WO2014068216A1 - Procede pour la preparation d'une batterie au lithium - Google Patents

Procede pour la preparation d'une batterie au lithium Download PDF

Info

Publication number
WO2014068216A1
WO2014068216A1 PCT/FR2013/052502 FR2013052502W WO2014068216A1 WO 2014068216 A1 WO2014068216 A1 WO 2014068216A1 FR 2013052502 W FR2013052502 W FR 2013052502W WO 2014068216 A1 WO2014068216 A1 WO 2014068216A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical cell
lithium
electrode
composite material
positive electrode
Prior art date
Application number
PCT/FR2013/052502
Other languages
English (en)
Inventor
Bruno DELOBEL
Aurélie DEBART
Original Assignee
Renault S.A.S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S filed Critical Renault S.A.S
Publication of WO2014068216A1 publication Critical patent/WO2014068216A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0438Processes of manufacture in general by electrochemical processing
    • H01M4/044Activating, forming or electrochemical attack of the supporting material
    • H01M4/0445Forming after manufacture of the electrode, e.g. first charge, cycling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/049Processes for forming or storing electrodes in the battery container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • lithium batteries There are two main types of lithium batteries. The first is the lithium metal battery, where the negative electrode is composed of lithium metal. The second type is the so-called “lithium-ion” accumulator, where the lithium remains in the ionic state thanks to the use of an insertion compound both at the negative electrode, generally in graphite, and the positive electrode, which may be cobalt dioxide, manganese dioxide or iron phosphate.
  • the so-called lithium polymer batteries are an alternative to lithium-ion batteries, they deliver a little less energy.
  • lithium batteries are of the "lithium-air” and “lithium-sulfur” type.
  • lithium-ion batteries are not linked to an electrochemical couple. Any material that can accommodate lithium ions can be the basis of a lithium ion battery. This explains the profusion of existing variants, faced with the consistency observed with other couples. It is therefore difficult to draw general rules about this battery, markets of high volume (mobile electronics) and high energy (automotive, aerospace, etc.) not having the same needs in terms of lifetime, cost or power. Lithium-ion batteries have the main advantages of a high specific energy (two to five times more than the Ni-MH for example) as well as the absence of memory effect. Finally, the self-discharge is relatively small compared to other accumulators. However, the cost remains important.
  • lithium-ion batteries have limited energy densities with 160 Wh / kg. In order to increase these values, a lot of work is being carried out and should lead to values of 200 Wh / kg in the coming years and 300 Wh / kg by 2020. However, there is still a cell manufacturing stage that generates a loss of capacity and which is not compensated.
  • the formation of the cell generally consists of a succession of charging and discharging steps. However, organic solvents easily decompose on the positive electrodes during charging.
  • SEI layer solid lithium-based passivation layer
  • Solid Electrolyte Interphase Solid Electrolyte Interphase
  • JP2012009209 patent application uses a negative electrode structure comprising a lithium layer between the collector and the graphite electrode.
  • This lithium layer has the effect of compensating for the amount of lithium lost during the step of forming the passivation layer SEI which can cause a decrease of 4 to 10% of the capacity.
  • the use of such a method has the disadvantage of altering the battery, because during the dissolution of lithium, the electrode will no longer be in contact with the current collector thus reducing the reactivity of the electrode negative (ie graphite).
  • the space left by the dissolved lithium will facilitate the use of the cell lithium electrodeposit during use of the battery low temperature and / or high power.
  • the present invention aims to solve one of the disadvantages mentioned above and in particular to optimally compensate the loss of capacity due to the formation of the SEI layer.
  • the invention relates to a method for manufacturing an electrochemical cell for storing electrical energy comprising a positive electrode made of a composite material comprising at least one lithiated component, a negative electrode and an aprotic electrolyte comprising at least one lithium salt, of which the concentration of Li + ions is greater than that required for nominal operation of said electrochemical cell, said method comprising:
  • a step of incorporating an inert electrode into said electrochemical cell either before or after at least one step of charging and discharging said electrochemical cell.
  • This electrochemically inert electrode that is to say not undergoing oxidation, in particular by the species present in the electrolyte, makes it possible to generate oxidation-reduction reactions with the lithium present in the electrolyte, the inert electrode providing an electron for reducing the positive or negative electrode generating the insertion of Li + ions within its structure.
  • the positively charged lithium ions move from the positive electrode, passing through the electrolyte, to arrive at the negative electrode, while the charged electric current supplies the electrons via an external electrical circuit.
  • a lithium-based passivation layer SEI is formed, which consumes lithium ions coming from the positive electrode. which generates a gas release.
  • SEI passivation whatever the nature of the composite material used in the composition of the positive electrode.
  • the lithium ions return to the positive electrode, the electrons circulate via the external electric circuit.
  • the positive electrode there is reduction of the positive electrode and oxidation of the negative electrode.
  • the joint charging and discharging step generated lithium consumption of the composite material of the positive electrode to form the SEI passivation layer on the negative electrode and a loss of capacitance.
  • the term “Li” or “lithium” used in the present description does not refer to lithium metal as such, but to ionic forms of lithium, complexed or not, because of the phenomena electrochemicals put into play.
  • the step of incorporating the inert electrode into the electrochemical cell is performed prior to the charging and discharging step, that is, before the charging process begins.
