WO2023036864A1 - Système d'extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales - Google Patents

Système d'extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales Download PDF

Info

Publication number
WO2023036864A1
WO2023036864A1 PCT/EP2022/074968 EP2022074968W WO2023036864A1 WO 2023036864 A1 WO2023036864 A1 WO 2023036864A1 EP 2022074968 W EP2022074968 W EP 2022074968W WO 2023036864 A1 WO2023036864 A1 WO 2023036864A1
Authority
WO
WIPO (PCT)
Prior art keywords
extrusion
loaded
print head
printhead
tank
Prior art date
Application number
PCT/EP2022/074968
Other languages
English (en)
Inventor
Alban MALLET
Original Assignee
Xtreee
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xtreee filed Critical Xtreee
Priority to CN202280061897.1A priority Critical patent/CN117957104A/zh
Priority to CA3231800A priority patent/CA3231800A1/fr
Publication of WO2023036864A1 publication Critical patent/WO2023036864A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/52Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
    • B28B1/523Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement containing metal fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/02Feeding the unshaped material to moulds or apparatus for producing shaped articles
    • B28B13/0215Feeding the moulding material in measured quantities from a container or silo
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/22Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded by screw or worm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/24Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded by reciprocating plunger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G2021/049Devices for both conveying and distributing concrete mixing nozzles specially adapted for conveying devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing

Definitions

  • the invention relates to a system for the additive manufacturing of building materials comprising aggregates and/or fibers.
  • the invention relates more particularly to a system for extruding cords of construction material comprising aggregates and/or fibers for robots for the additive manufacturing of architectural structures.
  • architectural structures designates both individual construction elements (bridges, pillars, walls, street furniture, etc.), complete structures (buildings, houses, buildings, etc.) and rooms various architectural works (artistic works, sculptures, etc.).
  • aggregate means a fragment of rock, larger than 3 mm and smaller than 50 mm, intended to enter into the composition of materials suitable for the manufacture of public works, civil engineering and buildings.
  • An aggregate can also be designated by the term “aggregate”.
  • the terms “steel fibers” refer to rigid or flexible steel fibers having dimensions of 1 cm to 10 cm in length.
  • the term “filler material” designates a construction material enriched with aggregates and/or steel fibers.
  • These systems generally include a printhead equipped with a building material inlet and a building material outlet (or extrusion) nozzle, a circuit for supplying the printhead with building material comprising a construction material storage tank, a pipe connecting the storage tank and the inlet of the print head, and a pump for boosting the pipe with the construction material from the storage tank.
  • Another difficulty is to maintain a regular flow of material allowing regular layers of construction material to be extruded and therefore to form architectural structures with identical properties at each layer and within the same layer.
  • the inventors have therefore sought to adapt the systems already proposed to allow their use with materials loaded with aggregates in order to reduce shrinkage, cracking, the ecological footprint and the cost of construction material dedicated to the additive manufacturing of architectural structures. complex.
  • the inventors have also sought to adapt the systems already proposed to allow their use with materials loaded with steel fibers in order to improve the resistance to bending and the ductility of architectural structures made with such a material.
  • the invention therefore aims to provide a system for extruding construction material enriched with aggregates and/or steel fibers, known as filled material.
  • the invention also aims to provide, in at least one embodiment, such a system which allows the transport of the loaded material over a long distance, in particular over a distance of about ten meters.
  • the invention also aims to provide, in at least one embodiment, such a system which allows regularity in the extrusion of the loaded material.
  • the invention also aims to provide, in at least one embodiment, such a system which allows continuous extrusion of the charged building material.
  • the invention also aims to provide, in at least one embodiment, such a system which allows high-speed extrusion of the loaded material.
  • the invention finally aims to provide, in at least one embodiment, such a system which makes it possible to reduce shrinkage, cracking, the ecological footprint and/or the cost of the construction material used to manufacture a complex architectural structure.
  • the invention finally aims to provide, in at least one embodiment, such a system which makes it possible to improve the resistance to bending and the ductility of the architectural structures manufactured.
  • the invention relates to a system for extruding cords of building material enriched with aggregates and/or steel fibers, known as filled material, for a robot for the additive manufacturing of architectural structures
  • a cord printing head of construction material comprising a material inlet mouth and an outlet nozzle configured to form beads of material, said print head being intended to be moved by the additive manufacturing robot according to a predetermined trajectory to form an architectural structure by stacking layers of said extruded cords
  • a circuit for supplying material to said printhead comprising a storage tank of charged material and a material supply pipe connecting said storage tank and said printhead.
  • the extrusion system according to the invention is characterized in that said supply circuit comprises at least one piston pump mounted on said supply pipe and configured to allow the transport of the loaded material from the storage tank to said print head without adjustment flow control.
  • the extrusion system according to the invention is also characterized in that said print head comprises an endless screw arranged between said inlet mouth and said outlet nozzle and configured to be able to extrude the material loaded continuously by said outlet nozzle.
  • the system according to the invention thus makes it possible, by the combination of at least one piston pump intended for the transport of the construction material loaded within the supply circuit and of an endless screw intended for the extrusion of the loaded material within the print head (also referred to by the terminology "extrusion head” in the text), to transport the loaded material over long distances without flow constraints in particular, and to continuously extrude the loaded material by the presence of an endless screw housed in the print head upstream of the extrusion nozzle.
  • the invention is remarkable in that the transport and the extrusion of the material are split into two distinct sub-assemblies but which cooperate with each other to allow the transport and the extrusion of a material enriched with aggregates and/or steel fibres.
  • the system according to the invention therefore makes it possible to circumvent the limitations of the prior art which made it necessary to adapt the rheology and the composition of the material to the transport constraints and to directly control the metering of the material by eccentric screw metering pumps at the within the power circuit and incompatible with charged material.
  • the only available solution was to add the aggregates directly to the print head, without being able to convey the material in a feed circuit, especially over long distances.
  • the control of the deposit of the material is done directly in the extrusion head by an endless screw and the transport of the loaded material over a long distance and at high speed is allowed by the use of piston pump .
  • the piston pump used can be of any known type. It can be an axial piston pump, a radial piston pump, etc.
  • One or more piston pumps can be used depending on the length the supply line fluidly connecting the storage tank and the extrusion head.
  • a system according to the invention therefore makes it possible, in the case of a material enriched with aggregates, to reduce shrinkage, cracking, the ecological footprint and the cost of the construction material used to manufacture an architectural structure.
  • a system according to the invention also makes it possible, in the case of a material enriched with steel fibers, to improve the resistance to bending and the ductility of the architectural structures manufactured.
  • said storage tank comprises means for mixing a plurality of components in order to be able to form said loaded material.
  • the storage tank also forms the tank in which the material enriched with aggregates and/or steel fibers is formed.
  • the tank comprises means for mixing a plurality of materials or components entering into the composition of the loaded construction material. These components are for example chosen from the list comprising water, admixtures, steel fibers, aggregates, sand, hydraulic binders and geopolymers.
  • the mixing means are for example formed of a motorized shaft extending longitudinally in the tank and carrying lateral blades allowing the mixing of the components by the rotation of the shaft carrying the blades.
  • the system comprises a tank dedicated to mixing fluidly connected to the storage tank.
  • the mixing means mentioned above are housed in the tank dedicated to mixing and the mixed material is conveyed to the storage tank by gravity for example.
  • the storage tank also comprises means for agitating the tank to allow the shaping of the material load in a state compatible with its transport by said supply line.
  • the storage tank comprises for example a conical hopper fluidly connected on the one hand to the mixing tank (in the case where the system is equipped with such a dedicated tank) to be able to receive the mixed loaded material and on the other hand to the supply line of the print head to be able to supply the line with construction material.
  • the storage tank is preferably equipped with tank agitation means to bring the material into a state compatible with pumping to the supply line.
  • the tank is preferably equipped with means for pushing the material towards the supply pipe, which makes it possible in particular to push non-self-compacting materials into the supply pipe.
  • These thrust means are for example formed by blades carried by a motorized shaft and oriented so as to be able to animate the material towards the supply pipe.
  • said printhead further comprises a retention tank arranged between the inlet mouth and the endless screw and equipped with means for stirring and/or pushing and/or vibrating said tank to facilitate the extrusion of the material loaded by said endless screw.
  • the print head comprises a retention tank into which the supply pipe of the supply circuit emerges via the inlet mouth.
  • This tank is for example equipped with a mixing rod which extends longitudinally between the inlet mouth and the endless screw.
  • This mixing rod is, for example, equipped with side blades allowing the material to be stirred before it is extruded by the endless screw.
  • the mixing rod and the auger share the same mechanical shaft, rotated by motorized means.
  • the blades are also oriented towards the endless screw so as to be able to animate the material towards the endless screw.
  • the invention also relates to a robot for additive manufacturing of structures architectural systems
  • a positioning system such as an articulated arm or a gantry, controlled by a control unit
  • an extrusion system according to the invention comprising an extrusion head mounted on said positioning system so that the displacement of the positioning system carrying said print head along a predetermined trajectory allows the manufacture of an architectural structure by stacking layers of cords of cementitious material.
  • the invention also relates to a process for extruding cords of construction material enriched with aggregates and/or steel fibers, known as filled material, for a robot for the additive manufacturing of architectural structures, said process comprising: a step of supplying material loaded with a printhead of beads of construction material, a step of extruding beads of material loaded by a printhead comprising a material inlet mouth and an outlet nozzle configured to form beads of loaded building material.
  • the method according to the invention is characterized in that: said feeding step comprises the transport of the loaded material within a supply pipe fluidically connected between a storage tank of loaded material and said printing head by action at least one piston pump configured to allow transport of the loaded material without controlled adjustment of the flow rate, said extruding step comprises moving the loaded material within the printhead towards the exit nozzle by the action of an endless screw arranged between said inlet mouth and said outlet nozzle and configured to be able to extrude the loaded material continuously through said outlet nozzle.
  • a method according to the invention is advantageously implemented by an extrusion system according to the invention and an extrusion system according to the invention advantageously implements a method according to the invention.
  • the method according to the invention further comprises a step of mixing a plurality of components in order to be able to form said filled material.
  • This mixing step is preferably implemented by the mixing means housed in the storage tank of the extrusion system according to the invention or in a dedicated mixing tank arranged fluidically upstream of the storage tank of the extrusion system. according to the invention.
  • the method according to the invention further comprises a step of stirring the material before transport through said supply line.
  • This agitation step is preferably implemented by the agitation means housed in the storage tank of the extrusion system according to the invention.
  • the method according to the invention further comprises a step of pushing the material towards said supply pipe.
  • This step is preferably implemented by the means for pushing the material housed in the storage tank of the extrusion system according to the invention.
  • the method according to the invention further comprises a step of stirring the material in a retention tank arranged between the inlet mouth and the endless screw of the said printing head to facilitate the extrusion of the material charged by said endless screw.
  • the invention also relates to an extrusion system, an additive manufacturing robot and an extrusion process characterized in combination by any or part of the characteristics mentioned above or below.
  • FIG. 1 is a schematic view of an extrusion system according to one embodiment of the invention.
  • FIG. 2 is a schematic view of an additive manufacturing robot according to one embodiment of the invention.
  • FIG. 3 is a schematic view of an extrusion process according to one embodiment of the invention.
  • FIG. 4 is a schematic view of a storage tank according to one embodiment of the invention formed by the combination of a mixing tank and an agitation tank.
  • An extrusion system comprises, as represented in FIG. 1, two main subsystems: a printhead 100 of cords of construction material and a supply circuit 10 of the printhead 100 in material enriched with aggregates and/or steel fibers 21.
  • the supply circuit 10 comprises a storage tank 20 of a construction material enriched with aggregates and/or steel fibers 21, a pipe 31 connecting an outlet 12 of the storage tank 20 to an inlet 110 of the printhead 100, and a piston pump 40 arranged on the line 31 to allow the loaded material to be conveyed in line 31 without controlled adjustment of the flow rate of material.
  • This piston pump 40 is for example a pump marketed by the company Putzmeister® under the reference KOS. Of course, other types of piston pumps can be used and/or tested by those skilled in the art for the implementation of the system according to the invention.
  • the piston pump 40 makes it possible to transport the loaded construction material over a long distance, continuously and without the need to adjust the regularity of the flow.
  • the regularity of the material is managed at the level of the printhead 100 by means of the endless screw described later.
  • the storage tank 20 is preferably a hopper comprising an upper opening 11 adapted to receive batches of cementitious materials enriched with aggregates and/or steel fibers 21 and a lower outlet 12 connected to the pipe 31.
  • the hopper can further comprise a mixer 13 comprising a shaft 14 carrying a plurality of side blades 15 and optionally a scraper, and a motor 16 for rotating the shaft 14.
  • the motor 16 is for example an electric motor configured to be able to drive at low speed, for example at a speed of 6 to 20 revolutions per minute, the shaft 14 of the mixer 13.
  • the use of a heat engine is of course possible without modifying the performance of the extrusion system according to the invention.
  • This mixer 13 can also form means for mixing a plurality of components entering into the composition of the construction material enriched with aggregates and/or steel fibres.
  • These components are for example chosen from the group comprising water, admixtures, aggregates, steel fibers, sand, hydraulic binders, geopolymers.
  • the storage tank may also include hopper agitation means which may be of any known type, such as those described in connection with Figure 4.
  • Figure 4 illustrates a particular embodiment of the upstream system the supply pipe which is formed by a tank 20a dedicated to mixing and a tank 20b dedicated to stirring and pushing the material towards the supply pipe.
  • this embodiment of Figure 4 separates the mixing function and the stirring and pushing function of the storage tank 20 from the embodiment of Figure 1.
  • the tank 20a receives a plurality of components entering into the composition of the construction material enriched with aggregates and / or steel fibers.
  • a mixer 13a formed by an electric motor 16a, a central mixer 14a and a plurality of blades 15a forming lateral mixing means mixes the various components.
  • the loaded material thus formed is then led by natural gravity into the tank 20b.
  • the tank 20b comprises a central shaft 14b driven in rotation by an electric motor, not shown in FIG. 4 for clarity, and which carries on the one hand scrapers 15b intended to scrape the walls of the tank, and on the other hand thrust blades 17b oriented towards the outlet 12b of the reservoir and intended to push the material towards the piston pump 40 fluidly connected to the outlet 12b.
  • the tank 20b also includes a vibrator 18b forming the means for stirring the tank.
  • This vibrator is for example formed of a pneumatic or electric vibrator mounted on the tank by means of a fixing cradle. It can also be vibration needles or any equivalent means immersed in the tank or mounted on the tank.
  • the print head 100 The print head 100
  • the print head 100 comprises, as shown schematically in Figure 1, an inlet 110 connected to the pipe 31 of the supply circuit 10 and an outlet nozzle 120 configured to form beads of cementitious material.
  • the printhead 100 further comprises an endless screw 150 driven in rotation by a motor 130 and configured to be able to drive the construction material loaded towards the nozzle 120 of exit.
  • the printhead 100 also includes a retention tank 140 arranged between the inlet mouth 110 and the endless screw 150.
  • This holding tank 140 comprises a shaft 141 which extends longitudinally in the holding tank 140 and which is driven in rotation by the motor 130.
  • This shaft 141 is in further equipped with radial fingers 142 configured to be able to agitate and/or push the construction material, and thus forming means for agitating and pushing the material before extrusion by the endless screw 150.
  • the motor 130 can be an electric motor, a heat engine, and in general all types of motors.
  • the outlet nozzle 120 of the print head 100 is preferably removable so as to be able to adapt the shape of the outlet nozzle 120 to the part to be manufactured.
  • the section of the outlet nozzle 120 can be adapted to each type of manufactured part, or even changed during printing to modify the section of the beads of certain portions of the manufactured part.
  • the outlet nozzle comprises for example a threaded outer wall which cooperates with a threaded inner portion of the wall of the printhead in which extends the endless screw 150.
  • the output includes a threaded inner wall which cooperates with a threaded outer portion of the wall of the printhead.
  • FIG. 2 is a schematic view of an additive manufacturing robot 9 of an architectural structure 8 according to one embodiment of the invention.
  • a robot 9 comprises an articulated arm or a gantry 7, driven by a control unit not shown in the figure, which carries the print head 100 of an extrusion system according to the invention.
  • the robot 9 is controlled by a control unit to cause the printing head 100 to move along a predetermined trajectory making it possible to manufacture the architectural structure 8 by stacking layers of extruded cords 6.
  • the cord 6 being extruded is represented schematically by a thick black line.
  • FIG. 3 schematically illustrates the different steps of an extrusion process according to one embodiment of the invention.
  • Such a method comprises a first step El of forming a building material enriched with aggregates and/or steel fibers.
  • This step consists, for example, in continuously or discontinuously mixing components chosen from the group comprising water, admixtures, aggregates, steel fibers, sand, hydraulic binders, geopolymers.
  • the manufactured composition depends on the architectural structure to be built and the characteristics of this architectural structure. Those skilled in the art are able to determine the composition suitable for their extrusion project.
  • the method comprises a second step E2 of filling a storage tank with construction material enriched with aggregates and/or steel fibers.
  • the method comprises a subsequent step E3 of activating a piston pump to supply a pipe fluidically connecting the storage tank and a printing head carried by an articulated arm of a robot.
  • the method comprises a step E4 of starting an endless screw housed in the printhead to allow the extrusion of the construction material through the outlet nozzle of the printhead.
  • This step may include a sub-step of feeding a retention tank housed in the print head and of agitating the material contained in this retention tank to facilitate the extrusion of the material loaded by said endless screw.
  • the method comprises a concomitant step E5 of moving the articulated arm carrying the print head to allow the manufacture of an architectural structure by stacking extruded cords of construction material.
  • a method according to the invention is preferably implemented by an extrusion system according to the invention and a robot according to the invention.
  • the robot can be a six-axis robot, mounted on rails or not, on a gantry or not.
  • the robot can also be a cable robot or any type of robot whose positioning system, such as an arm articulated, can be controlled by computer.
  • a robot according to the invention can be used to manufacture all types of architectural parts.
  • Such an architectural piece can be a reinforcing piece, a building, and in general, any piece made of cementitious material.
  • the architectural parts manufactured by the use of an extrusion system according to the invention can be of various scales. It can be a portion of a column, an entire column, a wall, a slab element, a building, street furniture, a sculpture, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Coating Apparatus (AREA)

