized to develop fluid flow through the drill string and mud motor, thereby imparting rotary motion to the mud motor output shaft and the drill bit that is fixed thereto. The presence of the bend angle causes the bit to drill on a curve until a desired borehole inclination has been established. To drill a borehole section along the desired inclination and azimuth, the drill string is then rotated so that its rotation is superimposed over that of the mud motor output shaft, which causes the bend section to merely orbit around the axis of the borehole so that the drill bit drills straight ahead at whatever inclination and azimuth have been established. If desired, the same directional drilling techniques can be used as the maximum depth of the wellbore is approached to curve the wellbore to horizontal and then extend it horizontally into or through the production zone. Measurement while drilling "MWD" systems are commonly included in the drill string above the mud motor to monitor the progress of the borehole being drilled so that corrective measures can be instituted if the various borehole parameters indicate variance from the projected plan.
Various problems can arise when sections of the wellbore are being drilled with the drill string non-rotatable and with a mud motor being operated by drilling fluid flow. The reactive torque caused by operation of a mud motor can cause the toolface to gradually change so that the borehole is not being deepened at the desired azimuth. If not corrected, the wellbore may extend to a point that is too close to another wellbore, the wellbore may miss the desired "subsurface target", or the wellbore may simply be of excessive length due to "wandering". These undesirable factors can cause the drilling costs of the wellbore to be excessive and can decrease the drainage efficiency of fluid production from a subsurface formation of interest. Moreover, a non-rotating drill string may cause increased frictional drag so that there is less control over the "weight on bit" and the rate of drill bit penetration can decrease, which can result in substantially increased drilling costs. Of course, a non-rotating drill string is more likely to get stuck in the wellbore than a rotating one, particularly where the drill string extends through a permeable zone that causes significant build up of mud cake on the borehole wall.
A patent of interest in regard to the subject matter of the present invention is U.S. Pat. No. 5,113,953. The '953 patent presents a directional drilling apparatus and method in which the drill bit is coupled to the lower end of a drill string through a universal joint, and the bit shaft is pivotally rotated within the steerable drilling tool collar at a speed which is equal and opposite to the rotational speed of the drill string. The present invention is significantly advanced as compared to the subject matter of the '953 patent in that the angle of the bit shaft or mandrel relative to the drill collar of the present invention is variable rather than fixed. Other patents of interest in regard to the present invention are UK Patents GB 2 172 324 B, GB 2 172 325 B and GB 2 177 738 B. The '738 patent is entitled "Control of drilling courses in the drilling of boreholes" and discloses a control stabilizer 20 having four actuators 44. The actuators are in the form of flexible hoses or tubes which are selectively inflated to apply a lateral force to the drill collar as shown at 22 for the purpose of deflecting the drill collar and thus altering the course of the borehole being drilled. The '324 patent is of interest to the present invention in that it discloses a steerable drilling tool having stabilizers 18 and 20, with a control module 22 located between them for effecting controlled deflection of the drilling tube 10 for altering the course of the wellbore being drilled. The '325 patent is of interest to the present invention in that it discloses a steerable drilling tool having a housing 31 that contains sensing means and is maintained essentially stationary during drilling by a wall contact assembly 33. Movement of the drilling tube 10 relative to the wall contact assembly is accomplished by applying different pressures, in a controlled manner, to each of four actuators 44. Steering of the drill bit, according to the '325 patent, is accomplished by sensing the position of the rotary tool collar and generating navigation signals.
In contrast, the present invention achieves steering of the drill bit by hydraulically maintaining the longitudinal axis of an offsetting mandrel, to which the drill bit is attached, in geostationary position and oriented about a knuckle or pivot mount within a rotatable tool collar which is in direct rotary driving relation with the offsetting mandrel. The offsetting mandrel is kept positioned at the desired inclination and azimuth during its rotation by the hydraulically energized steering system of the rotary steerable drilling tool for steering of the wellbore being drilled along a desired course. A substantially non-rotatable sliding sleeve is employed to provide a housing for navigation sensors and electronics as well as telemetry systems, and for maintaining a coupling relationship with the formation during drilling. The sliding sleeve is supported in rotatable relation about a portion of the rotary tool collar and is maintained in mechanically coupled and substantially non-rotatable relation with the wall of the borehole being drilled by a plurality of elastic blade members which project radially outwardly from the sleeve.
The present invention may also be connected in assembly with a controllable mud motor, a thruster apparatus, a flexible sub or any combination thereof. Additionally, the actively controlled rotary steerable drilling system of the present invention enables directionally controlled drilling to be selectively powered by a rotary drill string, a mud motor, or both, and provides for precision control of weight on bit and accuracy of drill bit orientation during drilling.
Another patent of interest in regard to the present invention is U.S. Pat. No. 5,265,682. The '682 patent discloses a system for maintaining a downhole instrumentation package in a roll stabilized orientation by means of an impeller. The roll stabilized instrumentation is used for modulating fluid pressure to a set of radial pistons which are sequentially activated to urge the bit in a desired direction. The drill bit steering system of the '682 patent most notably differs from the concept of the present invention in the different means that is utilized for deviating the drill bit in the desired direction. Namely, the '682 patent describes a mechanism which uses pistons which react against the borehole wall to force the bit in a desired lateral direction within the borehole. Since the hydraulic components of the steerable drilling system of the '682 patent are exposed to the drilling fluid, and since the rotating pads of the rotating tool are exposed to contact with the borehole wall, the service live of such a drilling tool will be limited.
In contrast, the rotary steerable drilling tool of the present invention has no hydraulic components or force transmitting pad that are exposed to the drilling fluid or the borehole wall. The rotary steerable drilling tool of the present invention incorporates an automatically energized, sensor responsive hydraulic system to maintain the offsetting mandrel of the drilling system in geostationary and angularly oriented relation with the rotatable tool collar to deviate from the main borehole direction and to keep the drill bit pointing in a desired borehole direction. The hydraulic offsetting mandrel positioning system of the present invention accomplishes pivotal positioning of the offsetting mandrel axis about its knuckle or universal joint support within the drill collar so that the offsetting mandrel is kept positioned in geostationary relation with the formation being drilled while it is being rotated by the rotary tool collar. Within the scope of the present invention various navigation sensors and electronics of the tool are located within a substantially non-rotatable sliding sleeve which is mounted for relative rotation about the rotary tool collar of the drilling tool, rather than in a rotating component, such as the tool collar, to enable simplification of the electronics of the navigation sensors to ensure the accuracy and extended service life thereof.
SUMMARY OF THE INVENTION
It is a principal feature of the present invention to provide a novel actively controlled rotary steerable drilling system that is driven by a rotary drill string, a mud motor, or a combination of a rotary drill string and a mud motor, and permits selective drilling of curved wellbore sections by precision steering of the drill bit being rotated by the rotary tool collar of the rotary steerable drilling tool;
It is also a feature of the present invention to provide a novel actively controlled rotary steerable well drilling system having an offsetting mandrel that is rotatably driven by a rotary tool collar during drilling operations and which is pivotally mounted within the tool collar for pivotal articulation within the tool collar and which is kept pointed in geostationary relation with the formation being drilled and is maintained pointed at desired angles of inclination and azimuth for the drilling of a curved wellbore to an intended target;
It is another feature of the present invention to provide a novel actively controlled rotary steerable well drilling system having a drilling fluid powered hydraulic pump that supplies pressurized fluid for position control of an offsetting mandrel by servo-valve controlled energization of hydraulic positioning pistons that accomplish geostationary positioning of the offsetting mandrel relative to the rotary tool collar of the well drilling system for the purpose of drill bit steering;
It is another feature of the present invention to provide a novel actively controlled rotary steerable well drilling system having an on-board electronic power, position sensing and control system that is mounted within a coupling element that is in rotatable relation with the rotary tool collar of the tool and is maintained in coupled and substantially static relation with the wall of the borehole being drilled by a plurality of elastic blades which have coupling engagement with the wellbore wall during drilling. It is also a feature of the present invention to locate navigation sensors and certain electronics within the substantially static coupling element rather than in rotary components of the drilling tool, thus protecting the on-board electronics and navigation sensors of the tool against possible rotation induced interference and permitting significant simplification of the control circuitry of the tool; and
It is also a feature of the present invention to provide a novel actively controlled rotary steerable well drilling system having a substantially non-rotatable sliding sleeve disposed in rotatable relation with the rotary tool collar and having elongate curved elastic coupling blades that maintain sliding coupling of the drilling tool with respect to the formation being drilled, restrain rotation of the substantially non-rotatable sliding sleeve, and provide for caliper measurements of the borehole being drilled.
Briefly, the various objects and features of the present invention are realized through the provision of an actively controlled rotary steerable drilling tool having a rotary tool collar that is rotatably driven by a rotary drive component, such as the output shaft of a mud motor or a rotary drill string, that is driven by the rotary table of a drilling rig. An offsetting mandrel, also sometimes referred to herein as a bit shaft, is mounted within the rotatable tool collar by means of a universal mount or knuckle joint and is rotatable directly by the rotary tool collar for the purpose of drilling. A lower section of the offsetting mandrel projects from the lower end of the rotary tool collar and provides a connection to which the drill bit is threadedly connected. According to the concept of this invention, the offsetting mandrel axis is maintained and pointed in a given direction which is inclined by a variable angle with respect to the axis of the rotary drive component of the tool during rotation of the offsetting mandrel by the rotary drive component, thus allowing the drill bit to drill a curved wellbore on a curve that is determined by the selected angle. A straight bore can be drilled by setting the angle between the offsetting mandrel axis and the tool axis to zero.
The angle between the axis of the rotary tool collar and the axis of the offsetting mandrel is maintained by a plurality of hydraulic pistons which are located within the rotary tool collar and are selectively controlled and positioned by sensor responsive servo-loop activated servo-valves to maintain the axis of the offsetting mandrel geostationary and at predetermined angles of inclination and azimuth. Additionally, these predetermined angles of inclination and azimuth are selectively controllable responsive to surface generated control signals, computer generated signals, sensor generated signals or a combination thereof. Thus the rotary steerable drilling tool of this invention is adjustable while the tool is located downhole and during drilling for controllably changing the angle of the offsetting mandrel relative to the rotatable collar as desired for the purpose of controllably steering the drill bit being rotated by the offsetting mandrel of the tool.
Torque is transmitted from the rotary tool collar to the offsetting mandrel directly through an articulatable driving connection that is established by the knuckle joint connection of the offsetting mandrel within the tool collar. In addition, the hydraulic mandrel positioning pistons are servo-controlled to guarantee that the predetermined toolface is maintained in the presence of external disturbances. Since it should always remain geostationary, the offsetting mandrel is maintained in its geostationary position within the rotary tool collar by hydraulically energized pistons that are mounted for movement within the tool collar. This feature is accomplished by automatic servo-controlled hydraulic actuation of the positioning pistons which are precisely controlled responsive to signals from various navigation sensors and responsive to various forces that tend to alter the orientation of the axes of the sliding tool collar and the offsetting mandrel.
To enhance the flexibility of the actively controlled rotary steerable drilling tool, the tool has the capability of selectively incorporating many electronic sensing, measuring, feedback and positioning systems. A three-dimensional positioning system of the tool can employ magnetic sensors for sensing the earth's magnetic field and can employ a resolver, three-axis accelerometers and gyroscopic sensors for accurately determining the position of the tool at any point in time. For control, the rotary steerable drilling tool will typically be provided with a three-axis accelerometer and a resolver. A single gyroscopic sensor can also be incorporated within the tool to provide rotational speed feedback and to assist in stabilization of the mandrel, although a plurality of gyroscopic sensors may be employed as well without departing from the spirit and scope of this invention. The signal processing system of the electronics on-board the tool achieves real-time position measurement while the offsetting mandrel of the tool is rotating. The sensors and electronics processing system of the tool also provide for continuous measurement of the azimuth and the actual angle of inclination as drilling progresses so that immediate corrective measures can be taken in real time, without necessitating interruption of the drilling process. The tool incorporates a position based control loop using magnetic sensors, accelerometers or gyroscopic sensors to provide position signals for controlling axial orientation of the offsetting mandrel. Also from the standpoint of operational flexibility, the tool may incorporate a measurement while drilling (MWD) system for feedback, gamma ray detectors, resistivity logging, density and porosity logging, sonic logging, and a system for borehole imaging, look ahead and look around instrumentation, inclination at the bit measurement, bit rotational speed measurement, and measurement of vibration below the motor sensors, weight on bit, torque on bit, and bit side force.
Additionally, the electronics and control instrumentation of the rotary steerable drilling tool provides the possibility for programming the tool from the surface so as to establish or change the tool azimuth and inclination and to establish or change the bend angle relation of the offsetting mandrel to the tool collar. The electronic memory of the on-board electronics of the tool is capable of retaining, utilizing, and transmitting a complete wellbore profile and accomplishing geosteering downhole so the tool can be employed from kick-off to extended reach drilling. Additionally, a flexible sub may be employed with the tool to decouple the rotary steerable drilling tool from the rest of the bottom hole assembly and drill string and allow navigation by the electronics of the rotary steerable drilling system.
In addition to other sensing and measuring features of this invention, the actively controlled rotary steerable drilling tool may also be provided with a telemetry system to transmit bidirectionally through the flexible sub and other measurement subs to the MWD system logging and drilling information that is obtained during drilling operations. The tool may incorporate transmitters and receivers located in predetermined axially spaced relation to thus cause signals to traverse a predetermined distance through the subsurface formation adjacent the wellbore and thus measure its resistivity while drilling activity is in progress.
The electronics of the resistivity system of the tool, as well as the electronics of the various measurement and control systems, are mounted within a substantially non-rotatable sliding sleeve which is disposed in rotatable relation with the rotary collar of the tool. The substantially non-rotatable sliding sleeve is coupled with the formation during drilling by a plurality of elastic coupling blades which also serve to restrain rotation of the sliding sleeve. This feature causes the sleeve to slide along the borehole wall so that the sleeve is essentially static or may rotate only a few turns per hour rather than being rotated along with the rotary components of the tool. Thus, the navigation sensors and the electronics system of the tool are protected from potential rotational induced interference or damage as drilling operations occur.
In the preferred embodiment of the present invention a hydraulic pump is provided within the rotary tool collar of the rotary steerable drilling tool to develop hydraulic pressure in the on-board hydraulic system of the tool to provide for operation of hydraulically energized pistons for controllable positioning of the offsetting mandrel relative to the rotary tool collar. The hydraulic pump is driven by the flowing drilling fluid. The pressurized hydraulic fluid is controllably applied to piston chambers responsive to sensor signal induced actuation of servo-valves to maintain the axis of the offsetting mandrel geostationary and at desired angles of inclination and azimuth during drilling. Hydraulic pressure generated by the hydraulic pump may also be employed in an on-board system including linear variable differential transformers (LVDT's) to sense displacement of the mandrel actuation pistons and to provide displacement signals that are processed and utilized for controlling hydraulic actuation of the pistons. LVDT's are also employed to measure radial displacement of the elastic coupling members for identifying the precise position of the actively controlled rotary steerable drilling tool with respect to the centerline of the wellbore being drilled.
For the purpose of mechanical efficiency, according to the preferred embodiment, the offsetting mandrel positioning system employs a universal offsetting mandrel support in the form of any suitable universal joint or knuckle joint to provide the offsetting mandrel with efficient support in both axial direction and torque and at the same time to minimize friction at the universal joint. Friction at the universal joint is also minimized by ensuring the presence of lubricating oil about the components thereof and by excluding drilling fluid from the universal joint while permitting significant steering control movement of the offsetting mandrel relative to the rotary tool collar as drilling is in progress. The universal joint may conveniently take the form of a spline type joint, a universal joint incorporating splines and rings, or a universal joint incorporating a plurality of balls which permit relative angular positioning of the axis of the offsetting mandrel with respect to the axis of the rotary drive component that extends into and is concentric with the tool collar.
Electrical power for control and operation of the solenoid valves and the electronics system of the drilling tool is generated by an on-board alternator which is also powered by the flowing drilling fluid via a turbine or positive displacement motor which is exposed to the flowing drilling fluid. The electrical output of the alternator may also be utilized for maintaining the electrical charge of a battery pack that provides electrical power for operation of the on-board electronics and for operation of various other on-board electronic equipment during times when the alternator is not being powered by flowing fluid.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the manner in which the above recited features, advantages and objects of the present invention are attained can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to the preferred embodiment thereof which is illustrated in the appended drawings, which drawings are incorporated as a part hereof.
It is to be noted, however, that the appended drawings illustrate only a typical embodiment of the invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
In the Drawings:
FIG. 1 is a schematic illustration showing a well being drilled in accordance with the present invention and showing deviation of the lower portion of the wellbore by the actively controlled rotary steerable drilling system and method thereof;
FIG. 2 is a sectional view showing a rotary steerable drilling system constructed in accordance with the principles of the present invention;
FIG. 3 is a sectional view showing a part of the actively controlled rotary steerable drilling system of the present invention and showing the drilling fluid energized system for generation of electrical energy and hydraulic pressure and further showing a substantially non-rotatable sliding sleeve disposed in rotatable relation with the rotary tool collar and maintained in substantially static relation with the formation being drilled by a plurality of elastic coupling blades; and
FIG. 4 is a hydraulic and electronic schematic illustration showing a hydraulic servo-loop that provides for sensor signal responsive control of the hydraulic piston actuation system of the rotary steerable drilling tool.
DESCRIPTION OF THE PREFERRED EMBODIMENT
The actively controlled rotary steerable drilling system of the present invention consists of four basic sections, an offsetting mechanism, a sliding sleeve, a control system and a power generation system.
Offsetting Mechanism--The offsetting mechanism integrates the bit shaft or offsetting mandrel and the rotary tool collar. The offsetting mandrel is coupled to the tool collar through a universal joint which enables the rotary tool collar to impart driving rotation to the offsetting mandrel and the drill bit that is connected at the forward end of the offsetting mandrel. The universal joint permits maintenance of selected angular positioning of the offsetting mandrel relative to the tool collar as the tool collar imparts rotation to the offsetting mandrel. This feature permits torque and weight forces to be transmitted from the tool collar to the offsetting mandrel while keeping the offsetting mandrel pointed in a given direction for drilling a deviated, i.e., curved wellbore. The direction of the offsetting mandrel is kept fixed in space by the action of four hydraulic pistons actuated by two servo-valves.
Sliding Sleeve--A sliding sleeve is mounted for relative rotation about a section of the rotary tool collar and is coupled to the wall of the borehole by a plurality of, typically three, elastic blades that project outwardly from the sliding sleeve and maintain the sliding sleeve in substantially non-rotatable relation with the borehole wall. The sliding sleeve provides support for navigation sensors including a three-axis servo-accelerometer and a resolver and provides support for position signal acquisition electronics. The sliding sleeve also supports a rotating transformer to transmit accelerometer measurements to the rotating section of the drilling tool. A caliper measurement of the borehole being drilled can also be integrated within the rotary steerable drilling system by measuring the axial displacement of each of the three elastic coupling blades relative to the sliding sleeve.
Control System--The steering control system of the rotary steerable drilling tool of the present invention is in the form of a hydraulic servo-loop, also referred to as a control loop, which is integrated with the navigation sensors and electronics of the tool. The hydraulic servo-loop includes a resolver to detect the orientation of the drill collar relative to the sliding sleeve and also includes a three-axis accelerometer to detect the orientation of the sliding sleeve relative to the gravity field. The hydraulic servo-loop also includes two LVDT's to detect the radial positions of the hydraulic pistons relative to the hydraulic cylinders of the rotary tool collar within which the pistons are movably retained. Two electrically controlled servo-valves are also incorporated within the hydraulic servo-loop to synchronize the hydraulic pistons relative to the rotary tool collar. The hydraulic servo-loop also includes signal acquisition and control electronics for the navigation sensors and servo-valves.
Power Generation--Power from the flowing drilling fluid is converted to mechanical power by using a positive displacement motor (PDM) or turbine. The output shaft of the PDM or turbine is coupled to a pump (gear or piston pump) which provides hydraulic power to the servo-valves. An alternator is also coupled to the PDM or turbine output shaft to provide electrical power for operation of the electronics and sensors of the rotary steerable drilling system.
The actively controlled rotary steerable drilling system of the present invention is also capable of being linked with a system for measurement while drilling (MWD) or logging while drilling (LWD). Two-way communication with a MWD/LWD tool may be achieved by using induction type transmission through the formation being drilled. The two-way communication system of the rotary steerable drilling system of the present invention also allows integration of a mud motor between the MWD/LWD tool and the rotary steerable drilling system, so that the mud motor can be used to provide rotary power for rotation of the tool collar and to provide the drilling tool with adequate torque and weight for efficient steerable drilling. The hydraulic power needed to synchronize the four hydraulic pistons and to achieve and maintain bit offset is delivered by the PDM or turbine through the hydraulic pump and the two servo-valves.
The orientation of the offsetting mandrel relative to the gravity field is obtained from two sets of measurements. The rotation of the rotary tool collar relative to the gravity field (tool face) is determined with the combined measurements of the rotation of the tool collar relative to the sliding sleeve (resolver) and the rotation of the sliding sleeve relative to the gravity field (accelerometers). As rotation of the sliding sleeve relative to the borehole is very slow (a few turns per hour), the signal from the radial accelerometers can be easily filtered to reject noise induced by shocks and vibrations in order to keep only the DC component of the signal. The position of the offsetting mandrel relative to the rotary tool collar is determined from the combined measurements of the displacement of the two sets of hydraulic pistons. This displacement is measured with two LVDT's located inside the piston chamber.