  • an SEI passivation layer is formed during charging of the cell which starts and continues in the presence of this inert electrode.
  • Negative electrons are provided to the negative electrode which generate a reduction of said negative electrode and lithium ions of the electrolyte are used to form the passivation layer SEI, the inert electrode being used as a counter electrode.
  • the negative electrode is the working electrode and the inert electrode is the counter electrode.
  • the step of incorporating the inert electrode into the electrochemical cell is performed after the charging and discharging step of the electrochemical cell, and preferably after a degassing step.
  • the inert electrode After the charging and discharging process, at least a portion of lithium present on the positive electrode was consumed for the formation of the SEI passivation layer, the inert electrode being used as a counter-electrode. In this case, it is provided to the positive electrode electrons which generate a reduction of said positive electrode and the lithium ions of the electrolyte compensate the lithium consumed, allowing the regeneration of the positive electrode.
  • the positive electrode is the working electrode and the inert electrode is the counter electrode, a conventional electrical circuit supplying said electrodes.
  • the inert electrode is incorporated after a degassing step of the electrochemical cell, which is performed after the charging and discharging step. Indeed, it is known that during the formation of the cell, the formation of gas, for example carbon dioxide, resulting from the electrochemical processes involved is observed. The incorporation of the inert electrode after the step of Degassing provides the best results in terms of restoring the initial structure of the positive electrode.
  • the electrochemical system it is therefore possible to select the electrochemical system either to compensate for the lithium loss of a positive electrode for the formation of an SEI passivation layer (first case), or to prevent the consumption or loss of positive electrode lithium for the formation of the SEI passivation layer (second case).
  • the electrochemical system consists of the positive electrode and the inert electrode.
  • the electrochemical system consists of the negative electrode and the inert electrode.
  • the positive electrode retains its initial lithium content, after the formation of the electrochemical cell.
  • the aprotic electrolyte, contained in said electrochemical cell comprises at least one lithium salt, the Li + ion concentration of which is greater than that required for a nominal operation of said electrochemical cell, that is to say with performance minimum operating conditions.
  • aprotic electrolyte based on sodium salt lithium that the skilled person determines depending on the composition of the electrolyte, the electrodes and so on.
  • This nominal concentration can be based on a desired minimum conductivity in the electrochemical cell of 10 "3 -10 " 2 S / cm at 25 ° C. Therefore, according to the invention, the concentration of lithium salt must be higher than this nominal concentration, all else being equal, since it is the lithium ions of the electrolyte that will regenerate the positive electrode or form the layer. SEI passivation.
  • the inert electrode may be any electrode provided that it is inert electrochemically, that is to say that it does not undergo oxidation, in particular by the species present in the electrolyte.
  • the inert electrode consists essentially of carbon, aluminum or platinum, or, according to embodiments, their mixture.
  • This mixture may be an alloy provided that it can be made with the elements considered.
  • essentially consisting of is meant a mass proportion in each element or, where appropriate, their mixture of at least 95%, relative to the total weight of the electrode.
  • the quantity of electrolyte required in the electrochemical cell may advantageously be chosen in the range of 2.5 to 7 g.Ah -1 .
  • the aprotic electrolyte comprises a lithium salt, such as LiPF 6 LiClO 4 , LiBF, LiTFSI (lithium bis (trifluoromethanesulphonyl) imide) and LiFSI (lithium bis (fluorosulfonyl) imide), in mixtures of organic carbonates, preferably alkyl carbonates, such as ethylene carbonate, propylene, dimethyl, ethylmethyl, diethyl and mixtures thereof, or tetrahydrofuran.
  • a lithium salt such as LiPF 6 LiClO 4 , LiBF, LiTFSI (lithium bis (trifluoromethanesulphonyl) imide) and LiFSI (lithium bis (fluorosulfonyl) imide
  • organic carbonates preferably alkyl carbonates, such as ethylene carbonate, propylene, dimethyl, ethylmethyl, diethyl and mixtures thereof, or tetrahydrofuran.
  • the aprotic electrolyte may further comprise an additive, such as ⁇ -butyrolactone, ethylene vinyl carbonate (VEC), vinyl carbonate (VC) which is normally used to improve the quality of the UIE, which is suitable for be oxidized before the organic carbonates, in order to avoid degrading the solvents of the aprotic electrolyte.
  • VEC ethylene vinyl carbonate
  • VC vinyl carbonate
  • the ⁇ -butyrolactone and the VEC can subsequently continue to react with the positive electrode.
  • the VC and the VEC too, will react with the negative electrode because the potential of the positive electrode (4.2V relative to the Li + / Li ° couple) is too low to oxidize VC.
  • the mass proportion of lithium salt relative to the total mass of the electrolyte is advantageously between 5% and 25%. This gives the best results in terms of lithium compensation of the positive electrode or formation of the passivation layer SEI. Lower values usually result in either incomplete compensation of the positive electrode or an insufficient SEI passivation layer that does not allow it to perform its function optimally.
  • the lithium salt concentration is preferably in the range from 0.5 M to 2 M, preferably 0.7 to 1.2 M.
  • the positive electrode of an electrochemical cell is made of a composite material comprising at least one lithiated component.
  • the lithiated component is not limited and may be any material used or usable in the field including Li-ion batteries.
  • it may be a lithiated component and in particular an oxide component of a lithiated transition metal.
  • LiNiO 2 has the best potential for LiCoO 2 .
  • LiMn 2 O 4 despite its low cost and low toxicity, has a significant loss of capacity cycling.
  • the orthorhombic or lamellar LiMnO 2 phases prepared by exchange are transformed into spinels during the cycles.
