WO2018087473A1 - Cellule electrochimique pour batterie lithium-ion comprenant une electrode positive specifique sur collecteur en aluminium et un electrolyte specifique - Google Patents

Cellule electrochimique pour batterie lithium-ion comprenant une electrode positive specifique sur collecteur en aluminium et un electrolyte specifique Download PDF

Info

Publication number
WO2018087473A1
WO2018087473A1 PCT/FR2017/053047 FR2017053047W WO2018087473A1 WO 2018087473 A1 WO2018087473 A1 WO 2018087473A1 FR 2017053047 W FR2017053047 W FR 2017053047W WO 2018087473 A1 WO2018087473 A1 WO 2018087473A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
electrochemical cell
positive electrode
electrolyte
cell according
Prior art date
Application number
PCT/FR2017/053047
Other languages
English (en)
Inventor
Jean-Frédéric Martin
Hélène ROUAULT
Olivier Buisine
Marc-David BRAIDA
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Rhodia Operations
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Rhodia Operations filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Publication of WO2018087473A1 publication Critical patent/WO2018087473A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0034Fluorinated solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an original lithium-ion battery cell comprising an original association between a specific positive electrode on an aluminum current collector and a specific electrolyte, notably enabling excellent performance to be obtained without anodic dissolution phenomenon. the constituent aluminum of the current collector.
  • the general field of the invention can thus be defined as that of batteries of the lithium-ion type.
  • Lithium-ion batteries are increasingly being used as an independent source of energy, particularly in portable electronic equipment (such as mobile phones, laptops, tools), where they are gradually replacing batteries nickel-cadmium (NiCd) and nickel-metal hydride (NiMH). They are also widely used to provide the power supply needed for new micro applications, such as smart cards, sensors or other electromechanical systems.
  • Lithium-ion type batteries operate on the principle of insertion-deinsertion (or lithiation-delithiation) of lithium according to the following principle.
  • the lithium removed from the ionic negative electrode Li + migrates through the ionic conductive electrolyte and is interposed in the crystal lattice of the active material of the positive electrode.
  • the passage of each Li + ion in the internal circuit of the battery is exactly compensated by the passage of an electron in the external circuit, thus generating an electric current.
  • the specific energy density released by these reactions is both proportional to the potential difference between the two electrodes and the amount of lithium that will be interposed in the active material of the positive electrode.
  • the negative electrode will insert lithium into the network of the material constituting it.
  • the positive electrode will release lithium.
  • the lithium-ion type batteries require two different insertion compounds to the negative electrode and the positive electrode.
  • each of them is, advantageously, associated with a metal current collector, which, as the name suggests, allows the current to be conveyed, thus the electrons , to the outside of the electrochemical cell.
  • an aluminum current collector with at least one of the electrodes, since the aluminum has, among other advantages, a low density, which allows a gain in mass energy density. for the cell.
  • LiTFSI lithium bis (trifluoromethylsulfonyl) imide
  • LiTFSI lithium bis (perfluoroethylsulfonyl) imide
  • LiBETi lithium bis (perfluoroethylsulfonyl) imide
  • the authors of the present invention set themselves the goal of proposing an electrochemical cell for lithium-ion battery capable of delivering a high voltage (of at least 4 V) using aluminum to the current collector for at least the positive electrode and a specific imidure salt, without this inducing, during operation of the cell, a phenomenon of anodic dissolution of aluminum.
  • the invention relates to an electrochemical cell for a lithium-ion battery comprising:
  • a positive electrode comprising, as active material, an oxide compound having the general formula UMO2, in which M is a member selected from Ni, Co, Mn, Al, Mg and mixtures thereof, said positive electrode being associated an aluminum current collector; and an electrolyte disposed between said negative electrode and said electrode positive, said electrolyte comprising, as lithium salt, lithium bis (trifluoromethylsulfonyl) imide (also known by the abbreviation LiTFSI) or lithium bis (fluorosulfonyl) imide (also known by the abbreviation LiFSI), and comprising: as the organic solvent, trifluoropropylene carbonate.
  • LiTFSI lithium bis (trifluoromethylsulfonyl) imide
  • LiFSI lithium bis (fluorosulfonyl) imide
  • negative electrode is meant, conventionally, in the foregoing and the following, the electrode which acts as anode, when the battery delivers current (that is to say when it is in the process of discharge ) and which acts cathode, when the battery is in process of charge.
  • positive electrode is meant conventionally, in the foregoing and the following, the electrode which acts as a cathode, when the battery delivers current (that is to say when it is in the process of discharge) and which acts as anode when the battery is charging process.
  • the positive electrode is an electrode comprising, as active material, an oxide compound of formula (I) below:
  • M is a member selected from Ni, Co, Mn, Al, Mg and mixtures thereof, and more preferably with M being a member selected from Ni, Co, Mn and mixtures thereof .
  • the oxide compound of formula above has a lamellar structure.
  • lithiated oxides LiCoO 2 , LiNiO 2 and mixed oxides Li (Ni, Co, Mn) O 2 such as Li (Nii / 3 Mni / 3 Co / 3) 0 2 ) also known under the name NMC).
  • the positive electrode may comprise a polymeric binder, such as polyvinylidene fluoride (PVDF), a carboxymethylcellulose mixture with a latex of the styrene and / or butadiene type. and optionally one or more electrically conductive additives, which may be carbonaceous materials such as carbon black, carbon fibers obtained in the vapor phase (known by the abbreviation VGCF).
  • PVDF polyvinylidene fluoride
  • VGCF carbonaceous materials
  • the positive electrode may be in the form of a composite material comprising a matrix of polymeric binder (s), within which are dispersed charges constituted by the active material and optionally the adjuvant or conductive electricity.
  • the positive electrode is associated, according to the invention, with an aluminum current collector, which means, in other words, that it is directly in contact with this collector, to allow the routing of the electric current to the outside of the electrochemical cell.
  • the current collector may be in the form of an aluminum strip.
  • the positive electrode, for its part, may be in the form of a layer coated on the current collector.
  • the aforementioned electrolyte comprises at least one lithium salt, which is lithium bis (trifluoromethylsulfonyl) imide or lithium bis (fluorosulfonyl) imide and comprising, as organic solvent, trifluoropropylene carbonate.
  • Lithium bis (trifluoromethylsulfonyl) imide corresponds to formula (II)
  • Lithium bis (fluorosulfonyl) imide corresponds to the formula ( ⁇ )
  • the lithium salt may be present in the electrolyte at a concentration ranging from 0.5 to 3 mol / l.
  • the lithium bis (trifluoromethylsulfonyl) imide or the lithium bis (fluorosulfonyl) imide is advantageously the only lithium salt of the electrolyte.
  • the lithium bis (trifluoromethylsulfonyl) imide is the sole lithium salt of the electrolyte.
  • the electrolyte comprises lithium bis (trifluoromethylsulfonyl) imide or lithium bis (fluorosulfonyl) imide, or a mixture thereof, in admixture with a or several other lithium salts.