From the standpoint of kinematics, the amplitude of the displacement of pistons along the X and Y axes relative to the rotary tool collar is sinusoidal and the difference in phase between X and Y displacements is 90°:
Ax=A sin (wt)
Ay=A sin (wt+90°)
with A=Bit offset (L1/L2 as shown in FIG. 2) and
w=rotation speed of the rotary tool collar.
The combination of Ax and Ay displacement with the rotation of the rotary tool collar results in a stationary vector which keeps the axis of the offsetting mandrel pointed in a fixed direction. The tool face is determined by the orientation of this stationary vector relative to the gravity field.
Referring now to the drawings and first to FIG. 1, a wellbore 1 is shown being drilled by a rotary steerable drilling tool embodying the principles of the present invention and shown generally at 10. The rotary steerable drilling tool 10 is connected at the lower end of a drill string shown generally at 2 that extends upwardly to the surface where it is driven by the rotary table of a typical drilling rig (not shown). It should be borne in mind that a rotary drill string is not necessary for practice of the present invention. The rotary drilling tool may also be driven by the rotary output shaft of a mud motor which is connected to a non-rotatable drill string. Alternatively, a rotary drill string may be employed and a mud motor may be connected within it so that the rotary drill string may be operated at a desired rotary speed and the drill bit driven by the mud motor may be operated at a different rotary speed. The drill string 2 typically incorporates a drill pipe 4 having one or more drill collars 5 connected therein for the purpose of applying weight to the drill bit and for stabilizing the drill string. The wellbore 1 is shown as having a vertical or substantially vertical upper portion and a deviated, curved or horizontal lower section 7 which is being drilled under the control of the actively controlled rotary steerable drilling tool 10. The lower section 7 of the wellbore will have been deviated from the vertical upper section by the steering activity of the drilling tool 10 in accordance with the principles set forth herein. As shown in FIG. 1, the drill string, immediately adjacent the rotary steerable drilling tool 10, may incorporate a flexible sub 8, which can provide the rotary steerable drilling system with enhanced accuracy of drilling. In accordance with the usual practice, drilling fluid or "mud" is circulated by surface pumps (not shown) down through the drill string 2 where it exits through jets that are defined in the drill bit 20 and returns to the surface through an annulus 21 between the drill string 2 and the wall of the wellbore 1. As will be described in detail below, the rotary steerable drilling tool 10 is constructed and arranged to cause the drill bit 20 to drill along a curved path that is designated by the control settings of the drilling tool. Referring to FIG. 2, the angle of the offsetting mandrel 14 supporting the drill bit 20 in controlled angular relation with respect to the rotatable tubular tool collar 12 of the drilling tool 10 is maintained even though the drilling tool and drill bit are being rotated by the drill string, mud motor or other rotary drive mechanism, thereby causing the drill bit to be steered for drilling a curved wellbore section. Steering of the drilling tool is selectively accomplished from the standpoint of inclination and from the standpoint of azimuth, i.e., left and right. Additionally, the offsetting mandrel position settings of the rotary steerable drilling tool may be changed as desired, such as by mud pulse telemetry, to cause the drill bit to selectively alter the course of the wellbore being drilled to thereby direct the deviated wellbore with respect to X, Y and Z axes for precision steering of the drill bit and thus precision control of the wellbore being drilled.
Referring again to FIG. 2, the actively controlled rotary steerable drilling tool 10 incorporates a rotary tool collar 12 that is rotatable by any suitable means such as the rotary output of a mud motor or a rotatable drill string. Within the rotary tool collar 12, the offsetting mandrel 14 is supported by a universal joint shown generally at 16 which enables the offsetting mandrel 14 to be rotated along with the tool collar 12 during drilling and permits the offsetting mandrel to be pivoted about a pivot point P relative to the tool collar to thereby enable controllable geostationary orientation of the offsetting mandrel as it is rotated by the rotary tool collar 12 to thus permit the borehole being drilled to be controllably deviated from the axis of the main wellbore. During drilling operations, geostationary positioning of the offsetting mandrel 14 relative to the rotary tool collar 12 is controllably established by an offsetting mechanism shown generally at 18. To achieve geostationary positioning of the offsetting mandrel 14 during its rotation by the rotary tool collar 12, the offsetting mandrel is continuously positioned relative to the velocity of rotation by the offsetting mechanism 18, so that as the offsetting mandrel is rotated, it is kept pointed in a predetermined direction of azimuth and inclination. This feature enables the wellbore being drilled to be steered in a predetermined manner such as might be needed for drilling branch bores from main wellbores or steering a wellbore being drilled to intersection with a subsurface anomaly of interest.
During drilling, the offsetting mandrel 14 is rotatably driven by the rotating tool collar 12 in a manner such that the rotary force of the tool collar is imparted directly to the offsetting mandrel so that the offsetting mandrel and its drill bit are driven directly as the tool collar 12 is rotated. Additionally, the universal joint 16 connecting the offsetting mandrel 14 with the rotary tool collar permits upwardly directed thrust force of the drill bit 20 reacting with the formation being drilled to be transferred from the offsetting mandrel 14 through the universal joint 16 to the tool collar 12. Accordingly, the offsetting mandrel 14 is shown to be of tubular form, thus defining a flow passage 22 through which drilling fluid is permitted to flow as it progresses to the flow passage system 24 of the drill bit 20. Between the tool collar 12 and the offsetting mandrel 14 the rotary steerable drilling tool 10 defines an annular space 26 which contains a protective fluid medium such as lubricating oil, and thus is referred to herein as an oil chamber. The various components of the offsetting mechanism and the universal joint are therefore protected by the protective fluid medium for the purpose of isolating these components from the corrosive and erosive drilling fluid and thus enhancing the service life of the rotary steerable drilling mechanism. The oil or other protective fluid medium within the chamber 26 is sealed with respect to the downhole drilling fluid environment by bellows seal assemblies to be discussed in detail below. Thus the oil within the oil chamber 26 is not only a lubricating medium but also functions in concert with the bellows seals to isolate the offsetting mechanism of the rotary steerable drilling tool from contamination by the drilling fluid.
To permit the transfer of thrust forces from the offsetting mandrel to the tool collar 12, the offsetting mandrel 14 defines an external circular groove 28 which receives at least two thrust force transfer segments 30. The thrust force transfer segments 30 are retained within the circular groove 28 by the circular retainer flange 32 of a thrust force transfer element 34. The thrust force transfer element 34 defines a curved axial end surface 36 which is positioned in force transmitting contact with a concave tapered surface 38 of a thrust force transmitting ring 40. The thrust force transmitting ring 40 is shouldered within a thrust force transfer sleeve 42 which is in turn shouldered against an internal shoulder 44 of the tool collar 12. The thrust force transfer sleeve 42 is secured against axial movement relative to the tool collar 12 by a retainer element 46. The thrust force transfer sleeve 42 also defines an internal opening 48 which is of sufficient dimension to permit the range of pivotal movement that the offsetting mandrel 14 is allowed relative to the tool collar 12. The internal opening 48 is defined in part by a flared or tapered surface 50 which ensures that the thrust force transfer sleeve 42 will not interfere with positioning of the offsetting mandrel 14 within the rotary tool collar 12.
A retainer ring 52 is located in contact with the circular retainer flange 32 of the thrust force transfer element 34 and assists the retainer flange 32 in capturing the thrust force transfer segments 30 within the circular groove 28 of the offsetting mandrel 14. The retainer ring 52 defines a spherical concave surface segment 54 which is in force transmitting contact with a convex spherical surface segment 56 of a pivot control ring 58. The ring-like elements 40, 34, 52 and 58 are maintained in force transmitting engagement with one another and with the force transmitting segments 30 by the action of Belleville springs 60 and 62. The Belleville springs 60, 62 also yield sufficiently to permit pivotal movement of the offsetting mandrel 14 about the pivot point P and to allow thrust force transfer element 34 and retainer ring 52 to move laterally along with the offsetting mandrel while the corresponding thrust force transmitting ring 40 and pivot control ring 58 remain essentially static within the thrust force transfer sleeve 42. Thus, as the drilling operation is in progress, upward thrust forces are transferred from the offsetting mandrel 14 to the rotary tool collar 12 via the thrust force transfer segments 30, the thrust force transfer element 34 and the thrust force transmitting ring 40, as well as the upper end section of the thrust force transfer sleeve 42. Downward forces which will also be transmitted between the tool collar 12 and the offsetting mandrel 14 will be transferred via the thrust force transfer segments 30, the retainer ring 52 and the pivot control ring 58. These downward thrust forces will also be accommodated by the universal joint shown generally at 16 and by the lower Belleville spring 62.
To provide for rotation of the offsetting mandrel 14 by the tool collar 12, a universally driven element 64 is located with its inner circular periphery 66 disposed in non-rotatable relation with a driven section 68 of the offsetting mandrel 14. The universally driven element 64 is secured against axial movement from its seated position on the offsetting mandrel 14 by a circular retainer ring 70 that is received within an external retainer groove defined within the offsetting mandrel. If desired, the universally driven element 64 may have a splined connection with the offsetting mandrel 14 or it may be keyed to the offsetting mandrel so that a non-rotatable relation is established. Externally, the universally driven element 64 defines an external ring-like section 72 having a multiplicity of driven teeth in the form of gear teeth or splines. Internally, the tool collar 12 defines a corresponding multiplicity of internal drive teeth or splines 74 which establish rotary drive connection with the teeth or splines of the external ring-like section 72. The splines or gear toothed drive relationship between the tool collar 12 and the offsetting mandrel 14 is designed to permit pivotal movement of the offsetting mandrel 14 about the pivot point P while a direct rotary driving relationship is maintained between the offsetting mandrel 14 and the rotary tool collar 12.
As mentioned above, it is appropriate to permit significant angular positioning of the offsetting mandrel 14 about the pivot point P relative to the tool collar 12 and yet to maintain a sealed relationship between the offsetting mandrel and the tool collar which will contain the oil within the oil chamber 26 and protect the universal joint 16 and offsetting mechanism 18 from contamination by drilling fluid. According to the preferred embodiment of the present invention as shown in FIG. 2, a sealing assembly for the lower or forward end of the drilling tool is shown generally at 76 and incorporates a seal bellows 78 having an upper bellows support ring 80 which is seated in sealed relation about an outer seal surface 82 of the offsetting mandrel 14. The upper bellows support ring 80 is shouldered downwardly against a circular shoulder 84 of the offsetting mandrel 14. The opposite, or lower end, of the seal bellows 78 is secured to a bellows mounting and sealing ring 86 which is retained in sealed relation with a tubular seal mount 88 by a snap ring type retainer element 90 that is received within an internal groove within the tubular seal mount. The tubular seal mount 88 is secured by a thread connection 92 within the lower, or forward end, of the tool collar 12 and is further secured by the lower retainer flange 94 of a tubular end cap 96. The tubular end cap 96 is threadedly connected to the tool collar 12 by a thread connection 98. At its upper, or trailing end, the offsetting mandrel 14 is sealed with respect to the tubular tool collar 12 by an upper bellows seal 100. Although not required, the tubular end cap 96 may be provided with external spiral or fluted geometry that functions to assist the flow of drilling fluid upward through the annulus between the rotary steerable drilling tool and the wall of the wellbore being drilled.
As also mentioned above, the rotary steerable drilling tool of the present invention will be provided with an offsetting mechanism having the capability of maintaining the offsetting mandrel 14 in geostationary position relative to the formation being drilled and offset from the main wellbore above the location of the drilling tool. According to the preferred embodiment of the present invention, the rotary steerable drilling tool is provided with a hydraulically energized system for positioning the offsetting mandrel relative to the rotary tool collar and for maintaining geostationary position of the offsetting mandrel during rotation of the tool collar and during rotation of the offsetting mandrel by the rotary tool collar. To accomplish this feature, the rotary tool collar 12 defines two pairs of hydraulic cylinders with each pair of hydraulic cylinders being diametrically opposed from one another. As shown in FIG. 2, one pair of diametrically opposed hydraulic cylinders is indicated at 102 and 104. The diametrically opposed hydraulic cylinders are also shown in FIG. 4 as are diametrically opposed hydraulic cylinders 106 and 108. Hydraulic pistons 110, 112, 114, and 116 are movable within their respective hydraulic cylinders for the purpose of imparting positioning control to the offsetting mandrel 14 relative to the rotary tool collar 12. As shown in FIG. 2 and schematically in FIG. 4, an outer bearing race 118 is positioned for force transmitting contact with each of the four hydraulic pistons. As shown in FIG. 4, this outer bearing race 118 may define flat surfaces, such as shown at 120, to establish an efficient force transmitting surface engagement between the hydraulic pistons and the outer bearing race. An inner bearing race 122 is secured in non-rotatable relation with offsetting mandrel 14 by a splined connection 124 as shown in FIG. 2.
During drilling activity it is appropriate to continually adjust the position of the offsetting mandrel 14 about its pivot point P concurrently with rotary driving of the offsetting mandrel by the rotary tool collar 12 for the purpose of rotating the drill bit 20 and for maintaining the geostationary relation of the axis of the offsetting mandrel and the drill bit selectively pointed with respect to the formation being drilled. This feature permits a curved wellbore to be drilled which will have an inclination and bearing that is established by maintaining the axis of the offsetting mandrel geostationary as it is rotated by the tool collar 12. According to the present invention, as will be explained in detail below, geostationary axial positioning of the offsetting mandrel is established hydraulically under the control of servo-valves that are selectively actuated responsive to appropriate position sensing signals. As is evident from FIG. 3, hydraulic pressure induced energy for controlling the position of the offsetting mandrel 14 is generated by a hydraulic pump 126 which is located within a pump receptacle 128 defined within the rotary tool collar 12. The hydraulic pump 126 is driven by any suitable rotary drive mechanism with which the rotary steerable drilling tool 10 may be provided. As shown in FIG. 3, a positive displacement motor (PDM) or turbine 130 is rotatably driven by drilling fluid flowing from a tool flow passage 132 through the pump to thereby provide for driving rotation of a PDM or turbine output shaft 134. The PDM or turbine output shaft 134 is sealed with respect to an internal housing 136 about which a drilling fluid passage 138 is defined. If desired, the drilling fluid passage 138 may be defined by an annular space between an internal wall 140 of the tool collar 12 and the internal housing 136. This feature enables drilling fluid flow about the internal housing 136 to provide for cooling of the mechanical and electrical components that are located within the internal housing.
The output shaft 134 of the PDM or turbine 130 is sealed with respect to the rotatable tool collar 12 by a sealing element 142 to thereby prevent drilling fluid from contaminating the electrical and mechanical components that are located within the internal housing 136. The rotary shaft sealing element 142 is the only rotary seal component of the rotary steerable drilling system that is exposed to the drilling fluid. The output shaft 134 is connected in driving relation with an alternator 144 which provides an electrical output to power the electronic and electromechanical components of the drilling tool responsive to the flow of drilling fluid through the tool. The alternator is in turn provided with an output shaft 146 which is connected in driving relation with the hydraulic pump 126 so that the pump is driven responsive to the flow of drilling fluid through the actively controlled rotary steerable drilling tool. The hydraulic pump 126 may be a gear or piston pump as is suitable to the purposes of the user. The hydraulic pump 126 provides a pressurized hydraulic fluid output 148 which is conducted to servo- valves 150 and 152 which are also shown in the electronic/hydraulic schematic illustration of FIG. 4.
Responsive to the PDM or turbine 130, hydraulic pump 126 provides hydraulic fluid under pressure to hydraulic supply line 154 which supplies pressurized hydraulic fluid to a hydraulic pressure control 156 via hydraulic line 158 and conducts pressurized hydraulic fluid to the servo- valves 150 and 152 via hydraulic supply lines 160 and 162. In the valve condition shown in FIG. 4, pressurized hydraulic fluid supply to hydraulic cylinder 108 occurs via the servo-valve 152 and its hydraulic line 166, thus causing piston 116 to impart a force to the offsetting mandrel 14 along the X axis. Simultaneously, hydraulic fluid in hydraulic cylinder 106 is being returned via hydraulic line 170, servo-valve 152, and hydraulic return line 172 to the hydraulic reservoir 174. The servo-valve 150 is also positionable to supply pressurized hydraulic fluid via line 164 to the hydraulic cylinder 104 thereby causing movement of the piston 112 to impart a force through the bearing assembly to the offsetting mandrel 14 to thus shift the offsetting mandrel along the Y axis. Thus, positioning of the offsetting mandrel 14 is accomplished by operating the pistons 112 and 116 in 90 degree phase with one another. This character of valve positioning is accomplished by an electronic circuit 176 which may be described as a 90 degree phase circuit. The circuit 176 receives a signal via a signal conductor 178 from a controller 180 and then transmit signals via signal conductors 182 and 184 to the respective servo- valves 150 and 152. Thus, the servo-valves are operated simultaneously in such manner that they are shifted in a manner maintaining the 90 degree phase relationship of the force transmitting pistons.
Though the tool collar 12 is rotated during drilling operations and imparts direct driving rotation to the drill bit 20, this rotation may compromise or interfere with signals from the navigation sensors of the actively controlled rotary steerable drilling tool. To ensure against such rotational interference, the rotary tool collar 12 defines a reduced diameter intermediate section 186 as illustrated in FIG. 3. A coupling element in the form of a non-rotatable sliding sleeve 188 is located about the reduced diameter intermediate section and is supported in relatively rotatable relation therewith by bearing members 190 and 192. During drilling, the non-rotatable sliding sleeve is mechanically coupled with the wall "W" of the wellbore being drilled by a plurality of (preferably three) elastic blades such as shown at 194. The elastic blades 194 are of curved configuration and are located with the intermediate portions 196 thereof projecting radially outwardly from the sliding sleeve 188 for forcible contact with the wellbore wall "W". End portions 200 and 201 of each of the elastic blades 194 are connected to the non-rotatable sliding sleeve 188 in any suitable manner. Thus, as the rotary tool collar 12 is rotated during drilling the sliding sleeve 188 is maintained in substantially non-rotatable relation by the resistance of the elastic blades 194 with the wellbore wall "W" of the formation being drilled. Preferably the sliding sleeve 188 will have three elastic blades defining a three touch-point geometry for coupling with the borehole wall, though it may have a greater number of elastic blades without departing from the scope of the present invention. In actual operation, the non-rotatable sliding sleeve 188 may rotate slowly, perhaps only a few revolutions per hour. Electronic position signals from the navigation sensors, a resolver 202, which is mounted to the rotary tool collar 12, and a three-axis accelerometer 204 which is mounted to the slidng sleeve 188, will not require filtering or other electronic processing to minimize sensor signal interference. Since the accelerometers are located on the sliding sleeve 188 and are directly coupled with the borehole wall by the elastic blades 194, no high bandwidth sensor is required.
In addition to the three-axis accelerometer and resolver, the sliding, non-rotatable sleeve 188 will also employ a rotating transformer to transmit accelerometer measurements to the rotating section of the tool. A caliper measurement can also be integrated by measuring the radial displacement of each of the typically three elastic blades 194 relative to the non-rotatable sliding sleeve 188 of the drilling tool 10. If one end of each of the elastic blades is axially movable relative to the non-rotatable sliding sleeve 188, then the caliper measurement of the borehole may be achieved by measuring axial displacement of the elastic blades relative to the sleeve 188.
The controller 180 of the hydraulic servo-control loop system shown schematically in FIG. 4 receives electronic signal input from the resolver 202 and the three-axis accelerometer 204 via signal conductors 206 and 208. The controller 180 also receives signal input representing the radial positions of the hydraulic pistons 110 and 114 relative to the tool collar 12. The hydraulic cylinders 102 and 104 incorporate piston position measuring devices such as LVDT's 210 and 212 which measure radial displacement of the respective pistons 110 and 112 and transmit position signals via signal conductors 214 and 216 to the controller 180. These piston position signals are processed along with position signals from the resolver 202 and accelerometer 204 to yield the controller output signal that is fed via signal conductor 178 to the 90 degree phase circuit 176.
The present rotary steerable drilling system is based on hydraulic power controlled by servo-valves. No high power electronics are required. The present invention provides an effective solution to many problems that plague the steerable drilling systems of the prior art. The present invention does not require heat dissipation at high temperature when using PWM (pulse width modulation) power drives. The present invention achieves integration of formation evaluation measurements with low level signals, for example, resistivity, laterolog, and induction measurements. The control system of the present invention is low voltage, low power, and induces very low electromagnetic interferences. The present invention substantially eliminates the use of rotary seals that are in contact with the drilling fluid. The preferred embodiment set forth herein utilizes bellows seals to compensate for the oscillating motion of the offsetting mandrel relative to the rotary tool collar. The only rotary seal of the rotary steerable drilling system of the present invention is located in the power generation module, between the positive displacement motor (PDM) that is driven by the flowing drilling fluid and the alternator. According to the present invention it is not necessary to provide a source of hydraulic power from the surface. The hydraulic power system of the present invention is contained within the rotary steerable drilling tool and converts mechanical power from the flowing drilling fluid, directly via a PDM, to hydraulic power from the hydraulic pump. The hydraulic control loop of the rotary steerable drilling tool is automatically operable responsive to the signals of navigation sensors and control electronics for maintaining the offsetting mandrel oriented or pointed in a predetermined direction with its axis geostationary so that the drill bit supported thereby will drill a curved wellbore having a predetermined inclination and azimuth. The stabilization sensors used to detect the orientation of the offsetting mandrel are a resolver and at least one accelerometer. As the accelerometers are located on a non-rotating sliding sleeve that is directly coupled to the borehole by elastic coupling elements, no high bandwidth sensor is required. Bit offset is directly controlled by two servo-valves which are electrically controlled responsive to signals from navigation sensors which are processed by the electronics package on-board the rotary steerable drilling system. No additional steering system is required.
As mentioned above, certain steerable drilling systems have steering components that are in contact with the corrosive and erosive drilling fluid so that the service life thereof is compromised by the drilling fluid. The steering components of the rotary steerable drilling system of the present invention are protected from the drilling fluid. The hydraulic pistons are located internally of the drilling tool and are isolated from the drilling fluid. Virtually all of the movable mechanical components for positioning and rotary driving of the offsetting mandrel, such as the hydraulic pistons, servo-valves, and universal joint, are located within an internal chamber of the drilling tool which is filled with oil or other protective fluid medium so that these components are not exposed to drilling fluid. Thus, the service life of these components of the rotary steerable drilling system is not compromised by the drilling fluid.
In view of the foregoing it is evident that the present invention is one well adapted to attain all of the objects and features set forth, together with other objects and features which are inherent in the apparatus disclosed herein.
As will be readily apparent to those skilled in the art, the present invention may easily be produced in other specific forms without departing from its spirit or essential characteristics. The present embodiment is, therefore, to be considered as merely illustrative and not restrictive, the scope of the invention being indicated by the claims rather than the foregoing description, and all changes which come within the meaning and range of equivalence of the claims are therefore intended to be embraced therein.