  • the LiFePO 4 component whose limitations in cycling resulting from slow lithium intercalation and deintercalation kinetics, have been compensated by the use of nanocomposite materials such as LiFePO 4 / C, characterized by a large exchange surface with the current collectors.
  • the proportion of lithiated component in the composite material constituting said positive electrode is advantageously between 80% and 98% by weight relative to the total weight of the composite material.
  • a proportion selected from this range confers the best conductivity properties of the species in the electrochemical cell, which would be explained by an intimate structure of the composite material optimal in terms of texture and porosity.
  • the composite material of the positive electrode further comprises a conductive component, preferably conductive carbon, in proportions preferably of between 1 and 15% by weight relative to the total weight of the composite material.
  • the composite material may also comprise a binder, for example of the vinylidene fluoride (PVDF) polymer type, the copolymers thereof, for example with hexafluoropropylene, such as polyvinylidene-hexafluoropropylene fluoride (PVDF). HFP), and mixtures thereof.
  • a binder for example of the vinylidene fluoride (PVDF) polymer type, the copolymers thereof, for example with hexafluoropropylene, such as polyvinylidene-hexafluoropropylene fluoride (PVDF). HFP), and mixtures thereof.
  • the proportion of binder is preferably in the range from 1% to 10% relative to the total weight of the composite material.
  • Such positive electrodes can be prepared by mixing the above components used in the composition of the composite material, for example in the form of a powder, in the presence of a solvent for solubilizing the binder.
  • the powder mixture is dispersed in the polyvinylidene fluoride binder (PVDF) dissolved in an organic solvent, such as N-methylpyrrolidone.
  • PVDF polyvinylidene fluoride binder
  • organic solvent such as N-methylpyrrolidone.
  • the mass ratio of the solvent to the total mass of the components of the composite material varies in the range of 0.05 to 0.8.
  • the whole is a slurry, or paste, this suspension or paste or ink which therefore comprises in particular the lithiated component and the polymeric binder, is then applied to an electrode collector consisting of a metal sheet, such as a copper foil or thin aluminum.
  • the slurry is then dried to remove the solvent, typically at temperatures between 120 ° C and 170 ° C, for 20 h-30 h.
  • the negative electrode is conventionally a conductive insertion electrode, advantageously based on conductive carbon. It may also comprise graphite, preferably at levels of 80% to 90% by weight relative to the total weight of the electrode, of the conductive carbon, preferably at contents of 1% to 15% by weight relative to to the total weight of the electrode and a binder, preferably at levels of 1% to 10% by weight relative to the total weight of the electrode.
  • the binder may be that described above.
  • the electrochemical cell is a Li-ion battery or accumulator.
  • Li-ion batteries are widely known and their mode of operation, and many developments and improvements are the subject of publications and marketing. Those skilled in the art will refer to encyclopedias and other reference works, the invention being in no way limited to the size of the Li-ion batteries, the sizes and shapes of the positive electrodes, the electrodes, the various devices necessary for the operation and manufacture of said Li-ion battery, such as supply current or voltage, provided that they achieve the intended purpose.
  • the cell will have a capacity of 9.6. Ah after his training. If we consider that the amount of electrolyte is 5 g.Ah "1 or 50 g (1 density 3 g. Cm" 3) with a percentage by weight of LiPF 6 equal to 12%, a lithium concentration of 1 M, it is then possible to compensate the 0.4 Ah, using a lithium concentration in the electrolyte of 1, 4 M.
  • the invention also relates to a use of an inert electrode of an electrochemical cell during a step of manufacturing said electrochemical cell either before or after at least one step of charging and discharging said electrochemical cell, said electrochemical cell comprising a positive electrode made of a composite material comprising at least one lithiated component, a negative electrode and an aprotic electrolyte comprising at least one lithium salt, the Li + ion concentration of which is greater than that required for a nominal operation of said electrochemical cell, to maintain the initial lithium content of the positive electrode.
  • the initial lithium content of the positive electrode can be retained, either by preventing lithium consumption of said electrode, or by compensation or regeneration thereof of lithium consumed.
  • FIG. 1 schematically represents the incorporation of an inert electrode into an electrochemical cell (Li-ion battery) during the regeneration of a positive electrode into a composite material comprising at least one lithiated component.
  • the positive electrode is located at right of the cell and the negative electrode is located on the left. This arrangement is preserved throughout the process of regeneration of the positive electrode.
  • an inert electrode is introduced into the cell.
  • a voltage and current controller connects the positive electrode and the inert electrode. It is supplied to the positive electrode electrons which generate a reduction of said positive electrode and the lithium ions of the electrolyte compensate the lithium consumed, allowing the regeneration of the positive electrode.
  • the cell is sealed after regeneration and is thus ready for use.
  • Figure 2 is a representation of an exemplary positioning of the inert electrode within an electrochemical cell during the step of regenerating the positive electrode, in side view and in front view.
  • the separator is conventionally made of a polymer material, preferably of the polyolefin type, for example polyethylene or polypropylene.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une cellule électrochimique de stockage d'énergie électrique comprenant une électrode positive en un matériau composite comprenant au moins un composant lithié, une électrode négative et un électrolytique aprotique comprenant au moins un sel de lithium, dont la concentration en ions Li+ est supérieure à celle requise pour un fonctionnement nominal de ladite cellule électrochimique, ledit procédé comprenant une étape d'incorporation d'une électrode inerte dans ladite cellule électrochimique soit préalablement, soit postérieurement à au moins une étape de charge et de décharge de ladite cellule électrochimique.

Description

PROCEDE POUR LA PREPARATION D'UNE BATTERIE AU LITHIUM
Il existe deux sortes principales d'accumulateurs lithium. La première sorte est l'accumulateur dit « lithium métal », où l'électrode négative est composée de lithium métallique. La deuxième sorte est l'accumulateur dit « lithium-ion », où le lithium reste à l'état ionique grâce à l'utilisation d'un composé d'insertion aussi bien à l'électrode négative, généralement en graphite, qu'à l'électrode positive, pouvant être en dioxyde de cobalt, dioxyde de manganèse ou en phosphate de fer. Les accumulateurs dits « lithium polymère » sont une alternative aux accumulateurs lithium-ion, ils délivrent un peu moins d'énergie.
D'autres batteries au lithium sont de type « lithium-air » et « lithium-soufre ».
Contrairement aux autres accumulateurs, les accumulateurs lithium-ion ne sont pas liés à un couple électrochimique. Tout matériau pouvant accueillir en son sein des ions lithium peut être à la base d'un accumulateur lithium ion. Ceci explique la profusion de variantes existantes, face à la constance observée avec les autres couples. Il est donc délicat de tirer des règles générales à propos de cet accumulateur, les marchés de fort volume (électronique nomade) et de fortes énergies (automobile, aéronautique, etc.) n'ayant pas les mêmes besoins en termes de durée de vie, de coût ou de puissance. Les batteries lithium-ion présentent les principaux avantages d'une énergie massique élevée (deux à cinq fois plus que le Ni-MH par exemple) ainsi que l'absence d'effet mémoire. Enfin, l'auto-décharge est relativement faible par rapport à d'autres accumulateurs. Cependant, le coût reste important.
Aujourd'hui, les batteries au lithium-ion ont des densités d'énergie limitées avec 160 Wh/kg. Afin d'augmenter ces valeurs, de nombreux travaux sont menés et devraient porter vers des valeurs de 200 Wh/kg dans les prochaines années et de 300 Wh/kg vers 2020. Cependant, il existe toujours une étape de fabrication des cellules qui engendre une perte de la capacité et qui n'est pas compensée. La formation de la cellule consiste, en général, en une succession d'étapes de charge et de décharge. Toutefois, les solvants organiques se décomposent facilement sur les électrodes positives pendant la charge. Lorsque les solvants organiques sont utilisés comme électrolyte, le solvant se décompose au cours de la charge initiale et forme une couche solide de passivation, à base de lithium, appelée « couche SEI » selon une terminologie anglo-saxonne signifiant « Solid Electrolyte Interphase », qui est électriquement isolante et qui fournit encore une conductivité ionique suffisante. La couche de passivation SEI empêche la décomposition de l'électrolyte après la seconde charge. Il est couramment admis que la présence de cette couche joue un rôle essentiel sur les performances des batteries en assurant la viabilité de la technologie lithium-ion. La demande de brevet JP2012009209 utilise une structure d'électrode négative comportant une couche de lithium entre le collecteur et l'électrode de graphite. Cette couche de lithium a pour effet de compenser la quantité de lithium perdue lors de l'étape de formation de la couche de passivation SEI qui peut engendrer une diminution de 4 à 10% de la capacité. Cependant, l'utilisation d'un tel procédé présente l'inconvénient d'altération de la batterie, car lors de la dissolution du lithium, l'électrode ne sera plus en contact avec le collecteur de courant diminuant ainsi la réactivité de l'électrode négative (i.e. graphite). De plus, l'espace laissé par le lithium dissout va faciliter lors de l'utilisation de la cellule l'électrodépôt de lithium lors d'une utilisation de la batterie à basse température et/ou à forte puissance.
La présente invention vise à résoudre l'un des inconvénients mentionnés ci- dessus et notamment à compenser de façon optimale la perte en capacité due à la formation de la couche SEI.
L'invention concerne un procédé de fabrication d'une cellule électrochimique de stockage d'énergie électrique comprenant une électrode positive en un matériau composite comprenant au moins un composant lithié, une électrode négative et un électrolytique aprotique comprenant au moins un sel de lithium, dont la concentration en ions Li+ est supérieure à celle requise pour un fonctionnement nominal de ladite cellule électrochimique, ledit procédé comprenant :
- une étape d'incorporation d'une électrode inerte dans ladite cellule électrochimique soit préalablement, soit postérieurement à au moins une étape de charge et de décharge de ladite cellule électrochimique. L'incorporation de cette électrode inerte électrochimiquement, c'est-à-dire ne subissant pas d'oxydation notamment par les espèces présentes dans l'électrolyte, permet d'engendrer des réactions d'oxydo-réduction avec le lithium présent dans l'électrolyte, l'électrode inerte fournissant un électron pour la réduction de l'électrode positive ou négative engendrant l'insertion des ions Li+ au sein de sa structure.
De façon générale, pendant le processus de charge, connue de l'homme du métier, les ions lithium chargés positivement se déplacent de l'électrode positive, traversant l'électrolyte, pour arriver à l'électrode négative, tandis que le courant électrique chargé approvisionne les électrons via un circuit électrique extérieur. Lors de la charge de la batterie (oxydation de l'électrode positive/réduction de l'électrode négative), il se forme une couche de passivation SEI, à base de lithium, qui consomme des ions lithium venant de l'électrode positive, ce qui engendre un dégagement gazeux. En effet, il est largement reconnu dans le domaine des cellules électrochimiques de type batteries Li-ion que des pertes de capacités situées dans la plage de valeurs typiquement de 0,5% à 20% peuvent être observées du fait de la formation de cette couche de passivation SEI, et ce quelle que soit la nature du matériau composite entrant dans la composition de l'électrode positive.
Lors de la décharge, les ions lithium retournent vers l'électrode positive, les électrons circulent via le circuit électrique extérieur. Ainsi, lors de la décharge, il y a réduction de l'électrode positive et une oxydation de l'électrode négative.
L'étape conjointe de charge et de décharge a engendré une consommation en lithium du matériau composite de l'électrode positive pour former la couche de passivation SEI sur l'électrode négative et une perte en capacité. Dans le cadre de l'invention, le terme « Li » ou « lithium » utilisé dans la présente description ne se réfère pas au lithium métal en tant que tel, mais à des formes ioniques du lithium, complexées ou non, du fait des phénomènes électrochimiques mis en jeux. Selon des modes de réalisation avantageux de l'invention, l'étape d'incorporation de l'électrode inerte dans la cellule électrochimique est effectuée préalablement à l'étape de charge et de décharge, c'est-à-dire avant que ne débute le processus de charge.
Dans ce cas, comme mentionné plus haut, on forme une couche de passivation SEI au cours de la charge de la cellule qui débute et se poursuit en présence de cette électrode inerte.
Il est fourni à l'électrode négative des électrons qui engendrent une réduction de ladite l'électrode négative et les ions lithium de l'électrolyte sont utilisés pour former la couche de passivation SEI, l'électrode inerte étant utilisée comme contre-électrode.