  • the lithium bis (trifluoromethylsulfonyl) imide and / or the lithium bis (fluorosulfonyl) imide remains, however, however, the majority lithium salt of the electrolyte. It preferably constitutes at least 50%, more preferably at least 75%, and even more preferably at least 90%, lithium salts present in the electrolyte (in molar percentage of lithium).
  • lithium hexafluorophosphate LiPFe
  • lithium difluorophosphate U PO2F2
  • lithium perchlorate LiClO 4
  • lithium hexafluoroarsenate LiAsFe
  • lithium hexafluoroantimonate LiSbFe
  • lithium hexafluorotantalate LiTaFe
  • lithium tetrachloroaluminate LiAICU
  • lithium tetrafluoroborate LiBF 4
  • lithium difluoro (oxalato) borate LiBF 2 (C20 4 )
  • lithium chloroborate U2B10Cl10
  • lithium fluoroborate U2B10F10
  • bis lithium (trifluoromethyl) tetrafluorophosphate LiPF 4 (CF 3) 2
  • lithium bis (pentafluoroethyl) tetrafluorophosphate LiPFe
  • LiPF 4 (CF 3) 2 lithium bis (pentafluoroethy
  • Trifluoropropylene carbonate for its part, has the following formula:
  • trifluoropropylene carbonate is the only organic solvent included in the electrolyte, which means, in other words, that trifluoropropylene carbonate constitutes 100% (by volume or by mass) of the organic solvent, or in other words, the organic solvent consists solely of trifluoropropylene carbonate.
  • the trifluoropropylene carbon may exist under one or the other of its enantiomers or mixtures thereof.
  • the electrolyte may comprise at least one additive corresponding to one of the following formulas (IV) and (V):
  • R 1 and R 2 represent, independently of one another, H, Cl or F, with the proviso that R 1 and R 2 do not both represent H.
  • the compound (V) can be used indifferently in its different isomeric forms.
  • the compound of formula (IV) may be designated by the name of vinylidene carbonate (also called abbreviation VC).
  • this compound is also called fluoroethylene carbonate (also known by the abbreviation FEC).
  • the compound of formula (IV) or (V) may be present in the electrolyte in a content ranging from 0.5 to 10% by weight relative to the weight of the organic solvent and the lithium salt. More specifically, it may be present in a content ranging from 1 to 5% by weight, more preferably 2% or 10% by weight relative to the weight of the organic solvent and the lithium salt.
  • a specific electrolyte entering, advantageously, into the cells of the invention is an electrolyte comprising, in addition, 2% of vinylidene carbonate relative to the mass of the lithium salt and of the organic solvent and more specifically, an electrolyte. comprising only LiTFSI, trifluoroethylene carbonate and 2% vinylidene carbonate relative to the weight of LiTFSI and trifluoroethylene carbonate.
  • the electrolyte may be impregnated with a porous separator, which is disposed between the positive electrode and the negative electrode of the electrochemical cell.
  • This separator may be in a porous material, such as a polymeric material, able to accommodate in its porosity the liquid electrolyte.
  • a porous separator made of polyacrylonitrile.
  • the negative electrode is an electrode comprising, as active material, a lithium insertion material, which may be, for example, a carbonaceous material, such as graphite.
  • the negative electrode may comprise a polymeric binder, such as polyvinylidene fluoride (PVDF), a carboxymethylcellulose mixture with a latex of the styrene and / or butadiene type.
  • PVDF polyvinylidene fluoride
  • the negative electrode can be, from a structural point of view, as a composite material comprising a matrix by binder (s) polymeric (s), within which are dispersed charges constituted by the active material, such as graphite.
  • the negative electrode may also be associated with a metal current collector, such as a copper current collector. This means, in other words, that it is directly in contact with this collector, to allow the routing of the electric current to the outside of the electrochemical cell.
  • the current collector may be in the form of a copper strip.
  • the negative electrode, for its part, can be in the form of a layer coated on the collector current.
  • the invention relates to a lithium battery comprising one or more electrochemical cells as defined above.
  • FIGS. 1 to 4 are graphs illustrating the evolution of the intensity I (in mA) as a function of the potential E (in V) with, respectively:
  • FIGS. 1 and 2 for the first cycle and the tenth cycle with the second electrochemical cell of Example 1 below;
  • FIGS. 3 and 4 for the first cycle and the tenth cycle with the first electrochemical cell of Example 1 below.
  • Figures 5 and 6 are graphs illustrating cycling curves for two comparative cells defined in Example 2.
  • FIG. 7 is a graph illustrating the evolution of capacitance C as a function of the number of cycles N for electrochemical cells defined in example 2 below.
  • This example does not illustrate, as such, an electrochemical cell according to the invention but aims to demonstrate that trifluoropropylene carbonate limits the anodic dissolution of aluminum in the presence of a TFSI salt.
  • a first electrochemical cell is prepared in the form of a button cell comprising:
  • an electrolyte disposed between said positive electrode and the negative electrode comprising 1 M LiTFSI in trifluoropropylene carbonate.
  • a second electrochemical cell similar to the first electrochemical cell described above is prepared, except that the electrolyte comprises 1 M LiTFSI in a mixture (ethylene carbonate / propylene carbonate) 1 : 1 in volume.
  • FIGS. 1 to 4 The profiles obtained are reproduced in FIGS. 1 to 4 attached in the appendix, illustrating the evolution of the intensity I (in mA) as a function of the potential E (in V) with, respectively:
  • This example illustrates electrochemical cells according to the invention and, for comparison, electrochemical cells not in accordance with the invention, to demonstrate the contribution of the invention concerning the phenomenon of anodic dissolution of aluminum.
  • each electrochemical cell is a button cell shape comprising:
  • a negative electrode comprising, as active material, graphite and as polymeric binder, a mixture of carboxymethylcellulose with a latex of the styrene butadiene type in respective proportions 97.4 / 1.3 / 1.3, said electrode negative being deposited on a copper current collector;
  • a positive electrode comprising, as active material, LiNii / 3M ni / 3Coi / 302, as electrically conductive material, SP carbon black and VGCF carbon fibers and as a polymeric binder, PVDF in respective proportions 92/2/2/4, said positive electrode being deposited on an aluminum current collector; and
  • a first series of tests is carried out with two comparative cells, said first cell and second cell, the first cell comprising an electrolyte comprising LiTFSI 1M, a mixture (ethylene carbonate / propylene carbonate) 1: 1 and the second cell. comprising an electrolyte comprising LiTFSI 1M, a mixture (ethylene carbonate / propylene carbonate) 1: 1 and 2% of vinylidene carbonate relative to the weight of LiTFSI and the mixture (ethylene carbonate / propylene carbonate) , the tests consisting of galvanostatic cycling carried out at different charge / discharge rates between 2.8V and 4.15V (ie 4.25V vs. Li NMC side).
  • a second series of tests is then carried out with a cell according to the invention, to determine the evolution of the discharge capacity as a function of the number of N. cycles.
  • Figure 7 illustrates the evolution of the capacity C (in%) during cycling at C / 20 as a function of the number of cycles N (between 45 and 75 cycles) for the second cell (not in accordance with the invention) explained above and a cell conforming to invention, namely comprising an electrolyte comprising LiTFSI, trifluoropropylene carbonate and vinylidene carbonate (up to 2% by weight relative to the weight of LiTFSI and trifluoroethylene carbonate).
  • an electrolyte comprising LiTFSI, trifluoropropylene carbonate and vinylidene carbonate
  • the electrochemical cell in accordance with the invention exhibits better cyclability (top curve a) with respect to the cell and comprises carbonate solvents (bottom curve b).