Claims (25)

We claim:
1. A method for drilling wells and simultaneously steering a drill bit with an actively controlled rotary steerable drilling system, said method comprising:
(a) rotating within the wellbore being drilled a tubular rotary tool collar and an offsetting mandrel mounted within said tubular rotary tool collar for movement relative thereto, said offsetting mandrel adapted for supporting a drill bit and being rotatably driven by said tubular rotary tool collar, said actively controlled rotary steerable drilling system having signal responsive steering means;
(b) generating steering signals for adjusting the position of said offsetting mandrel relative to said tubular rotary tool collar and said offsetting mandrel; and
(c) responsive to said steering signals maintaining said offsetting mandrel oriented at predetermined angles of inclination and bearing during rotation thereof by said tubular rotary tool collar.
2. The method of claim 1, wherein a coupling element is mounted for relative rotation with said tubular rotary tool collar and has a plurality of elastic coupling blades projecting radially outwardly therefrom for contact with the wall of the wellbore being drilled, said method further comprising:
(d) maintaining said plurality of elastic coupling blades in mechanically coupled substantially static relation with the formation being drilled during rotation of said tubular rotary tool collar.
3. The method of claim 1, wherein a coupling element is disposed in rotatable relation with said tubular rotary tool collar and navigation sensors are mounted to said coupling element, said method further comprising:
(d) maintaining said coupling element and said navigation sensors in substantially static relation with the wellbore being drilled during rotation of said tubular rotary tool collar.
4. The method of claim 1, wherein said actively controlled rotary steerable drilling system has hydraulic and electrical systems for generating hydraulic fluid pressure and for generating electrical energy responsive to flowing drilling fluid, and hydraulic piston means for imparting position controlling movement to said offsetting mandrel relative to said tubular rotary tool collar, and at least one servo-valve for controlling hydraulic pressure induced movement of said hydraulic piston means responsive to said steering signals, said method further comprising:
(d) generating hydraulic pressure and electrical energy responsive to drilling fluid flow; and
(e) electrically actuating said at least one servo-valve responsive to said steering signals for controlling transmission of hydraulic pressure to said hydraulic piston means and hydraulically moving said offsetting mandrel relative to said tubular rotary tool collar.
5. The method of claim 4, wherein said hydraulic piston means includes at least two pistons each located within said tubular rotary tool collar and interposed between and in force transmitting relation with said tubular rotary tool collar and said offsetting mandrel, said method further comprising:
(f) selectively and independently controlling application of hydraulic pressure to each of said hydraulic pistons for causing piston actuated pivotal positioning of said offsetting mandrel within said tubular rotary tool collar during rotation of said tubular rotary tool collar.
6. The method of claim 1, wherein said tubular rotary tool collar has hydraulic cylinder means with hydraulic piston means movably located within said hydraulic cylinder means and disposed in force transmitting relation with said offsetting mandrel, and servo-valves for controlling hydraulic pressure to said hydraulic cylinder means, said method further comprising:
(d) detecting the respective positions of said hydraulic piston means within said hydraulic cylinder means and generating electronic piston position signals;
(e) identifying desired position change of said hydraulic piston means within said hydraulic cylinder means for desired position change of said offsetting mandrel relative to said tubular rotary tool collar; and
(f) controllably actuating said servo-valves for independently controlling hydraulic pressure communication to said hydraulic cylinder means for accomplishing said desired position change of said hydraulic piston means.
7. The method of claim 6, wherein said hydraulic cylinder means has hydraulic fluid therein for imparting hydraulic piston movement responsive to hydraulic pressure, said method further comprising:
(g) detecting the volume of hydraulic fluid within said hydraulic cylinder means for identification of piston position within said hydraulic cylinder means;
(h) changing the volume of hydraulic fluid within said hydraulic cylinder means to thus change said hydraulic piston position and thus change the position of said offsetting mandrel within said tubular rotary tool collar; and
(i) sequentially changing the position of said offsetting mandrel within said tubular rotary tool collar to maintain said offsetting mandrel in substantially geostationary relation and oriented with respect to predetermined azimuth and inclination during rotation thereof by said tubular rotary tool collar.
8. The method of claim 1, wherein said generating steering signals comprises:
(a) sensing the location and orientation of said tubular rotary tool collar and the angular position of said offsetting mandrel relative to said tubular rotary tool collar and generating real time position signals;
(b) processing said real time position signals and generating said steering signals therefrom; and
(c) controlling application of hydraulically induced force to said offsetting mandrel responsive to said steering signals to maintain said offsetting mandrel selectively positioned relative to said tubular rotary tool collar.
9. The method of claim 1, wherein said rotary steerable drilling system includes on-board electronics for receiving telemetry transmitted steering control signals, said method further comprising:
(d) transmitting steering control signals via signal telemetry from a surface location to said on-board electronics of said rotary steerable drilling system; and
(e) controlling geostationary positioning of said offsetting mandrel relative to said tubular rotary tool collar with said steering signals.
10. The method of claim 1, wherein said tubular rotary tool collar has at least two hydraulic cylinders therein each having a hydraulic piston disposed in positioning force transmitting relation with said offsetting mandrel, a pressurized hydraulic fluid supply to said hydraulic cylinders and hydraulic servo-valve means for selectively communicating pressurized hydraulic fluid from said hydraulic fluid supply to said hydraulic cylinders, and a controller for receiving position signals and selectively actuating said hydraulic servo-valve means for hydraulically controlled positioning of said offsetting mandrel relative to said rotary tool collar, said method further comprising:
(d) generating piston position signals representing the positions of said hydraulic pistons within said hydraulic cylinders;
(e) providing tool collar position signals representing the position of said tubular rotary tool collar; and
(f) processing said piston position signals and said tool collar position signals by said controller and providing valve position output signals from said controller for changing the position of said hydraulic servo-valves as necessary to maintain a predetermined angular position of said offsetting mandrel relative to said tubular rotary tool collar.
11. A method for drilling wells and simultaneously steering a drill bit with an actively controlled rotary steerable drilling system, said method comprising:
(a) rotating within the wellbore being drilled a tubular rotary tool collar and an offsetting mandrel mounted within said tubular rotary tool collar for movement relative thereto, said offsetting mandrel adapted for supporting a drill bit and being rotatably driven by said tubular rotary tool collar;
(b) controlling the movement of said offsetting mandrel within said rotary tool collar by means of a plurality of pistons mounted between said mandrel and said tool collar;
(c) generating steering signals representing positional aspects of said tubular rotary tool collar and said offsetting mandrel; and
(d) responsive to said steering signals, maintaining said offsetting mandrel substantially geostationarily positioned and oriented at predetermined angles of inclination and bearing during driving rotation thereof by said tubular rotary tool collar.
12. An actively controlled rotary steerable well drilling apparatus, comprising:
(a) a tubular rotary tool collar adapted to be rotatably driven for well drilling;
(b) an offsetting mandrel mounted within said tubular rotary tool collar for positioning movement relative to said tubular rotary tool collar, said offsetting mandrel being rotated by said tubular rotary tool collar and supporting a drill bit;
(c) actuator means maintaining said offsetting mandrel selectively oriented relative to said tubular rotary tool collar to thus maintain said offsetting mandrel and drill bit pointed in a selected direction for drilling along an intended course; and
(d) means selectively controlling said actuator means.
13. The actively controlled rotary steerable well drilling apparatus of claim 12, further comprising:
(e) a coupling element rotatably mounted to said tubular rotary tool collar and having substantially static coupling contact with the wall of the wellbore being drilled; and
(f) navigation sensors mounted to said coupling element and generating navigation signals.
14. The actively controlled rotary steerable well drilling apparatus of claim 13, further comprising:
(g) resilient coupling means projecting from said coupling element and maintaining said substantially static coupling contact with the wall of the wellbore being drilled.
15. The actively controlled rotary steerable well drilling apparatus of claim 14, wherein
said resilient coupling means includes a plurality of resilient coupling members located in evenly spaced relation about said coupling element; and further comprising:
(h) means for detecting the relative positions of said resilient coupling members within said coupling element and generating therefrom signals representing caliper measurement of the wellbore being drilled.
16. The actively controlled rotary steerable well drilling apparatus of claim 13, wherein
said actuator means are hydraulic actuator means; and further comprising:
(g) hydraulic fluid supply means located within said tubular rotary tool collar;
(h) electrical power supply means located within said tubular rotary tool collar;
(i) servo-valve means within said hydraulic fluid supply means for controlling the supply of pressurized hydraulic fluid to said hydraulic actuator means;
(j) position sensing means for sensing the position of said hydraulic actuator means and providing a position signal output; and
(k) controller means for receiving and processing said navigation signals and said position signal output and providing positioning control signals for selectively controlling actuation of said servo-valve means.
17. The actively controlled rotary steerable well drilling apparatus of claim 13, further comprising:
(g) telemetry means within said coupling element for receiving positioning control signals transmitted from the surface and providing a telemetry signal output;
(h) controller means for receiving and processing said telemetry signal output and providing said positioning control signals; and wherein
said actuator means have positioning control of said offsetting mandrel responsive to said positioning control signals.
18. The actively controlled rotary steerable well drilling apparatus of claim 13, further comprising:
(g) at least one accelerometer supported by said coupling element for detecting rotation of said tubular rotary tool collar relative to said coupling element and providing position signals responsive thereto;
(h) at least one resolver supported by said tubular rotary tool collar for detecting rotation of said tubular rotary tool collar relative to said coupling element and providing position signals responsive thereto; and
(i) controller means for receiving and processing said position signals and providing positioning control signals; and wherein
said actuator means positions said offsetting mandrel relative to said tubular rotary tool collar responsive to said positioning control signals.
19. The actively controlled rotary steerable well drilling apparatus of claim 12, wherein said actuator means comprises:
(a) hydraulic cylinder means within said tubular rotary tool collar;
(b) hydraulic piston means within said hydraulic cylinder means and having force transmitting relation with said offsetting mandrel;
(c) hydraulic supply means for supplying pressurized hydraulic fluid to said hydraulic cylinder means for maintaining substantially geostationary positioning of said offsetting mandrel within said tubular rotary tool collar; and
(d) servo-valve means for controllably actuating said hydraulic supply means and maintaining said offsetting mandrel selectively oriented relative to said tubular rotary tool collar during rotation of said tubular rotary tool collar.
20. The actively controlled rotary steerable well drilling apparatus of claim 12, further comprising:
(e) a universal joint within said tubular rotary tool collar; and wherein
said offsetting mandrel is pivotally supported by said universal joint and is pivotally movable relative to said tubular rotary tool collar for positioning of said offsetting mandrel relative to the formation being drilled.
21. The actively controlled rotary steerable well drilling apparatus of claim 20, wherein:
said universal joint establishes direct rotary driving relation of said tubular rotary tool collar with said offsetting mandrel.
22. The actively controlled rotary steerable well drilling apparatus of claim 12, wherein
said offsetting mandrel defines a flow passage for flow of drilling fluid therethrough; and further comprising:
(e) collar seal means establishing sealing between said tubular rotary tool collar and said offsetting mandrel and defining a protective fluid chamber for containing a protective fluid medium, said collar seal means isolating said protective fluid chamber from intrusion by drilling fluid.
23. The actively controlled rotary steerable well drilling apparatus of claim 12, further comprising:
(e) a hydraulic fluid supply system located within said tubular rotary tool collar and powered by the flow of drilling fluid during drilling, said hydraulic fluid supply system supplying pressurized hydraulic fluid to said actuator means;
(f) an electrical power supply system located within said tubular rotary tool collar and powered by the flow of drilling fluid during drilling; and
(g) servo-valve means within said hydraulic fluid supply system for controlling the supply of pressurized hydraulic fluid to said actuator means.
24. The actively controlled rotary steerable well drilling apparatus of claim 23, further comprising:
(h) a coupling element mounted in rotatable relation with said tubular rotary tool collar;
(i) navigation sensors mounted to said coupling element and providing navigation signals; and
(j) controller means located within said coupling element for receiving said navigation signals, said controller means providing valve control output signals for selectively controlling operation of said servo-valve means.
25. The actively controlled rotary steerable well drilling apparatus of claim 12, wherein
said actuator means comprises at least two hydraulically movable piston elements each having force transmitting relation with said offsetting mandrel; and wherein
upon actuation thereof said hydraulically movable piston elements move said offsetting mandrel relative to said tubular rotary tool collar to maintain selective positioning thereof relative to said tubular rotary tool collar thereby maintaining selected positioning of said offsetting mandrel with respect to the formation being drilled.
US09/268,596 1999-03-15 1999-03-15 Rotary steerable well drilling system utilizing hydraulic servo-loop Expired - Lifetime US6109372A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/268,596 US6109372A (en) 1999-03-15 1999-03-15 Rotary steerable well drilling system utilizing hydraulic servo-loop
AU14961/00A AU734258B2 (en) 1999-03-15 2000-02-08 Rotary steerable well drilling system utilizing hydraulic servo-loop
CA002298375A CA2298375C (en) 1999-03-15 2000-02-11 Rotary steerable well drilling system utilizing hydraulic servo-loop
GB0003417A GB2347951B (en) 1999-03-15 2000-02-16 Rotary steerable well drilling system utilizing hydraulic servo-loop
BR0000998-9A BR0000998A (en) 1999-03-15 2000-03-02 Well drilling process and apparatus and rotary steerable well drilling system using hydraulic servo-circuit
NO20001305A NO20001305L (en) 1999-03-15 2000-03-14 Controllable rotary well drilling system with hydraulic servo loop
CN00104162.2A CN1222676C (en) 1999-03-15 2000-03-15 Rotary steering drilling system using hydraulic servo loop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/268,596 US6109372A (en) 1999-03-15 1999-03-15 Rotary steerable well drilling system utilizing hydraulic servo-loop