On empêche ainsi la consommation ou la perte en lithium de l'électrode positive pour la formation de la couche de passivation SEI.
Selon ce mode de réalisation, dans la cellule électrochimique, l'électrode négative est l'électrode de travail et l'électrode inerte est la contre-électrode. En variante avantageuse de l'invention, l'étape d'incorporation de l'électrode inerte dans la cellule électrochimique est effectuée postérieurement à l'étape de charge et de décharge de la cellule électrochimique, et de préférence après une étape de dégazage.
Après le processus de charge et de décharge, au moins une partie de lithium présent sur l'électrode positive a été consommé pour la formation de la couche de passivation SEI, l'électrode inerte étant utilisée comme contre-électrode. Dans ce cas, il est fourni à l'électrode positive des électrons qui engendrent une réduction de ladite l'électrode positive et les ions lithium de l'électrolyte compensent le lithium consommé, en permettant la régénération de l'électrode positive.
Selon ce mode de réalisation, dans la cellule électrochimique, l'électrode positive est l'électrode de travail et l'électrode inerte est la contre-électrode, un circuit électrique classique alimentant lesdites électrodes. Avantageusement, l'électrode inerte est incorporée après une étape de dégazage de la cellule électrochimique, laquelle est effectuée après l'étape de charge et de décharge. En effet, il est connu que lors de la formation de la cellule, on observe la formation de gaz, par exemple le dioxyde de carbone, résultant des processus électrochimiques mis en jeu. L'incorporation de l'électrode inerte après l'étape de dégazage fournit les meilleurs résultats en termes de restauration de la structure initiale de l'électrode positive. Selon l'invention, il est donc possible de sélectionner le système électrochimique soit pour compenser la perte en lithium d'une électrode positive pour la formation d'une couche de passivation SEI (premier cas), soit pour empêcher la consommation ou la perte en lithium de l'électrode positive pour la formation de la couche de passivation SEI (deuxième cas).
Dans le premier cas, le système électrochimique est constitué par l'électrode positive et l'électrode inerte. Dans le deuxième cas, le système électrochimique est constitué par l'électrode négative et l'électrode inerte.
Par la mise en œuvre de l'invention, l'électrode positive conserve sa teneur initiale en lithium, après la formation de la cellule électrochimique.
L'électrolyte aprotique, contenu dans ladite cellule électrochimique, comprend au moins un sel de lithium, dont la concentration en ions Li+ est supérieure à celle requise pour un fonctionnement nominal de ladite cellule électrochimique, c'est-à-dire ayant des performances de fonctionnement minimales.
Pour une utilisation nominale, voire optimale, d'une cellule électrochimique classique, sans électrode inerte, comprenant les électrodes négatives et positives à base d'un matériau composite lithié, il est nécessaire de prévoir une concentration nominale en électrolyte aprotique à base de sel de lithium que l'homme du métier détermine en fonction de la composition de l'électrolyte, les électrodes etc. Cette concentration nominale peut être basée sur une conductivité minimale voulue dans la cellule électrochimique de 10"3-10"2 S/cm à 25°C. Par conséquent, selon l'invention, la concentration en sel de lithium doit être supérieure à cette concentration nominale, toute chose étant égales par ailleurs, puisque ce sont les ions lithium de l'électrolyte qui vont régénérer l'électrode positive ou former la couche de passivation SEI. L'électrode inerte peut être toute électrode à la condition qu'elle soit inerte électrochimiquement, c'est-à-dire qu'elle ne subit pas d'oxydation notamment par les espèces présentes dans l'électrolyte. De préférence, l'électrode inerte est essentiellement constituée de carbone, d'aluminium ou de platine, ou, selon des modes de réalisation, leur mélange. Ce mélange peut être un alliage à la condition qu'il puisse être réalisé avec les éléments considérés. Par « essentiellement constituée de » on entend une proportion massique en chaque élément ou, le cas échéant, leur mélange d'au moins 95%, par rapport au poids total de l'électrode.
La quantité d'électrolyte nécessaire dans la cellule électrochimique, notamment pour en assurer un fonctionnement optimal, peut être avantageusement choisie dans la gamme de 2,5 à 7 g.Ah"1.
L'électrolyte aprotique comprend un sel de lithium, tel que LiPF6 LiCIO4, LiBF , LiTFSI (bis(trifluorométhanesulphonyl)imide de lithium) et LiFSI (bis(fluorosulfonyl)imide de lithium), dans des mélanges de carbonates organiques, de préférence des alkyl-carbonates, tels que le carbonate d'éthylène, de propylène, de diméthyle, d'éthylméthyle, de diéthyle et leurs mélanges, ou de tétrahydrofurane. Un tel électrolyte aprotique est nécessaire pour éviter de dégrader les électrodes très réactives. L'électrolyte aprotique peut en outre comprendre un additif, tel que la γ-butyrolactone, le carbonate de vinyle éthylène (VEC), le carbonate de vinyle (VC) qui est normalement utilisé pour améliorer la qualité de la SEI, lequel est apte à être oxydé avant les carbonates organiques, afin d'éviter de dégrader les solvants de l'électrolyte aprotique. La γ-butyrolactone et le VEC peuvent par la suite continuer à réagir avec l'électrode positive. Le VC et le VEC aussi, eux, réagiront avec l'électrode négative car le potentiel de l'électrode positive (4,2V par rapport au couple Li+/Li°) est trop bas pour oxyder VC.
La proportion massique en sel de lithium par rapport à la masse totale de l'électrolyte est avantageusement comprise entre 5% et 25%. On obtient ainsi les meilleurs résultats en termes de compensation en lithium de l'électrode positive ou de formation de la couche de passivation SEI. Des valeurs inférieures conduisent habituellement soit à une compensation incomplète de l'électrode positive soit à une couche de passivation SEI insuffisante ne permettant pas à celle-ci de remplir sa fonction de façon optimale.
La concentration en sel de lithium est située de préférence dans la plage de valeurs allant de 0,5 M à 2 M, de préférence entre 0,7 et 1 ,2 M.
Avantageusement, l'électrode positive d'une cellule électrochimique est en un matériau composite comprenant au moins un composant lithié.
Le composant lithié n'est nullement limité et peut être tout matériau utilisé ou utilisable dans le domaine notamment des batteries Li-ion. Ce composant lithié peut être choisi parmi LiMO2, LiM2O4 et LiMPO4 (M = Métal).
Avantageusement, ce peut être un composant lithié et en particulier un composant d'oxyde d'un métal de transition lithié.
De façon particulièrement préférée, le composant lithié est choisi dans le groupe constitué par LiCoO2, LiNii-xCox-zAlzO2 (avec 0<x<1 , 0<z<0,2) ; Lii+a(NibMncCOd)i-aO2 avec (b+c+d=1 , 0<a<0,2) ; Lii+eMn2-eO4 avec 0<e<0,2 ; LiMn2-fNifO4 avec 0<f<0,5 ; LiMPO4 avec M=Fe,Mn,Co,Ni ; LiCoO2, LiNiO2, LiMn2O4, LiMnO2, LiFePO4, LiFePO4/C, LiNixAli-xO2, et Li[NixCO(i-2x)Mn]O2.
