EP3117480A1 - Batteries lithium-ion a longue duree de vie - Google Patents

Batteries lithium-ion a longue duree de vie

Info

Publication number
EP3117480A1
EP3117480A1 EP15714590.5A EP15714590A EP3117480A1 EP 3117480 A1 EP3117480 A1 EP 3117480A1 EP 15714590 A EP15714590 A EP 15714590A EP 3117480 A1 EP3117480 A1 EP 3117480A1
Authority
EP
European Patent Office
Prior art keywords
cathode
electrolyte
lithium
anode
battery according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP15714590.5A
Other languages
German (de)
English (en)
Inventor
Grégory Schmidt
Bertrand Collier
Philippe Bonnet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3117480A1 publication Critical patent/EP3117480A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to lithium-ion (Li-ion) batteries having an improved life.
  • An elementary cell of a Li-ion secondary battery or lithium accumulator comprises an anode (so-called with reference to the discharge mode of the battery), which may be for example lithium metal or carbon-based, and a cathode ( so-called with reference to the battery discharge mode), which may include, for example, a metal oxide type lithium insertion compound. Between the anode and the cathode is interposed a conductive electrolyte lithium ions.
  • the lithium released by oxidation at the (-) pole by the ionic anode Li + migrates through the conductive electrolyte and is inserted by a reaction of reduction in the crystal lattice of the active material of the cathode, pole (+).
  • the passage of each Li + ion in the internal circuit of the accumulator is exactly compensated by the passage of an electron in the external circuit, generating an electric current that can be used to power various devices, particularly in the field of electronics such as computers or telephones, or in the field of applications of greater power density and energy, such as electric vehicles.
  • the electrochemical reactions are reversed: the lithium ions are released by oxidation at the (+) pole constituted by the "cathode” (the cathode at the discharge becomes the anode at the recharge). They migrate through the conductive electrolyte in the opposite direction to that in which they circulated during the discharge, and are deposited or intercalated by reduction at the pole (-) constituted by the "anode” (the anode to the discharge becomes the recharge cathode), where they can form metallic lithium dendrites, possible causes of short circuits.
  • a cathode or anode generally comprise at least one current collector on which is deposited a composite material which is constituted by: one or more so-called active materials as they have a electrochemical activity with respect to lithium, one or more polymers which act as binder and which are generally functionalized or non-functionalized fluorinated polymers such as poly (difluorovinyl) or water-based polymers, of the carboxymethylcellulose or styrene latex type butadiene plus one or more electronic conductive additives which are generally allotropic forms of carbon.
  • Possible active materials at the negative electrode are lithium metal, graphite, silicon / carbon composites, silicon, CF X type fluorinated graphites with x between 0 and 1, and LiTi type titanates. 5 Oi 2 .
  • Possible active materials at the positive electrode are, for example, LiMO 2 , LiMPO 4 , Li 2 MPO 3 F and Li 2 MSiO 4 type oxides where M represents Co, Ni, Mn, Fe and the like. combinations thereof, or LiMn 2 O 4 or Ss type.
  • Spinel structure-type manganese oxide is a particularly advantageous cathode material because of its low cost, the low pollution generated in comparison with cobalt-based cathodes, for example, the high lithium insertion potential and of its use in high power batteries.
  • Another solution envisaged is the addition of an additive in the electrolyte capable of trapping the small amounts of water present, but again this solution leads to an additional cost for the electrolyte and does not improve the performance in terms of lifetime.
  • the invention relates first of all to a battery comprising a cathode, an anode and an electrolyte interposed between the cathode and the anode, in which:
  • the cathode comprises an oxide containing manganese as active ingredient
  • the electrolyte contains a lithium imidazolate of formula:
  • R, R 1 and R 2 independently represent groups CN, F, CF 3 , CHF 2 , CH 2 F, C 2 HF 4 , C 2 H 2 F 3 , C 2 H 3 F 2 , C 2 F 5 , C 3 F 7 , C 3 H 2 F 5 , C 3 H 4 F 3 , C 4 F 6 , C 4 H 2 F 7 , C 4 H 4 F 5 , C 5 F 11 , C 3 F 5 OCF 3 , C 2 F 4 OCF 3 , C 2 H 2 F 2 OCF 3 or CF 2 OCF 3 .
  • At least one of R, R 1 and R 2 represents a CN group.
  • R 1 and R 2 each represent a CN group.
  • R represents a group CF 3 , F or C2F 5 , and more preferably represents a group CF 3 .
  • the electrolyte consists essentially of one or more lithium imidazolates in a solvent.
  • the cathode contains:
  • the cathode comprises an oxide containing manganese which has a spinel type structure.
  • the present invention overcomes the disadvantages of the state of the art. It provides more particularly lithium-ion batteries having an improved life; these lithium-ion batteries both have a satisfactory service life and high potential and can be manufactured without excessive cost and without generating excessive pollution.
  • the invention follows from the discovery by the present inventors that the presence of a lithium imidazolate salt in the electrolyte makes it possible to reduce the dissolution of manganese and therefore to improve the performance of Li-ion batteries having a cathode of oxide type containing manganese.
  • the present invention shows that the imidazolate salt makes it possible to avoid losing capacity which under particular conditions is due to the dissolution of manganese.
  • FIG. 1 is a diagram illustrating the capacity of batteries with a LiPF 6 or LiTDI-based electrolyte, in mA.h / g (y-axis), in initial charging capacity (1) or after aging ( 2). In this respect, reference is made to example 1.
  • FIG. 2 is a diagram which illustrates the discharge capacity in mA.h (ordinate axis) as a function of the number of cycles (axis of abscissa), for batteries with a LiPF 6 or LiTDI based electrolyte. In this respect, reference is made to example 2.
  • FIG. 3 is a diagram which illustrates the discharge capacity, in mA.h (y-axis) as a function of the number of cycles (abscissa axis), for batteries with a LiPF 6 or LiTDI-based electrolyte. .
  • y-axis the discharge capacity, in mA.h (y-axis) as a function of the number of cycles (abscissa axis), for batteries with a LiPF 6 or LiTDI-based electrolyte.