Publications (1)

Publication Number Publication Date
US6109372A true US6109372A (en) 2000-08-29

Family

ID=23023676

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/268,596 Expired - Lifetime US6109372A (en) 1999-03-15 1999-03-15 Rotary steerable well drilling system utilizing hydraulic servo-loop

Country Status (7)

Country Link
US (1) US6109372A (en)
CN (1) CN1222676C (en)
AU (1) AU734258B2 (en)
BR (1) BR0000998A (en)
CA (1) CA2298375C (en)
GB (1) GB2347951B (en)
NO (1) NO20001305L (en)

Cited By (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6247542B1 (en) * 1998-03-06 2001-06-19 Baker Hughes Incorporated Non-rotating sensor assembly for measurement-while-drilling applications
US6394193B1 (en) * 2000-07-19 2002-05-28 Shlumberger Technology Corporation Downhole adjustable bent housing for directional drilling
US6439321B1 (en) * 2000-04-28 2002-08-27 Halliburton Energy Services, Inc. Piston actuator assembly for an orienting device
US6467341B1 (en) 2001-04-24 2002-10-22 Schlumberger Technology Corporation Accelerometer caliper while drilling
US6467557B1 (en) 1998-12-18 2002-10-22 Western Well Tool, Inc. Long reach rotary drilling assembly
US6470976B2 (en) * 1999-09-24 2002-10-29 Vermeer Manufacturing Company Excavation system and method employing adjustable down-hole steering and above-ground tracking
US6470974B1 (en) * 1999-04-14 2002-10-29 Western Well Tool, Inc. Three-dimensional steering tool for controlled downhole extended-reach directional drilling
EP1258593A2 (en) * 2001-05-09 2002-11-20 Schlumberger Technology B.V. Rotary steerable drilling tool
US20030010534A1 (en) * 1998-12-21 2003-01-16 Chen Chen-Kang D. Steerable drilling system and method
US20030121702A1 (en) * 2001-12-19 2003-07-03 Geoff Downton Hybrid Rotary Steerable System
US6595303B2 (en) 2000-11-03 2003-07-22 Canadian Downhole Drill Systems Rotary steerable drilling tool
US6601658B1 (en) 1999-11-10 2003-08-05 Schlumberger Wcp Ltd Control method for use with a steerable drilling system
US6810972B2 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having a one bolt attachment system
US6810971B1 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit
US6810973B2 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having offset cutting tooth paths
US6814168B2 (en) 2002-02-08 2004-11-09 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having elevated wear protector receptacles
US6827159B2 (en) 2002-02-08 2004-12-07 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having an offset drilling fluid seal
KR100460984B1 (en) * 2004-03-17 2004-12-09 이기호 An Auto Lubrication Device for Hydraulic Breaker
US6840336B2 (en) 2001-06-05 2005-01-11 Schlumberger Technology Corporation Drilling tool with non-rotating sleeve
US20050012340A1 (en) * 2003-07-15 2005-01-20 Cousins Edward Thomas Downhole electrical submersible power generator
US6857484B1 (en) * 2003-02-14 2005-02-22 Noble Drilling Services Inc. Steering tool power generating system and method
US20050109542A1 (en) * 2003-11-26 2005-05-26 Geoff Downton Steerable drilling system
US6962214B2 (en) 2001-04-02 2005-11-08 Schlumberger Wcp Ltd. Rotary seal for directional drilling tools
WO2005124093A1 (en) * 2004-03-17 2005-12-29 Ki Ho Lee An auto lubrication device for hydraulic breaker
US20060113113A1 (en) * 2002-02-19 2006-06-01 Smith International, Inc. Steerable underreamer/stabilizer assembly and method
US20060180244A1 (en) * 1997-07-24 2006-08-17 Adan Ayala Portable work bench
US20060284975A1 (en) * 2005-04-29 2006-12-21 Schlumberger Technology Corporation Borehole imaging system for conductive and resistive drilling fluids
US20070050145A1 (en) * 2005-08-25 2007-03-01 Lang Zhan Technique and apparatus for use in well testing
US7234543B2 (en) 2003-04-25 2007-06-26 Intersyn Ip Holdings, Llc Systems and methods for directionally drilling a borehole using a continuously variable transmission
US20070144789A1 (en) * 2005-10-25 2007-06-28 Simon Johnson Representation of whirl in fixed cutter drill bits
US20070162235A1 (en) * 2005-08-25 2007-07-12 Schlumberger Technology Corporation Interpreting well test measurements
US20070163808A1 (en) * 2006-01-18 2007-07-19 Smith International, Inc. Drilling and hole enlargement device
US20070163810A1 (en) * 2006-01-18 2007-07-19 Smith International, Inc. Flexible directional drilling apparatus and method
US20070205022A1 (en) * 2006-03-02 2007-09-06 Baker Hughes Incorporated Automated steerable hole enlargement drilling device and methods
US20070241670A1 (en) * 2006-04-17 2007-10-18 Battelle Memorial Institute Organic materials with phosphine sulfide moieties having tunable electric and electroluminescent properties
US20070251726A1 (en) * 2006-04-28 2007-11-01 Schlumberger Technology Corporation Rotary Steerable Drilling System
WO2008145950A1 (en) * 2007-05-30 2008-12-04 Sondex Limited Orientation sensor for downhole tool
US20100108386A1 (en) * 2004-12-01 2010-05-06 Ruben Martinez System, apparatus, and method of conducting measurements of a borehole
US20100139981A1 (en) * 2006-03-02 2010-06-10 Baker Hughes Incorporated Hole Enlargement Drilling Device and Methods for Using Same
CN102606073A (en) * 2012-04-06 2012-07-25 西安石油大学 Guide mechanism for directing rotary steering drilling tool
CN102704841A (en) * 2012-05-30 2012-10-03 中国石油化工集团公司 Guide drilling tool for developing shale gas
US20120255739A1 (en) * 2011-04-11 2012-10-11 Halliburton Energy Services, Inc. Selectively variable flow restrictor for use in a subterranean well
WO2013028490A1 (en) * 2011-08-19 2013-02-28 Precision Energy Services, Inc. Rotary steerable assembly inhibiting counterclockwisewhirl during directional drilling
WO2012027271A3 (en) * 2010-08-26 2013-03-21 Wells David A H Counter rotating drilling system
US20130112483A1 (en) * 2010-06-18 2013-05-09 Schlumberger Technology Corporation Oil Operated Rotary Steerable System
US8505632B2 (en) 2004-12-14 2013-08-13 Schlumberger Technology Corporation Method and apparatus for deploying and using self-locating downhole devices
US8616290B2 (en) 2010-04-29 2013-12-31 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow using movable flow diverter assembly
US8640793B2 (en) 2011-10-19 2014-02-04 Earth Tool Company, Llc Dynamic steering tool
US8657017B2 (en) 2009-08-18 2014-02-25 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8684094B2 (en) 2011-11-14 2014-04-01 Halliburton Energy Services, Inc. Preventing flow of undesired fluid through a variable flow resistance system in a well
US8739880B2 (en) 2011-11-07 2014-06-03 Halliburton Energy Services, P.C. Fluid discrimination for use with a subterranean well
WO2014099783A1 (en) 2012-12-19 2014-06-26 Schlumberger Canada Limited Motor control system
WO2014099789A1 (en) 2012-12-19 2014-06-26 Schlumberger Canada Limited Progressive cavity based control system
US20140182941A1 (en) * 2012-12-28 2014-07-03 Baker Hughes Incorporated Apparatus and method for drilling deviated wellbores that utilizes an internally tilted drive shaft in a drilling assembly
US8851180B2 (en) 2010-09-14 2014-10-07 Halliburton Energy Services, Inc. Self-releasing plug for use in a subterranean well
US8869916B2 (en) 2010-09-09 2014-10-28 National Oilwell Varco, L.P. Rotary steerable push-the-bit drilling apparatus with self-cleaning fluid filter
US8905144B2 (en) 2009-08-18 2014-12-09 Halliburton Energy Services, Inc. Variable flow resistance system with circulation inducing structure therein to variably resist flow in a subterranean well
US8950502B2 (en) 2010-09-10 2015-02-10 Halliburton Energy Services, Inc. Series configured variable flow restrictors for use in a subterranean well
US8991506B2 (en) 2011-10-31 2015-03-31 Halliburton Energy Services, Inc. Autonomous fluid control device having a movable valve plate for downhole fluid selection
US9016400B2 (en) 2010-09-09 2015-04-28 National Oilwell Varco, L.P. Downhole rotary drilling apparatus with formation-interfacing members and control system
CN104775757A (en) * 2015-03-26 2015-07-15 中国海洋石油总公司 Static pointing type rotary steering drilling tool
US9127526B2 (en) 2012-12-03 2015-09-08 Halliburton Energy Services, Inc. Fast pressure protection system and method
US20150268651A1 (en) * 2012-12-07 2015-09-24 Aircelle Method for controlling a drilling robot, and drilling robot implementing said method
EP2350421A4 (en) * 2008-06-05 2015-11-18 Norhard As Rock drilling machine
WO2016003715A1 (en) * 2014-06-30 2016-01-07 Schlumberger Canada Limited Measuring fluid properties in a downhole tool
US9238953B2 (en) 2011-11-08 2016-01-19 Schlumberger Technology Corporation Completion method for stimulation of multiple intervals
US9260952B2 (en) 2009-08-18 2016-02-16 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow in an autonomous valve using a sticky switch
US9291032B2 (en) 2011-10-31 2016-03-22 Halliburton Energy Services, Inc. Autonomous fluid control device having a reciprocating valve for downhole fluid selection
US9366087B2 (en) 2013-01-29 2016-06-14 Schlumberger Technology Corporation High dogleg steerable tool
US9394759B2 (en) 2009-08-18 2016-07-19 Halliburton Energy Services, Inc. Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well
US9399892B2 (en) 2013-05-13 2016-07-26 Baker Hughes Incorporated Earth-boring tools including movable cutting elements and related methods
EP2864570A4 (en) * 2012-06-21 2016-07-27 Services Petroliers Schlumberger Directional drilling system
US9404349B2 (en) 2012-10-22 2016-08-02 Halliburton Energy Services, Inc. Autonomous fluid control system having a fluid diode
EP2859171A4 (en) * 2012-06-12 2016-09-07 Halliburton Energy Services Inc Modular rotary steerable actuators, steering tools, and rotary steerable drilling systems with modular actuators
US20160276900A1 (en) * 2014-09-11 2016-09-22 Halliburton Energy Services, Inc. Electricity generation within a downhole drilling motor
US9464482B1 (en) 2016-01-06 2016-10-11 Isodrill, Llc Rotary steerable drilling tool
US9506320B2 (en) 2011-11-07 2016-11-29 Halliburton Energy Services, Inc. Variable flow resistance for use with a subterranean well
US9556678B2 (en) 2012-05-30 2017-01-31 Penny Technologies S.À R.L. Drilling system, biasing mechanism and method for directionally drilling a borehole
US9593567B2 (en) 2011-12-01 2017-03-14 National Oilwell Varco, L.P. Automated drilling system
US9617791B2 (en) 2013-03-14 2017-04-11 Smith International, Inc. Sidetracking system and related methods
WO2017065738A1 (en) * 2015-10-12 2017-04-20 Halliburton Energy Services, Inc. Hybrid drive for a fully rotating downhole tool
US9631468B2 (en) 2013-09-03 2017-04-25 Schlumberger Technology Corporation Well treatment
US9650851B2 (en) 2012-06-18 2017-05-16 Schlumberger Technology Corporation Autonomous untethered well object
US9657561B1 (en) 2016-01-06 2017-05-23 Isodrill, Inc. Downhole power conversion and management using a dynamically variable displacement pump
US9695654B2 (en) 2012-12-03 2017-07-04 Halliburton Energy Services, Inc. Wellhead flowback control system and method
WO2017119878A1 (en) * 2016-01-06 2017-07-13 Isodrill, Llc Rotary steerable drilling tool
US9759014B2 (en) 2013-05-13 2017-09-12 Baker Hughes Incorporated Earth-boring tools including movable formation-engaging structures and related methods
US9850712B2 (en) 2013-12-12 2017-12-26 Schlumberger Technology Corporation Determining drilling state for trajectory control
US20180002991A1 (en) * 2015-03-06 2018-01-04 Halliburton Energy Services, Inc. Load-bearing universal joint with self-energizing seals for a rotary steerable drilling tool
US9869140B2 (en) 2014-07-07 2018-01-16 Schlumberger Technology Corporation Steering system for drill string
US20180016844A1 (en) * 2016-07-14 2018-01-18 Baker Hughes Incorporated Rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
US9926779B2 (en) 2011-11-10 2018-03-27 Schlumberger Technology Corporation Downhole whirl detection while drilling
US9933544B2 (en) 2014-12-24 2018-04-03 Halliburton Energy Services, Inc. Near-bit gamma ray sensors in a rotating section of a rotary steerable system
US9932820B2 (en) 2013-07-26 2018-04-03 Schlumberger Technology Corporation Dynamic calibration of axial accelerometers and magnetometers
CN107905731A (en) * 2017-12-11 2018-04-13 新疆贝肯能源工程股份有限公司 Rotary steerable drilling equipment
US9977146B2 (en) 2015-02-19 2018-05-22 Halliburton Energy Services, Inc. Gamma detection sensors in a rotary steerable tool
US10000972B2 (en) 2013-08-29 2018-06-19 Halliburton Energy Services, Inc. Downhole adjustable bent motor
CN108194434A (en) * 2018-01-03 2018-06-22 中国石油集团西部钻探工程有限公司 Plunger bias formula rotary steering hydraulic device
RU2660711C1 (en) * 2014-12-29 2018-07-09 Халлибертон Энерджи Сервисез, Инк. Casing of variable stiffness with fixed bending for directed drilling
US10066448B2 (en) * 2014-08-28 2018-09-04 Schlumberger Technology Corporation Downhole steering system
WO2018184087A1 (en) * 2017-04-03 2018-10-11 Halliburton Energy Services, Inc. Pressure balanced seal assembly
US10190368B2 (en) 2013-03-15 2019-01-29 Smith International, Inc. Underreamer for increasing a wellbore diameter
US10214964B2 (en) 2013-03-29 2019-02-26 Schlumberger Technology Corporation Closed loop control of drilling toolface
US10267091B2 (en) 2016-07-14 2019-04-23 Baker Hughes, A Ge Company, Llc Drilling assembly utilizing tilted disintegrating device for drilling deviated wellbores
US20190128070A1 (en) * 2017-10-31 2019-05-02 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Static Push-the-Bit Articulated High-Built-Rate Rotary Steerable Tool and Control Method Thereof
US10378283B2 (en) 2016-07-14 2019-08-13 Baker Hughes, A Ge Company, Llc Rotary steerable system with a steering device around a drive coupled to a disintegrating device for forming deviated wellbores
USD871460S1 (en) * 2016-07-20 2019-12-31 Smart Downhole Tools B.V. Tilt housing of a downhole adjustable drilling inclination tool
US10626674B2 (en) 2016-02-16 2020-04-21 Xr Lateral Llc Drilling apparatus with extensible pad
RU2721982C1 (en) * 2017-02-28 2020-05-25 Дженерал Электрик Компани Hybrid rotary controlled system and method
US10662711B2 (en) 2017-07-12 2020-05-26 Xr Lateral Llc Laterally oriented cutting structures
US10738580B1 (en) * 2019-02-14 2020-08-11 Service Alliance—Houston LLC Electric driven hydraulic fracking system
US10858934B2 (en) 2018-03-05 2020-12-08 Baker Hughes, A Ge Company, Llc Enclosed module for a downhole system
CN112211556A (en) * 2019-07-09 2021-01-12 万晓跃 Static directional rotary guide device based on hydraulic principle
US10890030B2 (en) * 2016-12-28 2021-01-12 Xr Lateral Llc Method, apparatus by method, and apparatus of guidance positioning members for directional drilling
US10907412B2 (en) 2016-03-31 2021-02-02 Schlumberger Technology Corporation Equipment string communication and steering
US10975641B1 (en) 2019-02-14 2021-04-13 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US10982498B1 (en) 2019-02-14 2021-04-20 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US10989031B2 (en) 2019-02-14 2021-04-27 National Service Alliance-Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US11021911B2 (en) 2017-11-14 2021-06-01 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Rotary guiding device based on radial driving force
CN113404429A (en) * 2021-07-19 2021-09-17 万晓跃 Composite guiding drilling tool and method
US11230887B2 (en) 2018-03-05 2022-01-25 Baker Hughes, A Ge Company, Llc Enclosed module for a downhole system
US11255136B2 (en) 2016-12-28 2022-02-22 Xr Lateral Llc Bottom hole assemblies for directional drilling
US11280187B2 (en) * 2019-12-20 2022-03-22 Schlumberger Technology Corporation Estimating a formation index using pad measurements
US11371288B2 (en) 2017-05-18 2022-06-28 Halliburton Energy Services, Inc. Rotary steerable drilling push-the-point-the-bit
US11396775B2 (en) * 2016-07-14 2022-07-26 Baker Hughes, A Ge Company, Llc Rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
US20230025427A1 (en) * 2019-12-20 2023-01-26 Schlumberger Technology Corporation Estimating rate of penetration using pad displacement measurements
US11639647B2 (en) * 2020-07-31 2023-05-02 Saudi Arabian Oil Company Self-powered sensors for detecting downhole parameters
US11920459B2 (en) * 2020-12-09 2024-03-05 Schlumberger Technology Corporation Estimating rate of penetration using pad displacement measurements