Parmi ces matériaux, LiNiO2 présente les meilleures potentialités au regard de LiCoO2. En effet, LiMn2O4 malgré son faible coût et sa faible toxicité, présente une perte importante de capacité en cyclage. Les phases LiMnO2 orthorhombiques ou lamellaires préparées par échange se transforment en spinelles au cours des cycles. Le composant LiFePO4, dont les limitations en cyclage, résultant de cinétiques d'intercalation et de désintercalation du lithium lentes, ont été compensées par l'utilisation de matériaux nanocomposites comme LiFePO4/C, caractérisés par une surface d'échange importante avec les collecteurs de courant.
La proportion en composant lithié dans le matériau composite constitutif de ladite électrode positive est avantageusement comprise entre 80% et 98% en poids par rapport au poids total du matériau composite. Une proportion choisie dans cette gamme confère les meilleures propriétés de conductivité des espèces dans la cellule électrochimique, ce qui s'expliquerait par une structure intime du matériau composite optimale en termes de texture et de porosité.
Avantageusement, le matériau composite de l'électrode positive comprend en outre un composant conducteur, de préférence du carbone conducteur, en des proportions de préférence comprises entre 1 et 15 % en poids par rapport au poids total du matériau composite.
Le matériau composite peut également comprendre un liant, par exemple de type polymères de fluorure de vinylidène (PVDF), les copolymères de celui-ci, par exemple avec l'hexafluoropropylène, tels que les poly(fluorure de vinylidène-hexafluoropropylène) (PVDF-HFP), et leurs mélanges. La proportion de liant est de préférence située dans la plage de valeurs allant de 1 % à 10% par rapport au poids total du matériau composite.
La somme des proportions respectives en composant lithié, en carbone conducteur et en liant étant de 100%.
On peut préparer de telles électrodes positives par mélange des composants ci-dessus entrant dans la composition du matériau composite, par exemple sous forme de poudre, en présence d'un solvant de solubilisation du liant.
Classiquement, le mélange pulvérulent est dispersé dans le liant constitué de poly(fluorure de vinylidène) (PVDF) dissout dans un solvant organique, tel que la N-méthylpyrrolidone. Le rapport masse du solvant sur la masse totale des composants du matériau composite varie dans la plage de 0,05 à 0,8. Le tout constitue une suspension épaisse, ou pâte, cette suspension ou pâte ou encre qui comprend donc notamment le composant lithié et le liant polymère, est appliquée ensuite sur un collecteur d'électrodes constitué par une feuille métallique, telle qu'une feuille de cuivre ou d'aluminium de faible épaisseur. La suspension est ensuite séchée pour éliminer le solvant, typiquement à des températures comprises entre 120°C et 170°C, pendant 20 h-30 h. L'électrode négative est classiquement une électrode conductrice à insertion, avantageusement à base de carbone conducteur. Elle peut comprendre en outre du graphite, de préférence à des teneurs de 80% à 90% en poids par rapport au poids total de l'électrode, du carbone conducteur, de préférence à des teneurs de 1 % à 15% en poids par rapport au poids total de l'électrode et un liant, de préférence à des teneurs de 1 % à 10% en poids par rapport au poids total de l'électrode. Le liant peut être celui décrit plus haut.
Avantageusement, la cellule électrochimique est une batterie ou accumulateur Li-ion.
De telles batteries Li-ion sont largement connues ainsi que leur mode de fonctionnement, et de nombreux développements et perfectionnements font l'objet de publications et de commercialisation. L'homme du métier se référera aux encyclopédies et autres ouvrages de références, l'invention n'étant nullement limitée à la taille des batteries Li-ion, aux tailles et formes des électrodes positives, négatives, aux électrolytes, aux divers dispositifs nécessaires pour le fonctionnement et la fabrication de ladite batterie Li-ion, tels que de fourniture de courant ou de tension, à la condition qu'ils permettent d'atteindre le but visé.
A titre d'exemple, pour une cellule électrochimique de 10 Ah, si l'étape de formation de la batterie (étapes de charge et de décharge) engendre une perte de capacité de 4%, la cellule aura donc une capacité de 9,6 Ah après sa formation. Si on considère que la quantité d'électrolyte est de 5 g.Ah"1 soit 50 g (densité de 1 ,3 g. cm"3) avec un pourcentage massique de LiPF6 égal à 12%, soit une concentration en lithium de 1 M, il est alors possible de compenser les 0,4 Ah, en utilisant une concentration en lithium au sein de l'électrolyte de 1 ,4 M.
L'invention concerne également une utilisation d'une électrode inerte d'une cellule électrochimique au cours d'une étape de fabrication de ladite cellule électrochimique soit préalablement, soit postérieurement à au moins une étape de charge et de décharge de ladite cellule électrochimique, ladite cellule électrochimique comprenant une électrode positive en un matériau composite comprenant au moins un composant lithié, une électrode négative et un électrolytique aprotique comprenant au moins un sel de lithium, dont la concentration en ions Li+ est supérieure à celle requise pour un fonctionnement nominal de ladite cellule électrochimique, pour conserver la teneur initiale en lithium de l'électrode positive.
Grâce à une telle électrode inerte utilisée dans une cellule électrochimique lors d'une étape de formation comprenant au moins une étape de charge et de décharge de ladite cellule, et à l'utilisation dans l'électrolyte aprotique d'une concentration efficace en Li+ supérieure à celle requise pour un fonctionnement nominal de ladite cellule électrochimique, on peut conserver la teneur initiale en lithium de l'électrode positive, soit par empêchement de la consommation en lithium de ladite électrode, soit par compensation ou régénération de celle-ci en lithium consommé.
A titre d'exemple, la Figure 1 représente schématiquement l'incorporation d'une électrode inerte dans une cellule électrochimique (batterie Li-ion) au cours de la régénération d'une électrode positive en un matériau composite comprenant au moins un composant lithié. Dans cette figure, l'électrode positive est située à droite de la cellule et l'électrode négative est située à gauche. Cet agencement est conservé dans tout le processus de régénération de l'électrode positive. Après une étape de formation de la SEI et de dégazage, soit postérieurement à au moins une étape de charge et de décharge de ladite cellule électrochimique, on introduit une électrode inerte dans la cellule. Un contrôleur de tension et de courant relie l'électrode positive et l'électrode inerte. Il est fourni à l'électrode positive des électrons qui engendrent une réduction de ladite l'électrode positive et les ions lithium de l'électrolyte compensent le lithium consommé, en permettant la régénération de l'électrode positive.
La cellule est fermée hermétiquement après régénération et est ainsi prête à l'emploi.
La Figure 2 est une représentation d'un exemple de positionnement de l'électrode inerte au sein d'une cellule électrochimique pendant l'étape de régénération de l'électrode positive, en vue de côté et en vue de face.
Le séparateur est classiquement en matériau polymère, de préférence de type polyoléfine, par exemple polyéthylène ou polypropylène.