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

L'invention a trait à une cellule électrochimique pour batterie lithium-ion comprenant : - une électrode négative; - une électrode positive comprenant, comme matériau actif, un composé oxyde répondant à la formule générale LiMO2, dans laquelle M est un élément choisi parmi Ni, Co, Mn, Al, Mg et les mélanges de ceux-ci, ladite électrode positive étant associée à un collecteur de courant en aluminium; et - un électrolyte disposé entre ladite électrode négative et ladite électrode positive, ledit électrolyte comprenant, comme sel de lithium, du bis(trifluorométhylsulfonyl)imidure de lithium ou du bis(fluorosulfonyl)imidure de lithium, et comprenant, comme solvant organique, du carbonate de trifluoropropylène.

Description

CELLULE ELECTROCHIMIQUE POUR BATTERIE LITHIUM-ION COMPRENANT UNE ELECTRODE POSITIVE SPECIFIQUE SUR COLLECTEUR EN ALUMINIUM ET UN
ELECTROLYTE SPECIFIQUE
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention a trait à une cellule de batterie lithium-ion originale comprenant une association originale entre une électrode positive spécifique sur collecteur de courant en aluminium et un électrolyte spécifique, permettant notamment, d'obtenir d'excellentes performances sans phénomène de dissolution anodique de l'aluminium constitutif du collecteur de courant.
Le domaine général de l'invention peut être ainsi défini comme étant celui des batteries du type lithium-ion.
Les batteries du type lithium-ion sont de plus en plus utilisées comme source d'énergie autonome, en particulier, dans les équipements électroniques portables (tels que les téléphones mobiles, les ordinateurs portables, l'outillage), où elles remplacent progressivement les batteries nickel-cadmium (NiCd) et nickel-hydrure métallique (NiMH). Elles sont également très utilisées pour fournir l'alimentation en énergie nécessaire aux nouvelles microapplications, telles que les cartes à puce, les capteurs ou autres systèmes électromécaniques.
Les batteries du type lithium-ion fonctionnent sur le principe d'insertion- désinsertion (ou lithiation-délithiation) du lithium selon le principe suivant.
Lors de la décharge de la batterie, le lithium désinséré de l'électrode négative sous forme ionique Li+ migre à travers l'électrolyte conducteur ionique et vient s'intercaler dans le réseau cristallin du matériau actif de l'électrode positive. Le passage de chaque ion Li+ dans le circuit interne de la batterie est exactement compensé par le passage d'un électron dans le circuit externe, générant ainsi un courant électrique. La densité d'énergie massique libérée par ces réactions est à la fois proportionnelle à la différence de potentiel entre les deux électrodes et à la quantité de lithium qui se sera intercalée dans le matériau actif de l'électrode positive. Lors de la charge de la batterie, les réactions se produisant au sein de la batterie sont les réactions inverses de la décharge, à savoir que :
- l'électrode négative va insérer du lithium dans le réseau du matériau la constituant ; et
- l'électrode positive va libérer du lithium.
De par ce principe de fonctionnement, les batteries du type lithium-ion nécessitent deux composés d'insertion différents à l'électrode négative et à l'électrode positive.
Que ce soit pour l'électrode négative ou l'électrode positive, chacune d'entre elles est, avantageusement, associée à un collecteur de courant métallique, qui, comme son nom l'indique, permet d'acheminer le courant, donc les électrons, vers l'extérieur de la cellule électrochimique.
Il peut être notamment avantageux d'associer un collecteur de courant en aluminium à au moins l'une des électrodes, car l'aluminium présente, entre autres, pour avantage, une faible densité, ce qui permet un gain en densité d'énergie massique pour la cellule.
En revanche, en utilisant de l'aluminium comme collecteur de courant au moins pour l'électrode positive se pose la difficulté du phénomène de dissolution anodique, qui intervient notamment avec des matériaux actifs d'électrode positive, qui permettent d'accéder à une tension de cellule d'au moins 4 V et avec des sels de lithium, comme le bis(trifluorométhylsulfonyl)imidure de lithium (connu sous l'abréviation LiTFSI), qui s'avère être un sel particulièrement intéressant, car il ne forme peu ou pas d'acide fluorhydrique en cas de dégradation, contrairement à d'autres sels de lithium comme LiPF6 et peut être utilisé à des températures plus élevées et dans une atmosphère moins protectrice.
Pour résoudre cette problématique de dissolution anodique dans le contexte susmentionné, plusieurs solutions ont été proposées parmi lesquelles :
- l'introduction d'un sel d'adjonction, en sus du LiTFSI, comme BF4, ce qui induit, toutefois, une augmentation de la sensibilité à l'humidité de l'électrolyte ; - la passivation du collecteur en aluminium consistant à créer un film de passivation à la surface de l'aluminium, en vue de diminuer la vitesse de corrosion de celui- ci, cette solution présentant toutefois un aspect temporaire du fait de la dégradation progressive du film de passivation ;
- la recherche d'alternatives à l'aluminium comme collecteur de courant, par exemple, des collecteurs carbonés ; et
l'utilisation de sels alternatifs au LiTFSI comme le bis(perfluoroéthylsulfonyl)imidure de lithium (connu sous l'abréviation LiBETi), permettant d'induire un léger décalage du potentiel de dissolution de l'aluminium sans éliminer toutefois le problème.
Aussi, au vu de qui existe déjà, les auteurs de la présente invention se sont fixé pour but de proposer une cellule électrochimique pour batterie lithium-ion apte à délivrer une tension importante (d'au moins 4 V) utilisant de l'aluminium pour le collecteur de courant pour au moins l'électrode positive et un sel imidure spécifique, sans que cela n'induise, en cours de fonctionnement de la cellule, un phénomène de dissolution anodique de l'aluminium.