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6340063B1 (en) 1998-01-21 2002-01-22 Halliburton Energy Services, Inc. Steerable rotary directional drilling method
US6948572B2 (en) 1999-07-12 2005-09-27 Halliburton Energy Services, Inc. Command method for a steerable rotary drilling device
GB0014802D0 (en) * 2000-06-16 2000-08-09 Head Philip Directional drilling tool
GB0106368D0 (en) * 2001-03-15 2001-05-02 Xl Technology Ltd Method and apparatus for directional actuation
GB2398091B (en) * 2001-05-14 2005-06-29 Baker Hughes Inc Method and apparatus for monitoring and recording of the operating condition of a downhole drill bit during drilling operations
CA2351978C (en) 2001-06-28 2006-03-14 Halliburton Energy Services, Inc. Drilling direction control device
CN100432367C (en) * 2002-09-10 2008-11-12 中国地质大学(武汉) Automatic perpendicular drilling tool
US7084782B2 (en) 2002-12-23 2006-08-01 Halliburton Energy Services, Inc. Drill string telemetry system and method
CA2448723C (en) 2003-11-07 2008-05-13 Halliburton Energy Services, Inc. Variable gauge drilling apparatus and method of assembly thereof
FR2898935B1 (en) * 2006-03-27 2008-07-04 Francois Guy Jacques Re Millet DEVICE FOR ORIENTING DRILLING TOOLS
CA2545377C (en) 2006-05-01 2011-06-14 Halliburton Energy Services, Inc. Downhole motor with a continuous conductive path
CN101364757B (en) * 2008-06-11 2012-01-11 中国石油集团钻井工程技术研究院 Down-hole electric generating apparatus
CN102493799A (en) * 2011-12-20 2012-06-13 北京凯奔雷特技术有限公司 Vertical navigation controller for petroleum drilling
GB201214784D0 (en) * 2012-08-20 2012-10-03 Smart Stabilizer Systems Ltd Articulating component of a downhole assembly
CN102900430B (en) * 2012-09-16 2015-04-22 中国石油大学(华东) Pumping pressure interference elimination method for drilling fluid continuous pressure wave signals
CN203230340U (en) * 2012-10-10 2013-10-09 崔刚明 Drilling well guider
US9970235B2 (en) 2012-10-15 2018-05-15 Bertrand Lacour Rotary steerable drilling system for drilling a borehole in an earth formation
CN104775803B (en) * 2012-10-19 2017-07-14 中国石油大学(华东) A kind of well track to dynamic guiding type rotary steering drilling tool is servo-actuated and stable control method
CN103437704B (en) * 2013-08-02 2015-09-23 中石化石油工程机械有限公司 Backup directional type rotary steerable drilling device
CN104196451B (en) * 2014-08-27 2016-04-27 中国石油集团长城钻探工程有限公司 Rotary steerable drilling system
CN105525875B (en) * 2014-09-28 2017-09-15 中国石油化工集团公司 rotary steerable drilling device
CN106761713B (en) * 2016-12-05 2019-09-17 中国石油大学(华东) Down-hole information acoustic signals relay system
CN108301770B (en) * 2017-01-12 2019-11-05 通用电气公司 Automatically adjust oriented drilling device and method
CN107366536B (en) * 2017-09-13 2020-05-08 昆山哈伯希尔能源科技有限公司 Method for measuring borehole diameter while drilling based on rotary steering
CN109372836B (en) * 2018-11-23 2020-03-24 中国科学院地质与地球物理研究所 Hydraulic oil circuit system for full-rotation guiding tool and guiding tool control method
CN110185391A (en) * 2019-06-21 2019-08-30 蒋璐阳 A kind of wellbore drilling system
CN110905409B (en) * 2019-11-28 2021-06-15 西安石大斯泰瑞油田技术有限公司 Method for realizing high build-up rate by high drilling speed rotary steering system
CN112252973A (en) * 2020-10-10 2021-01-22 广东省构建工程建设有限公司 Non-excavation directional drilling construction method for pipeline buried channel

Citations (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33751A (en) * 1861-11-19 Improvement in oilers
US2319236A (en) * 1940-08-22 1943-05-18 Sperry Sun Well Surveying Co Deflecting tool
US2687282A (en) * 1952-01-21 1954-08-24 Eastman Oil Well Survey Co Reaming bit structure for earth bores
US2694549A (en) * 1952-01-21 1954-11-16 Eastman Oil Well Survey Co Joint structure between flexible shafting and drill bit structure for drilling lateral bores
US2876992A (en) * 1954-11-04 1959-03-10 Eastman Oil Well Survey Co Deflecting tools
US3068946A (en) * 1958-12-15 1962-12-18 Eastman Oil Well Survey Co Knuckle joint
US3098534A (en) * 1960-06-14 1963-07-23 Carr Warren Farrell Directional drill with hydraulically extended shoe
US3370657A (en) * 1965-10-24 1968-02-27 Trudril Inc Stabilizer and deflecting tool
US3457999A (en) * 1967-08-31 1969-07-29 Intern Systems & Controls Corp Fluid actuated directional drilling sub
US3561549A (en) * 1968-06-07 1971-02-09 Smith Ind International Inc Slant drilling tools for oil wells
US3575247A (en) * 1969-03-06 1971-04-20 Shell Oil Co Diamond bit unit
US3637032A (en) * 1970-01-22 1972-01-25 John D Jeter Directional drilling apparatus
US3667556A (en) * 1970-01-05 1972-06-06 John Keller Henderson Directional drilling apparatus
US3743034A (en) * 1971-05-03 1973-07-03 Shell Oil Co Steerable drill string
US3799279A (en) * 1972-09-25 1974-03-26 R Farris Optionally stabilized drilling tool
US3878903A (en) * 1973-12-04 1975-04-22 Martin Dee Cherrington Apparatus and process for drilling underground arcuate paths
US3903974A (en) * 1974-03-12 1975-09-09 Roy H Cullen Drilling assembly, deviation sub therewith, and method of using same
US4040495A (en) * 1975-12-22 1977-08-09 Smith International, Inc. Drilling apparatus
US4040494A (en) * 1975-06-09 1977-08-09 Smith International, Inc. Drill director
US4076084A (en) * 1973-07-16 1978-02-28 Amoco Production Company Oriented drilling tool
US4080115A (en) * 1976-09-27 1978-03-21 A-Z International Tool Company Progressive cavity drive train
US4184553A (en) * 1978-10-25 1980-01-22 Conoco, Inc. Method for controlling direction of horizontal borehole
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
US4211292A (en) * 1978-07-27 1980-07-08 Evans Robert F Borehole angle control by gage corner removal effects
US4220213A (en) * 1978-12-07 1980-09-02 Hamilton Jack E Method and apparatus for self orienting a drill string while drilling a well bore
US4291773A (en) * 1978-07-27 1981-09-29 Evans Robert F Strictive material deflectable collar for use in borehole angle control
US4305474A (en) * 1980-02-04 1981-12-15 Conoco Inc. Thrust actuated drill guidance device
US4416339A (en) * 1982-01-21 1983-11-22 Baker Royce E Bit guidance device and method
US4428441A (en) * 1979-04-04 1984-01-31 Mobil Oil Corporation Method and apparatus for reducing the differential pressure sticking tendency of a drill string
US4449595A (en) * 1982-05-17 1984-05-22 Holbert Don R Method and apparatus for drilling a curved bore
US4456080A (en) * 1980-09-19 1984-06-26 Holbert Don R Stabilizer method and apparatus for earth-boring operations
US4461359A (en) * 1982-04-23 1984-07-24 Conoco Inc. Rotary drill indexing system
US4465147A (en) * 1982-02-02 1984-08-14 Shell Oil Company Method and means for controlling the course of a bore hole
US4492276A (en) * 1982-11-17 1985-01-08 Shell Oil Company Down-hole drilling motor and method for directional drilling of boreholes
US4523652A (en) * 1983-07-01 1985-06-18 Atlantic Richfield Company Drainhole drilling assembly and method
US4560013A (en) * 1984-02-16 1985-12-24 Baker Oil Tools, Inc. Apparatus for directional drilling and the like of subterranean wells
GB2172324A (en) * 1985-03-16 1986-09-17 Cambridge Radiation Tech Drilling apparatus
GB2172325A (en) * 1985-03-16 1986-09-17 Cambridge Radiation Tech Controlling drilling direction
US4635736A (en) * 1985-11-22 1987-01-13 Shirley Kirk R Drill steering apparatus
US4637479A (en) * 1985-05-31 1987-01-20 Schlumberger Technology Corporation Methods and apparatus for controlled directional drilling of boreholes
US4638873A (en) * 1984-05-23 1987-01-27 Welborn Austin E Direction and angle maintenance tool and method for adjusting and maintaining the angle of deviation of a directionally drilled borehole
GB2177738A (en) * 1985-07-13 1987-01-28 Cambridge Radiation Tech Control of drilling courses in the drilling of bore holes
US4662458A (en) * 1985-10-23 1987-05-05 Nl Industries, Inc. Method and apparatus for bottom hole measurement
US4667751A (en) * 1985-10-11 1987-05-26 Smith International, Inc. System and method for controlled directional drilling
US4697651A (en) * 1986-12-22 1987-10-06 Mobil Oil Corporation Method of drilling deviated wellbores
US4699224A (en) * 1986-05-12 1987-10-13 Sidewinder Joint Venture Method and apparatus for lateral drilling in oil and gas wells
US4714118A (en) * 1986-05-22 1987-12-22 Flowmole Corporation Technique for steering and monitoring the orientation of a powered underground boring device
US4732223A (en) * 1984-06-12 1988-03-22 Universal Downhole Controls, Ltd. Controllable downhole directional drilling tool
US4739843A (en) * 1986-05-12 1988-04-26 Sidewinder Tool Joint Venture Apparatus for lateral drilling in oil and gas wells
US4807708A (en) * 1985-12-02 1989-02-28 Drilex Uk Limited And Eastman Christensen Company Directional drilling of a drill string
US4811798A (en) * 1986-10-30 1989-03-14 Team Construction And Fabrication, Inc. Drilling motor deviation tool
US4821815A (en) * 1986-05-22 1989-04-18 Flowmole Corporation Technique for providing an underground tunnel utilizing a powered boring device
US4836301A (en) * 1986-05-16 1989-06-06 Shell Oil Company Method and apparatus for directional drilling
US4848490A (en) * 1986-07-03 1989-07-18 Anderson Charles A Downhole stabilizers
US4858705A (en) * 1985-05-07 1989-08-22 Institut Francais Du Petrole Assembly for making oriented bore-holes
US4867255A (en) * 1988-05-20 1989-09-19 Flowmole Corporation Technique for steering a downhole hammer
US4880067A (en) * 1988-02-17 1989-11-14 Baroid Technology, Inc. Apparatus for drilling a curved borehole
US4895214A (en) * 1988-11-18 1990-01-23 Schoeffler William N Directional drilling tool
US4901804A (en) * 1988-08-15 1990-02-20 Eastman Christensen Company Articulated downhole surveying instrument assembly
US4938298A (en) * 1989-02-24 1990-07-03 Becfield Horizontal Drilling Services Company Directional well control
US4948925A (en) * 1989-11-30 1990-08-14 Amoco Corporation Apparatus and method for rotationally orienting a fluid conducting conduit
US4947944A (en) * 1987-06-16 1990-08-14 Preussag Aktiengesellschaft Device for steering a drilling tool and/or drill string
US4951760A (en) * 1985-01-07 1990-08-28 Smf International Remote control actuation device
US4995465A (en) * 1989-11-27 1991-02-26 Conoco Inc. Rotary drillstring guidance by feedrate oscillation
US5050692A (en) * 1987-08-07 1991-09-24 Baker Hughes Incorporated Method for directional drilling of subterranean wells
US5052501A (en) * 1990-08-01 1991-10-01 Douglas Wenzel Adjustable bent housing
USRE33751E (en) 1985-10-11 1991-11-26 Smith International, Inc. System and method for controlled directional drilling
GB2246151A (en) * 1990-07-17 1992-01-22 Camco Drilling Group Ltd A drilling system and method for controlling the direction of holes being drilled or cored in subsurface formations
US5103919A (en) * 1990-10-04 1992-04-14 Amoco Corporation Method of determining the rotational orientation of a downhole tool
US5113953A (en) * 1988-11-03 1992-05-19 Noble James B Directional drilling apparatus and method
US5117927A (en) * 1991-02-01 1992-06-02 Anadrill Downhole adjustable bent assemblies
US5131479A (en) * 1990-03-07 1992-07-21 Institut Francais Du Petrole Rotary drilling device comprising means for adjusting the azimuth angle of the path of the drilling tool and corresponding drilling process
US5139094A (en) * 1991-02-01 1992-08-18 Anadrill, Inc. Directional drilling methods and apparatus
US5163521A (en) * 1990-08-27 1992-11-17 Baroid Technology, Inc. System for drilling deviated boreholes
EP0520733A1 (en) * 1991-06-25 1992-12-30 Camco Drilling Group Limited Steerable rotary drilling system
EP0530045A1 (en) * 1991-08-30 1993-03-03 Camco Drilling Group Limited Modulated bias units for steerable rotary drilling systems
US5213168A (en) * 1991-11-01 1993-05-25 Amoco Corporation Apparatus for drilling a curved subterranean borehole
US5220963A (en) * 1989-12-22 1993-06-22 Patton Consulting, Inc. System for controlled drilling of boreholes along planned profile
US5265687A (en) * 1992-05-15 1993-11-30 Kidco Resources Ltd. Drilling short radius curvature well bores
US5305830A (en) * 1991-08-02 1994-04-26 Institut Francais Du Petrole Method and device for carrying out measurings and/or servicings in a wellbore or a well in the process of being drilled
US5305838A (en) * 1990-12-28 1994-04-26 Andre Pauc Device comprising two articulated elements in a plane, applied to a drilling equipment
US5311953A (en) * 1992-08-07 1994-05-17 Baroid Technology, Inc. Drill bit steering
US5311952A (en) * 1992-05-22 1994-05-17 Schlumberger Technology Corporation Apparatus and method for directional drilling with downhole motor on coiled tubing
US5316093A (en) * 1988-12-30 1994-05-31 Institut Francais Du Petrole Fitting for controlled trajectory drilling, comprising a variable geometry stabilizer and use of this fitting
US5325714A (en) * 1993-05-12 1994-07-05 Baker Hughes Incorporated Steerable motor system with integrated formation evaluation logging capacity
US5332048A (en) * 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
US5343966A (en) * 1991-06-19 1994-09-06 Vector Oil Tool Ltd. Adjustable bent housing
US5375098A (en) * 1992-08-21 1994-12-20 Schlumberger Technology Corporation Logging while drilling tools, systems, and methods capable of transmitting data at a plurality of different frequencies
US5410303A (en) * 1991-05-15 1995-04-25 Baroid Technology, Inc. System for drilling deivated boreholes
US5421420A (en) * 1994-06-07 1995-06-06 Schlumberger Technology Corporation Downhole weight-on-bit control for directional drilling
US5467834A (en) * 1994-08-08 1995-11-21 Maverick Tool Company Method and apparatus for short radius drilling of curved boreholes
US5484029A (en) * 1994-08-05 1996-01-16 Schlumberger Technology Corporation Steerable drilling tool and system
US5520256A (en) * 1994-11-01 1996-05-28 Schlumberger Technology Corporation Articulated directional drilling motor assembly
EP0744526A1 (en) * 1995-05-24 1996-11-27 Baker Hughes Incorporated Method for controlling a drilling tool
US5594343A (en) * 1994-12-02 1997-01-14 Schlumberger Technology Corporation Well logging apparatus and method with borehole compensation including multiple transmitting antennas asymmetrically disposed about a pair of receiving antennas
US5617926A (en) * 1994-08-05 1997-04-08 Schlumberger Technology Corporation Steerable drilling tool and system
US5738178A (en) * 1995-11-17 1998-04-14 Baker Hughes Incorporated Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9222298D0 (en) * 1992-10-23 1992-12-09 Stirling Design Int Directional drilling tool
US5314032A (en) * 1993-05-17 1994-05-24 Camco International Inc. Movable joint bent sub