Claims

Revendications
1 . Procédé de fabrication d'une cellule électrochimique de stockage d'énergie électrique comprenant une électrode positive en un matériau composite comprenant au moins un composant lithié, une électrode négative et un électrolytique aprotique comprenant au moins un sel de lithium, dont la concentration en ions Li+ est supérieure à celle requise pour un fonctionnement nominal de ladite cellule électrochimique, ledit procédé comprenant :
- une étape d'incorporation d'une électrode inerte dans ladite cellule électrochimique soit préalablement, soit postérieurement à au moins une étape de charge et de décharge de ladite cellule électrochimique.
2. Procédé selon la revendication 1 , dans lequel la proportion massique en sel de lithium par rapport à la masse totale de l'électrolyte aprotique est comprise entre 5% et 25%.
3. Procédé selon la revendication 1 ou 2, comprenant en outre une étape de dégazage effectuée après l'au moins une étape de charge et de décharge.
4. Procédé selon la revendication 3, dans lequel l'incorporation de l'électrode inerte est effectuée après l'étape de dégazage.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel le composant lithié est choisi dans le groupe constitué par LiCoO2, LiNii-xCox-zAlzO2 (avec 0<x<1 , 0<z<0,2) ; Lii+a(NibMncCOd)i-aO2 avec (b+c+d=1 , 0<a<0,2) ; Lii+eMn2-eO4 avec 0<e<0,2 ; LiMn2-fNifO4 avec 0<f<0,5 ; LiMPO4 avec M=Fe,Mn,Co,Ni ; LiCoO2, LiNiO2, LiMn2O4, LiMnO2, LiFePO4, LiFePO4/C, LiNixAli-xO2 et Li[NixCO(i-2x)Mn]O2.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel la proportion en composant lithié dans le matériau composite est comprise entre 80% et 98% en poids par rapport au poids total du matériau composite.
7. Procédé selon l'une des revendications 1 à 6, dans lequel le matériau composite comprend en outre un liant, dont la proportion est située dans la plage de valeurs allant de 1 % à 10% par rapport au poids total du matériau composite.
8. Procédé selon l'une des revendications 1 à 7, dans lequel l'électrode inerte est essentiellement constituée de carbone, d'aluminium ou de platine, ou leur mélange.
9. Procédé selon l'une des revendications 1 à 8, dans lequel ladite cellule électrochimique est une batterie Li-ion.
10. Utilisation d'une électrode inerte d'une cellule électrochimique au cours d'une étape de fabrication de ladite cellule électrochimique soit préalablement, soit postérieurement à au moins une étape de charge et de décharge de ladite cellule électrochimique, ladite cellule électrochimique comprenant une électrode positive en un matériau composite comprenant au moins un composant lithié, une électrode négative et un électrolytique aprotique comprenant au moins un sel de lithium, dont la concentration en ions Li+ est supérieure à celle requise pour un fonctionnement nominal de ladite cellule électrochimique, pour conserver la teneur initiale en lithium de l'électrode positive.
PCT/FR2013/052502 2012-11-02 2013-10-21 Procede pour la preparation d'une batterie au lithium WO2014068216A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1260454 2012-11-02
FR1260454A FR2997795B1 (fr) 2012-11-02 2012-11-02 Batterie au lithium

Publications (1)

Publication Number Publication Date
WO2014068216A1 true WO2014068216A1 (fr) 2014-05-08

Family

ID=47666295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2013/052502 WO2014068216A1 (fr) 2012-11-02 2013-10-21 Procede pour la preparation d'une batterie au lithium

Country Status (2)