  • Example 3 is a diagram which illustrates the discharge capacity, in mA.h (y-axis) as a function of the number of cycles (abscissa axis), for batteries with a LiPF 6 or LiTDI-based electrolyte.
  • FIG. 4 is a diagram which illustrates the discharge capacity, in mA.h (ordinate axis) as a function of the number of cycles (abscissa axis), for batteries with a LiPF 6 based electrolyte (curve 1) or based on LiTDI (curve 2) or on the basis of a mixture of LiTDI and LiPF 6 in a molar ratio of 20:80 (curve 3) or based on a mixture of LiTDI and LiPF 6 in a molar ratio of 80 : 20 (curve 4).
  • a LiPF 6 based electrolyte curve 1
  • Curve 2 LiTDI
  • Curve 3 a mixture of LiTDI and LiPF 6 in a molar ratio of 20:80
  • Curve 4 based on a mixture of LiTDI and LiPF 6 in a molar ratio of 80 : 20
  • a battery or accumulator according to the invention comprises at least one cathode, an anode, and an electrolyte interposed between the cathode and the anode.
  • cathode and anode are given with reference to the discharge mode of the battery.
  • the battery has several cells, each comprising a cathode, an anode, and an electrolyte interposed between the cathode and the anode.
  • all the cells are as described above in the summary of the invention.
  • the invention also relates to an individual cell comprising a cathode, an anode and an electrolyte, the cathode and the electrolyte being as described above in the summary of the invention.
  • the cathode comprises an active material.
  • active material is meant a material in which lithium ions from the electrolyte are likely to be inserted, and which lithium ions are capable of being released into the electrolyte.
  • the active material of the cathode comprises an oxide containing manganese.
  • a mixture of the two types of oxides above is also possible, preferably with a mass ratio between the first type of oxide and the second type of oxide ranging from 0.1 to 5, more particularly from 0.2 to 4.
  • the active material of the cathode consists essentially of, preferably consists of, a manganese-containing oxide, which is preferably of the first type or of the second type mentioned above (or which is a mixture of the two types as described above).
  • the cathode active material preferably has a spinel type structure, i.e., an octahedral crystalline structure.
  • the active ingredient may have a lamellar structure. Characterization by X-ray diffraction for example makes it possible to distinguish these structures.
  • An active material of LiMn 2 O 4 type is particularly preferred.
  • a L ⁇ mni type of active material 3 Nii 3 Coi 3O2 is also particularly preferred.
  • the cathode may advantageously comprise:
  • the cathode may be in the form of a composite material comprising the active material, the polymeric binder and the electronically conductive additive.
  • the electronic conductive additive may for example be present at a level ranging from 1 to 2.5% by weight, preferably from 1.5 to 2.2% by weight, relative to the total weight of the cathode.
  • the ratio by weight of the binder with respect to the electronic conductive additive can be, for example, from 0.5 to 5.
  • the ratio by weight of the active substance relative to the conductive additive can be, for example, from 30 to 75.
  • the electronically conductive additive may for example be an allotropic form of carbon.
  • an electronic conductor there may be mentioned carbon black, SP carbon, carbon nanotubes and carbon fibers.
  • the polymeric binder may be, for example, a fluorinated functionalized or nonfunctional polymer, such as poly (difluorovinyl), or an aqueous-based polymer, for example carboxymethylcellulose or a styrene-butadiene latex.
  • a fluorinated functionalized or nonfunctional polymer such as poly (difluorovinyl)
  • an aqueous-based polymer for example carboxymethylcellulose or a styrene-butadiene latex.
  • the cathode may comprise a metal current collector on which the composite material is deposited.
  • the manufacture of the cathode can be carried out as follows. All the compounds mentioned above are dissolved in an organic or aqueous solvent to form an ink. The ink is homogenized, for example using an ultra thurax. This ink is then laminated on the current collector, the solvent is removed by drying.
  • the anode may for example comprise lithium metal, graphite, carbon, carbon fibers, a Li 4 Ti 5 O 12 alloy or a combination thereof.
  • the composition and the method of preparation are similar to those of the cathode, with the exception of the active ingredient described above.
  • the electrolyte comprises one or more lithium salts in a solvent.
  • lithium imidazolate of formula:
  • R, R 1 and R 2 independently represent CN, F, CF 3 , CH F 2 , CH 2 F, C 2 HF 4 , C 2 H 2 F 3 , C 2 H 3 F 2 groups; , C 2 F 5, C 3 F 7, C 3 H 2 F5, C 3 H 4 F 3, C 4 Fg, C 4 H 2 F 7, C 4 H 4 Fs, C5F11, C 3 FsOCF 3, C 2 F 4 OCF 3 , C 2 H 2 F 2 OCF 3 or CF 2 OCF 3 .
  • Preferred lithium imidazolates are those for which R 1 and R 2 represent a cyano group CN, and especially those for which R represents CF 3 or F or C 2 F 5 .
  • Lithium 1-trifluoromethyl-4,5-dicyanoimidazolate (LiTDI) and lithium 1-pentafluoroethyl-4,5-dicyanoimidazolate (LiPDI) are particularly preferred.
  • lithium salts may also be present, for example chosen from LiPF 6 , LiBF, CF 3 CO 2 Li, a lithium alkylborate, LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) or LiFSI (lithium bis (fluorosulfonyl) imide).
  • LiPF 6 LiBF, CF 3 CO 2 Li
  • LiTFSI lithium bis (trifluoromethanesulfonyl) imide
  • LiFSI lithium bis (fluorosulfonyl) imide
  • the lithium imidazolate (s) represent (s) at least 50%, preferably at least 75%, or at least 90%, or at least 95% or at least 99%, in molar proportion, of total lithium present in the electrolyte.
  • the electrolyte consists essentially of one or more lithium imidazolates and a solvent; or consists of one or more lithium imidazolates and a solvent - excluding in particular any other lithium salt.
  • the electrolyte may consist essentially of LiTDI in a solvent; or consist of LiTDI in a solvent.
  • the electrolyte may consist essentially of LiPDI in a solvent; or consist of LiPDI in a solvent.
  • the solvent of the electrolyte is constituted by one or more compounds which may be for example chosen from the following list: carbonates such as ethylene carbonate, dimethylcarbonate, ethylmethylcarbonate, diethylcarbonate, propylene carbonate; glymes such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, dipropylene glycol dimethyl ether, diethylene glycol diethyl ether, triethylene glycol dimethyl ether, diethylene glycol dibutyl ether, tetraethylene glycol dimethyl ether and diethylene glycol t-butyl methyl ether; nitrile solvents such as methoxypropionitrile, propionitrile, butyronitrile, valeronitrile.
