EP3115607A1 - Double membrane pump - Google Patents
Double membrane pump Download PDFInfo
- Publication number
- EP3115607A1 EP3115607A1 EP15176316.6A EP15176316A EP3115607A1 EP 3115607 A1 EP3115607 A1 EP 3115607A1 EP 15176316 A EP15176316 A EP 15176316A EP 3115607 A1 EP3115607 A1 EP 3115607A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- drive means
- pumping chamber
- double
- membrane
- pump according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012528 membrane Substances 0.000 title claims description 102
- 238000005086 pumping Methods 0.000 claims abstract description 82
- 229940054107 isochron Drugs 0.000 claims 1
- MOYKHGMNXAOIAT-JGWLITMVSA-N isosorbide dinitrate Chemical compound [O-][N+](=O)O[C@H]1CO[C@@H]2[C@H](O[N+](=O)[O-])CO[C@@H]21 MOYKHGMNXAOIAT-JGWLITMVSA-N 0.000 claims 1
- 239000012530 fluid Substances 0.000 description 19
- 238000010586 diagram Methods 0.000 description 12
- 239000000463 material Substances 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000005096 rolling process Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000003973 paint Substances 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000010363 phase shift Effects 0.000 description 2
- 230000010349 pulsation Effects 0.000 description 2
- 230000001960 triggered effect Effects 0.000 description 2
- 241000779819 Syncarpia glomulifera Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- -1 gasolines Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000004922 lacquer Substances 0.000 description 1
- 239000011344 liquid material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000001739 pinus spp. Substances 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 239000010801 sewage sludge Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229940036248 turpentine Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/06—Pumps having fluid drive
- F04B43/073—Pumps having fluid drive the actuating fluid being controlled by at least one valve
- F04B43/0736—Pumps having fluid drive the actuating fluid being controlled by at least one valve with two or more pumping chambers in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/06—Pumps having fluid drive
- F04B43/067—Pumps having fluid drive the fluid being actuated directly by a piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/0009—Special features
- F04B43/0081—Special features systems, control, safety measures
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B43/00—Machines, pumps, or pumping installations having flexible working members
- F04B43/02—Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
- F04B43/06—Pumps having fluid drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/043—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms two or more plate-like pumping flexible members in parallel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/047—Pumps having electric drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B45/00—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids
- F04B45/04—Pumps or pumping installations having flexible working members and specially adapted for elastic fluids having plate-like flexible members, e.g. diaphragms
- F04B45/053—Pumps having fluid drive
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B49/00—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
- F04B49/22—Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B53/00—Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
- F04B53/14—Pistons, piston-rods or piston-rod connections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B9/00—Piston machines or pumps characterised by the driving or driven means to or from their working members
- F04B9/08—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
- F04B9/12—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air
- F04B9/129—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers
- F04B9/137—Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being elastic, e.g. steam or air having plural pumping chambers the pumping members not being mechanically connected to each other
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2201/00—Pump parameters
- F04B2201/02—Piston parameters
- F04B2201/0201—Position of the piston
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2205/00—Fluid parameters
- F04B2205/05—Pressure after the pump outlet
Definitions
- the invention relates to a double-membrane pump for conveying fluid, such as paint or paint.
- a double diaphragm known.
- a first and a second pumping chamber and a first and a second pressure chamber are provided, wherein the first pumping chamber and the first pressure chamber are separated by a first diaphragm and the second pumping chamber and the second pressure chamber by a second diaphragm.
- the two membranes are mechanically connected by means of a shaft.
- the shaft extends axially along an axis through the center of each of the membranes and is secured to the membranes by means of two plates, respectively.
- the two diaphragms move in unison when the pump is operating.
- the first pressure chamber is pressurized, the associated membrane is caused to compress the fluid in the associated first pumping chamber.
- the fluid is thus pushed out of the first pumping chamber.
- the membrane associated with the second pumping chamber is deflected, so that fluid is drawn into the second pumping chamber.
- the membranes are moved back and forth in unison (synchronous to each other), to alternately fill the pumping chamber and evacuate.
- the delivery pressure in the first pumping chamber drops significantly. Since the second membrane has also reached its dead center in this phase, the second pumping chamber is also not or not yet available for pushing out the fluid. This has the consequence that the delivery pressure is very low or zero until the shaft undergoes a reversal of motion and ensures that the second diaphragm builds a delivery pressure in the second pumping chamber. Considered over time, this behavior on the outlet side of the double-diaphragm pump leads to periodically recurring discharge pressure drops and thus to more or less severe delivery interruptions.
- This double diaphragm pump has another disadvantage.
- the delivery pressure depends on the material (rigidity) of the diaphragm and thus changes over the stroke. This results in the fluid being expelled at the beginning of the ejection phase at high pressure, among other things because the diaphragm is in the deflected position and is thus under tension. Subsequently, the ejection pressure decreases and towards the end of the stroke, not only the fluid, but also the membrane must be pressed into the end position. Only when the other membrane changes from the suction phase to the ejection phase, the fluid is ejected again at a high pressure. Over time considered, the feed pressure instead of a rectilinear an undesirable sawtooth-shaped course.
- An object of the invention is to provide a double diaphragm pump in which the abovementioned disadvantages are avoided or at least minimized.
- the double diaphragm pump according to the invention generates a delivery flow with an approximately constant delivery pressure.
- a pump which generates a delivery pressure which is not as constant as the double membrane pump according to the invention must be followed by a pulsation damper.
- a further advantage of the double membrane pump according to the invention is that it manages without such a pulsation damper.
- the double diaphragm pump according to the invention can also be used, for example, for a two-component spray system.
- the A component can be color and the B component hardener.
- the pump that pumps the A component is used as the master and the B component is added. This can be done by opening the material valve for the B-component at certain times for a certain period of time and bringing the B-component in the delivery hose to the A-component. However, this assumes that the B component is pumped at a higher pressure than the A component. Otherwise, the B component will not get into the delivery hose.
- the pumps for the A and B components have a sawtooth pressure curve, the metered addition of the B component is not possible until the pressure for the B component is higher than for the A component. In this case, you have to wait until the pressure for the B component is sufficiently high. As a result, the B component can not be added at any time.
- the double diaphragm pump according to the invention has a constant pressure curve, this disadvantage can be avoided with it.
- a first diaphragm which forms a wall of a first pumping chamber, wherein the first diaphragm can be moved by means of a first drive means.
- a second membrane is provided, which forms a wall of a second pumping chamber, wherein the second membrane is movable by means of a second drive means.
- a control is provided for the drive means, which is designed and operable to control the two drive means depending on one or more conditions.
- the first and the second drive means are preferably designed so that they can be operated independently of each other.
- the control for the drive means can thus control the first drive means independently of the second drive means.
- two drive means two drive means that do not affect each other.
- the condition is based on time, pressure, travel and / or position.
- control is designed and operable so that it already provides pressure build-up in the other pumping chamber before the membrane in one pumping chamber has reached its front dead center.
- front dead center of the membrane is meant here that in which the volume in the pump chamber belonging to this membrane is minimal.
- the controller is designed and operable such that, when the negative pressure in the one pumping chamber falls below a certain threshold value, it ensures a buildup of pressure in this pumping chamber.
- the controller is designed and operable such that it controls the two drive means offset in time from one another so that the two diaphragms move with a time offset from one another.
- the controller is designed and operable such that it controls the two drive means isochronously relative to one another.
- a first pressure chamber may be provided which is separated from the first pumping chamber by the first diaphragm.
- a second pressure chamber may be provided which is separated from the second pumping chamber by the second diaphragm.
- At least one of the drive means is a drive means which can be operated with compressed air.
- the drive means each have a piston which is movable in a cylinder or a diaphragm which can be moved by compressed air.
- the drive means each have a piston which is movable in a cylinder or a diaphragm which is movable in at least one direction with a resilient element.
- the drive means can each have at least one sensor for detecting the end position.
- the controller can also be designed and operable in this way, that it controls the two drive means depending on the signal from the sensor.
- the controller is designed and operable such that it brings about a reversal of the direction of the drive means when the sensor is actuated in the first drive means and the sensor in the second drive means.
- the first and the second pumping chambers each have a pumping chamber outlet, which open into a common pump outlet.
- the membranes are mechanically biased at least before the delivery phase.
- the pressure curve can be further optimized and fine-tuned.
- the controller has a differential valve which in one position connects a compressed-air source to the first drive means so that the drive means moves the first diaphragm so that a negative pressure is created in the first pumping chamber. In the other position, the differential valve connects the source of pressurized air to the second drive means such that it moves the second diaphragm to create a vacuum in the second pumping chamber.
- the inventive double diaphragm pump also has the advantage that it starts up easily, regardless of the position in which the pistons and the membranes are at the time of switch-on. Even if air is sucked in instead of material at the material inlet, the double-membrane pump according to the invention runs smoothly. This condition may occur, for example, during initial start-up when the pump is still empty or when the fluid reservoir is empty.
- the double-diaphragm pump can be designed so that an undesirable stoppage of the pump is reliably avoided.
- the double diaphragm pump can for this purpose the changeover valve with differential piston and a pilot valve, such as a flip-flop valve have.
- the differential valve in one position connects the compressed air source with the second drive means such that it moves the second diaphragm so that an overpressure is created in the second pumping chamber.
- the differential valve connects the source of pressurized air to the first drive means so as to move the first diaphragm to create an overpressure in the first pumping chamber.
- the controller has a flip-flop valve which is controllable with limit switches and which controls the differential valve.
- the control by means of the limit switches has the advantage that the end positions of the piston or the membranes can be detected in a simple and secure manner. Thus, if necessary, it can be ensured that the two membranes perform the entire stroke.
- the double diaphragm pump 1 comprises a housing 9, in which a first diaphragm pump and a second diaphragm pump are accommodated (see FIGS. 3 and 4 ).
- an operating unit with two pressure gauges 22, 23, two pressure adjusters 20, 21, a compressed air connection 4 and a stopcock 8 may be arranged.
- the control unit can the air pressure for supplying the double diaphragm pump and the delivery pressure of the double diaphragm pump are set and monitored.
- the compressed air for the supply of the first and the second diaphragm pump can be connected to the compressed air connection 4.
- the double diaphragm pump 1 without the control unit shown.
- a compressed air connection 7 which can be connected to the operating unit.
- a pump inlet 2 for the medium to be pumped On the side of the housing 9 are a pump inlet 2 for the medium to be pumped and a pump outlet 3 for the medium.
- various liquid materials such as paints, lacquers, acids, alkalis, stains, solvents, water, turpentine, adhesives, glues, sewage sludge, gasolines, oils, liquid chemicals, liquid media with solids, media with high viscosity, toxic media, liquid pigment dyes, ceramic casting, slip and glazes are promoted.
- FIG. 3 the first embodiment of the novel double membrane pump is shown in longitudinal section from the side along the section AA.
- FIG. 4 shows the first embodiment of the inventive double membrane pump in longitudinal section from above along the section BB.
- FIG. 5 shows the inventive double diaphragm pump in cross section along the section CC.
- the double diaphragm pump according to the invention comprises two individual diaphragm pumps, which by means of a correspondingly designed control 30 (see FIG FIGS. 6 . 7 and 8th ) can be controlled.