Country Link
FR (1) FR2997795B1 (fr)
WO (1) WO2014068216A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054436A (zh) * 2017-12-13 2018-05-18 桑顿新能源科技有限公司 改善磷酸铁锂电池循环性能的化成与验证方法
CN111063952A (zh) * 2019-11-30 2020-04-24 山东同大新能源有限公司 一种磷酸铁锂锂离子电池及其化成工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114065A (ja) * 1986-10-29 1988-05-18 Sony Corp 有機電解質二次電池
US6624615B1 (en) * 2002-08-23 2003-09-23 Hyundai Motor Company Battery temperature management method of an electric vehicle
WO2006059085A1 (fr) * 2004-12-02 2006-06-08 Oxis Energy Limited Electrolyte pour accumulateurs lithium-soufre et accumulateurs lithium-soufre dans lesquels l'electrolyte est utilise
JP2012009209A (ja) 2010-06-23 2012-01-12 Nissan Motor Co Ltd リチウムイオン二次電池用負極
CN102403536A (zh) * 2011-11-30 2012-04-04 南京双登科技发展研究院有限公司 圆柱锂电池化成方法
WO2012059551A1 (fr) * 2010-11-05 2012-05-10 Renault S.A.S. Procede de charge pour une batterie d'alimentation d'un moteur d'entrainement d'un vehicule automobile

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114065A (ja) * 1986-10-29 1988-05-18 Sony Corp 有機電解質二次電池
US6624615B1 (en) * 2002-08-23 2003-09-23 Hyundai Motor Company Battery temperature management method of an electric vehicle
WO2006059085A1 (fr) * 2004-12-02 2006-06-08 Oxis Energy Limited Electrolyte pour accumulateurs lithium-soufre et accumulateurs lithium-soufre dans lesquels l'electrolyte est utilise
JP2012009209A (ja) 2010-06-23 2012-01-12 Nissan Motor Co Ltd リチウムイオン二次電池用負極
WO2012059551A1 (fr) * 2010-11-05 2012-05-10 Renault S.A.S. Procede de charge pour une batterie d'alimentation d'un moteur d'entrainement d'un vehicule automobile
CN102403536A (zh) * 2011-11-30 2012-04-04 南京双登科技发展研究院有限公司 圆柱锂电池化成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BLOMGREN G E: "Liquid electrolytes for lithium and lithium-ion batteries", JOURNAL OF POWER SOURCES, ELSEVIER SA, CH, vol. 119-121, 1 June 2003 (2003-06-01) - 1 June 2003 (2003-06-01), pages 326 - 329, XP004430190, ISSN: 0378-7753, DOI: 10.1016/S0378-7753(03)00147-2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108054436A (zh) * 2017-12-13 2018-05-18 桑顿新能源科技有限公司 改善磷酸铁锂电池循环性能的化成与验证方法
CN111063952A (zh) * 2019-11-30 2020-04-24 山东同大新能源有限公司 一种磷酸铁锂锂离子电池及其化成工艺

Also Published As

Publication number Publication date
FR2997795B1 (fr) 2014-11-21
FR2997795A1 (fr) 2014-05-09

Similar Documents

Publication Publication Date Title
US9627716B2 (en) Electrolyte and lithium based batteries
EP1493202B1 (fr) Generateur electrochimique au lithium comprenant au moins une electrode bipolaire avec substrats conducteurs en aluminium ou alliage d&#39;aluminium
EP3345234B1 (fr) Procede de formation d&#39;une cellule de batterie li-ion equipee d&#39;une electrode positive comprenant un sel sacrificiel
EP3298644B1 (fr) Électrode positive pour générateur électrochimique au lithium
WO2015136199A1 (fr) Batteries lithium-ion a longue duree de vie
EP3973587A1 (fr) Composition d&#39;electrolyte comprenant un mélange de sels de lithium
EP2583345A1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire comprenant un additif d&#39;electrolyte specifique
EP2583333B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire specifique
KR20170071236A (ko) 이온전도성 코팅층이 형성된 고체 전해질 및 이를 포함하는 리튬 이차전지
EP2583347B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire fonctionnant sur la base d&#39;un couple d&#39;electrodes lithium-soufre
WO2014114864A1 (fr) Batterie au lithium
WO2017097766A1 (fr) Cellule electrochimique pour batterie au lithium comprenant un electrolyte specifique
WO2014068216A1 (fr) Procede pour la preparation d&#39;une batterie au lithium
EP1860713A1 (fr) Compose d&#39;insertion du lithium utilisable comme matiere active cathodique d&#39;un generateur electrochimique rechargeable au lithium
JP2003168427A (ja) 非水電解質電池
EP3367472A1 (fr) Accumulateur électrochimique à architecture bipolaire, à forte tension par cellule électrochimique
EP3714499B1 (fr) Utilisation du nitrate de lithium en tant que seul sel de lithium dans une batterie au lithium gélifiée
EP3179550A1 (fr) Cellule électrochimique pour batterie au lithium comprenant une électrode à base d&#39;un matériau composite silicium-graphite et un électrolyte spécifique
WO2014064361A1 (fr) Électrode négative pour cellule électrochimique de stockage d&#39;énergie, cellule électrochimique et batterie correspondantes et leur utilisation dans un véhicule électrique
WO2020216597A1 (fr) Procédé de formation d&#39;une cellule de batterie li-ion
WO2017214894A1 (fr) Batterie au lithium-ion et son procédé de production
EP3678226A1 (fr) Cellule électrochimique pour accumulateur au lithium comprenant une électrode négative spécifique en lithium métallique et une électrode positive sur collecteur en aluminium
WO2016030389A1 (fr) Batterie comprenant un materiau pour électrode négative adherant au collecteur de courant anodique
EP4254543A1 (fr) Électrode négative spécifique à base de lithium et générateur électrochimique au lithium comprenant une telle électrode négative
KR20220167329A (ko) 캐소드 활성 물질 및 상기 캐소드 활성 물질을 함유하는 리튬 이온 배터리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13789863

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13789863

Country of ref document: EP

Kind code of ref document: A1