  • carbonates such as ethylene carbonate, dimethylcarbonate, ethylmethylcarbonate, diethylcarbonate, propylene carbonate
  • glymes such as ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diprop
  • a mixture of ethylene carbonate and dimethyl carbonate may be used as solvent.
  • the molar concentration of lithium salt in the electrolyte may range, for example, from 0.01 to 5 mol / L, preferably from 0.1 to 2 mol / L, more particularly from 0.5 to 1.5 mol / L. .
  • the molar concentration of lithium imidazolate in the electrolyte may range, for example, from 0.01 to 5 mol / L, preferably from 0.1 to 2 mol / L, more particularly from 0.3 to 1.5 mol / L. .
  • a temperature between 45 ° and 65 ° C, preferably between 50 ° and 60 ° C, preferably 55 ⁇ 2 ° C.
  • the cathode consists of a manganese oxide spinel type LiMn 2 O 4 , conductive additives (Carbon SP) and a binder PVDF type (Kynar®, marketed by Arkema) and an anode made of metallic lithium.
  • the average initial capacity is determined after 10 cycles at a C / 5 rate i.e. a charge in 5 hours and a discharge in 5 hours.
  • the batteries are then energized at a potential of 4.2 V at 55 ° C for 15 days.
  • the capacity after aging is determined by the same protocol as before.
  • One of the batteries is made with an electrolyte composed of LiPF 6 at 1 mol / L in a 1/1 mixture by weight of ethylene carbonate and dimethylcarbonate.
  • the other battery consists of an electrolyte consisting of LiTDI at a concentration of 0.4 mol / L in a 1/1 mixture by weight of ethylene carbonate and dimethylcarbonate.
  • Figure 1 shows the initial capabilities and after aging.
  • the battery with electrolyte based on LiPF 6 has a loss of about 12% while the battery with electrolyte based on LiTDI shows a loss of only 1%.
  • the cathode consists of a manganese oxide spinel type LiMn 2 O 4 , conductive additives (Carbon SP) and a type of PVDF type binder (Kynar® marketed by Arkema) , all deposited on aluminum; and the anode consists of graphite, conductive additive (SP Carbon) and a PVDF-type binder (Kynar® marketed by ARKEMA), all deposited on copper.
  • One of the batteries is made with an electrolyte composed of LiPF 6 at 1 mol / L in a 1/1 mixture by weight of ethylene carbonate and dimethylcarbonate.
  • the other battery is made with an electrolyte composed of LiTDI at a concentration of 0.4 mol / L in a 1/1 mixture by weight of ethylene carbonate and dimethyl carbonate.
  • the batteries are cycled at a rate of C, i.e. a charge in 1 hour and a discharge in 1 hour between 2.7 and 4.2 V at a constant temperature of 25 ° C.
  • Figure 2 shows the evolution of the capacity of these two batteries according to the number of cycles.
  • the battery with a LiPF 6 based electrolyte has a better initial capacity due to its better ionic conductivity. But the decrease in capacity during cycles is faster with LiPF 6 than with LiTDI.
  • the cathode consists of a manganese oxide, nickel and cobalt of formula LiMni 3 Nii 3 Coi 3O2, conductive additive (SP carbon) and a binder of PVDF type (Kynar® , marketed by Arkema), all deposited on aluminum; and the anode consists of graphite, conductive additive (SP carbon) and a PVDF-type binder (Kynar®, marketed by Arkema), all deposited on copper.
  • the cathode consists of a manganese oxide, nickel and cobalt of formula LiMni 3 Nii 3 Coi 3O2, conductive additive (SP carbon) and a binder of PVDF type (Kynar® , marketed by Arkema), all deposited on aluminum
  • the anode consists of graphite, conductive additive (SP carbon) and a PVDF-type binder (Kynar®, marketed by Arkema), all deposited on copper.
  • One of the batteries is made with an electrolyte composed of LiPF 6 at 0.75 mol / L in a 1/1 mixture by weight of ethylene carbonate and dimethyl carbonate.
  • the other battery consists of an electrolyte consisting of LiTDI at a concentration of 0.75 mol / L in a 1/1 mixture by weight of ethylene carbonate and dimethyl carbonate.
  • the batteries initially undergo so-called forming cycles to create the SEI film on the anode. These 10 cycles are carried out at a rate of C / 10 i.e. a charge in 10 hours and a discharge in 10 hours between 2.7 and 4.2 V at a constant temperature of 25 ° C. .
  • the batteries are then cycled at a C / 3 rate, i.e., a charge in 3 hours and a discharge in 3 hours between 2.7 and 4.2 V at a constant temperature of 25 ° C.
  • Figure 3 shows the evolution of the capacity of these two batteries according to the number of cycles after the training cycles.
  • the battery with a LiPF 6 based electrolyte shows a decrease in capacity during cycles faster than the battery with a LiTDI based electrolyte.
  • the cathode consists of a manganese oxide, nickel and cobalt of formula LiMni 3 Nii 3 Coi 3O2, conductive additive (SP carbon) and a PVDF type binder (Kynar®, marketed by Arkema), all deposited on aluminum; and the anode consists of graphite, conductive additive (SP carbon) and a PVDF-type binder (Kynar®, marketed by Arkema), all deposited on copper.
  • the cathode consists of a manganese oxide, nickel and cobalt of formula LiMni 3 Nii 3 Coi 3O2, conductive additive (SP carbon) and a PVDF type binder (Kynar®, marketed by Arkema), all deposited on aluminum
  • the anode consists of graphite, conductive additive (SP carbon) and a PVDF-type binder (Kynar®, marketed by Arkema), all deposited on copper.
  • the batteries are made with an electrolyte composed of either LiPF 6 at 1 mol / L or LiTDI at 0.75 mol / L or a mixture of LiPF 6 at 0.2 mol / L and LiTDI at 0. 8 mol / L, ie a mixture of LiPF 6 at 0.8 mol / L and LiTDI at 0.2 mol / L, each time in a 1/1 mixture by weight of ethylene carbonate and dimethyl carbonate.
  • the batteries initially undergo so-called forming cycles to create the SEI film on the anode. These 5 cycles are carried out at a rate of C / 10, i.e. a charge in 10 hours and a discharge in 10 hours between 2.7 and 4.4 V at a constant temperature of 25 ° vs.
  • the batteries are then cycled at a C / 5 rate, i.e., a charge in 5 hours and a discharge in 5 hours at 2.7 to 4.4 V at a constant temperature of 25 ° C.
  • Figure 4 shows the evolution of the capacity of these batteries according to the number of cycles after the training cycles.
  • the battery with an electrolyte based on the LiPF 6 has a decrease in capacity during cycles faster than the battery with an electrolyte additive or composed solely of LiTDI.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

L'invention concerne une batterie comportant une cathode, une anode et électrolyte interposé entre la cathode et l'anode, dans laquelle : - la cathode comporte un oxyde contenant du manganèse en tant que matière active; et - l'électrolyte contient un imidazolate de lithium de formule : (i) dans laquelle R, R1 et R2 représentent, de manière indépendante, des groupements CN, F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H2F5, C3H4F3, C4F9, C4H2F7, C4H4F5, C5F11, C3F5OCF3, C2F4OCF3, C2H2F2OCF3 ou CF2OCF3.

Description

BATTERIES LITHIUM-ION A LONGUE DUREE DE VIE
DOMAINE DE L'INVENTION
La présente invention concerne des batteries lithium-ion (Li-ion) présentant une durée de vie améliorée.
ARRIERE-PLAN TECHNIQUE
Une cellule élémentaire d'une batterie secondaire Li-ion ou accumulateur au lithium comporte une anode (dénommée ainsi par référence au mode de décharge de la batterie), qui peut être par exemple en lithium métallique ou à base de carbone, et une cathode (dénommée ainsi par référence au mode de décharge de la batterie), qui peut comprendre par exemple un composé d'insertion du lithium de type oxyde métallique. Entre l'anode et la cathode se trouve intercalé un électrolyte conducteur des ions lithium.
En cas d'utilisation, donc lors de la décharge de la batterie, le lithium relâché par oxydation au pôle (-) par l'anode sous forme ionique Li+ migre à travers l'électrolyte conducteur et vient s'insérer par une réaction de réduction dans le réseau cristallin du matériau actif de la cathode, pôle (+). Le passage de chaque ion Li+ dans le circuit interne de l'accumulateur est exactement compensé par le passage d'un électron dans le circuit externe, générant un courant électrique qui peut servir à alimenter divers appareils, notamment dans le domaine de l'électronique portable tels que des ordinateurs ou téléphones, ou dans le domaine des applications de plus grande densité de puissance et d'énergie, tels que les véhicules électriques.
Lors de la charge, les réactions électrochimiques sont inversées : les ions lithium sont libérés par oxydation au pôle (+) constitué par la « cathode » (la cathode à la décharge devient l'anode à la recharge). Ils migrent à travers l'électrolyte conducteur dans le sens inverse de celui dans lequel ils circulaient lors de la décharge, et viennent se déposer ou s'intercaler par réduction au pôle (-) constitué par l'«anode » (l'anode à la décharge devient la cathode à la recharge), où ils peuvent former des dendrites de lithium métallique, causes possibles de courts-circuits.
Une cathode ou une anode comprennent généralement au moins un collecteur de courant sur lequel est déposé un matériau composite qui est constitué par : un ou plusieurs matériaux dits actifs car ils présentent une activité électrochimique vis-à-vis du lithium, un ou plusieurs polymères qui jouent le rôle de liant et qui sont généralement des polymères fluorés fonctionnalisés ou non comme le poly(difluorovinyle) ou des polymères à base aqueuse, de type carboxyméthylcellulose ou des latex styrène-butadiène, plus un ou plusieurs additifs conducteurs électroniques qui sont généralement des formes allotropiques du carbone.
Des matériaux actifs possibles à l'électrode négative (anode) sont le lithium métal, le graphite, les composites silicium/carbone, le silicium, les graphites fluorés de type CFX avec x compris entre 0 et 1 , et les titanates de type LiTi5Oi2.
Des matériaux actifs possibles à l'électrode positive sont par exemple les oxydes du type LiMO2, du type LiMPO4, du type Li2MPO3F et du type Li2MSiO4 où M représente Co, Ni, Mn, Fe et les combinaisons de ces derniers, ou du type LiMn2O4 ou du type Ss.
L'oxyde de manganèse de structure du type spinelle est un matériau de cathode particulièrement intéressant du fait de son coût peu élevé, de la faible pollution générée en comparaison des cathodes à base de cobalt par exemple, du potentiel d'insertion de lithium élevé et de son utilisation dans des batteries à forte puissance.
Mais ce matériau présente le désavantage majeur de présenter une faible tenue au cyclage. En effet, dans l'article de Tarascon et al (J. Electrochem. Soc, 1991 , 10, 2859-2864), il a été montré que ce matériau fonctionne à un potentiel de 4,1 V avec une énergie spécifique proche de la valeur théorique ; mais surtout qu'une perte de 10 % de cette énergie est observée au bout de 50 cycles.
Cette perte de capacité semble essentiellement due à une attaque de l'HF (voir l'article de K. Aminé et al., J. Power. Sources, 2004, 129, 14) généré par la présence d'eau (à une concentration de l'ordre du ppm) dans les électrolytes classiques qui sont basés sur le sel hexafluorophosphate de lithium (LiPF6). L'HF a tendance à dissoudre dans l'électrolyte le manganèse contenu dans la cathode. Ce manganèse est ensuite réduit à l'anode sous forme métallique, ce qui provoque une augmentation de la résistance interne induisant une dégradation des performances de la batterie et augmentant la dangerosité de cette batterie.
Afin d'éviter ce problème, plusieurs pistes ont été envisagées.
Par exemple il a été proposé de stabiliser la structure spinelle par l'ajout d'autres métaux dans la structure cristalline comme le cobalt, le nickel ou aluminium (article de Tarascon et al., J. Power Sources, 1999, 39, 81 -82). Mais ces ajouts entraînent soit un surcoût, soit une diminution de potentiel ou une augmentation de la pollution générée.
Une autre solution envisagée est l'ajout d'un additif dans l'électrolyte capable de piéger les faibles quantités d'eau présentes, mais là encore cette solution conduit à un surcoût pour l'électrolyte et n'améliore pas les performances en termes de durée de vie.
Par ailleurs, l'utilisation d'un imidazolate de lithium ou d'un mélange d'imidazolate de lithium et d'un autre sel de lithium, en tant qu'électrolyte, est connue notamment des documents WO 2010/023413 et WO 2013/083894.
Il existe donc un réel besoin de fournir des batteries lithium-ion ayant une durée de vie améliorée.
Il existe en particulier un besoin de fournir des batteries lithium-ion qui à la fois présentent une durée de vie satisfaisante et un potentiel élevé et peuvent être fabriquées sans coût excessif et sans générer de pollution excessive.
RESUME DE L'INVENTION
L'invention concerne en premier lieu une batterie comportant une cathode, une anode et un électrolyte interposé entre la cathode et l'anode, dans laquelle :
- la cathode comporte un oxyde contenant du manganèse en tant que matière active ; et
- l'électrolyte contient un imidazolate de lithium de formule :
dans laquelle R, R1 et R2 représentent, de manière indépendante, des groupements CN, F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H2F5, C3H4F3, C4Fg, C4H2F7, C4H4Fs, C5F11 , C3F5OCF3, C2F4OCF3, C2H2F2OCF3 ou CF2OCF3.
Selon un mode de réalisation, au moins l'un parmi R, R1 et R2 représente un groupement CN.
Selon un mode de réalisation, R1 et R2 représentent chacun un groupement CN. Selon un mode de réalisation, R représente un groupement CF3, F ou C2F5, et de manière plus particulièrement préférée représente un groupement CF3.
Selon un mode de réalisation, l'électrolyte consiste essentiellement en un ou plusieurs imidazolates de lithium dans un solvant.
Selon un mode de réalisation, la cathode contient :
- un oxyde de manganèse lithié de formule LixMn2O4 où X représente un nombre allant de 0,95 à 1 ,05 ; et/ou
- un oxyde de formule L1MO2 où M est une combinaison de Mn avec un ou plusieurs autres métaux tels que Co, Ni, Al et Fe ;
en tant que matière active.
Selon un mode de réalisation, la cathode comporte un oxyde contenant du manganèse qui présente une structure de type spinelle.
La présente invention permet de surmonter les inconvénients de l'état de la technique. Elle fournit plus particulièrement des batteries lithium-ion ayant une durée de vie améliorée ; ces batteries lithium-ion à la fois présentent une durée de vie satisfaisante et un potentiel élevé et peuvent être fabriquées sans coût excessif et sans générer de pollution excessive.
L'invention découle de la découverte par les présents inventeurs que la présence d'un sel d'imidazolate de lithium dans l'électrolyte permet de réduire la dissolution du manganèse et donc d'améliorer les performances de batteries Li-ion possédant une cathode de type oxyde contenant du manganèse.
Cet effet est particulièrement marqué avec les structures cristallines de type spinelle, qui ont tendance à être moins stables que les structures cristallines de type lamellaire (tout en présentant l'avantage de fonctionner à un voltage plus élevé).
Enfin, la présente invention montre que le sel d'imidazolate permet d'éviter de perdre de la capacité qui dans des conditions particulières sont dues à la dissolution du manganèse.
BREVE DESCRIPTION DES FIGURES
La figure 1 est un diagramme qui illustre la capacité de batteries avec un électrolyte à base de LiPF6 ou à base de LiTDI, en mA.h/g (axe des ordonnées), en capacité de charge initiale (1 ) ou après vieillissement (2). On renvoie à cet égard à l'exemple 1 .
La figure 2 est un diagramme qui illustre la capacité en décharge, en mA.h (axe des ordonnées) en fonction du nombre de cycles (axe des abscisses), pour des batteries avec un électrolyte à base de LiPF6 ou à base de LiTDI. On renvoie à cet égard à l'exemple 2.
La figure 3 est un diagramme qui illustre la capacité en décharge, en mA.h (axe des ordonnées) en fonction du nombre de cycles (axe des abscisses), pour des batteries avec un électrolyte à base de LiPF6 ou à base de LiTDI. On renvoie à cet égard à l'exemple 3.
La figure 4 est un diagramme qui illustre la capacité en décharge, en mA.h (axe des ordonnées) en fonction du nombre de cycles (axe des abscisses), pour des batteries avec un électrolyte à base de LiPF6 (courbe 1 ) ou à base de LiTDI (courbe 2) ou à base d'un mélange de LiTDI et de LiPF6 dans un rapport molaire 20:80 (courbe 3) ou à base d'un mélange de LiTDI et de LiPF6 dans un rapport molaire 80:20 (courbe 4). On renvoie à cet égard à l'exemple 4.
DESCRIPTION DE MODES DE REALISATION DE L'INVENTION
L'invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit.
Une batterie ou accumulateur selon l'invention comporte au moins une cathode, une anode, et un électrolyte interposé entre la cathode et l'anode.
Les termes de cathode et d'anode sont donnés en référence au mode de décharge de la batterie.
Selon un mode de réalisation, la batterie présente plusieurs cellules, qui comportent chacune une cathode, une anode, et un électrolyte interposé entre la cathode et l'anode. Dans ce cas, de préférence, l'ensemble des cellules sont telles que décrites ci-dessus dans le résumé de l'invention. Par ailleurs, l'invention porte également sur une cellule individuelle comportant une cathode, une anode et un électrolyte, la cathode et l'électrolyte étant tels que décrits ci- dessus dans le résumé de l'invention.
La cathode comporte une matière active. Par « matière active » on entend un matériau dans lequel les ions lithium issus de l'électrolyte sont susceptibles de s'insérer, et duquel les ions lithium sont capables d'être libérés dans l'électrolyte.
Selon l'invention, la matière active de la cathode comporte un oxyde contenant du manganèse.
Sont en particulier préférés :
- un oxyde de manganèse lithié de formule LixMn2O4 où X représente un nombre allant de 0,95 à 1 ,05 ; et - un oxyde de formule L1MO2 où M est une combinaison de Mn avec un ou plusieurs autres métaux tels que Co, Ni, Al et Fe.
Un mélange des deux types d'oxydes ci-dessus est également possible, de préférence avec un rapport massique entre le premier type d'oxyde et le deuxième type d'oxyde allant de 0,1 à 5, plus particulièrement de 0,2 à 4.
Selon un mode de réalisation, la matière active de la cathode consiste essentiellement en, de préférence consiste en, un oxyde contenant du manganèse, qui est de préférence du premier type ou du deuxième type cité ci- dessus (ou qui est un mélange des deux types tel que décrit ci-dessus).
La matière active de la cathode a de préférence une structure de type spinelle, c'est-à-dire une structure cristalline octaédrique. Alternativement, la matière active peut présenter une structure de type lamellaire. Une caractérisation par diffraction aux rayons X par exemple permet de distinguer ces structures.
Une matière active de type LiMn2O4 est particulièrement préférée.
Une matière active de type LiMni 3Nii 3Coi 3O2 est également particulièrement préférée.
Outre la matière active, la cathode peut comporter avantageusement :
- un additif conducteur électronique ; et/ou
- un liant polymère.
La cathode peut être sous la forme d'un matériau composite comportant la matière active, le liant polymère et l'additif conducteur électronique.
L'additif conducteur électronique peut être par exemple présent à un taux allant de 1 à 2,5 % en poids, de préférence de 1 ,5 à 2,2 % en poids, par rapport au poids total de la cathode. Le rapport en poids du liant par rapport à l'additif conducteur électronique peut être par exemple de 0,5 à 5. Le rapport en poids de la matière active par rapport à l'additif conducteur peut être par exemple de 30 à 75.
L'additif conducteur électronique peut être par exemple une forme allotropique du carbone. Comme conducteur électronique, on peut notamment citer le noir de carbone, le carbone SP, les nanotubes de carbone et les fibres de carbone.
Le liant polymère peut être par exemple un polymère fluoré fonctionnalisé ou non, tel que le poly(difluorovinyle), ou un polymère à base aqueuse, par exemple la carboxyméthylcellulose ou un latex styrène-butadiène.
La cathode peut comporter un collecteur de courant métallique, sur lequel le matériau composite est déposé. La fabrication de la cathode peut être réalisée comme suit. Tous les composés cités précédemment sont mis en solution dans un solvant organique ou aqueux pour former une encre. L'encre est homogénéisée, par exemple à l'aide d'un ultra thurax. Cette encre est ensuite laminée sur le collecteur de courant, le solvant est éliminé par séchage.
L'anode peut par exemple comporter du lithium métallique, du graphite, du carbone, des fibres de carbone, un alliage Li4Ti5Oi2 ou une combinaison de ceux-ci. La composition et le mode de préparation sont similaires à ceux de la cathode, à l'exception de la matière active décrite précédemment.
L'électrolyte comprend un ou plusieurs sels de lithium dans un solvant.
Parmi les sels de lithium figure au moins un imidazolate de lithium de formule :
dans laquelle R, R1 et R2 représentent, de manière indépendante, des groupements CN, F, CF3, CH F2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H2F5, C3H4F3, C4Fg, C4H2F7, C4H4Fs, C5F11 , C3FsOCF3, C2F4OCF3, C2H2F2OCF3 ou CF2OCF3.
Des imidazolates de lithium préférés sont ceux pour lesquels R1 et R2 représentent un groupe cyano CN, et tout particulièrement ceux pour lesquels R représente CF3 ou F ou C2F5.
Le 1 -trifluorométhyl-4,5-dicyano-imidazolate de lithium (LiTDI) et le 1 - pentafluoroéthyl-4,5-dicyano-imidazolate de lithium (LiPDI) sont particulièrement préférés.
On peut également utiliser un mélange d'imidazolates de lithium tels que décrits ci-dessus.
En outre, d'autres sels de lithium peuvent également être présents, par exemple choisis parmi le LiPF6, le LiBF , le CF3CO2Li, un alkylborate de lithium, le LiTFSI (bis(trifluoromethanesulfonyl)imidure de lithium) ou le LiFSI (bis(fluorosulfonyl)imidure de lithium).
Selon un mode de réalisation particulier, le ou les imidazolates de lithium représentent au moins 50 %, de préférence au moins 75 %, ou au moins 90 %, ou au moins 95 % ou au moins 99 %, en proportion molaire, des sels de lithium totaux présents dans l'électrolyte. Selon un mode de réalisation particulier, l'électrolyte consiste essentiellement en un ou plusieurs imidazolates de lithium et un solvant ; ou consiste en un ou plusieurs imidazolates de lithium et un solvant - à l'exclusion en particulier de tout autre sel de lithium.
Par exemple, l'électrolyte peut consister essentiellement en du LiTDI dans un solvant ; ou consister en du LiTDI dans un solvant.
Par exemple également, l'électrolyte peut consister essentiellement en du LiPDI dans un solvant ; ou consister en du LiPDI dans un solvant.
Le solvant de l'électrolyte est constitué par un ou plusieurs composés qui peuvent être par exemple choisis parmi la liste suivante : les carbonates tels que l'éthylène carbonate, le diméthylcarbonate, l'éthylméthylcarbonate, le diéthylcarbonate, le propylène carbonate ; les glymes tels que l'éthylène glycol diméthyléther, le diéthylène glycol diméthyléther, le dipropylène glycol diméthyléther, le diéthylène glycol diéthyléther, le triéthylène glycol diméthyléther, le diéthylène glycol dibutyléther, le tétraéthylène glycol diméthyléther et le diéthylène glycol t-buthylméthyléther ; les solvants nitriles tels que le methoxypropionitrile, le propionitrile, le butyronitrile, le valéronitrile.
On peut utiliser par exemple à titre de solvant un mélange d'éthylène carbonate et de diméthylcarbonate.
La concentration molaire en sel de lithium dans l'électrolyte peut aller par exemple de 0,01 à 5 mol/L, de préférence de 0,1 à 2 mol/L, plus particulièrement de 0,5 à 1 ,5 mol/L.
La concentration molaire en imidazolate de lithium dans l'électrolyte peut aller par exemple de 0,01 à 5 mol/L, de préférence de 0,1 à 2 mol/L, plus particulièrement de 0,3 à 1 ,5 mol/L.
La demanderesse a observé que les conditions particulièrement avantageuses pour éviter la perte de capacité suite à la dissolution de manganèse sont :
un voltage compris entre 4 et 4,4, de préférence entre 4,15 et 4,25 avantageusement 4,2.
une température comprise entre 45° et 65°C, de préférence entre 50° et 60° C, avantageusement 55 ± 2° C.
EXEMPLES
Les exemples suivants illustrent l'invention sans la limiter. Exemple 1 - amélioration de la durée de vie calendaire
Deux batteries de type CR2032 sont fabriquées : la cathode est constituée d'un oxyde de manganèse de type spinelle LiMn2O4, d'additifs conducteur (Carbone SP) et d'un liant de type PVDF (Kynar®, commercialisé par Arkema) et une anode faite de lithium métallique.
La capacité initiale moyenne est déterminée après 10 cycles à un régime de C/5 c'est-à-dire une charge en 5 heures et une décharge en 5 heures.
Les batteries sont ensuite mises sous tension à un potentiel de 4,2 V à 55°C pendant 15 jours. La capacité après vieillissement est déterminée par le même protocole que précédemment.
L'une des batteries est réalisée avec un électrolyte composé de LiPF6 à 1 mol/L dans un mélange 1/1 en masse d'éthylène carbonate et de diméthylcarbonate. L'autre batterie est composée d'un électrolyte constitué de LiTDI à une concentration de 0,4 mol/L dans un mélange 1/1 en masse d'éthylène carbonate et de diméthylcarbonate.
La figure 1 représente les capacités initiales et après vieillissement. La batterie avec l'électrolyte basé sur le LiPF6 présente une perte d'environ 12 % alors que la batterie avec l'électrolyte basé sur le LiTDI présente une perte de 1 % seulement.
Exemple 2
Deux batteries de type CR2032 sont fabriquées : la cathode est constituée d'un oxyde de manganèse de type spinelle LiMn2O4, d'additifs conducteur (Carbone SP) et d'un liant type de type PVDF (Kynar® commercialisé par Arkema), le tout déposé sur aluminium ; et l'anode est constituée de graphite, d'additif conducteur (Carbone SP) et d'un liant de type PVDF (Kynar® commercialisé par ARKEMA), le tout déposé sur cuivre.
L'une des batteries est réalisée avec un électrolyte composé de LiPF6 à 1 mol/L dans un mélange 1/1 en masse d'éthylène carbonate et de diméthylcarbonate.
L'autre batterie est réalisée avec un électrolyte composé de LiTDI à une concentration de 0,4 mol/L dans une mélange 1/1 en masse d'éthylène carbonate et de diméthylcarbonate.
Les batteries sont cyclées à un régime de C, c'est-à-dire une charge en 1 heure et une décharge en 1 heure entre 2,7 et 4,2 V à une température constante de 25°C. La figure 2 montre l'évolution de la capacité de ces deux batteries en fonction du nombre de cycles.
La batterie avec un électrolyte basé sur le LiPF6 présente une meilleure capacité initiale du fait de sa meilleure conductivité ionique. Mais la décroissance de la capacité au cours des cycles se fait plus rapidement avec LiPF6 qu'avec LiTDI.
Exemple 3 - amélioration de la durée de vie en cvclaqe
Deux batteries de type CR2032 sont fabriquées : la cathode est constituée d'un oxyde de manganèse, nickel et cobalt de formule LiMni 3Nii 3Coi 3O2, d'additif conducteur (carbone SP) et d'un liant de type PVDF (Kynar®, commercialisé par Arkema), le tout déposé sur aluminium ; et l'anode est constituée de graphite, d'additif conducteur (carbone SP) et d'un liant de type PVDF (Kynar®, commercialisé par Arkema), le tout déposé sur cuivre.
L'une des batteries est réalisée avec un électrolyte composé de LiPF6 à 0,75 mol/L dans un mélange 1/1 en masse d'éthylène carbonate et de diméthylcarbonate.
L'autre batterie est composée d'un électrolyte constitué de LiTDI à une concentration de 0,75 mol/L dans une mélange 1/1 en masse d'éthylène carbonate et de diméthylcarbonate.
Les batteries subissent dans un premier temps des cycles dits de formation pour créer le film de SEI sur l'anode. Ces cycles au nombre de 10 sont réalisés à un régime de C/10 c'est-à-dire une charge en 10 heures et une décharge en 10 heures entre 2,7 et 4,2 V à une température constante de 25°C.
Les batteries sont ensuite cyclées à un régime de C/3 c'est-à-dire une charge en 3 heures et une décharge en 3 heures entre 2,7 et 4,2 V à une température constante de 25°C.
La figure 3 montre l'évolution de la capacité de ces deux batteries en fonction du nombre de cycles après les cycles de formation. La batterie avec un électrolyte basé sur le LiPF6 présente une décroissance de la capacité au cours des cycles plus rapide que la batterie avec un électrolyte basé sur le LiTDI.
Exemple 4 - amélioration de la durée de vie en cvclaqe et mélange de sels de lithium
Quatre batteries de type CR2032 sont fabriquées : la cathode est constituée d'un oxyde de manganèse, nickel et cobalt de formule LiMni 3Nii 3Coi 3O2, d'additif conducteur (carbone SP) et d'un liant de type PVDF (Kynar®, commercialisé par Arkema), le tout déposé sur aluminium ; et l'anode est constituée de graphite, d'additif conducteur (carbone SP) et d'un liant de type PVDF (Kynar®, commercialisé par Arkema), le tout déposé sur cuivre.
Les batteries sont réalisées avec un électrolyte composé soit de LiPF6 à 1 mol/L, soit de LiTDI à 0,75 mol/L, soit d'un mélange de LiPF6 à 0,2 mol/L et de LiTDI à 0,8 mol/L, soit d'un mélange de LiPF6 à 0,8 mol/L et de LiTDI à 0,2 mol/L, à chaque fois dans un mélange 1/1 en masse d'éthylène carbonate et de diméthylcarbonate.
Les batteries subissent dans un premier temps des cycles dits de formation pour créer le film de SEI sur l'anode. Ces cycles au nombre de 5 sont réalisés à un régime de C/10, c'est-à-dire une charge en 10 heures et une décharge en 10 heures entre 2,7 et 4,4 V à une température constante de 25°C.
Les batteries sont ensuite cyclées à un régime de C/5 c'est-à-dire une charge en 5 heures et une décharge en 5 heures entre 2,7 et 4,4 V à une température constante de 25°C.
La figure 4 montre l'évolution de la capacité de ces batteries en fonction du nombre de cycles après les cycles de formation. La batterie avec un électrolyte basé sur le LiPF6 présente une décroissance de la capacité au cours des cycles plus rapide que la batterie avec un électrolyte additivé ou composé uniquement de LiTDI.

Claims

REVENDICATIONS
1. Batterie comportant une cathode, une anode et un électrolyte interposé entre la cathode et l'anode, dans laquelle :
- la cathode comporte un oxyde contenant du manganèse en tant que matière active ; et
- l'électrolyte contient un imidazolate de lithium de formule :
dans laquelle R, R1 et R2 représentent, de manière indépendante, des groupements CN, F, CF3, CHF2, CH2F, C2HF4, C2H2F3, C2H3F2, C2F5, C3F7, C3H2F5, CsH4F3, C4Fg, C4H2F7, C4H4F5, C5F11 , C3F5OCF3, C2F4OCF3, C2H2F2OCF3 ou
2. Batterie selon la revendication 1 , dans laquelle au moins l'un parmi R, R1 et R2 représente un groupement CN.
3. Batterie selon la revendication 1 ou 2, dans laquelle R1 et R2 représentent chacun un groupement CN.
4. Batterie selon l'une des revendications 1 à 3, dans laquelle R représente un groupement CF3, F ou C2F5, et de manière plus particulièrement préférée représente un groupement CF3.
5. Batterie selon l'une des revendications 1 à 4, dans laquelle l'électrolyte consiste essentiellement en un ou plusieurs imidazolates de lithium dans un solvant.
6. Batterie selon l'une des revendications 1 à 5, dans laquelle la cathode contient :
- un oxyde de manganèse lithié de formule LixMn2O4 où X représente un nombre allant de 0,95 à 1 ,05 ; et/ou - un oxyde de formule UMO2 où M est une combinaison de Mn avec un ou plusieurs autres métaux tels que Co, Ni, Al et Fe ; en tant que matière active.
Batterie selon l'une des revendications 1 à 6, dans laquelle la cathode comporte un oxyde contenant du manganèse qui présente une structure de type spinelle.
Utilisation d'une batterie selon l'une des revendications 1 à 7 pour réduire la perte de capacité dans les conditions suivantes :
voltage compris entre 4 et 4,4 V, de préférence 4,2 V, température comprise entre 45° et 65° C, de préférence 55 ± 2° C.
EP15714590.5A 2014-03-14 2015-03-09 Batteries lithium-ion a longue duree de vie Withdrawn EP3117480A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1452147A FR3018634B1 (fr) 2014-03-14 2014-03-14 Batteries lithium-ion a longue duree de vie
PCT/FR2015/050571 WO2015136199A1 (fr) 2014-03-14 2015-03-09 Batteries lithium-ion a longue duree de vie

Publications (1)

Publication Number Publication Date
EP3117480A1 true EP3117480A1 (fr) 2017-01-18

Family

ID=50624828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15714590.5A Withdrawn EP3117480A1 (fr) 2014-03-14 2015-03-09 Batteries lithium-ion a longue duree de vie

Country Status (8)

Country Link
US (1) US20160380309A1 (fr)
EP (1) EP3117480A1 (fr)
JP (1) JP2017509131A (fr)
KR (1) KR20160133521A (fr)
CN (1) CN106133979A (fr)
CA (1) CA2942194C (fr)
FR (1) FR3018634B1 (fr)
WO (1) WO2015136199A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL412729A1 (pl) * 2015-06-15 2016-12-19 Politechnika Warszawska Elektrolit do baterii jonowych
CN106571486A (zh) * 2015-10-11 2017-04-19 深圳市沃特玛电池有限公司 一种高温循环型动力电池电解液
CN105977536A (zh) * 2016-07-08 2016-09-28 珠海市赛纬电子材料股份有限公司 电解液功能添加剂、非水锂离子电池电解液及锂离子电池
FR3063836B1 (fr) * 2017-03-10 2021-02-19 Arkema France Composition d'electrolyte et son utilisation dans des batteries lithium-ion
JP2020510287A (ja) * 2017-03-10 2020-04-02 ハイドロ−ケベック 電解質組成物およびそのリチウムイオンバッテリーでの使用
PL3512027T3 (pl) * 2017-03-17 2021-08-30 Lg Chem, Ltd. Kompozycja dodatku do elektrolitu, jak również elektrolit i zawierający go akumulator litowy
FR3064822B1 (fr) * 2017-04-04 2019-06-07 Arkema France Melange de sels de lithium et ses utilisations comme electrolyte de batterie
US10734677B2 (en) 2017-06-26 2020-08-04 Robert Bosch Gmbh Substituted imidazole and benzimidazole lithium salts
FR3069959B1 (fr) 2017-08-07 2019-08-23 Arkema France Melange de sels de lithium et ses utilisations comme electrolyte de batterie
CN108172900B (zh) * 2017-12-18 2019-08-16 中节能万润股份有限公司 一种新型锂盐及其制备方法和应用
WO2020096411A1 (fr) 2018-11-09 2020-05-14 주식회사 엘지화학 Électrolyte non aqueux pour batterie secondaire au lithium, et batterie secondaire au lithium le contenant
KR102434070B1 (ko) * 2018-11-09 2022-08-22 주식회사 엘지에너지솔루션 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
US12087907B2 (en) 2020-03-03 2024-09-10 Ningde Amperex Technology Limited Electrolyte and electrochemical device using the same
US20240234726A1 (en) * 2021-11-08 2024-07-11 Advanced Cell Engineering, Inc. High capacity lithium ion anodes and cells and batteries containing lithium ion anodes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9012096B2 (en) * 2004-05-28 2015-04-21 Uchicago Argonne, Llc Long life lithium batteries with stabilized electrodes
FR2935382B1 (fr) * 2008-08-29 2010-10-08 Centre Nat Rech Scient Sel d'anion pentacylique et son utilisation comme electrolyte
JP5407469B2 (ja) * 2009-03-25 2014-02-05 パナソニック株式会社 有機電解液電池
JP2011198508A (ja) * 2010-03-17 2011-10-06 Sony Corp リチウム二次電池、リチウム二次電池用電解液、電動工具、電気自動車および電力貯蔵システム
FR2982610B1 (fr) * 2011-11-14 2016-01-08 Arkema France Procede de preparation de sel d'anion pentacylique
FR2983466B1 (fr) * 2011-12-06 2014-08-08 Arkema France Utilisation de melanges de sels de lithium comme electrolytes de batteries li-ion
US20150180039A1 (en) * 2012-07-26 2015-06-25 Lifesize Ab Sustainable Current Collectors for Lithium Batteries
FR3000302B1 (fr) * 2012-12-26 2015-11-13 Accumulateurs Fixes Electrode positive pour accumulateur au lithium

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIEDZICKI L ET AL: "Liquid electrolytes based on new lithium conductive imidazole salts", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 196, no. 3, 8 September 2010 (2010-09-08), pages 1386 - 1391, XP027450465, ISSN: 0378-7753, [retrieved on 20100908], DOI: 10.1016/J.JPOWSOUR.2010.08.097 *

Also Published As

Publication number Publication date
WO2015136199A1 (fr) 2015-09-17
CA2942194C (fr) 2022-07-26
CA2942194A1 (fr) 2015-09-17
US20160380309A1 (en) 2016-12-29
CN106133979A (zh) 2016-11-16
JP2017509131A (ja) 2017-03-30
FR3018634B1 (fr) 2021-10-01
KR20160133521A (ko) 2016-11-22
FR3018634A1 (fr) 2015-09-18

Similar Documents

Publication Publication Date Title
CA2942194C (fr) Batteries lithium-ion a longue duree de vie
US9627716B2 (en) Electrolyte and lithium based batteries
WO2015126649A1 (fr) Électrolytes et leurs procédés d'utilisation
JPH11339850A (ja) リチウムイオン二次電池
EP1384276A2 (fr) Compositions cathodiques et leurs utilisations, notamment dans les generateurs electrochimiques
EP3593397A1 (fr) Composition d'électrolyte et son utilisation dans des batteries lithium-ion
WO2012172194A1 (fr) Electrolyte liquide pour batterie au lithium, comprenant un mélange quaternaire de solvants organiques non aqueux
FR2961639A1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire comprenant un additif d'electrolyte specifique
WO2014114864A1 (fr) Batterie au lithium
EP3387696B1 (fr) Cellule électrochimique pour batterie au lithium comprenant un électrolyte spécifique
EP3179550B1 (fr) Cellule électrochimique pour batterie au lithium comprenant une électrode à base d'un matériau composite silicium-graphite et un électrolyte spécifique
WO2019097189A1 (fr) Utilisation d'un melange de sels a titre d'additif dans une batterie au lithium gelifiee
EP3297070B1 (fr) Batterie de type lithium comportant une electrode negative a duree de vie amelioree
EP3714499B1 (fr) Utilisation du nitrate de lithium en tant que seul sel de lithium dans une batterie au lithium gélifiée
EP2959530B1 (fr) Cellule électrochimique pour batterie lithium-ion comprenant une électrode négative à base de silicium et un électrolyte spécifique
WO2014064361A1 (fr) Électrode négative pour cellule électrochimique de stockage d'énergie, cellule électrochimique et batterie correspondantes et leur utilisation dans un véhicule électrique
WO2014068216A1 (fr) Procede pour la preparation d'une batterie au lithium
FR3063836A1 (fr) Composition d'electrolyte et son utilisation dans des batteries lithium-ion
EP3386921A1 (fr) Materiau de cathode pour batteries li-ion
WO2018087473A1 (fr) Cellule electrochimique pour batterie lithium-ion comprenant une electrode positive specifique sur collecteur en aluminium et un electrolyte specifique

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160905

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170622

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20210429