- the first diaphragm pump is in the FIGS. 3 and 4 shown on the left. It comprises a membrane 10, which is preferably round and which is attached at its outer end between two walls 18 and 17.1.
- the membrane 10 forms a flexible partition wall between the walls 18 and 17.1.
- the membrane 10 forms together with the wall 18, a first chamber, which is referred to below as a compressed air chamber or in short as a pressure chamber 14.
- the membrane 10 forms with the wall 17. 1 a second chamber, which is referred to below as the conveying or pumping chamber 13.
- the membrane 10 is moved by means of a drive means 15 back and forth.
- the drive means 15 comprises a cylinder 11 with two cylinder chambers 11.1 and 11.2.
- the drive means 15 may also include the compressed air chamber 14.
- the piston rod 12.1 may be connected at its one end by means of a screw to the piston 12. Instead, the end of the piston rod 12.1 may also be provided with an external thread and secured with a nut on the piston 12. At its other end, the piston rod 12.1 protrudes through the wall 18 and is connected to the membrane 10, for example by means of a positive connection.
- the piston rod 12.1 can be encapsulated with the membrane 10.
- the piston rod 12.1 has a groove 12.2. Together with valve bodies, it forms two valves 35 and 36. These are preferably used as limit switches. But the piston rod 12.1 can also be designed so that with it two valves 35, 36 can be actuated.
- the two valves 35 and 36 each have a control input and can each have two switching states A or B. taking.
- the idle state that is, when no signal is applied to the control inputs of the valves 35 and 36
- the valves 35 and 36 are in the switching state B (see also FIG. 6 ). If the piston 12 and thus also the piston rod 12.1 on the far left are located, the valve 35 is in the switching state A and the valve 36 is in the switching state B. If the piston 12 and the piston rod 12.1 are far enough to the right, the valve 35 is in the switching state B and the valve 36 in the switching state A.
- the second diaphragm pump is constructed mirror-symmetrically to the first diaphragm pump. This is advantageous, but not mandatory.
- the second diaphragm pump is in the FIGS. 3 and 4 shown on the right. It comprises a membrane 110, which is preferably round and which is fastened at its outer end between two walls 17.2 and 19.
- the membrane 110 forms a flexible partition wall between the walls 17.2 and 19.
- a first chamber which is hereinafter referred to as a compressed air chamber or in short as a pressure chamber 114.
- the membrane 110 with the wall 17.2 forms a second chamber, which is referred to below as the pumping or delivery chamber 113.
- the membrane 110 is reciprocated by a drive means 115.
- the drive means 115 comprises a cylinder 111 with two cylinder chambers 111.1 and 111.2.
- the drive means 115 may also include the compressed air chamber 114.
- a movably mounted piston 112 which is connected to the membrane 110 via a piston rod 112.1.
- the piston rod 112.1 may be connected at its one end by means of a screw to the piston 112. Instead, the end of the piston rod 112.1 can also be provided with an external thread and fixed by means of a nut on the piston 12. At its other end, the piston rod 112.1 protrudes through the wall 18 and is connected to the membrane 110.
- the piston rod 112.1 has a groove 112.2, which may be formed as an annular groove. Together with the associated valve bodies, it forms two valves 37 and 38. The valves 37 and 38 serve as limit switches.
- the two valves 37 and 38 can each occupy two switching states A or B. Are the piston 112 and thus also the piston rod 112.1 far left, the valve 37 is in the switching state A and the valve 38 in the switching state B. If the piston 112 and the piston rod 112.1 far enough right, the valve 37 is in the switching state B and the valve 38 in the switching state A (see also FIGS. 6 . 7 and 8th ).
- the double membrane pump 1 Basically, there is no mechanical coupling between the first and the second diaphragm pump.
- the first and second diaphragm pumps are driven by compressed air and controlled accordingly.
- an advantage of the double diaphragm pump according to the invention is that the two diaphragms 10 and 110 of the double diaphragm pump 1 can be arranged independently of one another.
- the membranes 10 and 110 may face each other as shown in the figures (left, right).
- the two membranes 10, 110 can also be arranged one above the other (top and bottom), side by side or even offset from one another.
- the pump inlet 2 is connected both to the inlet of the delivery chamber 13 and to the inlet of the delivery chamber 113.
- check valves 5 and 105 are provided.
- the outlets 13.3 and 113.3 of the delivery chambers 13 and 113 are connected to each other and open into the pump outlet 3 on the housing 9.
- check valves 6 and 106 are provided.
- a main valve 32 In the first embodiment is spatially seen between the two diaphragm pumps, a main valve 32.
- the main valve 32 may of course also be located in a different location.
- the main valve 32 has two control inputs 32.1 and 32.2 and two switching states or positions A and B (for the mechanical structure see Figures 3 and 5 and for the functionality see FIGS. 6 . 7 and 8th ).
- it In the present embodiment, it is designed as a differential valve. But this is not absolutely necessary.
- flip-flop valve 31 with four switching states or positions A, B, C and D (see also Figures 3 and 6 ).
- the flip-flop valve 31 may also be located at another location. The operation of the flip-flop valve 31 will be explained later.
- FIGS. 6 to 8 How the first diaphragm pump, the second diaphragm pump and the valves 31 - 37 can be connected to each other, is from the FIGS. 6 to 8 refer to.
- the controller 30 controls the two drive means 15 and 115. Basically, it is configured and operable to control the two drive means 15 and 115 depending on one or more conditions.
- a condition may be, for example, a certain period of time, reaching a certain position or reaching a certain pressure.
- controller 30 In the following, several embodiments of the controller 30 will be described.
- the position in which the membrane 10 is located when the double-diaphragm pump 1 is turned off is referred to below as the idle state of the membrane 10.
- the functioning of the Double diaphragm pump 1 to be able to explain better it is assumed below that the diaphragm 10 is at rest at its left dead center and the diaphragm 110 at its left dead center.
- the membrane 10 is at its left dead center when it is in its extreme left deflection, which is referred to as the rear end position of the membrane 10.
- the membrane 10 is located at time t0, the membrane 10 in the left dead center.
- the membrane 10 is at its right dead center when it is in its extreme right deflection, which is referred to as the front end position of the membrane 10.
- the diaphragm 110 is thus at its left dead center when it is in its outermost left-hand deflection, which is referred to as the front end position of the diaphragm 110.
- the diaphragm 110 is at its right dead center when in its outermost right-hand turn, which is referred to as the rear end position of the diaphragm 110.
- FIG. 9 is located at time t0, the membrane 110 in the left dead center.
- the double diaphragm pump 1 starts operating when the pistons 12 and 112 begin to move the two diaphragms 10 and 110.
- the pressure p13 ramps up in the pumping chamber 13 until it has reached the maximum pressure pmax (in the present example about 2.2 bar) at time t1 and then remains constant until time t5 (ie for a duration of about 0.8 s). During this time, the piston 12 pushes the membrane 10 to the right until it has reached its right dead center. From then on, the pressure p13 in the pumping chamber 13 drops rapidly until it has dropped to zero at time t8.
- the process taking place between the two times t0 and t8 is referred to as the pumping or delivery phase F13 of the left-hand part of the double-diaphragm pump 1. In this phase, the fluid located in the pumping chamber 13 is pushed out of the pumping chamber. The left part of the double diaphragm pump 1 (left diaphragm pump) thus promotes fluid during this time.
- the pressure p13 drops in the pumping chamber 13 in a ramp shape until it reaches and remains at time t9 the maximum negative pressure pmin (in the present example about -0.5 bar based on the normal pressure of 1 bar, which is shown in the diagram as a zero line) then until time t10 (ie for a duration of about 0.3 s) constant.
- the piston 12 pulls the membrane 10 to the left until it has reached its left dead center at time t10. From this point on no further fluid is sucked into the pumping chamber 13.
- the check valve 5 in the suction line closes. From then on, the negative pressure in the pumping chamber 13 decreases again, reaches zero again at time t11 and then remains at zero until time t13.
- the one between the two times t8 and t13 is referred to as suction phase S13.
- the intake phase S13 is followed by a further delivery phase F13 and a further intake phase S13. Delivery phase F13 and intake phase S13 alternate and together form a cycle.
- the pressure p113 drops in the pumping chamber 113 in a ramp shape until it reaches the maximum negative pressure pmin (in the present example around -0.5 bar) at time t2 and then remains until time t3 (ie for a duration of about 0.3 s ) constant.
- the piston 112 pulls the diaphragm 110 to the right until it has reached its right dead center at time t3. From this point on no further fluid is sucked into the pumping chamber 113.
- the check valve 105 in the suction line closes. From there, the negative pressure in the pumping chamber 113 decreases again, reaches the value zero again at the time t4 and then remains at zero until the time t6.
- the process taking place between the two times t0 and t6 is referred to as suction phase S113.
- the right-hand part of the double diaphragm pump 1 (right diaphragm pump) therefore sucks in fluid during this time.
- the pressure p113 ramps up in pumping chamber 113 until at time t7 it reaches the maximum pressure pmax (in the present example about 2.2 bar) and then remains constant until time t12 (ie for a duration of about 0.8 s).
- the piston 112 pushes the diaphragm 110 to the left until it reaches its left dead center. From then on, the pressure p113 in the pumping chamber 113 drops rapidly.
- the process taking place between the two times t6 and t15 is referred to as the pumping or delivery phase F113 of the right-hand part of the double-diaphragm pump 1.
- the fluid located in the pumping chamber 113 is pushed out of the pumping chamber 113.
- the right part of the double diaphragm pump 1 thus promotes fluid during this time.
- the delivery phase F113 is followed by a further intake phase S113 and a further delivery phase F113.
- Ejection phase F113 and suction phase S113 alternate, form a cycle together and return periodically.
- the delivery phase F13 of the right-hand part of the double-membrane pump is connected to the delivery phase F13 of the left-hand part of the double-membrane pump, followed again by a delivery phase F13 of the left-hand part of the double-membrane pump, etc.
- This is the way of change the delivery phases F13 and F113 of the left and right part of the double diaphragm pump and produce so after a short start-up phase, a continuous, uninterrupted fluid flow with constant delivery pressure p1.
- the controller 30 is formed in the present embodiment so that it outputs compressed air signals at certain times. Basically, but no Compressed air signals, but may also be hydraulic or electrical signals, so any suitable form of commands. Therefore is spoken in following of commands.
- the nozzle used in the spray gun usually specifies the speed or frequency with which the pump operates. If the pump is operated with a single spray gun, it operates at a different frequency than when it supplies two spray guns. Thus, different cycle times may result depending on the operating conditions.
- the working frequency of the double diaphragm pump remains constant when the external operating conditions remain unchanged.
- the controller 30 may also be configured to issue a command or commands when the piston 12 or 112 or the diaphragm 10 or 110 or otherwise movable component has reached a certain position or traveled a certain way.
- the condition when a particular instruction is issued is thus related to the position of a particular component or to the way a particular component has traveled.
- the command "Start the delivery phase F113" is output when the piston 12 has reached the position x. In the diagram in FIG. 9, this would correspond to the time t6. Instead, the command "Start the delivery phase F113" could be issued even when the piston 12 has reached the position x-1 (see t6 FIG. 11 ).
- the command could also be "Build in the delivery chamber 13 a pre-pressure" and issued when the piston 112 has reached the position z.
- the position z corresponds to the diagram in FIG. 10 the time t3.
- the controller may also be configured to issue a command or commands when the pressure p13 in the pumping chamber 13, the pressure p113 in the pumping chamber 113, or the air pressure in one of the cylinders 11, 111, respectively, has reached a certain threshold.
- the condition when a particular command is issued is thus related to the pressure at a particular location. For example, it may be provided that the command "Build in the delivery chamber 13 a form pv on" is issued when the negative pressure p113 has decreased in the pumping chamber 113 by one or to a certain value. In the diagram in FIG. 10 this would be one Match time between the times t3 and t4.
- the pressure acting on the pumping chamber is substantially as great as the pressure acting on the pressure chamber.
- the controller 30 includes the flip-flop valve 31 with the four switching states or positions A, B, C and D.
- the switching states A and D are those switching states that remain even after removal of the control signal.
- the last taken switching state, ie either A or D, is therefore stored.
- the switching states B and C of the flip-flop valve 31 are transition positions.
- the flip-flop valve 31 when the control input 31.2 of the flip-flop valve 31 is acted upon with compressed air, the flip-flop valve 31 first changes for a certain period of time in the transition position B, then for a certain period of time in the transition position C and then persists in the Position D.
- the flip-flop valve 31 is in the position A, as in FIG. 6 are shown, the terminals 1 and 2 with each other connected, so that air can get from port 1 to port 2. In addition, in the position A, the terminals 5 and 7 are connected to each other. If the flip-flop valve 31 is in the position B (not shown in the figures), the terminals 1 and 2 are connected to each other. The terminals 5 and 7 are not connected to each other in position B, however. If the flip-flop valve 31 is in the position C (not shown in the figures), only the terminals 1 and 3 are connected to each other. When the flip-flop valve 31 is in the D position (not shown in the figures), the terminals 1 and 3 are connected to each other.
- the terminals 4 and 6 are connected to each other.
- the flip-flop valve 31 In which of the positions A to D the flip-flop valve 31 is located depends on whether the control port 31.1 or the control port 31.2 is pressurized with compressed air. It may well be that the flip-flop valve 31 is in the position A, B, C or D only for a very short time.
- the controller 30 also includes a main valve 32 with two control inputs 32.1 and 32.2 and two switching states or positions A and B.
- the valve 32 assumes the switching state A. In the switching state A, the terminals 1 and 3 are connected together. In addition, in the switching state A, the terminals 2 and 4 are connected together.
- the control input 32.2 is pressurized with compressed air
- the valve 32 assumes the switching state B. In switching state B, the connections 1 and 4 are connected to each other (see also FIG. 5 ). In addition, in the switching state B, the terminals 2 and 3 are connected together.
- a pressure relief valve 33 is provided, which is connected on the one hand to a compressed air source 50 and on the other hand to the main valve 32.
- the pressure relief valve 33 may also be designed as an adjustable pressure relief valve.
- the controller 30 includes four valves 35, 36, 37 and 38.
- the valve 35 is coupled to the drive 15 and can assume two switching states A or B.
- the valve 35 is in the switching state A.
- the valve ports are connected to each other.
- the valve 35 is in the switching state B.
- the valve ports are not connected to each other.
- the valve 36 is in the position A when the piston 12 is on the far right, otherwise it is in the switching state B.
- the valve 37 may be identical to the valve 35 and is coupled to the drive 115.
- the valve 37 is in the switching state A. In this state, the valve ports are connected to each other. Is the diaphragm 110 or the drive piston 112 in the rear end position, or as in the FIG. 6 shown, between the front and the rear end position, the valve 37 is in the switching state B. In this state, the valve terminals are not connected to each other.
- the valve 38 is in the position A when the piston 112 is on the far right, otherwise it is in the switching state B.
- the control port 32.2 of the main valve 32 is not pressurized with air, but is connected to the atmosphere. This causes the main valve 32 to be in the switching state A.
- the reason for this is that the control port 32.1 of the main valve designed as a differential valve is in principle supplied with compressed air.
- switching state A the compressed air coming from the compressed air source 50 compressed air is forced into the compressed air chamber 114 and into the right piston chamber 11.2 of the cylinder 11.
- the piston 12 is pushed to the left and pulls the membrane 10 also to the left toward the rear end position.
- the volume in the delivery chamber 13 is increased, the left diaphragm pump is in the intake phase.
- the pressurized air in the pressurized air chamber 114 causes the diaphragm 110 to be urged leftward toward the forward end position.
- the volume in the delivery chamber 113 is reduced, the right diaphragm pump is in the delivery phase.
- the terminal 3 of the flip-flop valve 31 is closed, so that the compressed air is not forwarded from there.
- the connections are closed, so that the compressed air is not forwarded from there instantly.
- the terminal 5 of the flip-flop valve 31 is connected to the terminal 7 open to the atmosphere, any pilot air applied to the control terminal 31.2 may be sent to the outside of the atmosphere.
- the control connection 31.2 is relieved and is thus pressure-free.
- the connection 4 of the flip-flop valve 31 is closed, as is the connection of the valve 35. As a result, the compressed air applied to the control port 31.1 compressed air can not escape, the air pressure at the control port 31.1 is maintained.
- the flip-flop valve 31 changes for a certain time in the position B.
- the control port 32.2 of the main valve 32 remains pressure-free, because it is not supplied via the flip-flop valve 31 with compressed air. This leaves the main valve 32 in the previous position.
- the terminals 3 and 4 of the flip-flop valve 31 remain closed.
- the connection 5 of the flip-flop valve 31, however, is now closed. This has the effect that the control air at the control connection 31.2 can no longer escape into the atmosphere.
- the flip-flop valve 31 changes after a certain time from the position B to the position C.
- the control terminal 32.2 of the main valve 32 is now pressurized with compressed air.
- the main valve 32 changes from the position A to the position B. This causes the compressed air in the left piston chamber 111.1 of the cylinder 111 and enters the compressed air chamber 14. As a result, the piston 112 is pushed to the right, which in turn pulls the membrane 110 to the right in the direction of the rear end position.
- the right diaphragm pump is now in the intake phase.
- the pressure in the compressed air chamber 14 causes the membrane 10 is pushed to the right towards the front end position.
- the left diaphragm pump is now in the delivery phase.
- the flip-flop valve 31 changes to the switching state D. While the piston rod 112.1 moves to the right, the valve 37 is closed, the valve 38 remains closed for the time being. When the piston rod 112.1 has moved far enough to the right, the valve 38 is brought from position B to the position A by the annular groove 112.2 on the piston rod 112.1.
- the cylinder chamber 11.1 is not connected to the atmosphere, but is acted upon at certain times for a certain period of time with compressed air. This ensures that the pressure acting on the pumping chamber 13 is greater than the pressure acting on the pressure chamber 14.
- the cylinder chamber 111.2 is not connected to the atmosphere, but is acted upon at certain times for a certain period of time with compressed air.
- the cylinder chambers 11.1 and 111.2 can be acted upon with compressed air, it makes sense to seal this accordingly.
- the in the FIGS. 3 and 4 shown embodiment of the cylinder chambers would therefore still to supplement seals.
- seals O-rings can be used, which are placed between the cylinder wall and the housing 9.
- FIG. 8 shown embodiment of the inventive double diaphragm pump is as in the embodiment according to FIG. 7 a version with a pressure ratio> 1: 1.
- the third embodiment in the controller 30 although also a flip-flop valve is used, but this has only two switching states A and B. In the idle state, that is, when no control signals to the control inputs 39.1 and 39.2 of the flip-flop valve 39, it is in the switching state A.
- the main valve 32 is in the state A and directs the compressed air coming from the compressed air source 50 into the cylinder chamber 11.2, the pressure chamber 114 and into the cylinder chamber 111.2.
- the piston 12 is pressed to the left. This pulls on the piston rod 12.1, the membrane 10 also to the left, so that in the pumping chamber 13, a negative pressure.
- the left diaphragm pump is now in the suction phase.
- the piston 112 is pushed to the left. This presses on the piston rod 112.1, the membrane 110 also to the left, so that in the pumping chamber 13, an overpressure arises. This is supported by the with Compressed air pressure chamber 114.
- the right diaphragm pump is now in the pumping phase.
- the valve 35 is brought from state B to state A through the groove 12.2 in the piston rod 12.1.
- the valve 37 is also brought from the state B into the state A through the groove 112. 2 in the piston rod 112. 1.
- compressed air flows to the control input 39.1 of the flip-flop valve 39 and causes it to change from the state A to the state B.
- the flip-flop valve 39 now directs the compressed air to the control input 32.2 of the main valve 32, so that this also changes from the state A to the state B.
- the compressed air passes through the main valve 32 from the compressed air source 50 into the cylinder chamber 11.1, the pressure chamber 14 and into the cylinder chamber 111.1.
- the piston 12 is pushed to the right. This presses on the piston rod 12.1, the diaphragm 10 also to the right, so that in the pumping chamber 13, an overpressure is created.
- the left diaphragm pump is now in the pumping phase. This is supported by the pressure chamber 14 pressurized with compressed air.
- the piston 112 is also pressed to the right. This pulls on the piston rod 112.1, the membrane 110 also to the right, so that in the pumping chamber 13, a negative pressure.
- the right diaphragm pump is now in the suction phase.
- the two control inputs 39.1 and 39.2 of the flip-flop valve 39 are also connected via a respective throttle 40 or 41 to the atmosphere, so that the control inputs 39.1 and 39.2 can be vented when no control command comes from the valves 35 and 38.
- the condition for triggering a particular command may be related to time while the condition for triggering another command is related to the position of a particular device.
- the condition for triggering another command may be related to the pressure at a particular location.
- the condition triggering a command can be any physical property, such as time, location, pressure, etc. Any number of conditions can be linked together. For example, a command can not be triggered until two conditions have been met (AND operation). A command can also be triggered if one of two conditions is met (OR operation). It is also possible for a command to be issued permanently and until another command is present for the command to be withdrawn.
- Isochronous control of the first and the second diaphragm pump is advantageous, but not absolutely necessary.
- Isochronous means here that the signals are in a constant phase relation to each other.
- the control signals generated by the valves 35 and 37 be isochronous to each other.
- the control signals generated by the valves 36 and 38 may be isochronous to each other.
- Their phase shift is preferably between 170 ° and 190 °.
- the pressure curves p1 and p2 can also be isochronous. Both pressure curves p1 and p2 have the same characteristics and the same cycle time, but are more or less shifted in time relative to each other.
- Their phase shift is also preferably between 170 ° and 190 °.
- the cylinders 11 and 111 may each also have a membrane.
- the membrane may also be in the form of a rolling membrane. These arranged in the cylinders membranes can be moved with compressed air and / or with a resilient element become.
- the resilient element may for example be a compression spring.
- a rolling diaphragm is a flexible seal that allows a relatively long piston stroke. It often has the shape of a truncated cone or a cylinder and is rotated in itself. The rolling diaphragm can be clamped circumferentially. During the stroke, it rolls alternately on the piston and on the cylinder wall. The rolling motion is smooth and frictionless. There is no sliding friction, no breakaway friction and no pressure loss.
- pistons 12 and 112 or the diaphragms arranged in the cylinders are to be moved by way of a compression spring, this is preferably done in the suction phase of the respective diaphragm pump.
- the compression springs are then advantageously in the cylinder chambers 11.2 and 111.2.
- the drive means 15 and 115 each have at least one sensor.
- the sensor is used to detect the position of the drive piston 12 or the piston rod 12.1 or the drive piston 112 or the piston rod 112.1.
- the limit switch As a sensor, for example, serve a limit switch. With the limit switch, the end position (dead center) of the drive means 15 can be detected.
- the drive means 15 can also have a limit switch for detecting the left end position and a further limit switch for detecting the right end position (not shown in the figures). The same can be done for that Drive means 115 apply.
- the limit switches are designed as valves 35 to 38. They may instead be electrical or mechanical switches. The controller is then adapted to these switches.
- a pressure transmission ratio of, for example, 3: 1 can also be achieved. This means that 6 bar air pressure then corresponds to 18 bar fluid pressure.
- the membranes 10 and 110 are reciprocated. It can happen that the membranes fold over, but this is usually undesirable because this process can damage the membrane.
- the following structure may be provided.
- the pressure chamber 14 in the membrane 10 and the pressure chamber 114 in the membrane 110 are not connected to the main valve 32, but with a vacuum generator. This creates such a strong vacuum in the two pressure chambers 14 and 114 that the membranes 10 and 110 do not fold over, but essentially retain their shape.
- the membranes 10 and 110 may be mechanically biased before the delivery phase. As a result, the membrane generates a certain pressure in the delivery chamber right at the beginning of the delivery phase, and for approximately as long as, inter alia, the air pressure in the pressure chamber has built up. This can be used to compensate for the inertia of the system and fine-tune it.
- the membranes should not be too tightly biased, as this may otherwise lead to a sawtooth pressure curve.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Reciprocating Pumps (AREA)
Abstract
Bei der erfindungsgemässen Doppelmembranpumpe ist eine erste Membran (10) vorgesehen, die eine Wand einer ersten Pumpkammer (13) bildet, wobei die erste Membran (10) mittels eines ersten mechanischen Antriebsmittels (12) bewegbar ist. Zudem ist eine zweite Membran (110) vorgesehen, die eine Wand einer zweiten Pumpkammer (113) bildet, wobei die zweite Membran (110) mittels eines zweiten mechanischen Antriebsmittels (112) bewegbar ist. Darüber hinaus ist eine Steuerung für die Antriebsmittel (12, 112) vorgesehen, die derart ausgebildet und betreibbar ist, dass sie die beiden Antriebsmittel (12, 112) abhängig von einer oder mehrerer Bedingungen steuert.In the double diaphragm pump according to the invention, a first diaphragm (10) is provided which forms a wall of a first pumping chamber (13), wherein the first diaphragm (10) is movable by means of a first mechanical drive means (12). In addition, a second diaphragm (110) is provided, which forms a wall of a second pumping chamber (113), wherein the second diaphragm (110) is movable by means of a second mechanical drive means (112). In addition, a controller for the drive means (12, 112) is provided, which is designed and operable to control the two drive means (12, 112) depending on one or more conditions.
Description
Die Erfindung betrifft eine Doppelmembranpumpe zum Fördern von Fluid, wie beispielsweise Farbe oder Lack.The invention relates to a double-membrane pump for conveying fluid, such as paint or paint.
Aus der Druckschrift
Diese so ausgebildete Doppelmembranpumpe hat jedoch mehrere Nachteile, die im Folgenden erläutert werden.However, this double diaphragm pump thus formed has several disadvantages, which will be explained below.
Zu dem Zeitpunkt, zu dem die erste Membran das Ende ihres Arbeitshubs (Totpunkt) erreicht hat, sinkt der Förderdruck in der ersten Pumpkammer erheblich. Da die zweite Membran in dieser Phase ebenfalls ihren Totpunkt erreicht hat, steht die zweite Pumpkammer ebenfalls nicht oder noch nicht für das Herausdrücken des Fluids zur Verfügung. Dies hat zur Folge, dass der Förderdruck solange sehr niedrig oder gar Null ist, bis die Welle eine Bewegungsumkehr erfährt und dafür sorgt, dass die zweite Membran einen Förderdruck in der zweiten Pumpkammer aufbaut. Über die Zeit betrachtet, führt dieses Verhalten auf der Auslassseite der Doppelmembranpumpe zu periodisch wiederkehrenden Förderdruckabfällen und damit zu mehr oder weniger starken Förderunterbrüchen.By the time the first diaphragm reaches the end of its working stroke (dead center), the delivery pressure in the first pumping chamber drops significantly. Since the second membrane has also reached its dead center in this phase, the second pumping chamber is also not or not yet available for pushing out the fluid. This has the consequence that the delivery pressure is very low or zero until the shaft undergoes a reversal of motion and ensures that the second diaphragm builds a delivery pressure in the second pumping chamber. Considered over time, this behavior on the outlet side of the double-diaphragm pump leads to periodically recurring discharge pressure drops and thus to more or less severe delivery interruptions.
Diese Doppelmembranpumpe hat einen weiteren Nachteil. Der Förderdruck ist vom Material (Steifigkeit) der Membran abhängig und verändert sich damit über den Hub. Das führt dazu, dass das Fluid zu Beginn der Ausstossphase mit starkem Druck ausgestossen wird, unter anderem deshalb, weil die Membran sich in der ausgelenkten Stellung befindet und damit unter Spannung steht. Anschliessend nimmt der Ausstossdruck ab und gegen Ende des Hubs muss nicht nur das Fluid, sondern auch die Membran in die Endposition gedrückt werden. Erst wenn die andere Membran von der Saugphase in die Ausstossphase wechselt, wird das Fluid wieder mit einem hohen Druck ausgestossen. Über die Zeit betrachtet, weist der Förderdruck statt eines geradlinigen einen unerwünschten sägezahnförmigen Verlauf auf.This double diaphragm pump has another disadvantage. The delivery pressure depends on the material (rigidity) of the diaphragm and thus changes over the stroke. This results in the fluid being expelled at the beginning of the ejection phase at high pressure, among other things because the diaphragm is in the deflected position and is thus under tension. Subsequently, the ejection pressure decreases and towards the end of the stroke, not only the fluid, but also the membrane must be pressed into the end position. Only when the other membrane changes from the suction phase to the ejection phase, the fluid is ejected again at a high pressure. Over time considered, the feed pressure instead of a rectilinear an undesirable sawtooth-shaped course.
Eine Aufgabe der Erfindung ist es eine Doppelmembranpumpe anzugeben, bei der die oben genannten Nachteile vermieden oder zumindest minimiert werden.An object of the invention is to provide a double diaphragm pump in which the abovementioned disadvantages are avoided or at least minimized.
Vorteilhafter Weise erzeugt die erfindungsgemässe Doppelmembranpumpe einen Förderstrom mit einem annähernd konstantem Förderdruck.Advantageously, the double diaphragm pump according to the invention generates a delivery flow with an approximately constant delivery pressure.
In der Regel muss einer Pumpe, die einen nicht so konstanten Förderdruck wie die erfindungsgemässe Doppelmembranpumpe erzeugt, ein Pulsationsdämpfer nachgeschaltet werden. Ein weiterer Vorteil der erfindungsgemässen Doppelmembranpumpe ist, dass sie ohne einen solchen Pulsationsdämpfer auskommt.As a rule, a pump which generates a delivery pressure which is not as constant as the double membrane pump according to the invention must be followed by a pulsation damper. A further advantage of the double membrane pump according to the invention is that it manages without such a pulsation damper.
Die erfindungsgemässe Doppelmembranpumpe kann zum Beispiel auch für eine Zwei-Komponenten-Spritzanlage benutzt werden. Die A-Komponente kann Farbe und die B-Komponente Härter sein. Bei einer solchen Zwei-Komponenten-Spritzanlage wird häufig jene Pumpe, die die A-Komponente fördert, als Master benutzt und die B-Komponente wird hinzudosiert. Dies kann dadurch geschehen, dass zu bestimmten Zeitpunkten für eine bestimmte Zeitdauer das Materialventil für die B-Komponente geöffnet wird und die B-Komponente im Förderschlauch zur A-Komponente hinzugelangt. Das setzt allerdings voraus, dass die B-Komponente mit höherem Druck als die A-Komponente gefördert wird. Andernfalls gelangt die B-Komponente nicht in den Förderschlauch. Wenn die Pumpen für die A- und die B-Komponente einen sägezahnförmigen Druckverlauf aufweisen, ist das Hinzudosieren der B-Komponente solange nicht möglich, bis der Druck für die B-Komponente höher als für die A-Komponente ist. In diesem Fall muss erst gewartet werden, bis der Druck für die B-Komponente ausreichend gross ist. Dies hat zur Folge, dass die B-Komponente nicht jederzeit hinzudosiert werden kann. Weil die erfindungsgemässe Doppelmembranpumpe aber einen konstanten Druckverlauf aufweist, kann mit ihr dieser Nachteil vermieden werden.The double diaphragm pump according to the invention can also be used, for example, for a two-component spray system. The A component can be color and the B component hardener. In such a two-component spray system, often the pump that pumps the A component is used as the master and the B component is added. This can be done by opening the material valve for the B-component at certain times for a certain period of time and bringing the B-component in the delivery hose to the A-component. However, this assumes that the B component is pumped at a higher pressure than the A component. Otherwise, the B component will not get into the delivery hose. If the pumps for the A and B components have a sawtooth pressure curve, the metered addition of the B component is not possible until the pressure for the B component is higher than for the A component. In this case, you have to wait until the pressure for the B component is sufficiently high. As a result, the B component can not be added at any time. However, because the double diaphragm pump according to the invention has a constant pressure curve, this disadvantage can be avoided with it.
Die Aufgabe wird durch eine Doppelmembranpumpe mit den in Patentanspruch 1 angegebenen Merkmalen gelöst.The object is achieved by a double diaphragm pump having the features specified in
Bei der erfindungsgemässen Doppelmembranpumpe ist eine erste Membran vorgesehen, die eine Wand einer ersten Pumpkammer bildet, wobei die erste Membran mittels eines ersten Antriebsmittels bewegbar ist. Zudem ist eine zweite Membran vorgesehen, die eine Wand einer zweiten Pumpkammer bildet, wobei die zweite Membran mittels eines zweiten Antriebsmittels bewegbar ist. Darüber hinaus ist eine Steuerung für die Antriebsmittel vorgesehen, die derart ausgebildet und betreibbar ist, dass sie die beiden Antriebsmittel abhängig von einer oder mehreren Bedingungen steuert.In the double diaphragm pump according to the invention, a first diaphragm is provided, which forms a wall of a first pumping chamber, wherein the first diaphragm can be moved by means of a first drive means. In addition, a second membrane is provided, which forms a wall of a second pumping chamber, wherein the second membrane is movable by means of a second drive means. In addition, a control is provided for the drive means, which is designed and operable to control the two drive means depending on one or more conditions.
Das erste und das zweite Antriebsmittel sind vorzugsweise so ausgebildet, dass sie unabhängig voneinander betreibbar sind. Die Steuerung für die Antriebsmittel kann damit das erste Antriebsmittel unabhängig vom zweiten Antriebsmittel steuern. Somit sind aus Sicht der Steuerung die beiden Antriebsmittel zwei Antriebsmittel, die sich gegenseitig nicht beeinflussen.The first and the second drive means are preferably designed so that they can be operated independently of each other. The control for the drive means can thus control the first drive means independently of the second drive means. Thus, from the perspective of the controller two drive means two drive means that do not affect each other.
Vorteilhafte Weiterbildungen der Erfindung ergeben sich aus den in den abhängigen Patentansprüchen angegebenen Merkmalen.Advantageous developments of the invention will become apparent from the features indicated in the dependent claims.
Bei einer Ausführungsform der erfindungsgemässen Doppelmembranpumpe ist die Bedingung auf die Zeit, den Druck, den Weg und/oder die Position bezogen.In one embodiment of the double diaphragm pump according to the invention, the condition is based on time, pressure, travel and / or position.
Bei einer weiteren Ausführungsform der erfindungsgemässen Doppelmembranpumpe ist die Steuerung derart ausgebildet und betreibbar, dass sie noch bevor die Membran in der einen Pumpkammer ihren vorderen Totpunkt erreicht hat, bereits für einen Druckaufbau in der anderen Pumpkammer sorgt. Als der vordere Totpunkt der Membran ist hier derjenige gemeint, bei dem das Volumen in der zu dieser Membran gehörigen Pumpkammer minimal ist.In a further embodiment of the double-diaphragm pump according to the invention, the control is designed and operable so that it already provides pressure build-up in the other pumping chamber before the membrane in one pumping chamber has reached its front dead center. As the front dead center of the membrane is meant here that in which the volume in the pump chamber belonging to this membrane is minimal.
Bei einer anderen Ausführungsform der erfindungsgemässen Doppelmembranpumpe ist die Steuerung derart ausgebildet und betreibbar, dass sie, wenn der Unterdruck in der einen Pumpkammer unter einen bestimmten Schwellwert fällt, für einen Druckaufbau in dieser Pumpkammer sorgt.In another embodiment of the double membrane pump according to the invention, the controller is designed and operable such that, when the negative pressure in the one pumping chamber falls below a certain threshold value, it ensures a buildup of pressure in this pumping chamber.
Bei einer Weiterbildung der erfindungsgemässen Doppelmembranpumpe ist die Steuerung derart ausgebildet und betreibbar, dass sie die beiden Antriebsmittel zueinander zeitlich versetzt steuert, so dass sich die beiden Membranen zueinander zeitlich versetzt bewegen.In a further development of the double-diaphragm pump according to the invention, the controller is designed and operable such that it controls the two drive means offset in time from one another so that the two diaphragms move with a time offset from one another.
Bei einer anderen Weiterbildung der erfindungsgemässen Doppelmembranpumpe ist die Steuerung derart ausgebildet und betreibbar, dass sie die beiden Antriebsmittel zueinander isochron steuert.In another development of the double-diaphragm pump according to the invention, the controller is designed and operable such that it controls the two drive means isochronously relative to one another.
Bei der erfindungsgemässen Doppelmembranpumpe kann eine erste Druckkammer vorgesehen sein, die durch die erste Membran von der ersten Pumpkammer getrennt ist. Darüber hinaus kann eine zweite Druckkammer vorgesehen sein, die durch die zweite Membran von der zweiten Pumpkammer getrennt.In the case of the double diaphragm pump according to the invention, a first pressure chamber may be provided which is separated from the first pumping chamber by the first diaphragm. In addition, a second pressure chamber may be provided which is separated from the second pumping chamber by the second diaphragm.
Zudem kann bei der erfindungsgemässen Doppelmembranpumpe vorgesehen sein, dass mindestens eines der Antriebsmittel ein mit Druckluft betreibbares Antriebsmittel ist.In addition, in the case of the double membrane pump according to the invention it can be provided that at least one of the drive means is a drive means which can be operated with compressed air.
Vorteilhafterweise weisen bei der erfindungsgemässen Doppelmembranpumpe die Antriebsmittel jeweils einen in einem Zylinder beweglichen Kolben oder eine Membran auf, die mit Druckluft bewegbar ist.Advantageously, in the double-diaphragm pump according to the invention, the drive means each have a piston which is movable in a cylinder or a diaphragm which can be moved by compressed air.
Es kann auch von Vorteil sein, wenn bei der erfindungsgemässen Doppelmembranpumpe die Antriebsmittel jeweils einen in einem Zylinder beweglichen Kolben oder eine Membran aufweisen, die mindestens in eine Richtung mit einem federnden Element bewegbar ist.It may also be advantageous if, in the double diaphragm pump according to the invention, the drive means each have a piston which is movable in a cylinder or a diaphragm which is movable in at least one direction with a resilient element.
Bei der erfindungsgemässen Doppelmembranpumpe können die Antriebsmittel jeweils mindestens einen Sensor zur Erfassung der Endposition aufweisen.In the case of the double diaphragm pump according to the invention, the drive means can each have at least one sensor for detecting the end position.
Bei der erfindungsgemässen Doppelmembranpumpe kann die Steuerung auch derart ausgebildet und betreibbar sein, dass sie die beiden Antriebsmittel abhängig von dem vom Sensor stammenden Signal steuert.In the case of the double membrane pump according to the invention, the controller can also be designed and operable in this way, that it controls the two drive means depending on the signal from the sensor.
Bei einer Weiterbildung der erfindungsgemässen Doppelmembranpumpe ist die Steuerung derart ausgebildet und betreibbar, dass sie eine Richtungsumkehr der Antriebsmittel herbeiführt, wenn der Sensor beim ersten Antriebsmittel und der Sensor beim zweiten Antriebsmittel betätigt werden.In a further development of the double-diaphragm pump according to the invention, the controller is designed and operable such that it brings about a reversal of the direction of the drive means when the sensor is actuated in the first drive means and the sensor in the second drive means.
Bei einer anderen Weiterbildung der erfindungsgemässen Doppelmembranpumpe weisen die erste und die zweite Pumpkammer jeweils einen Pumpkammerauslass auf, die in einen gemeinsamen Pumpenauslass münden.In another development of the double-diaphragm pump according to the invention, the first and the second pumping chambers each have a pumping chamber outlet, which open into a common pump outlet.
Bei einer zusätzlichen Weiterbildung der erfindungsgemässen Doppelmembranpumpe sind die Membranen mindestens vor der Förderphase mechanisch vorgespannt. Damit können der Druckverlauf weiter optimiert und eine Feinabstimmung vorgenommen werden.In an additional development of the novel double membrane pump, the membranes are mechanically biased at least before the delivery phase. Thus, the pressure curve can be further optimized and fine-tuned.
Bei einer Ausführungsform der erfindungsgemässen Doppelmembranpumpe weist die Steuerung ein Differenzialventil auf, das in der einen Stellung eine Druckluftquelle so mit dem ersten Antriebsmittel verbindet, dass das Antriebsmittel die erste Membran so bewegt, dass ein Unterdruck in der ersten Pumpkammer entsteht. In der anderen Stellung verbindet das Differenzialventil die Druckluftquelle so mit dem zweiten Antriebsmittel, dass es die zweite Membran so bewegt, dass ein Unterdruck in der zweiten Pumpkammer entsteht.In one embodiment of the double-diaphragm pump according to the invention, the controller has a differential valve which in one position connects a compressed-air source to the first drive means so that the drive means moves the first diaphragm so that a negative pressure is created in the first pumping chamber. In the other position, the differential valve connects the source of pressurized air to the second drive means such that it moves the second diaphragm to create a vacuum in the second pumping chamber.
Die erfindungsgemässe Doppelmembranpumpe hat zudem den Vorteil, dass sie problemlos anläuft, und zwar unabhängig davon in welcher Stellung sich die Kolben und die Membranen zum Einschaltzeitpunkt befinden. Auch dann, wenn am Materialeingang Luft anstatt Material angesaugt wird, läuft die erfindungsgemässe Doppelmembranpumpe problemlos an. Dieser Zustand kann zum Beispiel bei der ersten Inbetriebnahme auftreten, wenn die Pumpe noch leer ist, oder dann, wenn der Material-Vorratsbehälter leer ist.The inventive double diaphragm pump also has the advantage that it starts up easily, regardless of the position in which the pistons and the membranes are at the time of switch-on. Even if air is sucked in instead of material at the material inlet, the double-membrane pump according to the invention runs smoothly. This condition may occur, for example, during initial start-up when the pump is still empty or when the fluid reservoir is empty.
Darüber hinaus kann die Doppelmembranpumpe so ausgebildet sein, dass auch ein unerwünschtes Stehenbleiben der Pumpe sicher vermieden wird. Die Doppelmembranpumpe kann dazu das Umschaltventil mit Differenzialkolben und ein Vorschaltventil, wie zum Beispiel ein Flip-Flop-Ventil, aufweisen.In addition, the double-diaphragm pump can be designed so that an undesirable stoppage of the pump is reliably avoided. The double diaphragm pump can for this purpose the changeover valve with differential piston and a pilot valve, such as a flip-flop valve have.
Bei einer weiteren Ausführungsform der erfindungsgemässen Doppelmembranpumpe verbindet das Differenzialventil in der einen Stellung die Druckluftquelle so mit dem zweiten Antriebsmittel, dass es die zweite Membran so bewegt, dass ein Überdruck in der zweiten Pumpkammer entsteht. In der anderen Stellung verbindet das Differenzialventil die Druckluftquelle so mit dem ersten Antriebsmittel, dass es die erste Membran so bewegt, dass ein Überdruck in der ersten Pumpkammer entsteht.In a further embodiment of the double diaphragm pump according to the invention, the differential valve in one position connects the compressed air source with the second drive means such that it moves the second diaphragm so that an overpressure is created in the second pumping chamber. In the other position, the differential valve connects the source of pressurized air to the first drive means so as to move the first diaphragm to create an overpressure in the first pumping chamber.
Schliesslich kann bei der erfindungsgemässen Doppelmembranpumpe vorgesehen sein, dass die Steuerung ein Flip-Flop-Ventil aufweist, das mit Endlagenschaltern steuerbar ist und das das Differentialventil steuert.Finally, it can be provided in the inventive double diaphragm pump, that the controller has a flip-flop valve which is controllable with limit switches and which controls the differential valve.
Die Steuerung mit Hilfe der Endlagenschalter hat den Vorteil, dass die Endlagen der Kolben beziehungsweise der Membranen auf einfache und sichere Weise detektiert werden können. Somit kann bei Bedarf gewährleistet werden, dass die beiden Membranen den gesamten Hub vollführen.The control by means of the limit switches has the advantage that the end positions of the piston or the membranes can be detected in a simple and secure manner. Thus, if necessary, it can be ensured that the two membranes perform the entire stroke.
Im Folgenden wird die Erfindung mit mehreren Ausführungsbeispielen anhand von mehreren Figuren weiter erläutert.
Figur 1- zeigt eine erste mögliche Ausführungsform der erfindungsgemässen Doppelmembranpumpe in einer dreidimensionalen Ansicht.
Figur 2- zeigt die erste Ausführungsform der erfindungsgemässen Doppelmembranpumpe ohne Armaturen in einer dreidimensionalen Ansicht.
Figur 3- zeigt die erste Ausführungsform der erfindungsgemässen Doppelmembranpumpe im Längsschnitt von der Seite.
Figur 4- zeigt die erste Ausführungsform der erfindungsgemässen Doppelmembranpumpe im Längsschnitt von oben.
Figur 5- zeigt die erste Ausführungsform der erfindungsgemässen Doppelmembranpumpe im Querschnitt.
Figur 6- zeigt den Aufbau der ersten Ausführungsform der erfindungsgemässen Doppelmembranpumpe in einem Blockschaltbild.
Figur 7- zeigt den Aufbau einer zweiten Ausführungsform der erfindungsgemässen Doppelmembranpumpe in einem Blockschaltbild.
Figur 8- zeigt den Aufbau einer dritten Ausführungsform der erfindungsgemässen Doppelmembranpumpe in einem Blockschaltbild.
Figur 9- zeigt in einem Diagramm den zeitlichen Verlauf der einzelnen Drücke und des Gesamtdrucks.
Figur 10- zeigt in einem Diagramm den zeitlichen Verlauf der einzelnen Drücke und des Gesamtdrucks.
Figur 11- zeigt in einem Diagramm den zeitlichen Verlauf der einzelnen Drücke und des Gesamtdrucks.
- FIG. 1
- shows a first possible embodiment of the inventive double diaphragm pump in a three-dimensional view.
- FIG. 2
- shows the first embodiment of the inventive double diaphragm pump without fittings in a three-dimensional view.
- FIG. 3
- shows the first embodiment of the inventive double membrane pump in longitudinal section from the side.
- FIG. 4
- shows the first embodiment of the inventive double diaphragm pump in longitudinal section from above.
- FIG. 5
- shows the first embodiment of the inventive double diaphragm pump in cross section.
- FIG. 6
- shows the structure of the first embodiment of the inventive double diaphragm pump in a block diagram.
- FIG. 7
- shows the structure of a second embodiment of the inventive double diaphragm pump in a block diagram.
- FIG. 8
- shows the structure of a third embodiment of the inventive double diaphragm pump in a block diagram.
- FIG. 9
- shows in a diagram the time course of the individual pressures and the total pressure.
- FIG. 10
- shows in a diagram the time course of the individual pressures and the total pressure.
- FIG. 11
- shows in a diagram the time course of the individual pressures and the total pressure.
In den
In
Die erste Membranpumpe ist in den
Die beiden Ventile 35 und 36 haben jeweils einen Steuereingang und können jeweils zwei Schaltzustände A oder B einnehmen. Im Ruhezustand, das heisst wenn an den Steuereingängen der Ventile 35 und 36 kein Signal anliegt, befinden sich die Ventile 35 und 36 im Schaltzustand B (siehe auch
Bei der ersten Ausführungsform der erfindungsgemässen Doppelmembranpumpe ist die zweite Membranpumpe spiegelsymmetrisch zur ersten Membranpumpe aufgebaut. Dies ist vorteilhaft, aber nicht zwingend erforderlich.In the first embodiment of the novel double diaphragm pump, the second diaphragm pump is constructed mirror-symmetrically to the first diaphragm pump. This is advantageous, but not mandatory.
Die zweite Membranpumpe ist in den
Die beiden Ventile 37 und 38 können jeweils zwei Schaltzustände A oder B einnehmen. Befinden sich der Kolben 112 und damit auch die Kolbenstange 112.1 ganz links, ist das Ventil 37 im Schaltzustand A und das Ventil 38 im Schaltzustand B. Befinden sich der Kolben 112 und die Kolbenstange 112.1 weit genug rechts, ist das Ventil 37 im Schaltzustand B und das Ventil 38 im Schaltzustand A (siehe auch
Grundsätzlich gibt es keine mechanische Kopplung zwischen der ersten und der zweiten Membranpumpe. Damit die erfindungsgemässe Doppelmembranpumpe 1 die gewünschte Materialmenge mit dem gewünschten Druck und dem gewünschten Druckverlauf fördert, werden die erste und die zweite Membranpumpe mittels Druckluft angetrieben und entsprechend gesteuert.Basically, there is no mechanical coupling between the first and the second diaphragm pump. In order for the
Ein Vorteil der erfindungsgemässen Doppelmembranpumpe ist, dass die beiden Membranen 10 und 110 der Doppelmembranpumpe 1 unabhängig voneinander angeordnet werden können. Die Membranen 10 und 110 können zum Beispiel, wie in den Figuren gezeigt, gegenüber liegen (links, rechts). Die beiden Membranen 10, 110 können aber auch übereinander (oben und unten), nebeneinander oder auch versetzt zueinander angeordnet sein.An advantage of the double diaphragm pump according to the invention is that the two
Der Pumpeneinlass 2 ist sowohl mit dem Einlass der Förderkammer 13 als auch mit dem Einlass der Förderkammer 113 verbunden. Um sicherzustellen, dass das zu fördernde Material während der Förderphase nicht von der Förderkammer zurück zum Einlass 2 gelangt, sind Rückschlagventile 5 und 105 vorgesehen.The
Die Auslässe 13.3 und 113.3 der Förderkammern 13 und 113 sind miteinander verbunden und münden in den Pumpenauslass 3 am Gehäuse 9. Um zu verhindern, dass das zu fördernde Material von der einen Förderkammer in die andere Förderkammer gelangt, sind Rückschlagventile 6 und 106 vorgesehen.The outlets 13.3 and 113.3 of the
Bei der ersten Ausführungsform befindet sich räumlich gesehen zwischen den beiden Membranpumpen ein Hauptventil 32. Das Hauptventil 32 kann sich aber selbstverständlich auch an einem anderen Ort befinden. Das Hauptventil 32 hat zwei Steuereingänge 32.1 und 32.2 und zwei Schaltzustände oder Stellungen A und B (für den mechanischen Aufbau siehe
Unterhalb des Hauptventils 32 befindet sich ein Flip-Flop-Ventil 31 mit vier Schaltzuständen beziehungsweise Stellungen A, B, C und D (siehe auch
Wie die erste Membranpumpe, die zweite Membranpumpe und die Ventile 31 - 37 miteinander verbunden sein können, ist aus den
Die Steuerung 30 steuert die beiden Antriebsmittel 15 und 115. Grundsätzlich ist sie derart ausgebildet und betreibbar, dass sie die beiden Antriebsmittel 15 und 115 abhängig von einer oder mehreren Bedingungen steuert. Eine Bedingung kann beispielsweise eine bestimmte Zeitdauer, das Erreichen einer bestimmten Position oder das Erreichen eines bestimmten Drucks sein.The
Im Folgenden werden mehrere Ausführungsformen der Steuerung 30 beschrieben.In the following, several embodiments of the
Die Position, in der sich die Membran 10 befindet, wenn die Doppelmembranpumpe 1 ausgeschaltet ist, wird im Folgenden als Ruhezustand der Membran 10 bezeichnet. Das Gleiche gilt sinngemäss für die Membran 110. Grundsätzlich spielt es keine Rolle in welchen Positionen sich die Membranen 10 und 110 befinden, wenn die Doppelmembranpumpe 1 ausgeschaltet wird. Um jedoch die Funktionsweise der Doppelmembranpumpe 1 besser erläutern zu können, wird im Folgenden davon ausgegangen, dass sich die Membran 10 im Ruhezustand an ihrem linken Totpunkt und sich die Membran 110 an ihrem linken Totpunkt befindet. Die Membran 10 befindet sich an ihrem linken Totpunkt, wenn sie sich in ihrer äussersten linken Auslenkung befindet, was als hintere Endposition der Membran 10 bezeichnet wird. In
Im Folgenden wird die Funktionsweise der Doppelmembranpumpe 1 mit dem in den
Anschliessend sorgt die Steuerung 30 dafür, dass zum Zeitpunkt t8 = 1,0 s die Membran 10 über den Kolben 12 wieder aus der Pumpkammer 13 herausgezogen wird und in der Pumpkammer 13 einen Unterdruck p13 aufbaut. Der Druck p13 fällt in der Pumpkammer 13 rampenförmig ab, bis er zum Zeitpunkt t9 den maximalen Unterdruck pmin (im vorliegenden Beispiel rund -0,5 bar bezogen auf den Normaldruck von 1 bar, der in dem Diagramm als Nulllinie dargestellt ist) erreicht und bleibt dann bis zum Zeitpunkt t10 (also für eine Dauer von rund 0,3 s) konstant. Während dieser Zeit zieht der Kolben 12 die Membran 10 nach links bis sie zum Zeitpunkt t10 ihren linken Totpunkt erreicht hat. Ab diesem Zeitpunkt wird kein weiteres Fluid mehr in die Pumpkammer 13 gesaugt. Das Rückschlagventil 5 in der Ansaugleitung schliesst. Von da an nimmt der Unterdruck in der Pumpkammer 13 wieder ab, erreicht zum Zeitpunkt t11 wieder den Wert Null und bleibt dann bis zum Zeitpunkt t13 auf Null. Der zwischen den beiden Zeitpunkten t8 und t13 stattfindende Vorgang wird als Ansaugphase S13 bezeichnet. Der linke Teil der Doppelmembranpumpe 1 saugt also während dieser Zeit Fluid an. Auf die Ansaugphase S13 folgen eine weitere Förderphase F13 und eine weitere Ansaugphase S13. Förderphase F13 und Ansaugphase S13 wechseln sich ab und bilden zusammen einen Zyklus.Subsequently, the
Die Steuerung 30 sorgt zudem dafür, dass zum Zeitpunkt t0 = 0 s die Membran 110 über den Kolben 112 aus der Pumpkammer 113 herausgezogen wird und in der Pumpkammer 113 einen Unterdruck p113 aufbaut (siehe
Anschliessend sorgt die Steuerung 30 dafür, dass zum Zeitpunkt t6 = 0,9 s die Membran 110 über den Kolben 112 wieder in die Pumpkammer 113 gedrückt wird und in der Pumpkammer 113 einen Überdruck p113 aufbaut. Der Druck p113 steigt in der Pumpkammer 113 rampenförmig an, bis er zum Zeitpunkt t7 den Maximaldruck pmax (im vorliegenden Beispiel rund 2,2 bar) erreicht und bleibt dann bis zum Zeitpunkt t12 (also für eine Dauer von rund 0,8 s) konstant. Während dieser Zeit drückt der Kolben 112 die Membran 110 nach links bis sie ihren linken Totpunkt erreicht hat. Von da an fällt der Druck p113 in der Pumpkammer 113 rapide ab. Der zwischen den beiden Zeitpunkten t6 und t15 stattfindende Vorgang wird als Pump- oder Förderphase F113 des rechten Teils der Doppelmembranpumpe 1 bezeichnet. In dieser Phase wird das sich in der Pumpkammer 113 befindliche Fluid aus der Pumpkammer 113 herausgedrückt. Der rechte Teil der Doppelmembranpumpe 1 fördert also während dieser Zeit Fluid. Auf die Förderphase F113 folgen eine weitere Ansaugphase S113 und eine weitere Ausstossphase F113. Ausstossphase F113 und Ansaugphase S113 wechseln sich ab, bilden zusammen einen Zyklus und kehren periodisch wieder.Subsequently, the
Mit Hilfe der Steuerung 30 wird dafür gesorgt, dass sich an die Förderphase F13 des linken Teils der Doppelmembranpumpe die Förderphase F113 des rechten Teils der Doppelmembranpumpe anschliesst, und darauf wieder eine Förderphase F13 des linken Teils der Doppelmembranpumpe folgt, usw. Auf diese Weise wechseln sich die Förderphasen F13 und F113 des linken und rechten Teils der Doppelmembranpumpe ab und erzeugen so nach einer kurzen Anlaufphase einen kontinuierlichen, unterbrechungsfreien Fluidstrom mit konstanten Förderdruck p1.With the aid of the
Die Steuerung 30 ist im vorliegenden Ausführungsbeispiel so ausgebildet, dass sie zu bestimmten Zeitpunkten Druckluftsignale ausgibt. Grundsätzlich müssen dies aber keine Druckluftsignale sein, sondern können auch hydraulische oder elektrische Signale sein, also jedwede geeignete Form von Befehlen. Deshalb wird im Folgen von Befehlen gesprochen. Die Bedingung, wann ein bestimmter Befehl ausgegeben wird, ist also auf die Zeit und vorzugsweise auf eine bestimmte Zeitdauer bezogen. So kann beispielsweise vorgesehen sein, dass der Befehl "Starte die Förderphase F113" 0,9 s nachdem die Saugphase S113 gestartet wurde, ausgegeben wird (siehe
In der Spritztechnik gibt in der Regel die in der Spritzpistole verwendete Düse die Geschwindigkeit beziehungsweise die Frequenz vor, mit der die Pumpe arbeitet. Wenn die Pumpe mit einer einzigen Spritzpistole betrieben wird, arbeitet sie mit einer anderen Frequenz als wenn sie zwei Spritzpistolen versorgt. Somit können sich je nach Betriebsbedingungen unterschiedliche Zykluszeiten ergeben. Die Arbeitsfrequenz der Doppelmembranpumpe bleibt konstant, wenn die äusseren Betriebsbedingungen unverändert bleiben.In spray technology, the nozzle used in the spray gun usually specifies the speed or frequency with which the pump operates. If the pump is operated with a single spray gun, it operates at a different frequency than when it supplies two spray guns. Thus, different cycle times may result depending on the operating conditions. The working frequency of the double diaphragm pump remains constant when the external operating conditions remain unchanged.
Die Steuerung 30 kann auch so ausgebildet sein, dass sie einen Befehl oder Befehle ausgibt, wenn der Kolben 12 bzw. 112 oder die Membran 10 bzw. 110 oder ein sonstiges bewegliches Bauteil eine bestimmte Position erreicht oder einen bestimmten Weg zurückgelegt hat. Die Bedingung, wann ein bestimmter Befehl ausgegeben wird, ist also auf die Position eines bestimmten Bauteils oder auf den Weg bezogen, den ein bestimmtes Bauteil zurückgelegt hat. So kann beispielsweise vorgesehen sein, dass der Befehl "Starte die Förderphase F113" ausgegeben wird, wenn der Kolben 12 die Position x erreicht hat. Im Diagramm in Figur 9 würde dies dem Zeitpunkt t6 entsprechen. Statt dessen könnte der Befehl "Starte die Förderphase F113" auch schon dann ausgegeben werden, wenn der Kolben 12 die Position x-1 erreicht hat (siehe t6
Die Steuerung kann auch so ausgebildet sein, dass sie einen Befehl oder Befehle ausgibt, wenn der Druck p13 in der Pumpkammer 13 bzw. der Druck p113 in der Pumpkammer 113 oder der Luftdruck in einem der Zylinder 11 beziehungsweise 111 einen bestimmten Schwellwert erreicht hat. Die Bedingung, wann ein bestimmter Befehl ausgegeben wird, ist also auf den Druck an einem bestimmten Ort bezogen. So kann beispielsweise vorgesehen sein, dass der Befehl "Baue in der Förderkammer 13 einen Vordruck pv auf" ausgegeben wird, wenn der Unterdruck p113 in der Pumpkammer 113 um einen oder auf einen bestimmten Wert abgenommen hat. Im Diagramm in
Bei dem in
Die Steuerung 30 umfasst das Flip-Flop-Ventil 31 mit den vier Schaltzuständen bzw. Stellungen A, B, C und D. Die Schaltzustände A und D sind jene Schaltzustände, die auch nach Wegnahme des Steuersignals erhalten bleiben. Der zuletzt eingenommene Schaltzustand, das heisst entweder A oder D, wird also gespeichert. Die Schaltzustände B und C des Flip-Flop-Ventils 31 sind Übergangsstellungen. Wird also der Steuereingang 31.1 des Flip-Flop-Ventils 31 mit Druckluft beaufschlagt, wechselt das Flip-Flop-Ventil 31 zunächst für eine bestimmte Zeitdauer in die Übergangsstellung C, danach für eine bestimmte Zeitdauer in die Übergangsstellung B und verharrt dann schliesslich in der Stellung A. Sinngemäss das Gleiche gilt für die umgekehrte Richtung. Wenn also der Steuereingang 31.2 des Flip-Flop-Ventils 31 mit Druckluft beaufschlagt wird, wechselt das Flip-Flop-Ventil 31 zunächst für eine bestimmte Zeitdauer in die Übergangsstellung B, danach für eine bestimmte Zeitdauer in die Übergangsstellung C und verharrt dann schliesslich in der Stellung D.The
Befindet sich das Flip-Flop-Ventil 31 in der Stellung A, wie in
Die Steuerung 30 umfasst zudem ein Hauptventil 32 mit zwei Steuereingängen 32.1 und 32.2 und zwei Schaltzuständen oder Stellungen A und B. Wird der Steuereingang 32.1 mit Druckluft beaufschlagt, nimmt das Ventil 32 den Schaltzustand A ein. Im Schaltzustand A sind die Anschlüsse 1 und 3 miteinander verbunden. Zudem sind im Schaltzustand A die Anschlüsse 2 und 4 miteinander verbunden. Wird der Steuereingang 32.2 mit Druckluft beaufschlagt, nimmt das Ventil 32 den Schaltzustand B ein. Im Schaltzustand B sind die Anschlüsse 1 und 4 miteinander verbunden (siehe auch
Darüber hinaus umfasst die Steuerung 30 vier Ventile 35, 36, 37 und 38. Das Ventil 35 ist mit dem Antrieb 15 gekoppelt und kann zwei Schaltzustände A oder B einnehmen. Wenn sich die Membran 10 beziehungsweise der Antriebskolben 12 in der hinteren Endposition befindet, befindet sich das Ventil 35 im Schaltzustand A. In diesem Zustand sind die Ventilanschlüsse miteinander verbunden. Befindet sich die Membran 10 beziehungsweise der Antriebskolben 12 in der vorderen Endposition oder, wie in der
Das Ventil 37 kann baugleich mit dem Ventil 35 sein und ist mit dem Antrieb 115 gekoppelt. Wenn sich die Membran 110 beziehungsweise der Antriebskolben 112 in der vorderen Endposition befindet, befindet sich das Ventil 37 im Schaltzustand A. In diesem Zustand sind die Ventilanschlüsse miteinander verbunden. Befindet sich die Membran 110 beziehungsweise der Antriebskolben 112 in der hinteren Endposition, oder wie in der
Wenn sich das Flip-Flop-Ventil 31 in der Stellung A befindet, wird der Steueranschluss 32.2 des Hauptventils 32 nicht mit Druckluft beaufschlagt, sondern ist mit der Atmosphäre verbunden. Das bewirkt, dass sich das Hauptventil 32 im Schaltzustand A befindet. Der Grund dafür ist, dass der Steueranschluss 32.1 des als Differentialventil ausgebildeten Hauptventils grundsätzlich mit Druckluft beaufschlagt wird. Im Schaltzustand A wird die von der Druckluftquelle 50 stammende Druckluft in die Druckluftkammer 114 und in die rechte Kolbenkammer 11.2 des Zylinders 11 gedrückt. Der Kolben 12 wird nach links gedrückt und zieht die Membran 10 ebenfalls nach links in Richtung der hinteren Endposition. Das Volumen in der Förderkammer 13 wird vergrössert, die linke Membranpumpe befindet sich in der Ansaugphase. Die Druckluft in der Druckluftkammer 114 bewirkt, dass die Membran 110 nach links in Richtung der vorderen Endposition gedrückt wird. Das Volumen in der Förderkammer 113 wird verkleinert, die rechte Membranpumpe befindet sich in der Förderphase. Während dieser Phase ist der Anschluss 3 des Flip-Flop-Ventils 31 verschlossen, so dass die Druckluft von dort nicht weitergeleitet wird. Auch bei den Ventilen 35 und 37 sind die Anschlüsse verschlossen, so dass die Druckluft auch von dort augenblicklich nicht weitergeleitet wird. Weil der Anschluss 5 des Flip-Flop-Ventils 31 mit dem zur Atmosphäre hin offenen Anschluss 7 verbunden ist, gelangt eventuell am Steueranschluss 31.2 anliegende Steuerluft nach aussen an die Atmosphäre. Der Steueranschluss 31.2 wird entlastet und ist somit druckfrei. Der Anschluss 4 des Flip-Flop-Ventils 31 ist verschlossen, ebenso der Anschluss des Ventils 35. Dadurch kann die am Steueranschluss 31.1 anliegende Druckluft nicht entweichen, der Luftdruck am Steueranschluss 31.1 wird aufrecht erhalten.When the flip-
Während sich die Kolbenstange 112.1 nach links bewegt, bleibt das Ventil 37 vorerst noch geschlossen. Wenn sich die Kolbenstange 112.1 dann weit genug nach links bewegt hat, wird das Ventil 37 durch die Nut 112.2 an der Kolbenstange 112.1 geöffnet und befindet sich im Zustand A.While the piston rod 112.1 moves to the left, the
Während sich die Kolbenstange 12.1 nach links bewegt, bleibt auch das Ventil 35 vorerst noch geschlossen. Erst wenn sich die Kolbenstange 12.1 weit genug nach links bewegt hat, wird das Ventil 35 durch die Nut 12.2 an der Kolbenstange 12.1 geöffnet und wechselt in den Zustand A. Sobald die beiden Ventile 37 und 35 in den Zustand A gewechselt haben, wird die Druckluft von der Druckluftquelle 50 über das Ventil 37 und das Ventil 35 zum Steuereingang 31.1 des Flip-Flop-Ventils 31 geleitet.While the piston rod 12.1 moves to the left, the
Das Flip-Flop-Ventil 31 wechselt dadurch für eine gewisse Zeit in die Stellung B. Der Steueranschluss 32.2 des Hauptventils 32 bleibt nach wie vor druckfrei, weil er über das Flip-Flop-Ventil 31 nicht mit Druckluft versorgt wird. Damit bleibt das Hauptventil 32 in der bisherigen Stellung. Die Anschlüsse 3 und 4 des Flip-Flop-Ventils 31 bleiben verschlossen. Der Anschluss 5 des Flip-Flop-Ventils 31 hingegen wird nun verschlossen. Das bewirkt, dass die Steuerluft am Steueranschluss 31.2 nun nicht mehr in die Atmosphäre entweichen kann.The flip-
Das Flip-Flop-Ventil 31 wechselt nach einer gewissen Zeit aus der Stellung B in die Stellung C. Der Steueranschluss 32.2 des Hauptventils 32 wird nun mit Druckluft beaufschlagt. Das Hauptventil 32 wechselt von der Stellung A in die Stellung B. Das bewirkt, dass die Druckluft in die linke Kolbenkammer 111.1 des Zylinders 111 und in die Druckluftkammer 14 gelangt. Dadurch wird der Kolben 112 nach rechts gedrückt, der wiederum die Membran 110 nach rechts in Richtung der hinteren Endposition zieht. Die rechte Membranpumpe befindet sich nun in der Ansaugphase. Der Druck in der Druckluftkammer 14 führt dazu, dass die Membran 10 nach rechts in Richtung der vorderen Endposition gedrückt wird. Die linke Membranpumpe befindet sich nun in der Förderphase.The flip-
Das Flip-Flop-Ventil 31 wechselt in den Schaltzustand D. Während sich die Kolbenstange 112.1 nach rechts bewegt, wird das Ventil 37 geschlossen, das Ventil 38 bleibt vorerst noch geschlossen. Wenn sich die Kolbenstange 112.1 weit genug nach rechts bewegt hat, wird das Ventil 38 durch die Ringnut 112.2 an der Kolbenstange 112.1 aus der Stellung B in die Stellung A gebracht.The flip-
Während sich die Kolbenstange 12.1 nach rechts bewegt, wird das Ventil 35 geschlossen, das Ventil 36 bleibt vorerst noch geschlossen, wird aber ausgangsseitig über das Flip-Flop-Ventil 31 mit dem Steuereingang 32.2 des Hauptventils 32 verbunden. Erst wenn sich die Kolbenstange 12.1 weit genug nach rechts bewegt hat, wird das Ventil 36 durch die Ringnut 12.2 an der Kolbenstange 12.1 vom Zustand B in den Zustand A gebracht. Dadurch gelangt Druckluft von der Druckluftquelle 50 über das Ventil 36 und das Ventil 38 zum Steuereingang 31.2 des Flip-Flop-Ventils 31. Das Flip-Flop-Ventil 31 wechselt vom Zustand D wieder zurück und zwar für kurze Zeit in den Zustand C und dann in den Zustand B und bleibt schliesslich im Zustand A. In dieser Zeit wiederholt sich der Ablauf in umgekehrter Richtung, wobei dieses Mal die linke Membranpumpe fördert und die rechte Membranpumpe saugt.While the piston rod 12.1 moves to the right, the
Bei dem in
Im Unterschied zur Version 1:1 gemäss
Damit die Zylinderkammern 11.1 und 111.2 mit Druckluft beaufschlagt werden können, ist es sinnvoll diese entsprechend abzudichten. Die in den
Bei dem in
Wie bei der ersten und der zweiten Ausführungsform kommt bei der dritten Ausführungsform in der Steuerung 30 zwar ebenfalls ein Flip-Flop-Ventil zum Einsatz, dieses hat jedoch lediglich zwei Schaltzustände A und B. Im Ruhezustand, das heisst wenn keine Steuersignale an den Steuereingängen 39.1 und 39.2 des Flip-Flop-Ventils 39 anliegen, befindet es sich im Schaltzustand A.As in the first and the second embodiment, in the third embodiment in the
Zu Beginn befindet sich das Hauptventil 32 also im Zustand A und leitet die von der Druckluftquelle 50 kommende Druckluft in die Zylinderkammer 11.2, die Druckkammer 114 und in die Zylinderkammer 111.2. Dadurch wird der Kolben 12 nach links gedrückt. Dieser zieht über die Kolbenstange 12.1 die Membran 10 ebenfalls nach links, so dass in der Pumpkammer 13 ein Unterdruck entsteht. Die linke Membranpumpe befindet sich nun in der Saugphase. Auch der Kolben 112 wird nach links gedrückt. Dieser drückt über die Kolbenstange 112.1 die Membran 110 ebenfalls nach links, so dass in der Pumpkammer 13 ein Überdruck entsteht. Unterstützt wird dies durch die mit Druckluft beaufschlagte Druckkammer 114. Die rechte Membranpumpe befindet sich nun in der Pumpphase.At the beginning, therefore, the
Sobald der Kolben 12 in der linken Endposition angelangt ist, wird durch die Nut 12.2 in der Kolbenstange 12.1 das Ventil 35 vom Zustand B in den Zustand A gebracht. Wenn auch der Kolben 112 in der linken Endposition angelangt ist, wird durch die Nut 112.2 in der Kolbenstange 112.1 auch das Ventil 37 vom Zustand B in den Zustand A gebracht. Dadurch strömt Druckluft zum Steuereingang 39.1 des Flip-Flop-Ventils 39 und bewirkt, dass es vom Zustand A in den Zustand B wechselt. Das Flip-Flop-Ventil 39 leitet nun die Druckluft zum Steuereingang 32.2 des Hauptventils 32, so dass auch dieses vom Zustand A in den Zustand B wechselt. Nun gelangt die Druckluft über das Hauptventil 32 von der Druckluftquelle 50 in die Zylinderkammer 11.1, die Druckkammer 14 und in die Zylinderkammer 111.1. Dadurch wird der Kolben 12 nach rechts gedrückt. Dieser drückt über die Kolbenstange 12.1 die Membran 10 ebenfalls nach rechts, so dass in der Pumpkammer 13 ein Überdruck entsteht. Die linke Membranpumpe befindet sich nun in der Pumpphase. Unterstützt wird dies durch die mit Druckluft beaufschlagte Druckkammer 14. Auch der Kolben 112 wird nach rechts gedrückt. Dieser zieht über die Kolbenstange 112.1 die Membran 110 ebenfalls nach rechts, so dass in der Pumpkammer 13 ein Unterdruck entsteht. Die rechte Membranpumpe befindet sich nun in der Saugphase. Die beiden Steuereingänge 39.1 und 39.2 des Flip-Flop-Ventils 39 sind zudem über jeweils eine Drossel 40 bzw. 41 mit der Atmosphäre verbunden, so dass die Steuereingänge 39.1 und 39.2 entlüftet werden können, wenn von den Ventilen 35 und 38 kein Steuerbefehl kommt.Once the
Selbstverständlich können die oben aufgeführten Ausführungsformen der Steuerung auch miteinander kombiniert werden. So kann die Bedingung für die Auslösung eines bestimmten Befehls auf die Zeit bezogen sein, während die Bedingung für die Auslösung eines anderen Befehls auf die Position eines bestimmten Bauteils bezogen ist. Darüber hinaus kann die Bedingung für die Auslösung eines weiteren Befehls auf den Druck an einem bestimmten Ort bezogen sein. Die einen Befehl auslösende Bedingung kann eine beliebige physikalischen Eigenschaft sein, wie Zeit, Ort, Druck, usw. Es können auch beliebig viele Bedingungen miteinander verknüpft werden. So kann beispielsweise ein Befehl erst dann ausgelöst werden, wenn zwei Bedingungen erfüllt sind (UND-Verknüpfung). Es kann auch ein Befehl ausgelöst werden, wenn eine von zwei Bedingungen erfüllt ist (ODER-Verknüpfung). Es ist auch möglich, dass ein Befehl dauerhaft und so lange ausgegeben wird, bis ein weiterer Befehl für die Rücknahme des Befehls anliegt.Of course, the above-mentioned embodiments of the controller can also be combined with each other. Thus, the condition for triggering a particular command may be related to time while the condition for triggering another command is related to the position of a particular device. In addition, the condition for triggering another command may be related to the pressure at a particular location. The condition triggering a command can be any physical property, such as time, location, pressure, etc. Any number of conditions can be linked together. For example, a command can not be triggered until two conditions have been met (AND operation). A command can also be triggered if one of two conditions is met (OR operation). It is also possible for a command to be issued permanently and until another command is present for the command to be withdrawn.
Mit dem Endlagenschalter 35 beim Antriebsmittel 15 und dem Endlagenschalter 37 beim Antriebsmittel 115 kann sichergestellt werden, dass beide Antriebsmittel 15 und 115 den vollen Hub gefahren sind.With the
Eine isochrone Steuerung der ersten und der zweiten Membranpumpe ist von Vorteil, aber nicht zwingend notwendig. Isochron heisst hier, dass die Signale in einer konstanten Phasenbeziehung zueinander stehen. So können zum Beispiel die von den Ventilen 35 und 37 erzeugten Steuersignale isochron zueinander sein. Zudem können die von den Ventilen 36 und 38 erzeugten Steuersignale isochron zueinander sein. Deren Phasenverschiebung liegt vorzugsweise zwischen 170° und 190°. Auch die Druckverläufe p1 und p2 können isochron zueinander sein. Beide Druckverläufe p1 und p2 haben die gleichen Verläufe und die gleichen Zykluszeit, sind aber mehr oder weniger stark zueinander zeitlich verschoben. Deren Phasenverschiebung liegt ebenfalls vorzugsweise zwischen 170° und 190°.Isochronous control of the first and the second diaphragm pump is advantageous, but not absolutely necessary. Isochronous means here that the signals are in a constant phase relation to each other. For example, the control signals generated by the
Die vorhergehende Beschreibung der Ausführungsbeispiele gemäss der vorliegenden Erfindung dient nur zu illustrativen Zwecken. Im Rahmen der Erfindung sind verschiedene Änderungen und Modifikationen möglich. So können beispielsweise die erste und die zweite Membranpumpe gemäss
Statt der in den Figuren gezeigten druckluftbetriebenen Antriebsmittel 15, 115 können auch Antriebsmittel eingesetzt werden, bei denen der Kolben 12 beziehunsgweise 112 mindestens in eine Richtung mit einem federnden Element bewegbar ist. Auch eine Kombination aus Druckluft- und Federantrieb ist denkbar.Instead of the air-operated drive means 15, 115 shown in the figures, it is also possible to use drive means in which the
Statt der in den Figuren gezeigten Kolben 12, 112 können die Zylinder 11 und 111 auch jeweils eine Membran aufweisen. Die Membran kann auch die Form einer Rollmembran haben. Diese in den Zylindern angeordneten Membranen können mit Druckluft und/oder mit einem federnden Element bewegt werden. Das federnde Element kann beispielsweise eine Druckfeder sein.Instead of the
Eine Rollmembran ist eine flexible Dichtung, die einen relativ langen Kolbenhub erlaubt. