WO2024078919A1 - Système d'extrusion de materiau de construction equipé d'un dispositif de mesure de la largeur des cordons extrudés - Google Patents
Système d'extrusion de materiau de construction equipé d'un dispositif de mesure de la largeur des cordons extrudés Download PDFInfo
- Publication number
- WO2024078919A1 WO2024078919A1 PCT/EP2023/077319 EP2023077319W WO2024078919A1 WO 2024078919 A1 WO2024078919 A1 WO 2024078919A1 EP 2023077319 W EP2023077319 W EP 2023077319W WO 2024078919 A1 WO2024078919 A1 WO 2024078919A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- construction material
- extrusion
- print head
- width
- bead
- Prior art date
Links
- 239000011324 bead Substances 0.000 title claims abstract description 85
- 239000004566 building material Substances 0.000 title claims abstract description 10
- 238000001125 extrusion Methods 0.000 claims abstract description 95
- 239000000463 material Substances 0.000 claims abstract description 34
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 claims abstract description 21
- 238000007639 printing Methods 0.000 claims abstract description 15
- 239000000654 additive Substances 0.000 claims abstract description 13
- 230000000996 additive effect Effects 0.000 claims abstract description 13
- 239000004035 construction material Substances 0.000 claims description 60
- 238000005259 measurement Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 18
- 230000001105 regulatory effect Effects 0.000 claims description 8
- 230000001276 controlling effect Effects 0.000 claims description 7
- 238000004364 calculation method Methods 0.000 description 12
- 238000010276 construction Methods 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 5
- 238000010146 3D printing Methods 0.000 description 3
- 239000002671 adjuvant Substances 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04G—SCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
- E04G21/00—Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
- E04G21/02—Conveying or working-up concrete or similar masses able to be heaped or cast
- E04G21/04—Devices for both conveying and distributing
- E04G21/0418—Devices for both conveying and distributing with distribution hose
- E04G21/0445—Devices for both conveying and distributing with distribution hose with booms
- E04G21/0463—Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/001—Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B17/00—Details of, or accessories for, apparatus for shaping the material; Auxiliary measures taken in connection with such shaping
- B28B17/0063—Control arrangements
- B28B17/0081—Process control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28C—PREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28C5/00—Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
- B28C5/08—Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions using driven mechanical means affecting the mixing
- B28C5/10—Mixing in containers not actuated to effect the mixing
- B28C5/12—Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers
- B28C5/16—Mixing in containers not actuated to effect the mixing with stirrers sweeping through the materials, e.g. with incorporated feeding or discharging means or with oscillating stirrers the stirrers having motion about a vertical or steeply inclined axis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/20—Apparatus for additive manufacturing; Details thereof or accessories therefor
- B29C64/205—Means for applying layers
- B29C64/209—Heads; Nozzles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/321—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/307—Handling of material to be used in additive manufacturing
- B29C64/343—Metering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/30—Auxiliary operations or equipment
- B29C64/386—Data acquisition or data processing for additive manufacturing
- B29C64/393—Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y30/00—Apparatus for additive manufacturing; Details thereof or accessories therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
Definitions
- the invention relates to the additive manufacturing of construction materials.
- the invention relates more particularly to a system for extruding cords of construction material for a robot for additive manufacturing of architectural structures by stacking successive layers of extradited cords.
- the invention also relates to a method for extruding cords of construction material for a robot for additive manufacturing of architectural structures.
- architectural structures refer to both individual construction elements (bridges, pillars, walls, street furniture, etc.), complete structures (buildings, houses, buildings, etc.) and rooms various architectural works (artistic works, sculptures, etc.).
- These systems generally include a print head equipped with a construction material inlet mouth and an extrusion nozzle (also referred to in the text as an "exit nozzle") of beads of construction material. construction, a supply circuit for the inlet mouth of the print head made of construction material comprising a construction material storage tank, a pipe connecting the storage tank and the inlet of the print head , and a booster pump for the pipe using the construction material from the storage tank.
- the quality of an architectural structure manufactured by such a cementitious material extrusion system depends in particular on the intra-layer adhesion and the section of the extradited beads.
- one of the known techniques consists of using a caliper to measure, at certain critical zones, the width of the extradited cords.
- Another solution is to use a scanner operated by an operator.
- the inventors therefore sought to develop a solution which makes it possible to overcome the limits of known solutions, and in particular those linked to the a posteriori measurement of the section of the cords and the problem of access to the entire structure. architectural.
- the invention therefore aims to provide a construction material extrusion system which makes it possible to simply and without constraint control the quality of the extruded cords.
- the invention aims in particular to provide such a system which makes it possible to measure the width of the cords extradited during the manufacture of the architectural structure.
- the invention also aims to provide such a system which makes it possible to quickly take corrective measures if it turns out that the extradited cords do not conform to the required specifications or approach the authorized limits.
- the invention also aims to provide, in at least one embodiment, such a system which makes it possible to measure the width of the extradited cords, whatever the geometry of the extradited part.
- the invention also aims to provide, in at least one embodiment, such a system which makes it possible to measure the width of the extradited beads, whatever the orientation and/or movement of the extrusion head.
- the invention relates to a system for extruding cords of construction material for a robot for additive manufacturing of architectural structures
- a building material bead printing head comprising a material inlet mouth and an extrusion nozzle extending about an extrusion axis and configured to form an extruded bead of building material, said head printing being intended to be moved by the additive manufacturing robot along a predetermined trajectory, from upstream to downstream, to form an architectural structure by stacking layers of said extradited cords
- a circuit for supplying construction material to said head printing system comprising a construction material storage tank and a construction material supply pipe connecting said storage tank and said extrusion head, a pump for regulating the flow of construction material circulating in said system of extrusion arranged between said storage tank and said extrusion nozzle.
- the system according to the invention is characterized in that it further comprises a device for measuring without contact the width of the extruded bead upstream of said extrusion nozzle, said measuring device being carried by said print head and comprising three lasers associated with a unit for calculating the width of said bead from data acquired by the lasers, said lasers being oriented towards said extradited bead, upstream of said extrusion nozzle, and arranged relative to each other in such that the projected light rays form a closed triangle surrounding said axis of said extrusion nozzle.
- upstream and downstream are used in reference to the movement of the print head along the predetermined path.
- the cord upstream of the head corresponds to the cord which has just been extradited while the downstream of the head corresponds to the part of the trajectory which is about to receive a cord.
- the system according to the invention therefore has the particularity of embedding, on the print head, a device for measuring without contact the width of the bead extradited upstream of the extrusion nozzle on the predetermined trajectory. That means that the system is able to measure the width of the bead that has just been extruded by the print head. This extruded bead is located upstream of the extrusion nozzle on the predetermined trajectory followed by the print head to manufacture the architectural structure.
- the system can continuously measure, and during the manufacturing of the manufactured part, the width of the beads extruded by the extrusion nozzle, just after their extrusion by the extrusion nozzle.
- the system according to the invention therefore makes it possible to control, during printing, the width of the beads to guarantee the quality of the manufactured part and to be able, if necessary, to provide in real time, corrective measures if the width measured of the extradited cord turns out to be non-compliant or tends towards a non-compliant value.
- corrective measures can be modifications to the instructions for the speed of movement of the print head or the extrusion flow rate of the cementitious material, to maintain the width of the extruded bead within the range of admissible values.
- said measuring device comprises three lasers for acquiring data representative of the width of the extruded bead upstream of the extrusion nozzle, associated with a unit for calculating the width of said bead at from said representative data acquired by the lasers, these lasers being oriented towards said extradited cord.
- the measurement of the width of the extruded bead is obtained by using several lasers.
- the laser projects a light ray towards the cord and the associated calculation unit makes it possible to deduce a measurement of the width of the cord.
- a camera can be used to also acquire an image of the extradited cord and the calculation unit makes it possible to deduce, by processing the acquired image, a measurement of the width of the cord.
- said measuring device comprises three lasers arranged relative to each other so that all of the data acquired by all of the lasers cover at least one closed triangle surrounding said extrusion axis of said extrusion nozzle.
- each laser is configured to project a ray bright rectilinear. This facilitates width measurement since complex image processing is avoided in the case of a sensor formed from an image acquisition camera.
- all of the lasers make it possible to cover at least one closed polygon (in this case a triangle) which surrounds the extrusion nozzle so as to guarantee that the bead is visible by at least one sensor whatever the orientation. of the print head and regardless of the direction of movement of the print head.
- the lasers are fixed on the print head, which makes it easier to mount them on the print head.
- the print head can be driven in any direction while guaranteeing that a width measurement can be carried out by one of the lasers, provided that all of the lasers cover at least a closed triangle which surrounds the extrusion nozzle, and therefore necessarily the extruded bead.
- the system comprises three lasers arranged relative to each other such that the projected light rays form a closed triangle.
- the system further comprises a unit for controlling the speed and movement of said print head along a predetermined trajectory, from upstream to downstream, and a unit for controlling said pump for regulating the flow of construction material.
- said device for measuring the width of the extradited cords is configured to transmit said width measurement to said speed and displacement control unit and/or to said control unit of said regulation pump, so as to to be able to control the speed of movement and/or said flow rate of construction material to said measured width of the extruded bead upstream of the extrusion nozzle.
- the height h is imposed by the vertical movement of the print head between a previous extrusion layer and the layer being extruded. Also, the d/v ratio determines the width of the bead being extruded.
- the invention therefore provides for defining the width of the bead and controlling it during extrusion, using speed and flow rate instructions.
- This advantageous variant makes it possible in particular to control the movement speed and flow rate of the cementitious material to the actual instantaneous measurement of the width of the extruded bead.
- the regulation pump which controls the flow of cementitious material in the system is arranged within the extrusion system between the storage tank and the extrusion nozzle.
- this pump can be arranged between the storage tank and the supply line, to fill the supply line with construction material.
- this pump can be arranged directly within the print head, between the inlet mouth and the extrusion nozzle, to dose the cementitious material.
- said print head comprises a dosing pump configured to be able to convey the construction material from said inlet mouth to said extrusion nozzle and this dosing pump forms said regulation pump.
- the regulation pump is formed by a dosing pump housed in the print head and configured to convey the construction material from said inlet mouth to said extrusion nozzle.
- the print head comprises a construction material inlet mouth, a bead extrusion nozzle and a dosing pump configured to convey the construction material from the opening mouth. entry to the extrusion nozzle, and this pump is controlled by the measurement of the width of the extradited cord.
- said supply circuit comprises a booster pump for said supply pipe with construction material from the storage tank and this booster pump forms said regulation pump.
- the regulation pump is formed by a booster pump arranged within the supply circuit of the print head and configured to convey the construction material from the storage tank towards said supply pipe.
- the invention also relates to a method of extruding cords of construction material for a robot for additive manufacturing of architectural structures comprising: a step of supplying construction material to a print head comprising a material inlet mouth of construction and an extrusion nozzle configured to form beads of construction material, from a storage tank of construction material and a pump for regulating the flow of cementitious material arranged between the storage tank and the extrusion nozzle, a step of moving said print head along a predetermined trajectory and a controlled speed, from upstream to downstream, a step of extruding beads of construction material by said print head, a step for measuring the width of the cords extradited upstream of the extrusion nozzle, from data acquired by three lasers oriented towards said cord extradited upstream of said extrusion nozzle, and arranged in relation to each other in such a way that the projected light rays form a closed triangle surrounding said extrusion nozzle, a step of controlling the speed of movement of said print head and/or the flow rate of said regulation pump
- a method according to the invention makes it possible to control the set speed of movement of the print head and/or the control set point of the regulating pump in construction material to the actual instantaneous measurement of the width of the extruded cord.
- a method according to the invention is advantageously implemented by an extrusion system according to the invention and an extrusion system according to the invention advantageously implements a method according to the invention.
- the invention also relates to an extrusion system, an additive manufacturing robot and an extrusion process characterized in combination by all or part of the characteristics mentioned above or below.
- FIG. 1 is a schematic view of an extrusion system according to one embodiment of the invention.
- FIG. 2 is a schematic view of a print head of a system according to one embodiment of the invention.
- FIG. 3 is a schematic top view of a bead extruded by an extrusion system according to one embodiment of the invention on which are represented the closed polygons formed by the lasers of the measuring device mounted on the head of 'impression,
- FIG. 4 is a schematic view of an extrusion process according to one embodiment of the invention.
- FIG. 5a] and FIG. 5b] are schematic views illustrating the principle of trigonometric measurement of the width of an extruded bead using data from the sensors of the system according to the invention.
- An extrusion system comprises, as shown in Figure 1, a storage tank 10 of a construction material, a print head 30 comprising a construction material inlet mouth and a nozzle extrusion of a bead of cementitious material, a circuit 20 for supplying construction material to the print head, arranged between the storage tank 10 and the print head 30, and a measuring device 40 of the width of the bead extradited downstream of the extrusion nozzle of the print head, this measuring device being carried by the print head.
- Figure 1 also represents a robot 50 which carries the print head 30 and which is configured to move the print head along a predetermined path to allow the manufacture of an architectural structure 60 by adding successive layers of cords of material construction extradited from the print head 30.
- the storage tank 10 is preferably a hopper comprising an upper opening 11 adapted to receive batches of cementitious materials and a lower outlet 12 connected to the supply circuit 20.
- the hopper may further comprise an agitator 13 comprising a shaft 14 carrying a plurality of lateral blades via axes perpendicular to the shaft 14, and a motor 16 for rotating the shaft 14.
- the motor 16 is by example an electric motor configured to be able to drive at low speed, for example at a speed of six revolutions per minute, the shaft 14 of the agitator 13.
- the use of a heat engine is of course possible without modifying the performance of the extrusion system according to the invention.
- the role of the agitator is to be able to maintain the cementitious material in the hopper at a quasi-constant rheological state before being led to the print head by the supply circuit 20.
- the cementitious material used is for example a premix based on cement with fine particles, hydrated and fluidized.
- the supply circuit 20 connects the storage tank 10 to the print head 30.
- This circuit includes a pipe 21 connecting the outlet 12 of the storage tank 10 to an inlet mouth 31 of the print head 30.
- the supply circuit 20 further comprises a booster pump 22.
- This booster pump 22 is for example an eccentric screw pump so as to be able to convey the cementitious material towards the print head 30 while minimizing pulsations.
- the printing head 30 comprises, as shown schematically in Figure 2, an inlet mouth 31 connected to the supply circuit 20 and a nozzle 34 for extruding cementitious material configured to form beads of cementitious material.
- the print head further comprises a mixing enclosure 35 arranged upstream of the extrusion nozzle 34.
- This mixing enclosure 35 is equipped with a dynamic mixer adapted to be able to mix the cementitious material and possible adjuvants supplied by an additional adjuvant device not shown in the figures.
- This dynamic mixer comprises for example a shaft 37 extending longitudinally in the mixing enclosure 35 on which fingers are mounted radials 38 distributed along the shaft 37.
- the dynamic mixer also includes a motor 39 configured to be able to drive the shaft 37 in rotation so as to be able to provide a homogeneous mixture of the cementitious material.
- This motor 39 can be an electric motor, a heat engine, and generally all types of motors. According to the embodiment of the figures, the motor 39 is offset relative to the shaft 37. Of course, it is also possible to use a motor 39 not offset from the shaft 37.
- the printing head 30 also includes an eccentric screw dosing pump 51 configured to be able to convey the cementitious material from the inlet mouth 31 to the extrusion nozzle 34, passing through the mixing enclosure 35.
- Such dosing pump is for example an eccentric screw jacket pump.
- other pumps can be used without modifying the performance of the invention.
- this dosing pump forms, according to the embodiment of the figures, the regulation pump controlled by the measurement of the width of the extruded bead.
- the extrusion nozzle 34 of the print head is preferably removable so as to be able to adapt the shape of the extrusion nozzle 34 to the part to be manufactured.
- the section of the extrusion nozzle 34 can be adapted to each type of manufactured part, or even changed during printing to modify the section of the beads of certain portions of the manufactured part.
- the extrusion nozzle comprises for example a threaded external wall which cooperates with a threaded internal portion of the wall of the print head delimiting the mixing enclosure 35.
- the extrusion nozzle comprises a threaded internal wall which cooperates with a threaded external portion of the wall of the print head.
- the print head is moved by the robot according to a predetermined trajectory, from upstream to downstream.
- the device 40 for measuring the width of the extruded cords comprises, according to the embodiment of the figures, three lasers carried by a crown 52 secured to the print head.
- Each laser is configured to be able to project a luminous segment and deduce a measurement of the length of the material detected under this light ray.
- Such a laser is for example a laser sold under the reference LLT3010-100 by the company Micro-Epsilon®. Of course, nothing prevents the use of other laser references for the implementation of the invention.
- Such a laser makes it possible to acquire a plurality of laser images (hereinafter referred to as “frame”).
- a frame contains a certain amount of information depending on the resolution of the laser.
- the laser used has a resolution of 2048 points coded on 64 bytes.
- Each frame is made up of 4 bands of 16 bytes, which each encode different information.
- the position information in X and Z is encoded by bytes 5 to 8 on each band.
- the “X” is the position along the laser and the “Z” is the depth of the laser.
- This segment forms the width of the bead if the laser is oriented perpendicular to the bead.
- the laser often forms an angle with the bead which must be taken into account to deduce the width of the bead. The calculation principle is explained below, in connection with Figures 3, 5a and 5b.
- oc is the angle between the laser profile (which is known by knowledge of the displacement of the print head) and the extruded bead
- Im is the measurement of the laser segment provided by the laser obtained by following the methodology described previously.
- Figure 5a schematically illustrates this trigonometric calculation principle making it possible to calculate the width of the extruded bead using a single laser.
- Figure 5b schematically illustrates this trigonometric calculation principle making it possible to calculate the width of the extruded bead from two lasers.
- the lasers are arranged relative to each other in such a way that the projected light rays form a closed triangle which surrounds the axis of the extrusion nozzle.
- Figure 3 schematically illustrates, in top view, a bead 62 extruded by a system according to the invention and the light rays projected by the lasers of the measuring device according to the embodiment of the figures.
- the print head nozzle is represented schematically by the reference circle 30 and the arrow inside the circle illustrates the orientation of the print head.
- the orientation of the print head does not necessarily correspond to the direction of movement of the print head.
- the trajectory of the head represented by the shape of the extrusion bead 62, does not modify the orientation of the print head.
- the print head is shown at four positions on the extrusion path of the bead 62, referenced respectively PA, PB, PC and PD.
- the print head 30 comprises three lasers respectively projecting the light rays illustrated by the references 41, 42 and 43.
- the lasers 41, 42, 43 are mounted on the print head 30 and arranged relative to each other and relative to each other. to the print head 30 so that the projected light rays form a closed triangle.
- each light ray can extend beyond the point of intersection with adjacent light rays. In the figures, only the closed triangle is shown for purposes of illustration and clarity.
- the projection of the lasers 41, 42 and 43 is fixed relative to the orientation of the print head 30 given that the lasers are integrally mounted on the print head 30 via a plate 52 shown schematically in Figure 2.
- At least one of the lasers carried by the head is capable of measuring the width of the bead which has just been extruded.
- the width measurement of the extruded bead 62 at the PB position is derived from the laser 41 and the width measurement of the extruded bead 62 at the PC position is derived from the laser 42 by applying the calculation principle explained previously (case where the measurement does not involves only one laser).
- the width of the extruded bead is derived from lasers 41 and 42 by applying the calculation principle explained previously (case where the measurement involves two lasers).
- the measurement is derived from laser 43, in position PC, the measurement is derived from laser 41, in position PB, the measurement is derived from laser 43 and in position PA, the measurement is derived from the 4L laser In each of these positions and according to this direction of displacement, the calculation principle is one where the measurement involves only one laser.
- the invention always makes it possible to have one or two lasers which intersect the bead and therefore makes it possible to determine the width of the bead which comes from be extruded by applying the trigonometric calculation principles explained previously.
- This measurement is preferably used to adapt the displacement and flow of the cementitious material in the print head.
- the height h is imposed by the vertical movement of the print head between a previous extrusion layer and the layer being extruded. Also, the d/v ratio determines the width of the bead being extruded.
- a corrective measure can immediately be taken into account by adapting the speed of movement of the head and/or the flow rate of the material in the head (which corresponds to the flow rate of the dosing pump 51 in the embodiment of the figures) to maintain the width of the bead within a predetermined value range, corresponding to the specifications of the part to be manufactured.
- the invention makes it possible to control the movement speed and flow rate of the cementitious material to the actual instantaneous measurement of the width of the extruded bead.
- FIG 4 is a schematic view of a process for extruding cords of cementitious material for a robot for additive manufacturing of architectural structures according to the invention.
- Such a method comprises a first step El of supplying construction material, such as a cementitious material, a head for printing beads of construction material from a storage tank of construction material connected to the head printing through a supply line equipped, for example, with a booster pump.
- the method also includes a step E2 of moving the print head according to a predetermined trajectory and a controlled speed which depends on the printing conditions.
- the method also includes a step E3 of extruding beads of construction material by the print head comprising an inlet mouth 31 of construction material, an extrusion nozzle 34 configured to form beads of construction material and a dosing pump 51 configured to be able to convey the construction material from the inlet mouth 31 to the extrusion nozzle 34.
- the method also includes a step E4 of measuring the width of the beads extradited upstream of the extrusion nozzle.
- the method includes a step E5 of controlling the speed of movement of the print head and/or the dosage of said dosing pump as a function of the width of the measured bead.
- the dosing pump of the print head forms the regulation pump of the system according to the invention.
- the robot can be a six-axis robot, mounted on rails or not, on a gantry or not.
- the robot can also be a cable robot or all types of robots whose positioning system, such as an articulated arm, can be controlled by computer.
- the invention has been described by implementing a dosing pump controlled by the measurement of the width of the bead. According to other embodiments, it is the booster pump which can be controlled by the measurement of the width of the cord. Likewise, a system can include a single dosing or boosting pump in place of the dosing and boosting pumps described in the embodiment of the figures.
- a robot according to the invention can be used to manufacture all types of architectural parts.
- Such an architectural part can be a reinforcing part, a building, and in general, any part made of cementitious material.
- the architectural parts manufactured using an extrusion system according to the invention can be of various scales. It may be a portion of a pole, an entire pole, a wall, a slab element, a building, street furniture, a sculpture, etc.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Optics & Photonics (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Architecture (AREA)
- Automation & Control Theory (AREA)
- Civil Engineering (AREA)
- Coating Apparatus (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
Un système d'extrusion de cordons de matériau de construction pour robot (50) de fabrication additive de structures architecturales (60) comprenant : une tête d'impression (30) de cordons de matériau de construction comprenant une bouche d'entrée (31) et une buse d'extrusion (34) configurée pour former un cordon (62) de matériau de construction, ladite tête d'impression (30) étant destinée à être déplacée par le robot (50) selon une trajectoire prédéterminée, d'amont en aval, pour former une structure architecturale (60) par empilement de couches desdits cordons (62) extrudés; un circuit d'alimentation (20) en matériau de ladite tête d'impression (30) comprenant un réservoir de stockage (10) et une conduite d'alimentation (21); une pompe de régulation (22, 51) du débit de matériau de construction agencée entre ledit réservoir de stockage et ladite buse d'extrusion, le système comprenant en outre un dispositif de mesure (40) sans contact de la largeur du cordon extrudé (62) en amont de ladite buse d'extrusion (34), ledit dispositif de mesure (40) étant porté par ladite tête d'impression (30).
Description
DESCRIPTION
TITRE DE L’INVENTION : SYSTÈME D’EXTRUSION DE MATERIAU DE CONSTRUCTION ÉQUIPÉ D’UN DISPOSITIF DE MESURE DE LA LARGEUR DES CORDONS EXTRUDÉS
Domaine technique de l’invention
L’invention concerne la fabrication additive de matériaux de construction. L’invention concerne plus particulièrement un système d’extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales par empilement de couches successives de cordons extradés. L’invention concerne également un procédé d’extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales.
Arrière-plan technologique
L’impression 3D de matériaux de construction est une activité en plein essor pour laquelle le déposant a d’ores et déjà proposé de nombreuses innovations pour améliorer les processus de fabrication.
Ainsi, le déposant a déjà proposé, notamment dans les demandes WO20 18/051370, WO2018/229419, WO2019/048752, WO2019/038491 et WO2019/025698 des systèmes d’extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales.
Dans tout le texte, les termes « structures architecturales » désignent à la fois des éléments de construction individuels (ponts, piliers, murs, mobiliers urbains, etc.), des structures complètes (bâtiments, maisons, immeubles, etc.) et des pièces architecturales diverses (œuvres artistiques, sculptures, etc.).
Les systèmes déjà proposés par le déposant apportent de nombreux avantages par rapport aux techniques traditionnelles parmi lesquels notamment la possibilité de pouvoir réaliser des formes complexes par ajout de couches successives de matériaux de construction, la rapidité des opérations de construction, la réduction des coûts et de la main d’œuvre, une sécurité améliorée sur les
chantiers, etc.
Ces systèmes comprennent en général une tête d’impression équipée d’une bouche d’entrée de matériau de construction et d’une buse d’extrusion (aussi désignée dans le texte par la terminologie « buse de sortie ») de cordons de matériau de construction, un circuit d’alimentation de la bouche d’entrée de la tête d’impression en matériau de construction comprenant un réservoir de stockage de matériau de construction, une conduite reliant le réservoir de stockage et l’entrée de la tête d’impression, et une pompe de gavage de la conduite par le matériau de construction issu du réservoir de stockage.
L’une des difficultés de l’impression 3D de matériaux de construction réside dans le fait que le matériau doit être fourni dans un état rhéologique compatible avec un pompage de ce matériau, c’est à dire suffisamment fluide pour pouvoir être pompé du réservoir de stockage et véhiculé vers la buse de sortie, alors que son état doit être assez visqueux (c’est à dire moins fluide) à la sortie de la buse d’extrusion pour pouvoir former une couche autoportante et susceptible de supporter la couche suivante.
La qualité d’une structure architecturale fabriquée par un tel système d’extrusion de matériau cimentaire dépend notamment de l’adhérence intra- couches et de la section des cordons extradés.
Il est donc important de pouvoir contrôler, en tout point de la structure architecturale, la section des cordons extradés pour pouvoir certifier que la structure architecturale est conforme aux spécifications visées.
Pour ce faire, l’une des techniques connues consiste à utiliser un pied à coulisse pour mesurer, au niveau de certaines zones critiques, la largeur des cordons extradés. Une autre solution consiste à utiliser un scanner manœuvré par un opérateur.
Ces solutions présentent de nombreuses limites parmi lesquelles la difficulté, voire l’impossibilité, d’accéder à certaines zones de la structure architecturale, en particulier lorsque la structure extradée présente une succession de porte-à-faux ou des zones fermées tels que des dômes de matière. Une autre limite de cette solution réside dans le temps nécessaire pour contrôler toute une
structure, en particulier une structure complexe. Ainsi, le temps gagné par l’utilisation d’un système d’impression 3D pour fabriquer la structure cimentaire peut être perdu par celui nécessaire pour contrôler, a posteriori, la structure architecturale fabriquée. Enfin, cette solution ne permet pas d’apporter simplement et de manière satisfaisante des éventuelles mesures correctives si le contrôle révèle des cordons non conformes aux spécifications requises.
Les inventeurs ont donc cherché à développer une solution qui permet de s’affranchir des limites des solutions connues, et en particulier de celles liées à la mesure a posteriori de la section des cordons et au problème d’accès à l’ensemble de la structure architecturale.
Objectifs de l’invention
L’invention vise donc à fournir un système d’extrusion de matériau de construction qui permet de contrôler simplement et sans contrainte la qualité des cordons extradés.
L’invention vise notamment à fournir un tel système qui permet de mesurer la largeur des cordons extradés au cours de la fabrication de la structure architecturale.
L’invention vise aussi à fournir un tel système qui permet d’apporter rapidement des mesures correctives s’il s’avère que les cordons extradés ne sont pas conformes aux spécifications requises ou s’approchent des limites autorisées.
L’invention vise aussi à fournir, dans au moins un mode de réalisation, un tel système qui permet de mesurer la largeur des cordons extradés, quelle que soit la géométrie de la pièce extradée.
L’invention vise aussi à fournir, dans au moins un mode de réalisation, un tel système qui permet de mesurer la largeur des cordons extradés, quelle que soit l’orientation et/ou le déplacement de la tête d’extrusion.
Exposé de l’invention
Pour ce faire, l’invention concerne un système d’extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant :
une tête d’impression de cordons de matériau de construction comprenant une bouche d’entrée de matériau et une buse d’extrusion s’étendant autour d’un axe d’extrusion et configurée pour former un cordon extrudé de matériau de construction, ladite tête d’impression étant destinée à être déplacée par le robot de fabrication additive selon une trajectoire prédéterminée, d’amont en aval, pour former une structure architecturale par empilement de couches desdits cordons extradés, un circuit d’alimentation en matériau de construction de ladite tête d’impression comprenant un réservoir de stockage de matériau de construction et une conduite d’alimentation en matériau de construction reliant ledit réservoir de stockage et ladite tête d’extrusion, une pompe de régulation du débit de matériau de construction circulant dans ledit système d’extrusion agencée entre ledit réservoir de stockage et ladite buse d’extrusion.
Le système selon l’invention est caractérisé en ce qu’il comprend en outre un dispositif de mesure sans contact de la largeur du cordon extrudé en amont de ladite buse d’extrusion, ledit dispositif de mesure étant porté par ladite tête d’impression et comprenant trois lasers associés à une unité de calcul de la largeur dudit cordon à partir des données acquises par les lasers, lesdits lasers étant orientés vers ledit cordon extradé, en amont de ladite buse d’extrusion, et agencés les uns par rapport aux autres de telle sorte que les rayons lumineux projetés forment un triangle fermé entourant ledit axe de ladite buse d’extrusion.
Dans tout le texte, sauf indication contraire, les termes « amont » et « aval » sont utilisés en référence au déplacement de la tête d’impression le long de la trajectoire prédéterminée. En d’autres termes, le cordon en amont de la tête correspond au cordon qui vient d’être extradé alors que l’aval de la tête correspond à la partie de la trajectoire qui s’apprête à recevoir un cordon.
Le système selon l’invention présente donc la particularité d’embarquer, sur la tête d’impression, un dispositif de mesure sans contact de la largeur du cordon extradé en amont de la buse d’extrusion sur la trajectoire prédéterminée. Cela
signifie que le système est capable de mesurer la largeur du cordon qui vient juste d’être extradé par la tête d’impression. Ce cordon extrudé se trouve en amont de la buse d’extrusion sur la trajectoire prédéterminée suivie par la tête d’impression pour fabriquer la structure architecturale. Ainsi, le système peut mesurer en permanence, et au cours de la fabrication de la pièce fabriquée, la largeur des cordons extradés par la buse d’extrusion, juste après leur extrusion par la buse d’extrusion.
Le système selon l’invention permet donc de contrôler, au cours de l’impression, la largeur des cordons pour garantir la qualité de la pièce fabriquée et pour pouvoir, le cas échéant, apporter en temps réel, des mesures correctives si la largeur mesurée du cordon extradé s’avère non conforme ou tend vers une valeur non conforme. Ces mesures correctives peuvent être des modifications des consignes de vitesse de déplacement de la tête d’impression ou de débit d’extrusion du matériau cimentaire, pour maintenir la largeur du cordon extrudé dans la plage de valeurs admissibles.
En outre et selon l’invention, ledit dispositif de mesure comprend trois lasers d’acquisition d’une donnée représentative de la largeur du cordon extrudé en amont de la buse d’extrusion, associés à une unité de calcul de la largeur dudit cordon à partir de ladite donnée représentative acquise par les lasers, ces lasers étant orientés vers ledit cordon extradé.
Ainsi, la mesure de la largeur du cordon extrudé est obtenue par l’utilisation de plusieurs lasers. Le laser permet de projeter un rayon lumineux vers le cordon et l’unité de calcul associée permet d’en déduire une mesure de la largeur du cordon. En combinaison, une caméra peut être utilisée pour faire également l’acquisition d’une image du cordon extradé et l’unité de calcul permet d’en déduire, par traitement de l’image acquise, une mesure de la largeur du cordon.
Selon l’invention, ledit dispositif de mesure comprend trois lasers agencés les uns par rapport aux autres de manière à ce que l’ensemble des données acquises par l’ensemble des lasers couvrent au moins un triangle fermé entourant ledit axe d’extrusion de ladite buse d’extrusion.
Selon l’invention, chaque laser est configuré pour projeter un rayon
lumineux rectiligne. Cela facilite la mesure de largeur étant donné que l’on s’affranchit d’un traitement complexe d’images nécessaire dans le cas d’un capteur formé d’une caméra d’acquisition d’images.
Ainsi, l’ensemble des lasers permet de couvrir au moins un polygone fermé (en l’occurrence un triangle) qui entoure la buse d’extrusion de manière à garantir que le cordon soit visible par au moins un capteur quelle que soit l’orientation de la tête d’impression et quelle que soit la direction de déplacement de la tête d’impression. Ainsi, les lasers sont fixes sur la tête d’impression, ce qui facilite leur montage sur la tête d’impression. La tête d’impression peut être pilotée dans n’importe quelle direction tout en garantissant qu’une mesure de largeur pourra être réalisée par l’un des lasers, dans la mesure où l’ensemble des lasers couvre au moins un triangle fermé qui entoure la buse d’extrusion, et donc forcément le cordon extrudé.
Selon l’invention, le système comprend trois lasers agencés les uns par rapport aux autres de telle sorte que les rayons lumineux projetés forment un triangle fermé.
Cela permet de garantir que le cordon est visible par au moins un laser, quelle que soit l’orientation et la direction de déplacement de la tête d’impression.
Avantageusement et selon l’invention, le système comprend en outre une unité de commande de la vitesse et du déplacement de ladite tête d’impression selon une trajectoire prédéterminée, d’amont en aval, et une unité de commande de ladite pompe de régulation du débit de matériau de construction. Selon cette variante avantageuse, ledit dispositif de mesure de la largeur des cordons extradés est configuré pour transmettre ladite mesure de largeur à ladite unité de commande de la vitesse et du déplacement et/ou à ladite unité de commande de ladite pompe de régulation, de manière à pouvoir asservir la vitesse de déplacement et/ou ledit débit de matériau de construction à ladite largeur mesurée du cordon extrudé en amont de la buse d’extrusion.
La géométrie d’un cordon de matériau cimentaire extrudé par une tête d’impression dépend de la forme de la buse d’extrusion, du débit d’extrusion et de
la vitesse de déplacement de la tête d’impression. Il peut être admis en première approximation qu’un cordon extrudé à un débit d présente une forme ob longue caractérisée par une hauteur h et une largeur l, liées l’une à l’autre par la formule d/v = l ~Xh, où v représente la vitesse de déplacement de la tête d’impression.
La hauteur h est imposée par le déplacement vertical de la tête d’impression entre une couche d’extrusion précédente et la couche en cours d’extrusion. Aussi, le ratio d/v conditionne la largeur du cordon en cours d’extrusion.
L’invention prévoit donc de définir la largeur du cordon et de le contrôler au cours de l’extrusion, par des consignes de vitesse et de débit. Cette variante avantageuse permet en particulier d’asservir la consigne de vitesse de déplacement et de débit du matériau cimentaire à la mesure réelle instantanée de la largeur du cordon extrudé.
La pompe de régulation qui permet de contrôler le débit du matériau cimentaire dans le système est agencée au sein du système d’extrusion entre le réservoir de stockage et la buse d’extrusion. Par exemple, cette pompe peut être agencée entre le réservoir de stockage et la conduite d’alimentation, pour gaver la conduite d’alimentation en matériau de construction. Selon une autre variante, cette pompe peut être agencée directement au sein de la tête d’impression, entre la bouche d’entrée et la buse d’extrusion, pour doser le matériau cimentaire.
Selon une variante avantageuse de l’invention, ladite tête d’impression comprend une pompe de dosage configurée pour pouvoir véhiculer le matériau de construction de ladite bouche d’entrée vers ladite buse d’extrusion et cette pompe de dosage forme ladite pompe de régulation.
Selon cette variante avantageuse, la pompe de régulation est formée par une pompe de dosage logée dans la tête d’impression et configurée pour véhiculer le matériau de construction de ladite bouche d’entrée vers ladite buse d’extrusion.
En d’autres termes et selon cette variante, la tête d’impression comprend une bouche d’entrée de matériau de construction, une buse d’extrusion de cordons et une pompe de dosage configurée pour véhiculer le matériau de construction de la bouche d’entrée vers la buse d’extrusion, et cette pompe est asservie à la mesure
de la largeur du cordon extradé.
Selon une autre variante avantageuse de l’invention, ledit circuit d’alimentation comprend une pompe de gavage de ladite conduite d’alimentation en matériau de construction issu du réservoir de stockage et cette pompe de gavage forme ladite pompe de régulation.
Selon cette variante avantageuse, la pompe de régulation est formée par une pompe de gavage agencée au sein du circuit d’alimentation de la tête d’impression et configurée pour véhiculer le matériau de construction du réservoir de stockage vers ladite conduite d’alimentation.
L’invention concerne aussi un procédé d’extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant : une étape d’alimentation en matériau de construction d’une tête d’impression comprenant une bouche d’entrée de matériau de construction et une buse d’extrusion configurée pour former des cordons de matériau de construction, à partir d’un réservoir de stockage de matériau de construction et d’une pompe de régulation du débit de matériau cimentaire agencée entre le réservoir de stockage et la buse d’extrusion, une étape de déplacement de ladite tête d’impression selon une trajectoire prédéterminée et une vitesse contrôlée, d’amont en aval, une étape d’extrusion de cordons de matériau de construction par ladite tête d’impression, une étape de mesure de la largeur des cordons extradés en amont de la buse d’extrusion, à partir de données acquises par trois lasers orientés vers ledit cordon extradé en amont de ladite use d’extrusion, et agencés les uns par rapport aux autres de telle sorte que les rayons lumineux projetés forment un triangle fermé entourant ladite buse d’extrusion, une étape d’asservissement de la vitesse de déplacement de ladite tête d’impression et/ou du débit de ladite pompe de régulation en fonction
de ladite largeur du cordon mesurée.
Les avantages et effets techniques d’un système d’extrusion selon l’invention s’appliquent mutatis mutandis à un procédé selon l’invention.
En particulier, un procédé selon l’invention permet d’asservir la consigne de vitesse de déplacement de la tête d’impression et/ou la consigne de commande de la pompe de régulation en matériau de construction à la mesure réelle instantanée de la largeur du cordon extrudé.
Un procédé selon l’invention est avantageusement mis en œuvre par un système d’extrusion selon l’invention et un système d’extrusion selon l’invention met avantageusement en œuvre un procédé selon l’invention.
L'invention concerne également un système d’extrusion, un robot de fabrication additive et un procédé d’extrusion caractérisés en combinaison par tout ou partie des caractéristiques mentionnées ci-dessus ou ci-après.
Liste des figures
D'autres buts, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante donnée à titre uniquement non limitatif et qui se réfère aux figures annexées dans lesquelles :
[Fig. 1] est une vue schématique d’un système d’extrusion selon un mode de réalisation de l’invention,
[Fig. 2] est une vue schématique d’une tête d’impression d’un système selon un mode de réalisation de l’invention,
[Fig. 3] est une vue schématique en vue de dessus d’un cordon extrudé par un système d’extrusion selon un mode de réalisation de l’invention sur laquelle sont représentés les polygones fermés formés par les lasers du dispositif de mesure monté sur la tête d’impression,
[Fig. 4] est une vue schématique d’un procédé d’extrusion selon un mode de réalisation de l’invention,
[Fig. 5a] et [Fig. 5b] sont des vues schématiques illustrant le principe de mesure trigonométrique de la largeur d’un cordon extrudé à partir des données issues des capteurs du système selon l’invention.
Description détaillée d’un mode de réalisation de l’invention
Sur les figures, les échelles et les proportions ne sont pas strictement respectées et ce, à des fins d’illustration et de clarté. Dans toute la description détaillée qui suit en référence aux figures, sauf indication contraire, chaque élément du système d’extrusion est décrit tel qu’il est agencé lorsque le système d’extrusion est mis en œuvre dans le cadre de la fabrication d’une structure architecturale par empilement de couches de cordons extradés.
En outre, les éléments identiques, similaires ou analogues sont désignés par les mêmes références dans toutes les figures.
Un système d’extrusion selon l’invention comprend, tel que représenté sur la figure 1, un réservoir de stockage 10 d’un matériau de construction, une tête d’impression 30 comprenant une bouche d’entrée de matériau de construction et une buse d’extrusion d’un cordon de matériau cimentaire, un circuit 20 d’alimentation en matériau de construction de la tête d’impression, agencé entre le réservoir de stockage 10 et la tête d’impression 30, et un dispositif de mesure 40 de la largeur du cordon extradé en aval de la buse d’extrusion de la tête d’impression, ce dispositif de mesure étant porté par la tête d’impression.
La figure 1 représente également un robot 50 qui porte la tête d’impression 30 et qui est configuré pour déplacer la tête d’impression selon un parcours prédéterminé pour permettre la fabrication d’une structure architecturale 60 par addition de couches successives de cordons de matériau de construction extradés de la tête d’impression 30.
Dans toute la suite, l’invention est décrite en considérant que le matériau utilisé est un matériau cimentaire, étant entendu que n’importe quel autre matériau de construction à pâte visqueuse tel que défini dans le texte peut être utilisé dans le cadre de cette invention.
Chacun des différents organes du système va maintenant être décrit en détail, en lien notamment avec les figures 1 et 2.
Réservoir de stockage
Le réservoir de stockage 10 est de préférence une trémie comprenant une ouverture supérieure 11 adaptée pour recevoir des gâchées de matériaux cimentaires et une sortie inférieure 12 reliée au circuit 20 d’alimentation. La trémie
peut en outre comprendre un agitateur 13 comprenant un arbre 14 portant une pluralité de pales latérales par l’intermédiaire d’axes perpendiculaires à l’arbre 14, et un moteur 16 de mise en rotation de l’arbre 14. Le moteur 16 est par exemple un moteur électrique configuré pour pouvoir entraîner à faible vitesse, par exemple à une vitesse de six tours par minute, l’arbre 14 de l’agitateur 13. L’utilisation d’un moteur thermique est bien sûr possible sans modifier les performances du système d’extrusion selon l’invention. Le rôle de l’agitateur est de pouvoir maintenir le matériau cimentaire dans la trémie à un état rhéologique quasi-constant avant d’être conduit vers la tête d’impression par le circuit 20 d’alimentation.
Le matériau cimentaire utilisé est par exemple un prémix à base de ciment avec des particules fines, hydraté et fluidifié.
Circuit d’alimentation
Le circuit d’alimentation 20 relie le réservoir de stockage 10 à la tête d’impression 30. Ce circuit comprend une conduite 21 reliant la sortie 12 du réservoir de stockage 10 à une bouche d’entrée 31 de la tête d’impression 30. Le circuit d’alimentation 20 comprend en outre une pompe de gavage 22. Cette pompe de gavage 22 est par exemple une pompe à vis excentrée de manière à pouvoir véhiculer le matériau cimentaire vers la tête d’impression 30 en minimisant les pulsations.
Tête d’impression
La tête d’impression 30 comprend, tel que représenté schématiquement par la figure 2, une bouche d’entrée 31 reliée au circuit d’alimentation 20 et une buse 34 d’extrusion de matériau de cimentaire configurée pour former des cordons de matériau cimentaire.
La tête d’impression comprend en outre une enceinte de mélange 35 agencée en amont de la buse d’extrusion 34. Cette enceinte de mélange 35 est équipée d’un mélangeur dynamique adapté pour pouvoir mélanger le matériau cimentaire et d’éventuels adjuvants fournis par un dispositif additionnel d’adjuvantation non représenté sur les figures.
Ce mélangeur dynamique comprend par exemple un arbre 37 s’étendant longitudinalement dans l’enceinte de mélange 35 sur lequel sont montés des doigts
radiaux 38 répartis le long de l’arbre 37. Le mélangeur dynamique comprend également un moteur 39 configuré pour pouvoir entrainer l’arbre 37 en rotation de manière à pouvoir fournir un mélange homogène du matériau cimentaire. Ce moteur 39 peut être un moteur électrique, un moteur thermique, et de manière générale tous types de moteurs. Selon le mode de réalisation des figures, le moteur 39 est déporté par rapport à l’arbre 37. Bien entendu, il est aussi possible d’utiliser un moteur 39 non déporté de l’arbre 37.
La tête d’impression 30 comprend également une pompe de dosage 51 à vis excentrée configurée pour pouvoir véhiculer le matériau cimentaire de la bouche d’entrée 31 vers la buse d’extrusion 34, en passant par l’enceinte de mélange 35. Une telle pompe de dosage est par exemple une pompe à jaquette à vis excentrée. Bien entendu, d’autres pompes peuvent être utilisées sans modifier les performances de l’invention. Comme cela est expliqué ultérieurement, cette pompe de dosage forme, selon le mode de réalisation des figures, la pompe de régulation asservie à la mesure de la largeur du cordon extrudé.
La buse d’extrusion 34 de la tête d’impression est de préférence démontable de manière à pouvoir adapter la forme de la buse d’extrusion 34 à la pièce à fabriquer. En particulier, la section de la buse d’extrusion 34 peut être adaptée à chaque type de pièce fabriquée, voire changée en cours d’impression pour modifier la section des cordons de certaines portions de la pièce fabriquée. Pour ce faire, la buse d’extrusion comprend par exemple une paroi externe filetée qui coopère avec une portion interne filetée de la paroi de la tête d’impression délimitant l’enceinte de mélange 35. Selon une autre variante, la buse d’extrusion comprend une paroi interne filetée qui coopère avec une portion externe filetée de la paroi de la tête d’impression.
La tête d’impression est déplacée par le robot selon une trajectoire prédéterminée, d’amont en aval.
Dispositif de mesure de la largeur des cordons extrudés
Le dispositif de mesure 40 de la largeur des cordons extrudés comprend, selon le mode de réalisation des figures, trois lasers portés par une couronne 52 solidaire de la tête d’impression. Chaque laser est configuré pour pouvoir projeter
un segment lumineux et en déduire une mesure de longueur de la matière décelée sous ce rayon lumineux. Un tel laser est par exemple un laser commercialisé sous la référence LLT3010-100 par la société Micro-Epsilon®. Bien entendu, rien n’empêche d’utiliser d’autres références de laser pour la mise en œuvre de l’invention.
Un tel laser permet de faire l’acquisition d’une pluralité d’images lasers (désignées ci-après par la terminologie de « frame »). Une frame contient un certain nombre d’informations dépendantes de la résolution du laser. Le laser utilisé présente une résolution de 2048 points codés sur 64 octets. Chaque frame est composée de 4 bandes de 16 octets, qui codent chacune différentes informations.
Dans le cas du laser utilisé, les informations de position en X et en Z sont codées par les octets 5 à 8 sur chaque bande. Le « X » correspond à la position le long du laser et le « Z » correspond à la profondeur du laser.
On peut donc récupérer les données en « X » et en « Z » sur chaque frame, qu’on peut ensuite transformer en information de distance en appliquant une fonction de décodage. On dispose donc d’une fonction qui forme le profil laser et qui associe à chaque X, un Z donné.
Dans la mesure où l’on connait la distance en Z entre le laser (monté solidairement sur la tête d’impression) et le cordon extrudé, on peut en extraire les valeurs seuils Xmin et Xmax qui constituent les bords du cordon extrudé. La différence permet d’obtenir la longueur du segment qui intersecte le cordon.
Ce segment forme la largeur du cordon si le laser est orienté perpendiculairement au cordon. En pratique, le laser forme souvent un angle avec le cordon qu’il faut prendre en compte pour en déduire la largeur du cordon. Le principe de calcul est expliqué ci-après, en lien avec les figures 3, 5a et 5b.
Si la mesure n’implique qu’un seul laser (tel qu’illustré à la position PA de la figure 3), la largeur l du cordon est obtenue par le calcul trigonométrique suivant : l = Im * sin(oc). où oc est l’angle entre le profil laser (qui est connu par la connaissance du déplacement de la tête d’impression) et le cordon extrudé, et Im est la mesure du segment laser fourni par le laser obtenue en suivant la méthodologie décrite
précédemment. La figure 5a illustre schématiquement ce principe de calcul trigonométrique permettant de calculer la largeur du cordon extrudé à partir d’un seul laser.
Si la mesure implique deux lasers (tel qu’illustré à la position PD de la figure 3, dans le sens descendant), la largeur l du cordon est obtenue par le calcul trigonométrique suivant : l = Iml. sin(a) + Zm2. sin(P) où Iml et lm2 sont les mesures des segments fournies par les deux lasers impliquées, et les angles oc et P sont les angles entre le profil laser de chaque laser (connu par la connaissance du déplacement de la tête d’impression) et le cordon extrudé. La figure 5b illustre schématiquement ce principe de calcul trigonométrique permettant de calculer la largeur du cordon extrudé à partir de deux lasers.
Les lasers sont agencés les uns par rapport aux autres de telle sorte que les rayons lumineux projetés forment un triangle fermé qui entoure l’axe de la buse d’extrusion.
La figure 3 illustre schématiquement, en vue de dessus, un cordon 62 extrudé par un système selon l’invention et les rayons lumineux projetés par les lasers du dispositif de mesure selon le mode de réalisation des figures. La buse de la tête d’impression est représentée schématiquement par le cercle de référence 30 et la flèche à l’intérieur du rond illustre l’orientation de la tête d’impression. L’orientation de la tête d’impression ne correspond pas nécessairement à la direction du déplacement de la tête d’impression. En particulier, sur la figure 3, on constate que la trajectoire de la tête, représentée par la forme du cordon d’extrusion 62, ne modifie pas l’orientation de la tête d’impression.
Sur la figure 3, la tête d’impression est représentée à quatre positions sur le parcours d’extrusion du cordon 62, référencée respectivement PA, PB, PC et PD.
La tête d’impression 30 comprend trois lasers projetant respectivement les rayons lumineux illustrés par les références 41, 42 et 43. Dans la suite, on assimile le rayon lumineux projeté au laser l’ayant projeté. Les lasers 41, 42, 43 sont montés sur la tête d’impression 30 et agencés les uns par rapport aux autres et par rapport
à la tête d’impression 30 de telle sorte que les rayons lumineux projetés forment un triangle fermé. Bien entendu, chaque rayon lumineux peut s’étendre au-delà du point d’intersection avec les rayons lumineux adjacents. Sur les figures, seul le triangle fermé est représenté à des fins d’illustration et de clarté. La projection des lasers 41, 42 et 43 est fixe par rapport à l’orientation de la tête d’impression 30 étant donné que les lasers sont montés solidairement sur la tête d’impression 30 par l’intermédiaire d’une platine 52 représentée schématiquement sur la figure 2.
Ainsi, quel que soit le déplacement et l’orientation de la tête d’impression lors de l’extrusion, au moins un des lasers portés par la tête est capable de procéder à la mesure de la largeur du cordon qui vient d’être extrudé, suivant les principes expliqués précédemment
Ainsi, sur la figure 3, si l’on considère que la tête se déplace du haut de la figure vers le bas, c’est-à-dire que la tête occupe successivement les positions PA, PB, PC et PD, alors la mesure de largeur du cordon extrudé 62, à la position PA, est dérivée du laser 42. En effet, ce laser permet de calculer la largeur du cordon qui vient d’être extrudé par la tête 30, et agencé immédiatement en amont de la tête d’impression, en appliquant le principe de calcul expliqué précédemment (cas où la mesure n’implique qu’un seul laser).
La mesure de largeur du cordon extrudé 62 à la position PB est dérivée du laser 41 et la mesure de largeur du cordon extrudé 62 à la position PC est dérivée du laser 42 en appliquant le principe de calcul expliqué précédemment (cas où la mesure n’implique qu’un seul laser).
A la position PD, la largeur du cordon extrudé est dérivée des lasers 41 et 42 en appliquant le principe de calcul expliqué précédemment (cas où la mesure implique deux lasers).
On constate d’ailleurs que si l’on considère que la tête se déplace dans le sens inverse, du bas de la figure vers le haut, c’est-à-dire que la tête occupe successivement les positions PD, PC, PB et PA, alors dans la position PD, la mesure est dérivée du laser 43, dans la position PC, la mesure est dérivée du laser 41, dans la position PB, la mesure est dérivée du laser 43 et dans la position PA, la mesure est dérivée du laser 4L Dans chacune de ces positions et selon ce sens de
déplacement, le principe de calcul est celui où la mesure n’implique qu’un seul laser.
L’homme du métier comprend bien que quelle que soit l’orientation et la trajectoire de la tête, l’invention permet toujours de disposer d’un ou deux lasers qui intersecte le cordon et permet donc de déterminer la largeur du cordon qui vient d’être extrudé en appliquant les principes de calcul trigonométriques expliqués précédemment.
Cette mesure est de préférence utilisée pour adapter le déplacement et le débit du matériau cimentaire dans la tête d’impression.
En particulier, comme indiqué précédemment, la géométrie du cordon 62 dépend principalement de la forme de la buse d’extrusion, du débit d’extrusion et de la vitesse de déplacement de la tête d’impression. Il peut être admis en première approximation que pour une buse circulaire, un cordon extrudé à un débit d présente une forme oblongue caractérisée par une hauteur h et une largeur /, liées l’une à l’autre par la formule d/v = l ~Xh, où v représente la vitesse de déplacement de la tête d’impression.
La hauteur h est imposée par le déplacement vertical de la tête d’impression entre une couche d’extrusion précédente et la couche en cours d’extrusion. Aussi, le ratio d/v conditionne la largeur du cordon en cours d’extrusion.
Ainsi, lorsque la largeur du cordon est mesurée par le système selon l’invention, une mesure corrective peut immédiatement être prise en compte en adaptant la vitesse de déplacement de la tête et/ou le débit du matériau dans la tête (qui correspond au débit de la pompe de dosage 51 dans le mode de réalisation des figures) pour maintenir la largeur du cordon dans une plage de valeur prédéterminée, correspondant aux spécifications de la pièce à fabriquer.
En d’autres termes, l’invention permet d’asservir la consigne de vitesse de déplacement et de débit du matériau cimentaire à la mesure réelle instantanée de la largeur du cordon extrudé.
La figure 4 est une vue schématique d’un procédé d’extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales selon l’invention.
Un tel procédé comprend une première étape El d’alimentation en matériau de construction, tel qu’un matériau cimentaire, une tête d’impression de cordons de matériau de construction à partir d’un réservoir de stockage de matériau de construction relié à la tête d’impression par une conduite d’alimentation équipée, par exemple, d’une pompe de gavage.
Le procédé comprend également une étape de déplacement E2 de la tête d’impression selon une trajectoire prédéterminée et une vitesse contrôlée qui dépend des conditions d’impression.
Le procédé comprend aussi une étape d’extrusion E3 de cordons de matériau de construction par la tête d’impression comprenant une bouche d’entrée 31 de matériau de construction, une buse d’extrusion 34 configurée pour former des cordons de matériau de construction et une pompe de dosage 51 configurée pour pouvoir véhiculer le matériau de construction de la bouche d’entrée 31 vers la buse d’extrusion 34.
Le procédé comprend également une étape de mesure E4 de la largeur des cordons extradés en amont de la buse d’extrusion.
Enfin, le procédé comprend une étape d’asservissement E5 de la vitesse de déplacement de la tête d’impression et/ou du dosage de ladite pompe de dosage en fonction de la largeur du cordon mesurée. Dans le mode de réalisation décrit, la pompe de dosage de la tête d’impression forme la pompe de régulation du système selon l’invention.
L’invention ne se limite pas aux seuls modes de réalisation décrits. En particulier, selon d’autres modes de réalisation, le robot peut être un robot six axes, monté sur rails ou non, sur portique ou non. Le robot peut également être un robot à câbles ou tous types de robots dont le système de positionnement, tel qu’un bras articulé, peut être piloté par ordinateur.
En outre, l’invention a été décrite en mettant en œuvre une pompe de dosage asservie à la mesure de la largeur du cordon. Selon d’autres modes de réalisation, c’est la pompe de gavage qui peut être asservie à la mesure de la largeur du cordon. De même, un système peut comprendre une seule pompe de dosage ou de gavage à la place des pompes de dosage et de gavage décrites dans le mode de réalisation des
figures.
Un robot selon l’invention peut être utilisé pour fabriquer tous types de pièces architecturales. Une telle pièce architecturale peut être une pièce de renfort, un bâtiment, et de manière générale, toute pièce en matériau cimentaire. Les pièces architecturales fabriquées par l’utilisation d’un système d’extrusion selon l’invention peuvent être d’échelles variées. Il peut s’agir d’une portion de poteau, d’un poteau entier, d’un mur, d’un élément de dalle, d’un bâtiment, d’un mobilier urbain, d’une sculpture, etc.
Claims
REVENDICATIONS Système d’extrusion de cordons de matériau de construction pour robot (50) de fabrication additive de structures architecturales (60) comprenant : une tête d’impression (30) de cordons de matériau de construction comprenant une bouche d’entrée (31) de matériau de construction et une buse d’extrusion (34) s’étendant autour d’un axe d’extrusion et configurée pour former un cordon (62) extrudé de matériau de construction, ladite tête d’impression (30) étant destinée à être déplacée par le robot (50) de fabrication additive selon une trajectoire prédéterminée, d’amont en aval, pour former une structure architecturale (60) par empilement de couches desdits cordons (62) extradés, un circuit d’alimentation (20) en matériau de construction de ladite tête d’impression (30) comprenant un réservoir de stockage (10) de matériau de construction et une conduite d’alimentation (21) en matériau de construction reliant ledit réservoir de stockage (10) et ladite tête d’impression (30), une pompe de régulation (22, 51) du débit de matériau de construction circulant dans ledit système d’extrusion agencée entre ledit réservoir de stockage (10) et ladite buse d’extrusion (34), caractérisé en ce qu’il comprend en outre un dispositif de mesure (40) sans contact de la largeur du cordon extrudé (62) en amont de ladite buse d’extrusion (34), ledit dispositif de mesure (40) étant porté par ladite tête d’impression (30) et comprenant trois lasers (41, 42, 43) associés à une unité de calcul de la largeur dudit cordon à partir des données acquises par les lasers, lesdits lasers étant orientés vers ledit cordon extrudé, en amont de ladite buse d’extrusion, et agencés les uns par rapport aux autres de telle sorte que les rayons lumineux projetés forment un triangle fermé entourant ledit axe d’extrusion de la buse d’extrusion. Système selon la revendication 1, caractérisé en ce qu’il comprend en outre une unité de commande de la vitesse et du déplacement de ladite tête d’impression
(30) selon une trajectoire prédéterminée, d’amont en aval, et une unité de commande de ladite pompe de régulation (22, 51) du débit de matériau de construction, et en ce que ledit dispositif de mesure (40) de la largeur des cordons extradés est configuré pour transmettre ladite mesure de largeur à ladite unité de commande de la vitesse et du déplacement et/ou à ladite unité de commande de ladite pompe de régulation, de manière à pouvoir asservir ladite vitesse de déplacement et/ou ledit débit du matériau de construction à ladite largeur mesurée du cordon extradé en amont de la buse d’extrusion. Système selon l’une des revendications 1 ou 2, caractérisé en ce que ladite tête d’impression comprend une pompe de dosage (51) configurée pour pouvoir véhiculer le matériau de construction de ladite bouche d’entrée (31) vers ladite buse d’extrusion (34), ladite pompe de dosage (51) formant ladite pompe de régulation. Système selon l’une des revendications 1 à 3, caractérisé en ce que ledit circuit d’alimentation comprend une pompe de gavage (22) de ladite conduite d’alimentation (21) en matériau de construction issu du réservoir de stockage (10), ladite pompe de gavage (22) formant ladite pompe de régulation. Procédé d’extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant : une étape d’alimentation (El) en matériau de construction d’une tête d’impression de cordons de matériau de construction comprenant une bouche d’entrée de matériau de construction et une buse d’extrusion s’étendant autour d’un axe d’extrusion et configurée pour former des cordons de matériau de construction, à partir d’un réservoir de stockage de matériau de construction et d’une pompe de régulation du débit de matériau cimentaire agencée entre le réservoir de stockage et la buse d’extrusion, une étape de déplacement (E2) de ladite tête d’impression selon une trajectoire prédéterminée et une vitesse, d’amont en aval, une étape d’extrusion (E3) de cordons de matériau de construction par ladite tête d’impression,
une étape de mesure (E4) de la largeur des cordons extradés en amont de ladite buse d’extrusion, à partir de données acquises par trois lasers orientés vers ledit cordon extradé en amont de ladite buse d’extrusion, et agencés les uns par rapport aux autres de telle sorte que les rayons lumineux projetés forment un triangle fermé entourant ledit axe d’extrusion de ladite buse d’extrusion, une étape d’asservissement (E5) de la vitesse de déplacement de ladite tête d’impression et/ou du débit de ladite pompe de régulation en fonction de ladite largeur du cordon mesurée.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2210370 | 2022-10-10 | ||
FR2210370A FR3140571B1 (fr) | 2022-10-10 | 2022-10-10 | Système d’extrusion de materiau de construction equipé d’un dispositif de mesure de la largeur des cordons extrudés |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024078919A1 true WO2024078919A1 (fr) | 2024-04-18 |
Family
ID=85018057
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2023/077319 WO2024078919A1 (fr) | 2022-10-10 | 2023-10-03 | Système d'extrusion de materiau de construction equipé d'un dispositif de mesure de la largeur des cordons extrudés |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3140571B1 (fr) |
WO (1) | WO2024078919A1 (fr) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140252668A1 (en) * | 2011-11-01 | 2014-09-11 | Loughborough University | Method and apparatus for delivery of cementitious material |
WO2018051370A1 (fr) | 2016-09-16 | 2018-03-22 | INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) | Dispositif de filtre de longueur d'onde à large bande utilisant un réseau de paroi latérale pour filtrer des signaux optiques |
WO2018219447A1 (fr) * | 2017-05-31 | 2018-12-06 | Siemens Aktiengesellschaft | Outil de dépôt de matériau, en particulier tête d'impression pour imprimante 3d, dispositif de fabrication et procédé de fabrication additive d'une pièce |
WO2018229419A1 (fr) | 2017-06-14 | 2018-12-20 | Xtreee | Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales |
WO2019025698A1 (fr) | 2017-08-02 | 2019-02-07 | Xtreee | Robot parallèle à câbles et procédé de commande d'un tel robot |
WO2019038491A1 (fr) | 2017-08-24 | 2019-02-28 | Xtreee | Système d'extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant un dispositif d'insertion de fibres de renforcement |
WO2019048752A1 (fr) | 2017-09-08 | 2019-03-14 | Xtreee | Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales colorées |
WO2021242354A1 (fr) * | 2020-05-27 | 2021-12-02 | Icon Technology, Inc. | Système et procédé de construction de structures par ajout de couches de matériau de construction extrudable à l'aide d'une boucle de rétroaction de commande |
-
2022
- 2022-10-10 FR FR2210370A patent/FR3140571B1/fr active Active
-
2023
- 2023-10-03 WO PCT/EP2023/077319 patent/WO2024078919A1/fr unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140252668A1 (en) * | 2011-11-01 | 2014-09-11 | Loughborough University | Method and apparatus for delivery of cementitious material |
WO2018051370A1 (fr) | 2016-09-16 | 2018-03-22 | INDIAN INSTITUTE OF TECHNOLOGY MADRAS (IIT Madras) | Dispositif de filtre de longueur d'onde à large bande utilisant un réseau de paroi latérale pour filtrer des signaux optiques |
WO2018219447A1 (fr) * | 2017-05-31 | 2018-12-06 | Siemens Aktiengesellschaft | Outil de dépôt de matériau, en particulier tête d'impression pour imprimante 3d, dispositif de fabrication et procédé de fabrication additive d'une pièce |
WO2018229419A1 (fr) | 2017-06-14 | 2018-12-20 | Xtreee | Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales |
WO2019025698A1 (fr) | 2017-08-02 | 2019-02-07 | Xtreee | Robot parallèle à câbles et procédé de commande d'un tel robot |
WO2019038491A1 (fr) | 2017-08-24 | 2019-02-28 | Xtreee | Système d'extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant un dispositif d'insertion de fibres de renforcement |
WO2019048752A1 (fr) | 2017-09-08 | 2019-03-14 | Xtreee | Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales colorées |
WO2021242354A1 (fr) * | 2020-05-27 | 2021-12-02 | Icon Technology, Inc. | Système et procédé de construction de structures par ajout de couches de matériau de construction extrudable à l'aide d'une boucle de rétroaction de commande |
Also Published As
Publication number | Publication date |
---|---|
FR3140571A1 (fr) | 2024-04-12 |
FR3140571B1 (fr) | 2024-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FR3070302B1 (fr) | Systeme d'extrusion de cordons de materiau de construction pour robot de fabrication additive de structures architecturales comprenant un dispositif d'insertion de fibres de renforcement | |
FR3070896B1 (fr) | Systeme d'extrusion de cordons de materiau cimentaire pour robots de fabrication additive de structures architecturales colorees | |
EP2321483B1 (fr) | Appareil roulant nettoyeur de surface immergée à flux d'entraînement orientable | |
EP2922622B1 (fr) | Procede et dispositif pour la fabrication et la distribution d'un produit cosmetique personnalise | |
EP3638475A1 (fr) | Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales | |
WO2007034058A1 (fr) | Installation de projection de produit de revetement multi-composant | |
US20210138729A1 (en) | Method For Generative Building Of Shaped Bodies By Stereolithography | |
WO2024078919A1 (fr) | Système d'extrusion de materiau de construction equipé d'un dispositif de mesure de la largeur des cordons extrudés | |
CA1048727A (fr) | Dispositif pour extraction de materiaux solides | |
EP3371549A1 (fr) | Dispositif de contrôle tridimensionnel sans contact d'une pièce mécanique à denture | |
EP3638476B1 (fr) | Système d'extrusion de cordons de matériau cimentaire pour robot de fabrication additive de structures architecturales | |
EP3674045B1 (fr) | Système d' extrusion de cordons de matériau de construction pour robot de fabrication additive de structures architecturales comprenant un dispositif de fluidification du matériau cimentaire extrudé | |
FR2814808A1 (fr) | Procede de lecture optique de la forme d'un profile et application au releve du bord interieur d'un cercle de monture de lunettes. | |
EP2790080A1 (fr) | Dispositif et procédé de dépose contrôlée de cordons de fluides visqueux | |
EP3390961A1 (fr) | Dispositif de contrôle tridimensionnel sans contact de pale pour turbomachine, en particulier pour réacteur ou turbine d'aéronef | |
FR2732263A3 (fr) | Appareil et procede d'addition d'un adjuvant a des compositions a base de ciment fluides | |
FR2928277A1 (fr) | Procede de fabrication de produits fluides par melange d'une pluralite de liquides de base | |
WO2023036864A1 (fr) | Système d'extrusion de materiau de construction enrichi de granulats et/ou de fibres aciers pour fabrication additive de structures architecturales | |
FR3068911A1 (fr) | Tete d'extrusion de cordons de materiaux de construction d'un robot de fabrication additive equipee d'un dispositif de lissage | |
FR3085129A1 (fr) | Dispositif et procede d'impression tridimensionnelle dans du gel | |
FR2700127A1 (fr) | Dispositifs de dépose à régulation automatisée de produits pâteux et visqueux. | |
EP4118965A1 (fr) | Circuit de liquide pour pulverisateur agricole comprenant un systeme de transfert etanche et un mecanisme doseur | |
BE1012533A5 (fr) | Pompe de dosage, sans soupape, pour fluides, a debit controlable. | |
EP2884227B1 (fr) | Dispositif de contrôle dimensionnel et/ou du positionnement d'une pièce | |
EP1705118B1 (fr) | Unité de dosage pour machine de conditionnement de produits liquides ou pateux, et son procédé de fonctionnement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23782972 Country of ref document: EP Kind code of ref document: A1 |