Partant de cela, ils ont découvert, de manière surprenante, qu'en utilisant, comme solvant organique de l'électrolyte, un solvant spécifique, il est possible de travailler dans l'environnement susmentionné sans être limité par le phénomène de dissolution anodique de l'aluminium.
EXPOSÉ DE L'INVENTION
Ainsi, l'invention a trait à une cellule électrochimique pour batterie lithium-ion comprenant :
- une électrode négative ;
- une électrode positive comprenant, comme matériau actif, un composé oxyde répondant à la formule générale UMO2, dans laquelle M est un élément choisi parmi Ni, Co, Mn, Al, Mg et les mélanges de ceux-ci, ladite électrode positive étant associée à un collecteur de courant en aluminium; et - un électrolyte disposé entre ladite électrode négative et ladite électrode positive, ledit électrolyte comprenant, comme sel de lithium, du bis(trifluorométhylsulfonyl)imidure de lithium (dénommé également par l'abréviation LiTFSI) ou du bis(fluorosulfonyl)imidure de lithium (dénommé également par l'abréviation LiFSI), et comprenant, comme solvant organique, du carbonate de trifluoropropylène.
Le choix motivé du solvant organique constitutif de l'électrolyte permet d'éviter le phénomène de dissolution anodique de l'aluminium constitutif du collecteur de courant de l'électrode positive. En outre, les autres caractéristiques des cellules de l'invention permettent d'obtenir :
- une tension d'au moins 4 V, grâce au choix spécifique de matériau actif de l'électrode positive ; et
- une bonne conduction des ions lithium grâce au choix d'un sel spécifique imidure de lithium, sans risque de phénomène de dégradation de ceux-ci en acide fluorhydrique.
Avant d'entrer plus en détail dans l'exposé de cette invention, nous précisons les définitions suivantes.
Par électrode négative, on entend, classiquement, dans ce qui précède et ce qui suit, l'électrode qui fait office d'anode, quand la batterie débite du courant (c'est-à- dire lorsqu'elle est en processus de décharge) et qui fait office de cathode, lorsque la batterie est en processus de charge.
Par électrode positive, on entend, classiquement, dans ce qui précède et ce qui suit, l'électrode qui fait office de cathode, quand la batterie débite du courant (c'est- à-dire lorsqu'elle est en processus de décharge) et qui fait office d'anode lorsque la batterie est en processus de charge.
Selon l'invention, l'électrode positive est une électrode comprenant, comme matériau actif, un composé oxyde de formule (I) suivante :
LiM02
(D
dans laquelle M est un élément choisi parmi Ni, Co, Mn, Al, Mg et les mélanges de ceux-ci, et de préférence, encore, avec M étant un élément choisi parmi Ni, Co, Mn et les mélanges de ceux-ci. D'un point de vue structural, le composé oxyde de formule ci-dessus présente une structure lamellaire.
A titre d'exemples de tels composés oxydes, on peut citer les oxydes lithiés LiCo02, LiNi02 et les oxydes mixtes Li(Ni,Co,Mn)02 (tel que Li(Nii/3Mni/3Coi/3)02) connu également sous la dénomination NMC).
Outre la présence d'un matériau actif, tel que ceux définis ci-dessus, l'électrode positive peut comprendre un liant polymérique, tel que du polyfluorure de vinylidène (PVDF), un mélange carboxyméthylcellulose avec un latex du type styrène et/ou butadiène ainsi qu'éventuellement un ou plusieurs adjuvants conducteurs de l'électricité, qui peuvent être des matériaux carbonés comme du noir de carbone, des fibres de carbone obtenues en phase vapeur (connues sous l'abréviation VGCF).
Ainsi, d'un point de vue structural, l'électrode positive peut se présenter sous forme d'un matériau composite comprenant une matrice en liant(s) polymérique(s), au sein de laquelle sont dispersées des charges constituées par le matériau actif et éventuellement le ou adjuvants conducteurs de l'électricité.
L'électrode positive est associée, selon l'invention, à un collecteur de courant en aluminium, ce qui signifie, en d'autres termes, qu'elle est directement en contact avec ce collecteur, pour permettre l'acheminement du courant électrique vers l'extérieur de la cellule électrochimique. Le collecteur de courant peut se présenter sous forme d'un feuillard en aluminium. L'électrode positive, quant à elle, peut se présenter sous forme d'une couche enduite sur le collecteur de courant.
L'électrolyte susmentionné comprend au moins un sel de lithium, qui est le bis(trifluorométhylsulfonyl)imidure de lithium ou le bis(fluorosulfonyl)imidure de lithium et comprenant, comme solvant organique, du carbonate de trifluoropropylène.
Le bis(trifluorométhylsulfonyl)imidure de lithium répond à la formule (II)
Figure imgf000007_0001
Le bis(fluorosulfonyl)imidure de lithium répond à la formule (Ι )
Figure imgf000007_0002
(II')
Le sel de lithium peut être présent, dans l'électrolyte, à raison d'une concentration allant de 0,5 à 3 mol/L.
Le bis(trifluorométhylsulfonyl)imidure de lithium ou le bis(fluorosulfonyl)imidure de lithium constitue, avantageusement, l'unique sel de lithium de l'électrolyte. Selon un mode de réalisation très préféré, le bis(trifluorométhylsulfonyl)imidure de lithium constitue l'unique sel de lithium de l'électrolyte. Toutefois, il n'est pas exclu dans le cadre de l'invention que l'électrolyte comprenne le bis(trifluorométhylsulfonyl)imidure de lithium ou le bis(fluorosulfonyl)imidure de lithium, ou un mélange de ceux-ci, en mélange avec un ou plusieurs autres sels de lithium. Le bis(trifluorométhylsulfonyl)imidure de lithium et/ou le bis(fluorosulfonyl)imidure de lithium reste, avantageusement, cependant le sel de lithium majoritaire de l'électrolyte. Il constitue préférentiellement au moins 50%, plus préférentiellement au moins 75%, et encore plus préférentiellement au moins 90%, des sels de lithium présents dans l'électrolyte (en pourcentage molaire de lithium).