Patent Citations (102)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US33751A (en) * 1861-11-19 Improvement in oilers
US2319236A (en) * 1940-08-22 1943-05-18 Sperry Sun Well Surveying Co Deflecting tool
US2687282A (en) * 1952-01-21 1954-08-24 Eastman Oil Well Survey Co Reaming bit structure for earth bores
US2694549A (en) * 1952-01-21 1954-11-16 Eastman Oil Well Survey Co Joint structure between flexible shafting and drill bit structure for drilling lateral bores
US2876992A (en) * 1954-11-04 1959-03-10 Eastman Oil Well Survey Co Deflecting tools
US3068946A (en) * 1958-12-15 1962-12-18 Eastman Oil Well Survey Co Knuckle joint
US3098534A (en) * 1960-06-14 1963-07-23 Carr Warren Farrell Directional drill with hydraulically extended shoe
US3370657A (en) * 1965-10-24 1968-02-27 Trudril Inc Stabilizer and deflecting tool
US3457999A (en) * 1967-08-31 1969-07-29 Intern Systems & Controls Corp Fluid actuated directional drilling sub
US3561549A (en) * 1968-06-07 1971-02-09 Smith Ind International Inc Slant drilling tools for oil wells
US3575247A (en) * 1969-03-06 1971-04-20 Shell Oil Co Diamond bit unit
US3667556A (en) * 1970-01-05 1972-06-06 John Keller Henderson Directional drilling apparatus
US3637032A (en) * 1970-01-22 1972-01-25 John D Jeter Directional drilling apparatus
US3743034A (en) * 1971-05-03 1973-07-03 Shell Oil Co Steerable drill string
US3799279A (en) * 1972-09-25 1974-03-26 R Farris Optionally stabilized drilling tool
US4076084A (en) * 1973-07-16 1978-02-28 Amoco Production Company Oriented drilling tool
US3878903A (en) * 1973-12-04 1975-04-22 Martin Dee Cherrington Apparatus and process for drilling underground arcuate paths
US3903974A (en) * 1974-03-12 1975-09-09 Roy H Cullen Drilling assembly, deviation sub therewith, and method of using same
US4040494A (en) * 1975-06-09 1977-08-09 Smith International, Inc. Drill director
US4040495A (en) * 1975-12-22 1977-08-09 Smith International, Inc. Drilling apparatus
US4080115A (en) * 1976-09-27 1978-03-21 A-Z International Tool Company Progressive cavity drive train
US4185704A (en) * 1978-05-03 1980-01-29 Maurer Engineering Inc. Directional drilling apparatus
US4211292A (en) * 1978-07-27 1980-07-08 Evans Robert F Borehole angle control by gage corner removal effects
US4291773A (en) * 1978-07-27 1981-09-29 Evans Robert F Strictive material deflectable collar for use in borehole angle control
US4184553A (en) * 1978-10-25 1980-01-22 Conoco, Inc. Method for controlling direction of horizontal borehole
US4220213A (en) * 1978-12-07 1980-09-02 Hamilton Jack E Method and apparatus for self orienting a drill string while drilling a well bore
US4428441A (en) * 1979-04-04 1984-01-31 Mobil Oil Corporation Method and apparatus for reducing the differential pressure sticking tendency of a drill string
US4305474A (en) * 1980-02-04 1981-12-15 Conoco Inc. Thrust actuated drill guidance device
US4456080A (en) * 1980-09-19 1984-06-26 Holbert Don R Stabilizer method and apparatus for earth-boring operations
US4416339A (en) * 1982-01-21 1983-11-22 Baker Royce E Bit guidance device and method
US4465147A (en) * 1982-02-02 1984-08-14 Shell Oil Company Method and means for controlling the course of a bore hole
US4461359A (en) * 1982-04-23 1984-07-24 Conoco Inc. Rotary drill indexing system
US4449595A (en) * 1982-05-17 1984-05-22 Holbert Don R Method and apparatus for drilling a curved bore
US4492276B1 (en) * 1982-11-17 1991-07-30 Shell Oil Co
US4492276A (en) * 1982-11-17 1985-01-08 Shell Oil Company Down-hole drilling motor and method for directional drilling of boreholes
US4523652A (en) * 1983-07-01 1985-06-18 Atlantic Richfield Company Drainhole drilling assembly and method
US4560013A (en) * 1984-02-16 1985-12-24 Baker Oil Tools, Inc. Apparatus for directional drilling and the like of subterranean wells
US4638873A (en) * 1984-05-23 1987-01-27 Welborn Austin E Direction and angle maintenance tool and method for adjusting and maintaining the angle of deviation of a directionally drilled borehole
US4732223A (en) * 1984-06-12 1988-03-22 Universal Downhole Controls, Ltd. Controllable downhole directional drilling tool
US4951760A (en) * 1985-01-07 1990-08-28 Smf International Remote control actuation device
GB2172325A (en) * 1985-03-16 1986-09-17 Cambridge Radiation Tech Controlling drilling direction
GB2172324A (en) * 1985-03-16 1986-09-17 Cambridge Radiation Tech Drilling apparatus
US4858705A (en) * 1985-05-07 1989-08-22 Institut Francais Du Petrole Assembly for making oriented bore-holes
US4637479A (en) * 1985-05-31 1987-01-20 Schlumberger Technology Corporation Methods and apparatus for controlled directional drilling of boreholes
GB2177738A (en) * 1985-07-13 1987-01-28 Cambridge Radiation Tech Control of drilling courses in the drilling of bore holes
USRE33751E (en) 1985-10-11 1991-11-26 Smith International, Inc. System and method for controlled directional drilling
US4667751A (en) * 1985-10-11 1987-05-26 Smith International, Inc. System and method for controlled directional drilling
US4662458A (en) * 1985-10-23 1987-05-05 Nl Industries, Inc. Method and apparatus for bottom hole measurement
US4635736A (en) * 1985-11-22 1987-01-13 Shirley Kirk R Drill steering apparatus
US4807708A (en) * 1985-12-02 1989-02-28 Drilex Uk Limited And Eastman Christensen Company Directional drilling of a drill string
US4699224A (en) * 1986-05-12 1987-10-13 Sidewinder Joint Venture Method and apparatus for lateral drilling in oil and gas wells
US4739843A (en) * 1986-05-12 1988-04-26 Sidewinder Tool Joint Venture Apparatus for lateral drilling in oil and gas wells
US4836301A (en) * 1986-05-16 1989-06-06 Shell Oil Company Method and apparatus for directional drilling
US4821815A (en) * 1986-05-22 1989-04-18 Flowmole Corporation Technique for providing an underground tunnel utilizing a powered boring device
US4714118A (en) * 1986-05-22 1987-12-22 Flowmole Corporation Technique for steering and monitoring the orientation of a powered underground boring device
US4848490A (en) * 1986-07-03 1989-07-18 Anderson Charles A Downhole stabilizers
US4811798A (en) * 1986-10-30 1989-03-14 Team Construction And Fabrication, Inc. Drilling motor deviation tool
US4697651A (en) * 1986-12-22 1987-10-06 Mobil Oil Corporation Method of drilling deviated wellbores
US4947944A (en) * 1987-06-16 1990-08-14 Preussag Aktiengesellschaft Device for steering a drilling tool and/or drill string
US5050692A (en) * 1987-08-07 1991-09-24 Baker Hughes Incorporated Method for directional drilling of subterranean wells
US4880067A (en) * 1988-02-17 1989-11-14 Baroid Technology, Inc. Apparatus for drilling a curved borehole
EP0343800A2 (en) * 1988-05-20 1989-11-29 Utilx Corporation Apparatus for providing an underground tunnel
US4867255A (en) * 1988-05-20 1989-09-19 Flowmole Corporation Technique for steering a downhole hammer
US4901804A (en) * 1988-08-15 1990-02-20 Eastman Christensen Company Articulated downhole surveying instrument assembly
US5113953A (en) * 1988-11-03 1992-05-19 Noble James B Directional drilling apparatus and method
US4895214A (en) * 1988-11-18 1990-01-23 Schoeffler William N Directional drilling tool
US5316093A (en) * 1988-12-30 1994-05-31 Institut Francais Du Petrole Fitting for controlled trajectory drilling, comprising a variable geometry stabilizer and use of this fitting
US4938298A (en) * 1989-02-24 1990-07-03 Becfield Horizontal Drilling Services Company Directional well control
US4995465A (en) * 1989-11-27 1991-02-26 Conoco Inc. Rotary drillstring guidance by feedrate oscillation
US4948925A (en) * 1989-11-30 1990-08-14 Amoco Corporation Apparatus and method for rotationally orienting a fluid conducting conduit
US5220963A (en) * 1989-12-22 1993-06-22 Patton Consulting, Inc. System for controlled drilling of boreholes along planned profile
US5131479A (en) * 1990-03-07 1992-07-21 Institut Francais Du Petrole Rotary drilling device comprising means for adjusting the azimuth angle of the path of the drilling tool and corresponding drilling process
GB2246151A (en) * 1990-07-17 1992-01-22 Camco Drilling Group Ltd A drilling system and method for controlling the direction of holes being drilled or cored in subsurface formations
US5052501A (en) * 1990-08-01 1991-10-01 Douglas Wenzel Adjustable bent housing
US5163521A (en) * 1990-08-27 1992-11-17 Baroid Technology, Inc. System for drilling deviated boreholes
US5103919A (en) * 1990-10-04 1992-04-14 Amoco Corporation Method of determining the rotational orientation of a downhole tool
US5305838A (en) * 1990-12-28 1994-04-26 Andre Pauc Device comprising two articulated elements in a plane, applied to a drilling equipment
US5139094A (en) * 1991-02-01 1992-08-18 Anadrill, Inc. Directional drilling methods and apparatus
US5117927A (en) * 1991-02-01 1992-06-02 Anadrill Downhole adjustable bent assemblies
US5602541A (en) * 1991-05-15 1997-02-11 Baroid Technology, Inc. System for drilling deviated boreholes
US5410303A (en) * 1991-05-15 1995-04-25 Baroid Technology, Inc. System for drilling deivated boreholes
US5343966A (en) * 1991-06-19 1994-09-06 Vector Oil Tool Ltd. Adjustable bent housing
EP0520733A1 (en) * 1991-06-25 1992-12-30 Camco Drilling Group Limited Steerable rotary drilling system
US5265682A (en) * 1991-06-25 1993-11-30 Camco Drilling Group Limited Steerable rotary drilling systems
US5305830A (en) * 1991-08-02 1994-04-26 Institut Francais Du Petrole Method and device for carrying out measurings and/or servicings in a wellbore or a well in the process of being drilled
EP0530045A1 (en) * 1991-08-30 1993-03-03 Camco Drilling Group Limited Modulated bias units for steerable rotary drilling systems
US5213168A (en) * 1991-11-01 1993-05-25 Amoco Corporation Apparatus for drilling a curved subterranean borehole
US5265687A (en) * 1992-05-15 1993-11-30 Kidco Resources Ltd. Drilling short radius curvature well bores
US5311952A (en) * 1992-05-22 1994-05-17 Schlumberger Technology Corporation Apparatus and method for directional drilling with downhole motor on coiled tubing
US5311953A (en) * 1992-08-07 1994-05-17 Baroid Technology, Inc. Drill bit steering
US5375098A (en) * 1992-08-21 1994-12-20 Schlumberger Technology Corporation Logging while drilling tools, systems, and methods capable of transmitting data at a plurality of different frequencies
US5332048A (en) * 1992-10-23 1994-07-26 Halliburton Company Method and apparatus for automatic closed loop drilling system
US5325714A (en) * 1993-05-12 1994-07-05 Baker Hughes Incorporated Steerable motor system with integrated formation evaluation logging capacity
US5421420A (en) * 1994-06-07 1995-06-06 Schlumberger Technology Corporation Downhole weight-on-bit control for directional drilling
US5529133A (en) * 1994-08-05 1996-06-25 Schlumberger Technology Corporation Steerable drilling tool and system
US5484029A (en) * 1994-08-05 1996-01-16 Schlumberger Technology Corporation Steerable drilling tool and system
US5617926A (en) * 1994-08-05 1997-04-08 Schlumberger Technology Corporation Steerable drilling tool and system
US5467834A (en) * 1994-08-08 1995-11-21 Maverick Tool Company Method and apparatus for short radius drilling of curved boreholes
US5520256A (en) * 1994-11-01 1996-05-28 Schlumberger Technology Corporation Articulated directional drilling motor assembly
US5594343A (en) * 1994-12-02 1997-01-14 Schlumberger Technology Corporation Well logging apparatus and method with borehole compensation including multiple transmitting antennas asymmetrically disposed about a pair of receiving antennas
EP0744526A1 (en) * 1995-05-24 1996-11-27 Baker Hughes Incorporated Method for controlling a drilling tool
US5738178A (en) * 1995-11-17 1998-04-14 Baker Hughes Incorporated Method and apparatus for navigational drilling with a downhole motor employing independent drill string and bottomhole assembly rotary orientation and rotation

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
Anadrill Schlumberger Brochure, Anadrill Tightens Directional Control with Downhole Adjustable Stabilizers, no date. *
Anadrill Schlumberger Brochure, Anadrill Tightens Directional Control with Downhole-Adjustable Stabilizers, no date.
Baker Hughes Inteq. "Rotary Directional Drilling System Enhances Steering with Less Torque and Drag", Harts Petroleum Engineer International, Apr. 1997, p. 30.
Baker Hughes Inteq. Rotary Directional Drilling System Enhances Steering with Less Torque and Drag , Harts Petroleum Engineer International , Apr. 1997, p. 30. *
Barr, J.D., et al., "Steerable Rotary Drilling With an Experimental System", SPE/IADC 29382; Presented at the 1995 SPE/IADC Drilling Conference, Amsterdam, The Netherlands, Feb. 28-Mar. 2, 1995, 16 pages.
Barr, J.D., et al., Steerable Rotary Drilling With an Experimental System , SPE/IADC 29382; Presented at the 1995 SPE/IADC Drilling Conference, Amsterdam, The Netherlands, Feb. 28 Mar. 2, 1995, 16 pages. *
Bell, S., "Automated rotary steerable tool passes test", World Oil, Dec. 1996, p. 31.
Bell, S., Automated rotary steerable tool passes test , World Oil , Dec. 1996, p. 31. *
Colebrook,, M.A., et al., "Application of Steerable Rotary Drilling Technology to Drill Extended Reach Wells", IADC/SPE 39327, Presented at the 1998 IADC/SPE Drilling Conference, Dallas, Texas, Mar. 3-6, 1998, 11 pages.
Colebrook,, M.A., et al., Application of Steerable Rotary Drilling Technology to Drill Extended Reach Wells , IADC/SPE 39327, Presented at the 1998 IADC/SPE Drilling Conference, Dallas, Texas, Mar. 3 6, 1998, 11 pages. *
Oppelt, J., et al., "Rotary Steerable Drilling System: Status of Development", Current Issues in Drilling Technology, GEOPEC, Aberdeen, UK, Sep. 18 and 19, 1996.
Oppelt, J., et al., Rotary Steerable Drilling System: Status of Development , Current Issues in Drilling Technology , GEOPEC, Aberdeen, UK, Sep. 18 and 19, 1996. *
Rich, G., et al, "Rotary Closed Loop Drilling System Designed For The Next Millennium", Hart's Petroleum Engineer International, May 1997, pp. 47-53.
Rich, G., et al, Rotary Closed Loop Drilling System Designed For The Next Millennium , Hart s Petroleum Engineer International , May 1997, pp. 47 53. *
Warren, T.M., "Trends toward rotary steerable directional systems", World Oil, May 1997, pp. 43-47.
Warren, T.M., Trends toward rotary steerable directional systems , World Oil , May 1997, pp. 43 47. *

Cited By (229)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060180244A1 (en) * 1997-07-24 2006-08-17 Adan Ayala Portable work bench
US6637524B2 (en) 1998-03-06 2003-10-28 Baker Hughes Incorporated Non-rotating sensor assembly for measurement-while-drilling applications
US7083006B2 (en) 1998-03-06 2006-08-01 Baker Hughes Incorporated Non-rotating sensor assembly for measurement-while-drilling applications
US6446736B1 (en) 1998-03-06 2002-09-10 Baker Hughes Incorporated Non-rotating sensor assembly for measurement-while-drilling applications
US6247542B1 (en) * 1998-03-06 2001-06-19 Baker Hughes Incorporated Non-rotating sensor assembly for measurement-while-drilling applications
US20040089475A1 (en) * 1998-03-06 2004-05-13 Baker Hughes Incorporated Non-rotating sensor assembly for measurement-while-drilling applications
US6467557B1 (en) 1998-12-18 2002-10-22 Western Well Tool, Inc. Long reach rotary drilling assembly
US20030010534A1 (en) * 1998-12-21 2003-01-16 Chen Chen-Kang D. Steerable drilling system and method
US7621343B2 (en) * 1998-12-21 2009-11-24 Halliburton Energy Services, Inc. Steerable drilling system and method
US7147066B2 (en) * 1998-12-21 2006-12-12 Halliburton Energy Services, Inc. Steerable drilling system and method
US20060266555A1 (en) * 1998-12-21 2006-11-30 Chen Chen-Kang D Steerable drilling system and method
US20040084219A1 (en) * 1999-04-14 2004-05-06 Western Well Tool, Inc. Three-dimensional steering tool for controlled downhole extended-reach directional drilling
US20040173381A1 (en) * 1999-04-14 2004-09-09 Moore N. Bruce Three-dimensional steering tool for controlled downhole extended-reach directional drilling
US6470974B1 (en) * 1999-04-14 2002-10-29 Western Well Tool, Inc. Three-dimensional steering tool for controlled downhole extended-reach directional drilling
US6708783B2 (en) 1999-04-14 2004-03-23 Western Well Tool, Inc. Three-dimensional steering tool for controlled downhole extended-reach directional drilling
US6942044B2 (en) 1999-04-14 2005-09-13 Western Well Tools, Inc. Three-dimensional steering tool for controlled downhole extended-reach directional drilling
US6470976B2 (en) * 1999-09-24 2002-10-29 Vermeer Manufacturing Company Excavation system and method employing adjustable down-hole steering and above-ground tracking
US6601658B1 (en) 1999-11-10 2003-08-05 Schlumberger Wcp Ltd Control method for use with a steerable drilling system
US6439321B1 (en) * 2000-04-28 2002-08-27 Halliburton Energy Services, Inc. Piston actuator assembly for an orienting device
US6394193B1 (en) * 2000-07-19 2002-05-28 Shlumberger Technology Corporation Downhole adjustable bent housing for directional drilling
USRE39970E1 (en) 2000-07-19 2008-01-01 Schlumberger Technology Corporation Downhole adjustable bent housing for directional drilling
US6892830B2 (en) 2000-11-03 2005-05-17 Nql Energy Services Canada Ltd. Rotary steerable drilling tool and associated method of use
US6595303B2 (en) 2000-11-03 2003-07-22 Canadian Downhole Drill Systems Rotary steerable drilling tool
US6962214B2 (en) 2001-04-02 2005-11-08 Schlumberger Wcp Ltd. Rotary seal for directional drilling tools
US6467341B1 (en) 2001-04-24 2002-10-22 Schlumberger Technology Corporation Accelerometer caliper while drilling
US6837315B2 (en) 2001-05-09 2005-01-04 Schlumberger Technology Corporation Rotary steerable drilling tool
EP1258593A3 (en) * 2001-05-09 2003-01-08 Schlumberger Technology B.V. Rotary steerable drilling tool
EP1258593A2 (en) * 2001-05-09 2002-11-20 Schlumberger Technology B.V. Rotary steerable drilling tool
US6840336B2 (en) 2001-06-05 2005-01-11 Schlumberger Technology Corporation Drilling tool with non-rotating sleeve
GB2413346A (en) * 2001-12-19 2005-10-26 Schlumberger Holdings Rotary steerable system for directional drilling
US20030121702A1 (en) * 2001-12-19 2003-07-03 Geoff Downton Hybrid Rotary Steerable System
US7188685B2 (en) * 2001-12-19 2007-03-13 Schlumberge Technology Corporation Hybrid rotary steerable system
GB2413346B (en) * 2001-12-19 2006-06-14 Schlumberger Holdings Hybrid rotary steerable system
US6827159B2 (en) 2002-02-08 2004-12-07 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having an offset drilling fluid seal
US6814168B2 (en) 2002-02-08 2004-11-09 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having elevated wear protector receptacles
US6810973B2 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having offset cutting tooth paths
US6810971B1 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit
US6810972B2 (en) 2002-02-08 2004-11-02 Hard Rock Drilling & Fabrication, L.L.C. Steerable horizontal subterranean drill bit having a one bolt attachment system
US7513318B2 (en) 2002-02-19 2009-04-07 Smith International, Inc. Steerable underreamer/stabilizer assembly and method
US20060113113A1 (en) * 2002-02-19 2006-06-01 Smith International, Inc. Steerable underreamer/stabilizer assembly and method
US6857484B1 (en) * 2003-02-14 2005-02-22 Noble Drilling Services Inc. Steering tool power generating system and method
US7234543B2 (en) 2003-04-25 2007-06-26 Intersyn Ip Holdings, Llc Systems and methods for directionally drilling a borehole using a continuously variable transmission
US7481281B2 (en) 2003-04-25 2009-01-27 Intersyn Ip Holdings, Llc Systems and methods for the drilling and completion of boreholes using a continuously variable transmission to control one or more system components
US7002261B2 (en) * 2003-07-15 2006-02-21 Conocophillips Company Downhole electrical submersible power generator
US20050012340A1 (en) * 2003-07-15 2005-01-20 Cousins Edward Thomas Downhole electrical submersible power generator
US8893824B2 (en) 2003-11-26 2014-11-25 Schlumberger Technology Corporation Steerable drilling system
GB2408526B (en) * 2003-11-26 2007-10-17 Schlumberger Holdings Steerable drilling system
US20050109542A1 (en) * 2003-11-26 2005-05-26 Geoff Downton Steerable drilling system
GB2408526A (en) * 2003-11-26 2005-06-01 Schlumberger Holdings Steerable drilling system for deflecting the direction of boreholes
US8011452B2 (en) 2003-11-26 2011-09-06 Schlumberger Technology Corporation Steerable drilling system
KR100460984B1 (en) * 2004-03-17 2004-12-09 이기호 An Auto Lubrication Device for Hydraulic Breaker
WO2005124093A1 (en) * 2004-03-17 2005-12-29 Ki Ho Lee An auto lubrication device for hydraulic breaker
US8978782B2 (en) * 2004-12-01 2015-03-17 Schlumberger Technology Corporation System, apparatus, and method of conducting measurements of a borehole
US20100108386A1 (en) * 2004-12-01 2010-05-06 Ruben Martinez System, apparatus, and method of conducting measurements of a borehole
US8505632B2 (en) 2004-12-14 2013-08-13 Schlumberger Technology Corporation Method and apparatus for deploying and using self-locating downhole devices
US8022983B2 (en) * 2005-04-29 2011-09-20 Schlumberger Technology Corporation Borehole imaging system for conductive and resistive drilling fluids
US20060284975A1 (en) * 2005-04-29 2006-12-21 Schlumberger Technology Corporation Borehole imaging system for conductive and resistive drilling fluids
US20070050145A1 (en) * 2005-08-25 2007-03-01 Lang Zhan Technique and apparatus for use in well testing
US8620636B2 (en) 2005-08-25 2013-12-31 Schlumberger Technology Corporation Interpreting well test measurements
US7478555B2 (en) * 2005-08-25 2009-01-20 Schlumberger Technology Corporation Technique and apparatus for use in well testing
US20070162235A1 (en) * 2005-08-25 2007-07-12 Schlumberger Technology Corporation Interpreting well test measurements
US7457734B2 (en) 2005-10-25 2008-11-25 Reedhycalog Uk Limited Representation of whirl in fixed cutter drill bits
US20070144789A1 (en) * 2005-10-25 2007-06-28 Simon Johnson Representation of whirl in fixed cutter drill bits
US20070163810A1 (en) * 2006-01-18 2007-07-19 Smith International, Inc. Flexible directional drilling apparatus and method
US20070163808A1 (en) * 2006-01-18 2007-07-19 Smith International, Inc. Drilling and hole enlargement device
US7506703B2 (en) 2006-01-18 2009-03-24 Smith International, Inc. Drilling and hole enlargement device
US7861802B2 (en) 2006-01-18 2011-01-04 Smith International, Inc. Flexible directional drilling apparatus and method
US9482054B2 (en) 2006-03-02 2016-11-01 Baker Hughes Incorporated Hole enlargement drilling device and methods for using same
US8875810B2 (en) 2006-03-02 2014-11-04 Baker Hughes Incorporated Hole enlargement drilling device and methods for using same
US9187959B2 (en) * 2006-03-02 2015-11-17 Baker Hughes Incorporated Automated steerable hole enlargement drilling device and methods
US20100139981A1 (en) * 2006-03-02 2010-06-10 Baker Hughes Incorporated Hole Enlargement Drilling Device and Methods for Using Same
US20070205022A1 (en) * 2006-03-02 2007-09-06 Baker Hughes Incorporated Automated steerable hole enlargement drilling device and methods
US20070241670A1 (en) * 2006-04-17 2007-10-18 Battelle Memorial Institute Organic materials with phosphine sulfide moieties having tunable electric and electroluminescent properties
US20070251726A1 (en) * 2006-04-28 2007-11-01 Schlumberger Technology Corporation Rotary Steerable Drilling System
US8590636B2 (en) 2006-04-28 2013-11-26 Schlumberger Technology Corporation Rotary steerable drilling system
GB2464840B (en) * 2007-05-30 2012-10-03 Sondex Ltd Orientation sensor for downhole tool
WO2008145950A1 (en) * 2007-05-30 2008-12-04 Sondex Limited Orientation sensor for downhole tool
GB2464840A (en) * 2007-05-30 2010-05-05 Sondex Ltd Orientation sensor for downhole tool
EP2350421A4 (en) * 2008-06-05 2015-11-18 Norhard As Rock drilling machine
US9260952B2 (en) 2009-08-18 2016-02-16 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow in an autonomous valve using a sticky switch
US8931566B2 (en) 2009-08-18 2015-01-13 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8905144B2 (en) 2009-08-18 2014-12-09 Halliburton Energy Services, Inc. Variable flow resistance system with circulation inducing structure therein to variably resist flow in a subterranean well
US8657017B2 (en) 2009-08-18 2014-02-25 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US9080410B2 (en) 2009-08-18 2015-07-14 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US9394759B2 (en) 2009-08-18 2016-07-19 Halliburton Energy Services, Inc. Alternating flow resistance increases and decreases for propagating pressure pulses in a subterranean well
US9109423B2 (en) 2009-08-18 2015-08-18 Halliburton Energy Services, Inc. Apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8714266B2 (en) 2009-08-18 2014-05-06 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US9133685B2 (en) 2010-02-04 2015-09-15 Halliburton Energy Services, Inc. Method and apparatus for autonomous downhole fluid selection with pathway dependent resistance system
US8708050B2 (en) 2010-04-29 2014-04-29 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow using movable flow diverter assembly
US8622136B2 (en) 2010-04-29 2014-01-07 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow using movable flow diverter assembly
US8757266B2 (en) 2010-04-29 2014-06-24 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow using movable flow diverter assembly
US8985222B2 (en) 2010-04-29 2015-03-24 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow using movable flow diverter assembly
US8616290B2 (en) 2010-04-29 2013-12-31 Halliburton Energy Services, Inc. Method and apparatus for controlling fluid flow using movable flow diverter assembly
US9309722B2 (en) * 2010-06-18 2016-04-12 Schlumberger Technology Corporation Oil operated rotary steerable system
US20130112483A1 (en) * 2010-06-18 2013-05-09 Schlumberger Technology Corporation Oil Operated Rotary Steerable System
WO2012027271A3 (en) * 2010-08-26 2013-03-21 Wells David A H Counter rotating drilling system
US9016400B2 (en) 2010-09-09 2015-04-28 National Oilwell Varco, L.P. Downhole rotary drilling apparatus with formation-interfacing members and control system
US8869916B2 (en) 2010-09-09 2014-10-28 National Oilwell Varco, L.P. Rotary steerable push-the-bit drilling apparatus with self-cleaning fluid filter
US9476263B2 (en) 2010-09-09 2016-10-25 National Oilwell Varco, L.P. Rotary steerable push-the-bit drilling apparatus with self-cleaning fluid filter
US8950502B2 (en) 2010-09-10 2015-02-10 Halliburton Energy Services, Inc. Series configured variable flow restrictors for use in a subterranean well
US8851180B2 (en) 2010-09-14 2014-10-07 Halliburton Energy Services, Inc. Self-releasing plug for use in a subterranean well
US8678035B2 (en) * 2011-04-11 2014-03-25 Halliburton Energy Services, Inc. Selectively variable flow restrictor for use in a subterranean well
US20120255739A1 (en) * 2011-04-11 2012-10-11 Halliburton Energy Services, Inc. Selectively variable flow restrictor for use in a subterranean well
AU2012243214B2 (en) * 2011-04-11 2015-05-14 Halliburton Energy Services, Inc. Selectively variable flow restrictor for use in a subterranean well
WO2013028490A1 (en) * 2011-08-19 2013-02-28 Precision Energy Services, Inc. Rotary steerable assembly inhibiting counterclockwisewhirl during directional drilling
US9556679B2 (en) 2011-08-19 2017-01-31 Precision Energy Services, Inc. Rotary steerable assembly inhibiting counterclockwise whirl during directional drilling
US8640793B2 (en) 2011-10-19 2014-02-04 Earth Tool Company, Llc Dynamic steering tool
US8991506B2 (en) 2011-10-31 2015-03-31 Halliburton Energy Services, Inc. Autonomous fluid control device having a movable valve plate for downhole fluid selection
US9291032B2 (en) 2011-10-31 2016-03-22 Halliburton Energy Services, Inc. Autonomous fluid control device having a reciprocating valve for downhole fluid selection
US8739880B2 (en) 2011-11-07 2014-06-03 Halliburton Energy Services, P.C. Fluid discrimination for use with a subterranean well
US9506320B2 (en) 2011-11-07 2016-11-29 Halliburton Energy Services, Inc. Variable flow resistance for use with a subterranean well
US8967267B2 (en) 2011-11-07 2015-03-03 Halliburton Energy Services, Inc. Fluid discrimination for use with a subterranean well
US9238953B2 (en) 2011-11-08 2016-01-19 Schlumberger Technology Corporation Completion method for stimulation of multiple intervals
US9926779B2 (en) 2011-11-10 2018-03-27 Schlumberger Technology Corporation Downhole whirl detection while drilling
US9598930B2 (en) 2011-11-14 2017-03-21 Halliburton Energy Services, Inc. Preventing flow of undesired fluid through a variable flow resistance system in a well
US8684094B2 (en) 2011-11-14 2014-04-01 Halliburton Energy Services, Inc. Preventing flow of undesired fluid through a variable flow resistance system in a well
US9593567B2 (en) 2011-12-01 2017-03-14 National Oilwell Varco, L.P. Automated drilling system
CN102606073A (en) * 2012-04-06 2012-07-25 西安石油大学 Guide mechanism for directing rotary steering drilling tool
CN102704841B (en) * 2012-05-30 2014-09-10 中国石油化工集团公司 Guide drilling tool for developing shale gas
US10301877B2 (en) 2012-05-30 2019-05-28 C&J Spec-Rent Services, Inc. Drilling system, biasing mechanism and method for directionally drilling a borehole
US9556678B2 (en) 2012-05-30 2017-01-31 Penny Technologies S.À R.L. Drilling system, biasing mechanism and method for directionally drilling a borehole
US10895113B2 (en) 2012-05-30 2021-01-19 B&W Mud Motors, Llc Drilling system, biasing mechanism and method for directionally drilling a borehole
CN102704841A (en) * 2012-05-30 2012-10-03 中国石油化工集团公司 Guide drilling tool for developing shale gas
EP2859171A4 (en) * 2012-06-12 2016-09-07 Halliburton Energy Services Inc Modular rotary steerable actuators, steering tools, and rotary steerable drilling systems with modular actuators
US9650851B2 (en) 2012-06-18 2017-05-16 Schlumberger Technology Corporation Autonomous untethered well object
EP2864570A4 (en) * 2012-06-21 2016-07-27 Services Petroliers Schlumberger Directional drilling system
US9404349B2 (en) 2012-10-22 2016-08-02 Halliburton Energy Services, Inc. Autonomous fluid control system having a fluid diode
US9127526B2 (en) 2012-12-03 2015-09-08 Halliburton Energy Services, Inc. Fast pressure protection system and method
US9695654B2 (en) 2012-12-03 2017-07-04 Halliburton Energy Services, Inc. Wellhead flowback control system and method
US9772616B2 (en) * 2012-12-07 2017-09-26 Aircelle Method for controlling a drilling robot, and drilling robot implementing said method
US20150268651A1 (en) * 2012-12-07 2015-09-24 Aircelle Method for controlling a drilling robot, and drilling robot implementing said method
US10407987B2 (en) 2012-12-19 2019-09-10 Schlumberger Technology Corporation Progressive cavity based control system
WO2014099783A1 (en) 2012-12-19 2014-06-26 Schlumberger Canada Limited Motor control system
WO2014099789A1 (en) 2012-12-19 2014-06-26 Schlumberger Canada Limited Progressive cavity based control system
US10302083B2 (en) 2012-12-19 2019-05-28 Schlumberger Technology Corporation Motor control system
US9371696B2 (en) * 2012-12-28 2016-06-21 Baker Hughes Incorporated Apparatus and method for drilling deviated wellbores that utilizes an internally tilted drive shaft in a drilling assembly
US20140182941A1 (en) * 2012-12-28 2014-07-03 Baker Hughes Incorporated Apparatus and method for drilling deviated wellbores that utilizes an internally tilted drive shaft in a drilling assembly
US9366087B2 (en) 2013-01-29 2016-06-14 Schlumberger Technology Corporation High dogleg steerable tool
US9617791B2 (en) 2013-03-14 2017-04-11 Smith International, Inc. Sidetracking system and related methods
US10190368B2 (en) 2013-03-15 2019-01-29 Smith International, Inc. Underreamer for increasing a wellbore diameter
US10947787B2 (en) 2013-03-15 2021-03-16 Smith International, Inc. Underreamer for increasing a wellbore diameter
US10995552B2 (en) 2013-03-29 2021-05-04 Schlumberger Technology Corporation Closed loop control of drilling toolface
US10214964B2 (en) 2013-03-29 2019-02-26 Schlumberger Technology Corporation Closed loop control of drilling toolface
US10570666B2 (en) 2013-05-13 2020-02-25 Baker Hughes, A Ge Company, Llc Earth-boring tools including movable formation-engaging structures
US9759014B2 (en) 2013-05-13 2017-09-12 Baker Hughes Incorporated Earth-boring tools including movable formation-engaging structures and related methods
US9399892B2 (en) 2013-05-13 2016-07-26 Baker Hughes Incorporated Earth-boring tools including movable cutting elements and related methods
US10689915B2 (en) 2013-05-13 2020-06-23 Baker Hughes, A Ge Company, Llc Earth-boring tools including movable formation-engaging structures
US10358873B2 (en) 2013-05-13 2019-07-23 Baker Hughes, A Ge Company, Llc Earth-boring tools including movable formation-engaging structures and related methods
US9932820B2 (en) 2013-07-26 2018-04-03 Schlumberger Technology Corporation Dynamic calibration of axial accelerometers and magnetometers
US10000972B2 (en) 2013-08-29 2018-06-19 Halliburton Energy Services, Inc. Downhole adjustable bent motor
US9631468B2 (en) 2013-09-03 2017-04-25 Schlumberger Technology Corporation Well treatment
US9850712B2 (en) 2013-12-12 2017-12-26 Schlumberger Technology Corporation Determining drilling state for trajectory control
US11015406B2 (en) 2014-06-30 2021-05-25 Schlumberger Technology Corporation Sensor activated downhole cutting tool
WO2016003715A1 (en) * 2014-06-30 2016-01-07 Schlumberger Canada Limited Measuring fluid properties in a downhole tool
US10214980B2 (en) 2014-06-30 2019-02-26 Schlumberger Technology Corporation Measuring fluid properties in a downhole tool
US9869140B2 (en) 2014-07-07 2018-01-16 Schlumberger Technology Corporation Steering system for drill string
US10066448B2 (en) * 2014-08-28 2018-09-04 Schlumberger Technology Corporation Downhole steering system
US20160276900A1 (en) * 2014-09-11 2016-09-22 Halliburton Energy Services, Inc. Electricity generation within a downhole drilling motor
US10110091B2 (en) * 2014-09-11 2018-10-23 Halliburton Energy Services, Inc. Electricity generation within a downhole drilling motor
US10250103B2 (en) 2014-09-11 2019-04-02 Halliburton Energy Services, Inc. Electricity generation within a downhole drilling motor
NO343862B1 (en) * 2014-09-11 2019-06-24 Halliburton Energy Services Inc Electricity generation within a downhole drilling motor
US9933544B2 (en) 2014-12-24 2018-04-03 Halliburton Energy Services, Inc. Near-bit gamma ray sensors in a rotating section of a rotary steerable system
RU2660711C1 (en) * 2014-12-29 2018-07-09 Халлибертон Энерджи Сервисез, Инк. Casing of variable stiffness with fixed bending for directed drilling
US9977146B2 (en) 2015-02-19 2018-05-22 Halliburton Energy Services, Inc. Gamma detection sensors in a rotary steerable tool
US10538974B2 (en) * 2015-03-06 2020-01-21 Halliburton Energy Services, Inc. Load-bearing universal joint with self-energizing seals for a rotary steerable drilling tool
US20180002991A1 (en) * 2015-03-06 2018-01-04 Halliburton Energy Services, Inc. Load-bearing universal joint with self-energizing seals for a rotary steerable drilling tool
CN104775757B (en) * 2015-03-26 2017-05-17 中国海洋石油总公司 Static pointing type rotary steering drilling tool
CN104775757A (en) * 2015-03-26 2015-07-15 中国海洋石油总公司 Static pointing type rotary steering drilling tool
US10563461B2 (en) 2015-10-12 2020-02-18 Halliburton Energy Services, Inc. Hybrid drive for a fully rotating downhole tool
WO2017065738A1 (en) * 2015-10-12 2017-04-20 Halliburton Energy Services, Inc. Hybrid drive for a fully rotating downhole tool
EP3400359A4 (en) * 2016-01-06 2019-08-28 Isodrill, Inc. Rotary steerable drilling tool
US9464482B1 (en) 2016-01-06 2016-10-11 Isodrill, Llc Rotary steerable drilling tool
WO2017119878A1 (en) * 2016-01-06 2017-07-13 Isodrill, Llc Rotary steerable drilling tool
US9657561B1 (en) 2016-01-06 2017-05-23 Isodrill, Inc. Downhole power conversion and management using a dynamically variable displacement pump
US11193330B2 (en) 2016-02-16 2021-12-07 Xr Lateral Llc Method of drilling with an extensible pad
US10626674B2 (en) 2016-02-16 2020-04-21 Xr Lateral Llc Drilling apparatus with extensible pad
US11414932B2 (en) 2016-03-31 2022-08-16 Schlumberger Technology Corporation Equipment string communication and steering
US10907412B2 (en) 2016-03-31 2021-02-02 Schlumberger Technology Corporation Equipment string communication and steering
US11634951B2 (en) 2016-03-31 2023-04-25 Schlumberger Technology Corporation Equipment string communication and steering
US10731418B2 (en) * 2016-07-14 2020-08-04 Baker Hughes, A Ge Company, Llc Rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
US10267091B2 (en) 2016-07-14 2019-04-23 Baker Hughes, A Ge Company, Llc Drilling assembly utilizing tilted disintegrating device for drilling deviated wellbores
US10378283B2 (en) 2016-07-14 2019-08-13 Baker Hughes, A Ge Company, Llc Rotary steerable system with a steering device around a drive coupled to a disintegrating device for forming deviated wellbores
US20180016844A1 (en) * 2016-07-14 2018-01-18 Baker Hughes Incorporated Rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
US11396775B2 (en) * 2016-07-14 2022-07-26 Baker Hughes, A Ge Company, Llc Rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
USD883344S1 (en) * 2016-07-20 2020-05-05 Smart Downhole Tools B. V. Tilt housing of a downhole adjustable drilling inclination tool
USD871460S1 (en) * 2016-07-20 2019-12-31 Smart Downhole Tools B.V. Tilt housing of a downhole adjustable drilling inclination tool
US11255136B2 (en) 2016-12-28 2022-02-22 Xr Lateral Llc Bottom hole assemblies for directional drilling
US10890030B2 (en) * 2016-12-28 2021-01-12 Xr Lateral Llc Method, apparatus by method, and apparatus of guidance positioning members for directional drilling
US20210246727A1 (en) * 2016-12-28 2021-08-12 Xr Lateral Llc. Method, Apparatus by Method, and Apparatus of Guidance Positioning Members for Directional Drilling
RU2721982C1 (en) * 2017-02-28 2020-05-25 Дженерал Электрик Компани Hybrid rotary controlled system and method
WO2018184087A1 (en) * 2017-04-03 2018-10-11 Halliburton Energy Services, Inc. Pressure balanced seal assembly
US11365584B2 (en) * 2017-04-03 2022-06-21 Halliburton Energy Services, Inc. Pressure balanced seal assembly
US11371288B2 (en) 2017-05-18 2022-06-28 Halliburton Energy Services, Inc. Rotary steerable drilling push-the-point-the-bit
US10662711B2 (en) 2017-07-12 2020-05-26 Xr Lateral Llc Laterally oriented cutting structures
US10443307B2 (en) * 2017-10-31 2019-10-15 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Rotary steerable drilling tool and method of control thereof
US20190128070A1 (en) * 2017-10-31 2019-05-02 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Static Push-the-Bit Articulated High-Built-Rate Rotary Steerable Tool and Control Method Thereof
US11021911B2 (en) 2017-11-14 2021-06-01 Institute Of Geology And Geophysics, Chinese Academy Of Sciences Rotary guiding device based on radial driving force
CN107905731A (en) * 2017-12-11 2018-04-13 新疆贝肯能源工程股份有限公司 Rotary steerable drilling equipment
CN108194434A (en) * 2018-01-03 2018-06-22 中国石油集团西部钻探工程有限公司 Plunger bias formula rotary steering hydraulic device
US11230887B2 (en) 2018-03-05 2022-01-25 Baker Hughes, A Ge Company, Llc Enclosed module for a downhole system
US10858934B2 (en) 2018-03-05 2020-12-08 Baker Hughes, A Ge Company, Llc Enclosed module for a downhole system
US11156044B2 (en) 2019-02-14 2021-10-26 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US10851635B1 (en) 2019-02-14 2020-12-01 National Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11668144B2 (en) 2019-02-14 2023-06-06 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11168556B2 (en) 2019-02-14 2021-11-09 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US10989031B2 (en) 2019-02-14 2021-04-27 National Service Alliance-Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US11220896B2 (en) 2019-02-14 2022-01-11 National Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11795800B2 (en) 2019-02-14 2023-10-24 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US10975641B1 (en) 2019-02-14 2021-04-13 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11788396B2 (en) 2019-02-14 2023-10-17 National Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11286736B2 (en) 2019-02-14 2022-03-29 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US11319762B2 (en) 2019-02-14 2022-05-03 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11125034B2 (en) 2019-02-14 2021-09-21 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US20200263526A1 (en) * 2019-02-14 2020-08-20 National Service Alliance - Houston Llc Electric driven hydraulic fracking system
US10738580B1 (en) * 2019-02-14 2020-08-11 Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11053758B2 (en) 2019-02-14 2021-07-06 National Service Alliance—Houston LLC Electric driven hydraulic fracking system
US11466550B2 (en) 2019-02-14 2022-10-11 National Service Alliance—Houston LLC Power distribution trailer for an electric driven hydraulic fracking system
US11473381B2 (en) 2019-02-14 2022-10-18 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US11492860B2 (en) 2019-02-14 2022-11-08 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US11773664B1 (en) 2019-02-14 2023-10-03 National Service Alliance—Houston LLC Variable frequency drive configuration for electric driven hydraulic fracking system
US10982498B1 (en) 2019-02-14 2021-04-20 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
US11708733B2 (en) 2019-02-14 2023-07-25 National Service Alliance—Houston LLC Parameter monitoring and control for an electric driven hydraulic fracking system
CN112211556A (en) * 2019-07-09 2021-01-12 万晓跃 Static directional rotary guide device based on hydraulic principle
US20230025427A1 (en) * 2019-12-20 2023-01-26 Schlumberger Technology Corporation Estimating rate of penetration using pad displacement measurements
US11280187B2 (en) * 2019-12-20 2022-03-22 Schlumberger Technology Corporation Estimating a formation index using pad measurements
US11639647B2 (en) * 2020-07-31 2023-05-02 Saudi Arabian Oil Company Self-powered sensors for detecting downhole parameters
US11920459B2 (en) * 2020-12-09 2024-03-05 Schlumberger Technology Corporation Estimating rate of penetration using pad displacement measurements
CN113404429A (en) * 2021-07-19 2021-09-17 万晓跃 Composite guiding drilling tool and method
CN113404429B (en) * 2021-07-19 2023-12-22 万晓跃 Composite steering drilling tool and method

Also Published As

Publication number Publication date
CN1222676C (en) 2005-10-12
NO20001305D0 (en) 2000-03-14
CA2298375A1 (en) 2000-09-15
AU734258B2 (en) 2001-06-07
NO20001305L (en) 2000-09-18
GB0003417D0 (en) 2000-04-05
CA2298375C (en) 2003-12-16
BR0000998A (en) 2000-10-17
CN1266940A (en) 2000-09-20
GB2347951A (en) 2000-09-20
AU1496100A (en) 2000-09-21
GB2347951B (en) 2001-06-20

Similar Documents

Publication Publication Date Title
US6109372A (en) Rotary steerable well drilling system utilizing hydraulic servo-loop
AU745767B2 (en) Rotary steerable well drilling system utilizing sliding sleeve
US6092610A (en) Actively controlled rotary steerable system and method for drilling wells
US7866415B2 (en) Steering device for downhole tools
US8827006B2 (en) Apparatus and method for measuring while drilling
US8360172B2 (en) Steering device for downhole tools
EP1409835B1 (en) Drilling direction control device
CA2453774C (en) Closed loop drilling assembly with electronics outside a non-rotating sleeve
US10731418B2 (en) Rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
RU2239042C2 (en) Method for drilling a well and concurrently directing drilling crown actively controlled by rotating drill system and actively controlled rotating directed system
US20060090935A1 (en) Steerable drilling apparatus having a differential displacement side-force exerting mechanism
US20190301244A1 (en) Rotary Steerable Drilling Tool and Method with Independently Actuated Pads
US11396775B2 (en) Rotary steerable drilling assembly with a rotating steering device for drilling deviated wellbores
US20150090497A1 (en) Directional Drilling Using Variable Bit Speed, Thrust, and Active Deflection
AU766588B2 (en) Actively controlled rotary steerable system and method for drilling wells
US10851591B2 (en) Actuation apparatus of a directional drilling module
MXPA99011472A (en) Rotary steerable well drilling system utilizing sliding sleeve
GB2543406A (en) An actuation apparatus of a directional drilling module

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCHLUMBERGER TECHNOLOGY CORPORATION, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:DOREL, ALAIN P.;CHANG, SHU-KONG;REEL/FRAME:009993/0722

Effective date: 19990527

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12