Abstract

L'invention concerne un système d'extrusion de cordons de matériau de construction enrichi de granulats et/ou de fibres aciers, dit matériau chargé, pour robot de fabrication additive de structures architecturales comprenant : une tête d'impression (100) de cordons de matériau de construction comprenant une bouche d'entrée (110) de matériau et une buse de sortie (120) de matériau; un circuit d'alimentation (10) en matériau de ladite tête d'impression (100) comprenant un réservoir de stockage (20) de matériau chargé et une conduite d'alimentation (31) en matériau reliant ledit réservoir de stockage (20) et ladite tête d'impression (100); caractérisé en ce que ledit circuit d'alimentation (10) comprend au moins une pompe à pistons (40) montée sur ladite conduite d'alimentation (31) et en ce que ladite tête d'impression (100) comprend une vis sans fin (150) agencée entre ladite bouche d'entrée (110) et ladite buse de sortie (120) et configurée pour pouvoir extruder le matériau chargé de manière continue par ladite buse de sortie.

Description

DESCRIPTION
TITRE DE L’INVENTION : SYSTÈME D’EXTRUSION DE MATERIAU DE CONSTRUCTION ENRICHI DE GRANULATS ET/OU DE FIBRES ACIERS POUR FABRICATION ADDITIVE DE STRUCTURES ARCHITECTURALES
Domaine technique de l’invention
L’invention concerne un système de fabrication additive de matériaux de construction comprenant des granulats et/ou des fibres. L’invention concerne plus particulièrement un système d’extrusion de cordons de matériau de construction comprenant des granulats et/ou des fibres pour robot de fabrication additive de structures architecturales.
Arrière-plan technologique
L’impression 3D de matériaux de construction est une activité en plein essor pour laquelle le déposant a d’ores et déjà proposé de nombreuses innovations pour améliorer les processus de fabrication.
Ainsi, le déposant a déjà proposé, notamment dans les demandes WO20 18/051370, WO2018/229419, WO2019/048752, WO2019/038491 et WO2019/025698 des systèmes d’extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales.
Dans tout le texte, les termes « structures architecturales » désignent à la fois des éléments de construction individuels (ponts, piliers, murs, mobiliers urbains, etc.), des structures complètes (bâtiments, maisons, immeubles, etc.) et des pièces architecturales diverses (œuvres artistiques, sculptures, etc.).
Dans tout le texte, on désigne par « granulat », un fragment de roche, d'une taille supérieure à 3 mm et inférieure à 50 mm, destiné à entrer dans la composition des matériaux adaptés à la fabrication d'ouvrages de travaux publics, de génie civil et des bâtiments. Un granulat peut aussi être désigné par le terme « agrégat ».
Dans tout le texte, les termes « fibres aciers » font référence à des fibres d’acier rigides ou souples présentant des dimensions de 1 cm à 10 cm de longueur. Dans tout le texte, on désigné par « matériau charge », un matériau de construction enrichi de granulats et/ou de fibres aciers.
Les systèmes déjà proposés par le déposant apportent de nombreux avantages par rapport aux techniques traditionnelles parmi lesquels notamment la possibilité de pouvoir réaliser des formes complexes par ajout de couches successives de matériaux de construction, la rapidité des opérations de construction, la réduction des coûts et de la main d’œuvre, une sécurité améliorée sur les chantiers, etc.
Ces systèmes comprennent en général une tête d’impression équipée d’une entrée de matériau de construction et une buse de sortie (ou d’extrusion) de matériau de construction, un circuit d’alimentation de la tête d’impression en matériau de construction comprenant un réservoir de stockage de matériau de construction, une conduite reliant le réservoir de stockage et l’entrée de la tête d’impression, et une pompe de gavage de la conduite par le matériau de construction issu du réservoir de stockage.
L’une des difficultés de l’impression 3D de matériaux de construction réside dans le fait que le matériau doit être fourni dans un état rhéologique compatible avec un pompage de ce matériau, c’est à dire suffisamment fluide pour pouvoir être pompé du réservoir de stockage et véhiculé vers la buse de sortie, alors que son état doit être assez visqueux (c’est à dire moins fluide) en aval de la buse de sortie pour pouvoir former une couche autoportante et susceptible de supporter la couche suivante.
Une autre difficulté est de maintenir un débit régulier du matériau permettant d’ extruder des couches régulières de matériau de construction et donc de former des structures architecturales aux propriétés identiques à chaque couche et au sein d’une même couche.
Les techniques actuelles ne permettent pas d’ extruder des matériaux enrichis de granulats et/ou de fibres aciers car ils abîment les équipements des systèmes d’impression, en particulier ceux liés au transport du matériau de construction entre le réservoir de stockage et la tête d’impression. Par exemple, les matériaux enrichis de fibres aciers piquent les organes des systèmes d’impression, et notamment les pompes de dosage, ce qui interdit leurs utilisations avec les systèmes actuels.
Aussi, il n’est pas possible d’utiliser les systèmes connus pour extruder des matériaux chargés en granulats sur des longues distances, c’est-à-dire de véhiculer le matériau de construction depuis un réservoir de stockage jusqu’à la tête d’extrusion sur des longues distances, notamment des distances de l’ordre d’une dizaine de mètres car un tel matériau ne présente pas une rhéologie compatible avec les moyens de pompage mis en œuvre dans le système, en particulier les pompes à vis excentrée qui sont généralement mises en œuvre pour véhiculer le matériau cimentaire vers la tête d’extrusion en minimisant les pulsations.
Il n’est donc pas possible à l’heure actuelle d’utiliser des matériaux enrichis de granulats et/ou de fibres aciers dans des systèmes d’extrusion 3D. La seule option consiste à ajouter directement en tête d’impression des granulats et/ou des fibres aciers, juste avant l’extrusion, mais le besoin d’un mix homogène associé aux problématiques de convoyage des granulats et/ou des fibres rend très compliqué, voire impossible, une introduction de ces composants en bout d’effecteur.
Les inventeurs ont donc cherché à adapter les systèmes déjà proposés pour permettre leurs utilisations avec des matériaux chargés en granulats en vue de diminuer le retrait, la fissuration, l’empreinte écologique et le cout du matériau de construction dédié à la fabrication additive de structures architecturales complexes.
Les inventeurs ont aussi cherché à adapter les systèmes déjà proposés pour permettre leurs utilisations avec des matériaux chargés en fibres aciers en vue d’améliorer la résistance à la flexion et la ductilité des structures architecturales fabriquées avec un tel matériau.
Objectifs de l’invention
L’invention vise donc à fournir un système d’extrusion de matériau de construction enrichi en granulats et/ou en fibres aciers, dit matériau chargé.
L’invention vise aussi à fournir, dans au moins un mode de réalisation, un tel système qui permette le transport du matériau chargé sur une grande distance, en particulier sur une distance d’une dizaine de mètres.
L’invention vise aussi à fournir, dans au moins un mode de réalisation, un tel système qui permette une régularité de l’extrusion du matériau chargé. L invention vise aussi a fournir, dans au moms un mode de realisation, un tel système qui permette une extrusion en continu du matériau de construction chargé.
L’invention vise aussi à fournir, dans au moins un mode de réalisation, un tel système qui permette une extrusion à haut débit du matériau chargé.
L’invention vise enfin à fournir, dans au moins un mode de réalisation, un tel système qui permettre de diminuer le retrait, la fissuration, l’empreinte écologique et/ou le cout du matériau de construction utilisé pour fabriquer une structure architecturale complexe.
L’invention vise enfin à fournir, dans au moins un mode de réalisation, un tel système qui permettre d’améliorer la résistance à la flexion et la ductilité des structures architecturales fabriquées.
Exposé de l’invention
Pour ce faire, l’invention concerne un système d’extrusion de cordons de matériau de construction enrichi de granulats et/ou de fibres aciers, dit matériau chargé, pour robot de fabrication additive de structures architecturales comprenant : une tête d’impression de cordons de matériau de construction comprenant une bouche d’entrée de matériau et une buse de sortie configurée pour former des cordons de matériau, ladite tête d’impression étant destinée à être déplacée par le robot de fabrication additive selon une trajectoire prédéterminée pour former une structure architecturale par empilement de couches desdits cordons extradés, un circuit d’alimentation en matériau de ladite tête d’impression comprenant un réservoir de stockage de matériau chargé et une conduite d’alimentation en matériau reliant ledit réservoir de stockage et ladite tête d’impression.
Le système d’extrusion selon l’invention est caractérisé en ce que ledit circuit d’alimentation comprend au moins une pompe à pistons montée sur ladite conduite d’alimentation et configurée pour permettre le transport du matériau chargé depuis le réservoir de stockage jusqu’à ladite tête d’impression sans réglage contrôle du debit.
Le système d’extrusion selon l’invention est aussi caractérisé en ce que ladite tête d’impression comprend une vis sans fin agencée entre ladite bouche d’entrée et ladite buse de sortie et configurée pour pouvoir extruder le matériau chargé de manière continue par ladite buse de sortie.
Le système selon l’invention permet ainsi, par la combinaison d’au moins une pompe à pistons destinée au transport du matériau de construction chargé au sein du circuit d’alimentation et d’une vis sans fin destinée à l’extrusion du matériau chargé au sein de la tête d’impression (aussi désignée par la terminologie « tête d’extrusion » dans le texte), de transporter le matériau chargé sur de longues distances sans contraintes de débit notamment, et d’extruder de manière continue le matériau chargé par la présence d’une vis sans fin logée dans la tête d’impression en amont de la buse d’extrusion.
En d’autres termes, l’invention est remarquable en ce que le transport et l’extrusion du matériau sont scindés en deux sous-ensembles distincts mais qui coopèrent l’un avec l’autre pour permettre le transport et l’extrusion d’un matériau enrichi de granulats et/ou de fibres aciers.
Le système selon l’invention permet donc de contourner les limitations de l’art antérieur qui imposaient d’adapter la rhéologie et la composition du matériau aux contraintes de transport et de contrôler directement le dosage du matériau par des pompes de dosage à vis excentrée au sein du circuit d’alimentation et incompatibles avec un matériau chargé. Pour les matériaux chargés, la seule solution disponible était d’ajouter directement les granulats dans la tête d’impression, sans pouvoir véhiculer le matériau dans un circuit d’alimentation, en particulier sur de longues distances. Dans l’invention, le contrôle de la dépose du matériau est fait directement dans la tête d’extrusion par une vis sans fin et le transport du matériau chargé sur une longue distance et à haut débit est permis par l’utilisation de pompe à pistons.
Selon l’invention, la pompe à piston utilisée peut être de tout type connu. Il peut s’agir d’une pompe à pistons axiaux, d’une pompe à pistons radiaux, etc.
Une ou plusieurs pompes à pistons peuvent être utilisées selon la longueur de la conduite d alimentation reliant fluidiquement le reservoir de stockage et la tête d’extrusion.
Un système selon l’invention permet donc, dans le cas d’un matériau enrichi de granulats, de diminuer le retrait, la fissuration, l’empreinte écologique et le cout du matériau de construction utilisé pour fabriquer une structure architecturale.
Un système selon l’invention permet également, dans le cas d’un matériau enrichi de fibres aciers, d’améliorer la résistance à la flexion et la ductilité des structures architecturales fabriquées.
Avantageusement et selon l’invention, ledit réservoir de stockage comprend des moyens de malaxage d’une pluralité de composants pour pouvoir former ledit matériau chargé.
Selon cette variante, le réservoir de stockage forme aussi le réservoir dans lequel le matériau enrichi de granulats et/ou de fibres aciers est formé. Pour ce faire, le réservoir comprend des moyens de malaxage d’une pluralité de matériaux ou composants entrant dans la composition du matériau de construction chargé. Ces composants sont par exemple choisis dans la liste comprenant l’eau, des adjuvants, des fibres aciers, des agrégats, du sable, des liants hydrauliques et des géopolymères. Les moyens de malaxage sont par exemple formés d’un arbre motorisé s’étendant longitudinalement dans le réservoir et portant des pales latérales permettant le mélange des composants par la mise en rotation de l’arbre portant les pales.
Selon une autre variante de l’invention, le système comprend un réservoir dédié au malaxage relié fluidiquement au réservoir de stockage. Dans cette variante, les moyens de malaxage mentionnés précédemment sont logés dans le réservoir dédié au malaxage et le matériau malaxé est véhiculé vers le réservoir de stockage par gravité par exemple.
Avantageusement et selon l’invention, le réservoir de stockage comprend en outre des moyens d’agitation du réservoir pour permettre la mise en forme du matériau charge dans un état compatible avec son transport par ladite conduite d’alimentation.
Selon cette variante, le réservoir de stockage comprend par exemple une trémie conique reliée fluidiquement d’une part au réservoir de malaxage (dans le cas où le système est équipé d’un tel réservoir dédié) pour pouvoir recevoir le matériau chargé malaxé et d’autre part à la conduite d’alimentation de la tête d’impression pour pouvoir alimenter la conduite en matériau de construction. Le réservoir de stockage est de préférence équipé de moyens d’agitation du réservoir permettant de mettre le matériau dans un état compatible avec le pompage vers la conduite d’alimentation. En combinaison, le réservoir est de préférence équipé de moyens de poussée du matériau vers la conduite d’alimentation, ce qui permet notamment de pousser les matériaux non auto-plaçant dans la conduite d’alimentation. Ces moyens de poussée sont par exemple formés par des pales portées par un arbre motorisé et orientées de manière à pouvoir animer le matériau vers la conduite d’alimentation.
Avantageusement et selon l’invention, ladite tête d’impression comprend en outre une cuve de rétention agencée entre la bouche d’entrée et la vis sans fin et équipée de moyens d’agitation et/ou de poussée et/ou de vibration de ladite cuve pour faciliter l’extrusion du matériau chargé par ladite vis sans fin.
Selon cette variante, la tête d’impression comprend une cuve de rétention dans laquelle débouche la conduite d’alimentation du circuit d’alimentation par la bouche d’entrée. Cette cuve est par exemple munie d’une tige de mélange qui s’étend longitudinalement entre la bouche d’entrée et la vis sans fin. Cette tige de mélange est par exemple munie de pales latérales permettant d’agiter le matériau avant son extrusion par la vis sans fin. Selon une variante, la tige de mélange et la vis sans fin partagent le même arbre mécanique, mis en rotation par des moyens motorisés. Selon une variante, les pales sont en outre orientées vers la vis sans fin de manière à pouvoir animer le matériau vers la vis sans fin.
L’invention concerne aussi un robot de fabrication additive de structures architecturales comprenant un système de positionnement, tel qu un bras articule ou un portique, piloté par une unité de commande, et un système d’extrusion selon l’invention comprenant une tête d’extrusion montée sur ledit système de positionnement de sorte que le déplacement du système de positionnement portant ladite tête d’impression selon une trajectoire prédéterminée permette la fabrication d’une structure architecturale par empilement de couches de cordons de matériau cimentaire.
Les avantages et effets d’un système d’extrusion selon l’invention s’appliquent mutatis mutandis à un robot de fabrication additive selon l’invention.
L’invention concerne aussi un procédé d’extrusion de cordons de matériau de construction enrichi de granulats et/ou de fibres aciers, dit matériau chargé, pour robot de fabrication additive de structures architecturales, ledit procédé comprenant : une étape d’alimentation en matériau chargé d’une tête d’impression de cordons de matériau de construction, une étape d’extrusion de cordons de matériau chargé par une tête d’impression comprenant une bouche d’entrée de matériau et une buse de sortie configurée pour former des cordons de matériau de construction chargé.
Le procédé selon l’invention est caractérisé en ce que : ladite étape d’alimentation comprend le transport du matériau chargé au sein d’une conduite d’alimentation reliée fluidiquement entre un réservoir de stockage de matériau chargé et ladite tête d’impression par action d’au moins une pompe à pistons configurée pour permettre le transport du matériau chargé sans réglage contrôlé du débit, ladite étape d’extrusion comprend le déplacement du matériau chargé au sein de la tête d’impression vers la buse de sortie par action d’une vis sans fin agencée entre ladite bouche d’entrée et ladite buse de sortie et configurée pour pouvoir extruder le matériau chargé de manière continue par ladite buse de sortie. Un procédé selon 1 invention est avantageusement mis en œuvre par un système d’extrusion selon l’invention et un système d’extrusion selon l’invention met avantageusement en œuvre un procédé selon l’invention.
Avantageusement, le procédé selon l’invention comprend en outre une étape de malaxage d’une pluralité de composants pour pouvoir former ledit matériau chargé.
Cette étape de malaxage est de préférence mise en œuvre par les moyens de malaxage logés dans le réservoir de stockage du système d’extrusion selon l’invention ou dans un réservoir dédié de malaxage agencé fluidiquement an amont du réservoir de stockage du système d’extrusion selon l’invention.
Avantageusement, le procédé selon l’invention comprend en outre une étape d’agitation du matériau avant transport par ladite conduite d’alimentation.
Cette étape d’agitation est de préférence mise en œuvre par les moyens d’agitation logés dans le réservoir de stockage du système d’extrusion selon l’invention
Avantageusement, le procédé selon l’invention comprend en outre une étape de poussée du matériau vers ladite conduite d’alimentation.
Cette étape est de préférence mise en œuvre par les moyens de poussée du matériau logés dans le réservoir de stockage du système d’extrusion selon l’invention.
Avantageusement, le procédé selon l’invention comprend en outre une étape d’agitation du matériau dans une cuve de rétention agencée entre la bouche d’entrée et la vis sans fin de ladite tête d’impression pour faciliter l’extrusion du matériau chargé par ladite vis sans fin.
L'invention concerne également un système d’extrusion, un robot de fabrication additive et un procédé d’extrusion caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-apres.
Liste des figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère aux figures annexées dans lesquelles :
[Fig. 1] est une vue schématique d’un système d’extrusion selon un mode de réalisation de l’invention,
[Fig. 2] est une vue schématique d’un robot de fabrication additive selon un mode de réalisation de l’invention,
[Fig. 3] est une vue schématique d’un procédé d’extrusion selon un mode de réalisation de l’invention,
[Fig. 4] est une vue schématique d’un réservoir de stockage selon un mode de réalisation de l’invention formé de la combinaison d’un réservoir de malaxage et d’un réservoir d’agitation.
Description détaillée d’un mode de réalisation de l’invention
Sur les figures, les échelles et les proportions ne sont pas strictement respectées et ce, à des fins d’illustration et de clarté. Dans toute la description détaillée qui suit en référence aux figures, sauf indication contraire, chaque élément du système d’extrusion est décrit tel qu’il est agencé lorsque le système d’extrusion est mis en œuvre dans le cadre de la fabrication d’une structure architecturale par empilement de couches de cordons extradés .
En outre, les éléments identiques, similaires ou analogues sont désignés par les mêmes références dans toutes les figures.
Un système d’extrusion selon l’invention comprend, tel que représenté sur la figure 1, deux sous-systèmes principaux : une tête d’impression 100 de cordons de matériau de construction et un circuit d’alimentation 10 de la tête d’impression 100 en matériau enrichi de granulats et/ou de fibres aciers 21.
Les deux sous-systèmes vont être décrits en détail dans la suite du texte.
Le circuit d’alimentation
Le circuit d’alimentation 10 comprend un réservoir de stockage 20 d’un matériau de construction enrichi de granulats et/ou de fibres aciers 21, une conduite 31 reliant une sortie 12 du réservoir de stockage 20 à une bouche d’entrée 110 de la tête d’impression 100, et une pompe à pistons 40 agencée sur la conduite 31 pour permettre de véhiculer le matériau chargé dans la conduite 31 sans réglage contrôlé du débit de matériau. Cette pompe à pistons 40 est par exemple une pompe commercialisée par la société Putzmeister® sous la référence KOS. Bien entendu, d’autres types de pompes à piston peuvent être utilisées et/ou testées par l’homme du métier pour la mise en œuvre du système selon l’invention.
La pompe à pistons 40 permet de transporter le matériau de construction chargé sur une longue distance, de manière continue et sans avoir besoin de régler la régularité du débit. La régularité du matériau est gérée au niveau de la tête d’impression 100 par le biais de la vis sans fin décrite ultérieurement.
Le réservoir de stockage 20 est de préférence une trémie comprenant une ouverture supérieure 11 adaptée pour recevoir des gâchées de matériaux cimentaires enrichis de granulats et/ou de fibres aciers 21 et une sortie inférieure 12 reliée à la conduite 31. La trémie peut en outre comprendre un mélangeur 13 comprenant un arbre 14 portant une pluralité de pales latérales 15 et éventuellement un racleur, et un moteur 16 de mise en rotation de l’arbre 14. Le moteur 16 est par exemple un moteur électrique configuré pour pouvoir entraîner à faible vitesse, par exemple à une vitesse de 6 à 20 tours par minute, l’arbre 14 du mélangeur 13. L’utilisation d’un moteur thermique est bien sûr possible sans modifier les performances du système d’extrusion selon l’invention. Ce mélangeur 13 peut aussi former des moyens de malaxage d’une pluralité de composants entrant dans la composition du matériau de construction enrichi de granulats et/ou de fibres aciers. Ces composants sont par exemple choisis dans le groupe comprenant de l’eau, des adjuvants, des agrégats, des fibres aciers, du sable des liants hydrauliques, des géopolymères.
Le réservoir de stockage peut également comprendre des moyens d’agitation de la trémie qui peuvent être de tous types connus, comme par exemple ceux décrits en lien avec la figure 4.
La figure 4 illustre un mode de réalisation particulier du système en amont de la conduite d alimentation qui est forme d un reservoir 20a dedie au malaxage et d’un réservoir 20b dédié à l’agitation et à la poussée du matériau vers la conduite d’alimentation. En d’autres termes, ce mode de réalisation de la figure 4 sépare la fonction de malaxage et la fonction d’agitation et de poussée du réservoir de stockage 20 du mode de réalisation de la figure 1.
Selon le mode de réalisation de la figure 4, le réservoir 20a reçoit une pluralité de composants entrant dans la composition du matériau de construction enrichi de granulats et/ou de fibres aciers. Un mélangeur 13a formé d’un moteur électrique 16a, d’un mélangeur central 14a et d’une pluralité de pales 15a formant des moyens de mélange latéral assure le mélange des différents composants. Le matériau chargé ainsi formé est ensuite conduit par gravité naturelle dans le réservoir 20b.
Le réservoir 20b comprend un arbre central 14b entrainé en rotation par un moteur électrique non représenté sur la figure 4 à des fins de clarté, et qui porte d’une part des racleurs 15b destinés à racler les parois du réservoir, et d’autre part des pales 17b de poussée orientées vers la sortie 12b du réservoir et destinées à pousser le matériau vers la pompe à pistons 40 reliée fluidiquement à la sortie 12b. Le réservoir 20b comprend également un vibreur 18b formant les moyens d’agitation du réservoir. Ce vibreur est par exemple formé d’un vibrateur pneumatique ou électrique monté sur le réservoir par l’intermédiaire d’un berceau de fixation. Il peut aussi s’agir d’aiguilles de vibration ou de tous moyens équivalents plongés dans le réservoir ou montés sur le réservoir.
La tête d’impression 100
La tête d’impression 100 comprend, tel que représenté schématiquement par la figure 1, une bouche d’entrée 110 reliée à la conduite 31 du circuit d’alimentation 10 et une buse 120 de sortie configurée pour former des cordons de matériau cimentaire.
La tête d’impression 100 comprend en outre une vis sans fin 150 entrainée en rotation par un moteur 130 et configurée pour pouvoir entrainer le matériau de construction chargé vers la buse 120 de sortie.
La tête d’impression 100 comprend également une cuve de rétention 140 agencée entre la bouche d entree 110 et la vis sans fin 150. Cette cuve de retention 140 comprend un arbre 141 qui s’étend longitudinalement dans la cuve de rétention 140 et qui est entrainé en rotation par le moteur 130. Cet arbre 141 est en outre équipé de doigts radiaux 142 configurés pour pouvoir agiter et/ou pousser le matériau de construction, et formant ainsi des moyens d’agitation et de poussée du matériau avant extrusion par la vis sans fin 150.
Le moteur 130 peut être un moteur électrique, un moteur thermique, et de manière générale tous types de moteurs.
La buse de sortie 120 de la tête d’impression 100 est de préférence démontable de manière à pouvoir adapter la forme de la buse de sortie 120 à la pièce à fabriquer. En particulier, la section de la buse de sortie 120 peut être adaptée à chaque type de pièce fabriquée, voire changée en cours d’impression pour modifier la section des cordons de certaines portions de la pièce fabriquée. Pour ce faire, la buse de sortie comprend par exemple une paroi externe filetée qui coopère avec une portion interne filetée de la paroi de la tête d’impression dans laquelle s’étend la vis sans fin 150. Selon une autre variante, la buse de sortie comprend une paroi interne filetée qui coopère avec une portion externe filetée de la paroi de la tête d’impression.
La figure 2 est une vue schématique d’un robot 9 de fabrication additive d’une structure architecturale 8 selon un mode de réalisation de l’invention. Un tel robot 9 comprend un bras articulé ou un portique 7, piloté par une unité de commande non représentée sur la figure, qui porte la tête d’impression 100 d’un système d’extrusion selon l’invention.
Sur la figure 2, seule la tête d’impression 100 est représentée à des fins de clarté, étant entendu que cette tête d’impression est alimentée en matériau cimentaire enrichi en granulats et/ou de fibres aciers par un circuit d’alimentation 10 tel que décrit en lien avec la figure 1.
Le robot 9 est commandé par une unité de commande pour entrainer le déplacement de la tête d’impression 100 suivant une trajectoire prédéterminée permettant de fabriquer la structure architecturale 8 par empilement de couches de cordons extradés 6. Le cordon 6 en cours d’extrusion est représenté schématiquement par un trait noir épais.
La figure 3 illustre schématiquement les différentes étapes d’un procédé d’extrusion selon un mode de réalisation de l’invention.
Un tel procédé comprend une première étape El de formation d’un matériau de construction enrichi de granulats et/ou de fibres aciers. Cette étape consiste par exemple à mélanger de manière continue ou discontinue des composants choisis dans le groupe comprenant de l’eau, des adjuvants, des agrégats, des fibres aciers, du sable, des liants hydrauliques, des géopolymères. La composition fabriquée dépend de la structure architecturale à bâtir et des caractéristiques de cette structure architecturale. L’homme du métier est à même de déterminer la composition adaptée à son projet d’extrusion.
Le procédé comprend une deuxième étape E2 de remplissage d’un réservoir de stockage du matériau de construction enrichi de granulats et/ou de fibres aciers.
Le procédé comprend une étape subséquente E3 d’activation d’une pompe à pistons pour alimenter une conduite reliant fluidiquement le réservoir de stockage et une tête d’impression portée par un bras articulé d’un robot.
Le procédé comprend une étape E4 de mise en route d’une vis sans fin logée dans la tête d’impression pour permettre l’extrusion du matériau de construction par la buse de sortie de la tête d’impression. Cette étape peut comprendre une sous- étape d’alimentation d’une cuve de rétention logée dans la tête d’impression et d’agitation du matériau contenu dans cette cuve de rétention pour faciliter l’extrusion du matériau chargé par ladite vis sans fin.
Le procédé comprend une étape E5 concomitante de déplacement du bras articulé portant la tête d’impression pour permettre la fabrication d’une structure architecturale par empilement de cordons extradés de matériau de construction.
Un procédé selon l’invention est de préférence mis en œuvre par un système d’extrusion selon l’invention et un robot selon l’invention.
L’invention ne se limite pas aux seuls modes de réalisation décrits. En particulier, selon d’autres modes de réalisation, le robot peut être un robot six axes, monté sur rails ou non, sur portique ou non. Le robot peut également être un robot à câbles ou tous types de robots dont le système de positionnement, tel qu’un bras articulé, peut être piloté par ordinateur.
Un robot selon l’invention peut être utilisé pour fabriquer tous types de pièces architecturales. Une telle pièce architecturale peut être une pièce de renfort, un bâtiment, et de manière générale, toute pièce en matériau cimentaire. Les pièces architecturales fabriquées par l’utilisation d’un système d’extrusion selon l’invention peuvent être d’échelles variées. Il peut s’agir d’une portion de poteau, d’un poteau entier, d’un mur, d’un élément de dalle, d’un bâtiment, d’un mobilier urbain, d’une sculpture, etc.

Claims

REVENDICATIONS Système d’extrusion de cordons de matériau de construction enrichi de granulats et/ou de fibres aciers (21), dit matériau chargé, pour robot (9) de fabrication additive de structures architecturales (8) comprenant : une tête d’impression (100) de cordons de matériau de construction comprenant une bouche d’entrée (110) de matériau et une buse de sortie (120) configurée pour former des cordons (6) de matériau, ladite tête d’impression (100) étant destinée à être déplacée par le robot (9) de fabrication additive selon une trajectoire prédéterminée pour former une structure architecturale (8) par empilement de couches desdits cordons (6) extradés, un circuit d’alimentation (10) de ladite tête d’impression (100) en matériau chargé comprenant un réservoir de stockage (20 ; 20a, 20b) de matériau chargé et une conduite d’alimentation (31) en matériau reliant ledit réservoir de stockage (20 ; 20a, 20b) et ladite tête d’impression (100), caractérisé en ce que : ledit circuit d’alimentation (10) comprend au moins une pompe à pistons (40) montée sur ladite conduite d’alimentation (31) et configurée pour permettre le transport du matériau chargé depuis le réservoir de stockage (20 ; 20a, 20b) jusqu’à ladite tête d’impression (100) sans réglage contrôlé du débit, ladite tête d’impression (100) comprend une vis sans fin (150) agencée entre ladite bouche d’entrée (110) et ladite buse de sortie (120) et configurée pour pouvoir extrader le matériau chargé de manière continue par ladite buse de sortie. Système d’extrusion selon la revendication 1, caractérisé en ce que ledit réservoir (20 ; 20a, 20b) de stockage comprend des moyens de malaxage (13a 14a, 15a) d’une pluralité de composants pour pouvoir former ledit matériau chargé. Système selon l’une des revendications 1 ou 2, caractérisé en ce que ledit reservoir de stockage comprend en outre des moyens d agitation (18b) dudit réservoir pour permettre la mise en forme du matériau chargé dans un état compatible avec son transport par ladite conduite d’alimentation (31). Système selon l’une des revendications 1 à 3, caractérisé en ce que ladite tête d’impression (100) comprend en outre une cuve de rétention (140) agencée entre la bouche d’entrée (110) et la vis sans fin (150) et équipée de moyens d’agitation et/ou de vibration et/ou de poussée (130, 141, 142) de ladite cuve pour faciliter l’extrusion du matériau chargé par ladite vis sans fin. Robot (9) de fabrication additive de structures architecturales (8) comprenant un système de positionnement, tel qu’un bras articulé (7), piloté par une unité de commande, et un système d’extrusion (10, 100) comprenant une tête d’impression (100) montée sur ledit système de positionnement de sorte que le déplacement du système de positionnement portant ladite tête d’impression selon une trajectoire prédéterminée permette la fabrication d’une structure architecturale (8) par empilement de couches de cordons (6) de matériau cimentaire, caractérisé en ce que ledit système d’extrusion est conforme à l’une des revendications 1 à 4. Procédé d’extrusion de cordons de matériau de construction enrichi de granulats et/ou de fibres aciers, dit matériau chargé, pour robot de fabrication additive de structures architecturales, ledit procédé comprenant : une étape d’alimentation (E3, E4) en matériau chargé d’une tête d’impression de cordons de matériau de construction, une étape d’extrusion (E5) de cordons de matériau chargé par une tête d’impression comprenant une bouche d’entrée de matériau et une buse de sortie configurée pour former des cordons de matériau de construction chargé, caractérisé en ce que : ladite étape d’ alimentation comprend le transport du matériau chargé au sein d’une conduite d’alimentation reliée fluidiquement entre un réservoir de stockage de matériau chargé et ladite tête d’impression par action (E3) d’une pompe à pistons configurée pour permettre le transport du matériau charge sans reglage contrôle du debit, ladite étape d’extrusion (E5) comprend le déplacement du matériau chargé au sein de la tête d’impression vers la buse de sortie par action (E4) d’une une vis sans fin agencée entre ladite bouche d’entrée et ladite buse de sortie et configurée pour pouvoir extruder le matériau chargé de manière continue par ladite buse de sortie. Procédé d’extrusion selon la revendication 6, caractérisé en ce qu’il comprend en outre une étape de malaxage (El) d’une pluralité de composants pour pouvoir former ledit matériau chargé. Procédé d’extrusion selon l’une des revendications 6 ou 7, caractérisé en ce qu’il comprend en outre une étape d’agitation du matériau avant transport par ladite conduite d’alimentation. Procédé d’extrusion selon l’une des revendications 6 à 8, caractérisé en ce qu’il comprend en outre une étape de poussée du matériau vers ladite conduite d’alimentation. Procédé d’extrusion selon l’une des revendications 6 à 9, caractérisé en ce qu’il comprend en outre une étape d’agitation du matériau dans une cuve de rétention agencée entre la bouche d’entrée et la vis sans fin de ladite tête d’impression pour faciliter l’extrusion du matériau chargé par ladite vis sans fin.
PCT/EP2022/074968 2021-09-13 2022-09-08 Système d'extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales WO2023036864A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280061897.1A CN117957104A (zh) 2021-09-13 2022-09-08 适于建筑结构增材制造的用于挤出富含骨料和/或钢纤维的建造材料的系统
CA3231800A CA3231800A1 (fr) 2021-09-13 2022-09-08 Systeme d'extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2109558 2021-09-13
FR2109558A FR3126913B1 (fr) 2021-09-13 2021-09-13 Système d’extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales

Publications (1)

Publication Number Publication Date
WO2023036864A1 true WO2023036864A1 (fr) 2023-03-16

Family

ID=78212288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/074968 WO2023036864A1 (fr) 2021-09-13 2022-09-08 Système d'extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales

Country Status (4)

Country Link
CN (1) CN117957104A (fr)
CA (1) CA3231800A1 (fr)
FR (1) FR3126913B1 (fr)
WO (1) WO2023036864A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599104A (zh) * 2015-12-25 2016-05-25 杭州博彭科技有限公司 建筑轮廓成型机的混凝土处理设备及处理方法
CN106639324A (zh) * 2016-11-29 2017-05-10 蒋旭峰 建筑物轮廓成型的供料系统
WO2018051370A1 (fr) 2016-09-16 2018-03-22 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Dispositif de filtre de longueur d'onde à large bande utilisant un réseau de paroi latérale pour filtrer des signaux optiques
US20180200920A1 (en) * 2017-01-16 2018-07-19 Jing Zhang Slurry dispense system
WO2018229419A1 (fr) 2017-06-14 2018-12-20 Xtreee Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales
EP3421201A1 (fr) * 2017-06-30 2019-01-02 ITALCEMENTI S.p.A. Mélange cimentaire pour imprimante 3d et son utilisation
WO2019025698A1 (fr) 2017-08-02 2019-02-07 Xtreee Robot parallèle à câbles et procédé de commande d'un tel robot
WO2019038491A1 (fr) 2017-08-24 2019-02-28 Xtreee Système d'extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant un dispositif d'insertion de fibres de renforcement
WO2019048752A1 (fr) 2017-09-08 2019-03-14 Xtreee Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales colorées
JP2019147338A (ja) * 2018-02-28 2019-09-05 大成建設株式会社 3dプリンタ用ノズル装置および3dプリンタ装置並びにこれを用いた建造物の構築方法、粘性材料の供給方法および製作物構築装置
CA3133051A1 (fr) * 2019-03-27 2020-10-01 Putzmeister Engineering Gmbh Dispositif de distribution de materiau de processus fluide

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105599104A (zh) * 2015-12-25 2016-05-25 杭州博彭科技有限公司 建筑轮廓成型机的混凝土处理设备及处理方法
WO2018051370A1 (fr) 2016-09-16 2018-03-22 INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) Dispositif de filtre de longueur d'onde à large bande utilisant un réseau de paroi latérale pour filtrer des signaux optiques
CN106639324A (zh) * 2016-11-29 2017-05-10 蒋旭峰 建筑物轮廓成型的供料系统
US20180200920A1 (en) * 2017-01-16 2018-07-19 Jing Zhang Slurry dispense system
WO2018229419A1 (fr) 2017-06-14 2018-12-20 Xtreee Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales
EP3421201A1 (fr) * 2017-06-30 2019-01-02 ITALCEMENTI S.p.A. Mélange cimentaire pour imprimante 3d et son utilisation
WO2019025698A1 (fr) 2017-08-02 2019-02-07 Xtreee Robot parallèle à câbles et procédé de commande d'un tel robot
WO2019038491A1 (fr) 2017-08-24 2019-02-28 Xtreee Système d'extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant un dispositif d'insertion de fibres de renforcement
WO2019048752A1 (fr) 2017-09-08 2019-03-14 Xtreee Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales colorées
JP2019147338A (ja) * 2018-02-28 2019-09-05 大成建設株式会社 3dプリンタ用ノズル装置および3dプリンタ装置並びにこれを用いた建造物の構築方法、粘性材料の供給方法および製作物構築装置
CA3133051A1 (fr) * 2019-03-27 2020-10-01 Putzmeister Engineering Gmbh Dispositif de distribution de materiau de processus fluide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MECHTCHERINE VIKTOR ET AL: "Large-scale digital concrete construction - CONPrint3D concept for on-site, monolithic 3D-printing", AUTOMATION IN CONSTRUCTION, ELSEVIER, AMSTERDAM, NL, vol. 107, 28 August 2019 (2019-08-28), XP085856704, ISSN: 0926-5805, [retrieved on 20190828], DOI: 10.1016/J.AUTCON.2019.102933 *

Also Published As

Publication number Publication date
FR3126913A1 (fr) 2023-03-17
FR3126913B1 (fr) 2024-03-08
CA3231800A1 (fr) 2023-03-16
CN117957104A (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
EP3638473B1 (fr) Système d'extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant un dispositif d'insertion de fibres de renforcement
EP3638475B1 (fr) Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales
CA2110850C (fr) Procede et appareil de melangeage en continu de caoutchouc
FR3070896B1 (fr) Systeme d'extrusion de cordons de materiau cimentaire pour robots de fabrication additive de structures architecturales colorees
BE1021363B1 (fr) Machine a projeter.
EP3119736B1 (fr) Procede de production d'explosif par melange avec un reactif de gazeification
EP3674045B1 (fr) Système d' extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant un dispositif de fluidification du matériau cimentaire extrudé
EP3638476B1 (fr) Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales
EP3231786B1 (fr) Mélangeur statique avec un dispositif de cisaillement et procédé de production d'explosif
WO2023036864A1 (fr) Système d'extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales
FR3058352A1 (fr) Ensemble d'extrusion volumetrique pour melanges d'elastomeres
EP3616865B1 (fr) Dispositif et procédé d'impression tridimensionnelle dans du gel
JP2022040690A (ja) 流体吐出機および3dプリンタ
FR2732263A3 (fr) Appareil et procede d'addition d'un adjuvant a des compositions a base de ciment fluides
FR3068911A1 (fr) Tete d'extrusion de cordons de materiaux de construction d'un robot de fabrication additive equipee d'un dispositif de lissage
CA2153190A1 (fr) Methode et dispositif de pompage a jets sequentiels
EP3119735B1 (fr) Installation de production d'explosif par melange avec un reactif de gazeification
WO2024078919A1 (fr) Système d'extrusion de materiau de construction equipé d'un dispositif de mesure de la largeur des cordons extrudés
FR3134151A1 (fr) Procédé de commande d’une pompe de machine de chantier
JPH11216719A (ja) コンクリート等作業車両のリザーバー装置
FR2529823A1 (fr) Procede et dispositif pour la fabrication et eventuellement le transport de melanges en mousse constitues d'agents liants ou d'agents liants avec des additifs
FR2570443A1 (fr) Pompe pour la distribution de matieres a viscosite elevee et son application dans une installation de fourniture d'un cordon de matiere plastique destine a servir d'intercalaire dans des vitrages multiples

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22773526

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280061897.1

Country of ref document: CN

Ref document number: 3231800

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2022773526

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022773526

Country of ref document: EP

Effective date: 20240415