Comme exemple d'autres sels de lithium, on peut citer l'hexafluorophosphate de lithium (LiPFe), le difluorophosphate de lithium (U PO2F2), le perchlorate de lithium (LiCI04), l'hexafluoroarsenate de lithium (LiAsFe), l'hexafluoroantimonate de lithium (LiSbFe), l'hexafluorotantalate de lithium (LiTaFe), le tétrachloroaluminate de lithium (LiAICU), le tétrafluoroborate de lithium (LiBF4), le difluoro(oxalato)borate de lithium (LiBF2(C204)), le chloroborate de lithium (U2B10CI10), le fluoroborate de lithium (U2B10F10), le bis(trifluorométhyl)tétrafluorophosphate de lithium (LiPF4(CF3)2), le bis(pentafluoroéthyl)tétrafluorophosphate de lithium (LiPF4(C2Fs)2), le tris(pentafluoroéthyl)trifluorophosphate de lithium (UPFsidfsh), les sels de formule Û2Bi2FxHi2-x où x=0-12, le trifluorométhane sulfonate de lithium (UCF3SO3), le bis(perfluoroéthanesulfonyl)imidure de lithium
Figure imgf000008_0001
le (fluorosulfonyl) (nonafluorobutanesulfonyl)imidure de lithium (LiN(S02F)(S02C4Fg)), le tris(trifluorométhanesulfonyl)méthide de lithium (LiC(S02CF3)3), les sels lithiés d'orthoborates et d'orthophosphates, tels que le bis(oxalato)borate de lithium (LiB(C204)2), le bis(malonato)borate de lithium (LiB(02CCH2C02)2), le bis(difluoromalonato) borate de lithium (LiB(02CCF2C02)2, le (malonatooxalato)borate de lithium (LiB(C204)(02CCH2C02)), le (difluoromalonatooxalato)borate de lithium (LiB(C204)(02CCF2C02)), le tris(oxalato) phosphate de lithium (LiP(C204)3), et le tris(difluoromalonato) phosphate de lithium (LiP(02CCF2C02)3), et leurs mélanges.
Le carbonate de trifluoropropylène, quant à lui, répond à la formule suivante :
Figure imgf000008_0002
Le carbonate de trifluoropropylène constitue, avantageusement, l'unique solvant organique compris dans l'électrolyte, ce qui signifie, en d'autres termes, que le carbonate de trifluoropropylène constitue 100% (en volume ou en masse) du solvant organique ou encore, en d'autres termes, que le solvant organique est constitué uniquement de carbonate de trifluoropropylène.
II s'entend que le carbone de trifluoropropylène peut exister sous l'un ou l'autre de ses énantiomère ou les mélanges de ceux-ci. En outre, l'électrolyte peut comprendre au moins un additif répondant à l'une des formules (IV) et (V) suivantes :
Figure imgf000009_0001
dans laquelle R1 et R2 représentent, indépendamment l'un de l'autre, H, Cl ou F, à la condition que R1 et R2 ne représentent pas tous les deux H.
Le composé (V) peut être utilisé indifféremment sous ses différentes formes isomères.
Le composé de formule (IV) peut être désigné par le nom de carbonate de vinylidène (dénommé également par l'abréviation VC).
Concernant le composé de formule (V), un composé spécifique entrant dans cette définition et particulièrement approprié est le composé de formule (Va) suivante :
Figure imgf000009_0002
(Va)
ce composé étant appelé également carbonate de fluoroéthylène (dénommé également par l'abréviation FEC).
Le composé de formule (IV) ou (V) peut être présent dans l'électrolyte en une teneur allant de 0,5 à 10 % massique par rapport à la masse du solvant organique et du sel de lithium. Plus spécifiquement, il peut être présent selon une teneur allant de 1 à 5% massique, de préférence encore de 2% ou 10% massique par rapport à la masse du solvant organique et du sel de lithium.
Un électrolyte spécifique entrant, avantageusement, dans les cellules de l'invention est un électrolyte comprenant, en outre, du carbonate de vinylidène à hauteur de 2% par rapport à la masse du sel de lithium et du solvant organique et plus spécifiquement, un électrolyte comprenant uniquement du LiTFSI, du carbonate de trifluoroéthylène et du carbonate de vinylidène à hauteur de 2% par rapport à la masse de LiTFSI et de carbonate de trifluoroéthylène.
L'électrolyte peut être amené à imprégner un séparateur poreux, lequel est disposé entre l'électrode positive et l'électrode négative de la cellule électrochimique.
Ce séparateur peut être en un matéria u poreux, tel qu'un matéria u polymérique, apte à accueillir dans sa porosité l'électrolyte liquide. A titre d'exemple, il peut s'agit d'un séparateur poreux en polyacrylonitrile.
L'électrode négative est une électrode comprenant, comme matéria u actif, un matériau d'insertion du lithium, qui peut être, par exemple, un matériau carboné, comme du graphite.
En outre, l'électrode négative peut comprendre un liant polymérique, tel que du polyfluorure de vinylidène (PVDF), un mélange carboxyméthylcellulose avec un latex du type styrène et/ou butadiène.
Qui plus est, au même titre que pour l'électrode positive, l'électrode négative peut se présenter, d'un point de vue structural, comme un matériau composite comprenant une matrice en liant(s) polymérique(s), au sein de laquelle sont dispersées des charges constituées par le matériau actif, tel que le graphite.
L'électrode négative peut être également associée à un collecteur de courant métallique, tel qu'un collecteur de courant en cuivre. Ceci signifie, en d'autres termes, qu'elle est directement en contact avec ce collecteur, pour permettre l'acheminement du courant électrique vers l'extérieur de la cellule électrochimique. Le collecteur de courant peut se présenter sous forme d'un feuillard en cuivre. L'électrode négative, quant à elle, peut se présenter sous forme d'une couche enduite sur le collecteur de courant.
Enfin, l'invention a trait à une batterie au lithium comprenant une ou plusieurs cellules électrochimiques telle(s) que définie(s) ci-dessus.
D'autres caractéristiques et avantages de l'invention apparaîtront du complément de description qui suit et qui se rapporte à des modes de réalisation particuliers.
Bien entendu, ce complément de description n'est donné qu'à titre d'illustration de l'invention et n'en constitue en aucun cas une limitation. BRÈVE DESCRIPTION DES DESSINS
Les figures 1 à 4 sont des graphiques illustrant l'évolution de l'intensité I (en mA) en fonction du potentiel E (en V) avec, respectivement :
-les figures 1 et 2 pour le premier cycle et le dixième cycle avec la deuxième cellule électrochimique de l'exemple 1 ci-dessous ; et
-les figures 3 et 4 pour le premier cycle et le dixième cycle avec la première cellule électrochimique de l'exemple 1 ci-dessous.
Les figures 5 et 6 sont des graphiques illustrant des courbes de cyclage pour deux cellules comparatives définies à l'exemple 2.
La figure 7 est un graphique illustrant l'évolution de la capacité C en fonction du nombre de cycles N pour des cellules électrochimiques définies à l'exem ple 2 ci-dessous.
EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
EXEM PLE 1
Cet exemple n'illustre pas, en tant que telle, une cellule électrochimique conforme à l'invention mais vise à démontrer que le carbonate de trifluoropropylène limite la dissolution anodique de l'aluminium en présence d'un sel TFSI .
Pour ce faire, il est préparé une première cellule électrochimique se présentant sous forme d'une pile bouton comprenant :
- comme électrode négative, une électrode négative en lithium métallique; et
- comme électrode positive, une électrode en aluminium ; et
- un électrolyte disposé entre ladite électrode positive et l'électrode négative, comprenant du LiTFSI 1 M dans du carbonate de trifluoropropylène.
A titre comparatif, il est préparé une deuxième cellule électrochimique similaire à la première cellule électrochimique décrite ci-dessus, si ce n'est que l'électrolyte comprend du LiTFSI 1 M dans un mélange (Carbonate d'éthylène/Carbonate de propylène) 1:1 en volume.
Ces deux cellules sont soumises à des essais de voltampérométrie cyclique entre 2,5 V et 4,2 V à 1 mV/S à température ambiante.
Les profils obtenus sont reproduits sur les figures 1 à 4 jointes en annexe, illustrant l'évolution de l'intensité I (en mA) en fonction du potentiel E (en V) avec, respectivement :
- les figures 1 et 2 pour respectivement le premier cycle et le dixième cycle avec la deuxième cellule électrochimique ; et
- les figures 3 et 4 pour respectivement le premier cycle et le dixième cycle avec la première cellule électrochimique.
Nous pouvons observer sur les figures 1 et 2 (1er et ioème cycles), que la dissolution provoque une montée importante du courant au-dessus de 3,7 V pour la cellule comprenant un mélange de carbonates avec un croisement de courbe caractéristique de la dissolution anodique. Pour les figures 3 et 4, ce croisement de courbe n'apparaît pas et le profil s'aplatit même au fil des cycles signifiant que les surfaces actives se passivent au fur et à mesure. EXEMPLE 2
Cet exemple illustre des cellules électrochimiques conformes à l'invention et, à titre comparatif, des cellules électrochimiques non conformes à l'invention, afin de démontrer l'apport de l'invention concernant le phénomène de dissolution anodique de l'aluminium.
Dans cet exemple, chaque cellule électrochimique se présente sous forme d'une pile bouton comprenant :
- comme électrode négative, une électrode négative comportant, comme matériau actif, du graphite et comme liant polymérique, un mélange de carboxyméthylcellulose avec un latex du type styrène butadiène dans des proportions respectives 97,4/1,3/1,3, ladite électrode négative étant déposée sur un collecteur de courant en cuivre ;
- comme électrode positive, une électrode positive comportant, comme matériau actif, LiNii/3M ni/3Coi/302, comme matériau conducteur de l'électricité, du noir de carbone SP et des fibres de carbone VGCF et comme liant polymérique, du PVDF dans des proportions respectives 92/2/2/4, ladite électrode positive étant déposée sur un collecteur de courant en aluminium ; et
- un électrolyte disposé entre ladite électrode positive et l'électrode négative.
Une première série d'essais est réalisée avec deux cellules comparatives, dite première cellule et deuxième cellule, la première cellule comprenant un électrolyte comprenant du LiTFSI 1M, un mélange (carbonate d'éthylène/carbonate de propylène) 1:1 et la deuxième cellule comprenant un électrolyte comprenant du LiTFSI 1M, un mélange (carbonate d'éthylène/carbonate de propylène) 1:1 et 2% de carbonate de vinylidène par rapport à la masse du LiTFSI et du mélange (carbonate d'éthylène/carbonate de propylène), les essais consistant en des cyclages galvanostatiques effectués à différentes vitesses de charge/décharge entre 2,8V et 4,15V (soit 4,25V vs. Li côté NMC).
Les résultats sont reportés sur les figures 5 et 6 jointes en annexe, qui illustrent l'évolution de la tension U (en V) en fonction de la durée T (en s) pour respectivement la première cellule et la deuxième cellule. Les cellules cyclent uniquement une ou deux fois avec apparition d'une forte polarisation, ce problème provenant essentiellement du phénomène de dissolution anodique.
Une deuxième série d'essais est ensuite réalisée avec une cellule conforme à l'invention, pour déterminer l'évolution de la capacité de décharge en fonction du nombre de cycles N.
Les résultats sont reportés sur la figure 7, qui illustre l'évolution de la capacité C (en %) lors de cyclages à C/20 en fonction du nombre de cycles N (entre 45 et 75 cycles) pour la deuxième cellule (non conforme à l'invention) explicité ci-dessus et une cellule conforme à l'invention, à savoir comprenant un électrolyte comportant du LiTFSI, du carbonate de trifluoropropylène et du carbonate de vinylidène (à hauteur de 2% en masse par rapport à la masse de LiTFSI et du carbonate de trifluoroéthylène).
On peut observer que la cellule électrochimique conforme à l'invention présente une meilleure cyclabilité (courbe du haut a) par rapport à la cellule comprena nt des solvants carbonates (courbe du bas b).

Claims

REVENDICATIONS
1. Cellule électrochimique pour batterie lithium-ion comprenant :
- une électrode négative ;
- une électrode positive comprenant, comme matériau actif, un composé oxyde répondant à la formule générale ÛMO2, dans laquelle M est un élément choisi parmi Ni, Co, Mn, Al, Mg et les mélanges de ceux-ci, ladite électrode positive étant associée à un collecteur de courant en aluminium; et
- un électrolyte disposé entre ladite électrode négative et ladite électrode positive, ledit électrolyte comprenant, comme sel de lithium, du bis(trifluorométhylsulfonyl)imidure de lithium ou du bis(fluorosulfonyl)imidure de lithium, et comprenant, comme solvant organique, du carbonate de trifluoropropylène.
2. Cellule électrochimique selon la revendication 1, dans laquelle le composé oxyde est un oxyde lithié de formule ÛC0O2, LiNi02 ou Li(Ni,Co,Mn)02.
3. Cellule électrochimique selon la revendication 1 ou 2, dans laquelle le composé oxyde est un oxyde lithié de formule LiNii/3M ni/3Coi/302.
4. Cellule électrochimique selon l'une quelconque des revendications précédentes, dans laquelle l'électrode positive comprend un liant polymérique et, éventuellement, un ou plusieurs adjuvants conducteurs de l'électricité.
5. Cellule électrochimique selon l'une quelconque des revendications précédentes, dans laquelle le solvant organique est constitué uniquement de carbonate de trifluoropropylène.
6. Cellule électrochimique selon l'une quelconque des revendications précédentes, dans laquelle l'électrolyte comprend, en outre, au moins un additif répondant à l'une des formules (IV) et (V) suivantes :
Figure imgf000016_0001
dans laquelle R1 et R2 représentent, indépendamment l'un de l'autre, H, Cl ou F, à la condition que R1 et R2 ne représentent pas tous les deux H.
7. Cellule électrochimique selon la revendication 6, dans laquelle le composé de formule (V) répond à la formule spécifi ue (Va) suivante :
Figure imgf000016_0002
(Va)
ce composé étant appelé également carbonate de fluoroéthylène.
8. Cellule électrochimique selon l'une quelconque des revendications précédentes, da ns laquelle l'électrolyte est un électrolyte comprenant, en outre, comme additif, du carbonate de vinylidène de formule (IV) à hauteur de 2% par rapport à la masse du sel de lithium et du solvant organique.
9. Cellule électrochimique selon l'une quelconque des revendications précédentes, dans laquelle l'électrode négative comprend, comme matéria u actif, un matériau carboné.
10. Cellule électrochimique selon l'une quelconque des revendications précédentes, dans laquelle le matériau carboné est du graphite.
11. Cellule électrochimique selon l'une quelconque des revendications précédentes, dans laquelle l'électrode négative est associée à un collecteur de courant métallique.
12. Cellule électrochimique selon la revendication 11, dans laquelle le collecteur de courant métallique est un collecteur en cuivre.
13. Batterie au lithium comprenant une ou plusieurs cellules électrochimiques telle(s) que définie(s) selon l'une quelconque des revendications 1 à 12.
PCT/FR2017/053047 2016-11-08 2017-11-08 Cellule electrochimique pour batterie lithium-ion comprenant une electrode positive specifique sur collecteur en aluminium et un electrolyte specifique WO2018087473A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1660796A FR3058573B1 (fr) 2016-11-08 2016-11-08 Cellule electrochimique pour batterie lithium-ion comprenant une electrode positive specifique sur collecteur en aluminium et un electrolyte specifique
FR1660796 2016-11-08

Publications (1)

Publication Number Publication Date
WO2018087473A1 true WO2018087473A1 (fr) 2018-05-17

Family

ID=57590687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2017/053047 WO2018087473A1 (fr) 2016-11-08 2017-11-08 Cellule electrochimique pour batterie lithium-ion comprenant une electrode positive specifique sur collecteur en aluminium et un electrolyte specifique

Country Status (2)

Country Link
FR (1) FR3058573B1 (fr)
WO (1) WO2018087473A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340223A (ja) * 1998-02-20 2005-12-08 Hitachi Ltd リチウム2次電池とその電解液及び電気機器
US20130266875A1 (en) * 2010-10-29 2013-10-10 Nec Corporation Secondary battery and method for manufacturing same
EP2800197A1 (fr) * 2013-05-02 2014-11-05 Westfälische Wilhelms-Universität Münster Carbonates fluorés comme solvant pour des électrolytes à base de sulfonimidure de lithium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005340223A (ja) * 1998-02-20 2005-12-08 Hitachi Ltd リチウム2次電池とその電解液及び電気機器
US20130266875A1 (en) * 2010-10-29 2013-10-10 Nec Corporation Secondary battery and method for manufacturing same
EP2800197A1 (fr) * 2013-05-02 2014-11-05 Westfälische Wilhelms-Universität Münster Carbonates fluorés comme solvant pour des électrolytes à base de sulfonimidure de lithium

Also Published As

Publication number Publication date
FR3058573B1 (fr) 2019-05-10
FR3058573A1 (fr) 2018-05-11

Similar Documents

Publication Publication Date Title
CA2942194C (fr) Batteries lithium-ion a longue duree de vie
US9627716B2 (en) Electrolyte and lithium based batteries
FR2935547A1 (fr) Electrolytes liquides ioniques et dispositifs electrochimiques tels que des accumulateurs les comprenant.
JP2012014892A (ja) 非水電解質電池
FR2961639A1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire comprenant un additif d'electrolyte specifique
EP2583333B1 (fr) Accumulateur electrochimique au lithium a architecture bipolaire specifique
EP3387696B1 (fr) Cellule électrochimique pour batterie au lithium comprenant un électrolyte spécifique
FR3001339A1 (fr) Batterie au lithium
EP3179550B1 (fr) Cellule électrochimique pour batterie au lithium comprenant une électrode à base d'un matériau composite silicium-graphite et un électrolyte spécifique
WO2018087473A1 (fr) Cellule electrochimique pour batterie lithium-ion comprenant une electrode positive specifique sur collecteur en aluminium et un electrolyte specifique
EP3297070B1 (fr) Batterie de type lithium comportant une electrode negative a duree de vie amelioree
EP3714499B1 (fr) Utilisation du nitrate de lithium en tant que seul sel de lithium dans une batterie au lithium gélifiée
EP2959530B1 (fr) Cellule électrochimique pour batterie lithium-ion comprenant une électrode négative à base de silicium et un électrolyte spécifique
WO2014064361A1 (fr) Électrode négative pour cellule électrochimique de stockage d'énergie, cellule électrochimique et batterie correspondantes et leur utilisation dans un véhicule électrique
EP2721683B1 (fr) Electrolyte liquide pour accumulateur au lithium, comprenant un mélange ternaire de solvants organiques non-aqueux
EP3535797B1 (fr) Électrolytes à base d'un additif spécifique du type liquide ionique pour batteries au lithium
EP4287229A1 (fr) Electrode de référence pour supercondensateur
FR3091623A1 (fr) Cellule electrochimique pour accumulateur au lithium comprenant une electrode negative specifique en lithium metallique et une electrode positive sur collecteur en aluminium
EP4310943A1 (fr) Electrode de reference a base de materiau organique de type n
WO2018172697A1 (fr) Nouveaux electrolytes a base de liquides ioniques utilisables pour des dispositifs de stockage electrochimique
WO2015067687A1 (fr) Cellule électrochimique comprenant deux électrolytes et accumulateur au lithium comprenant une telle cellule électrochimique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17800914

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17800914

Country of ref document: EP

Kind code of ref document: A1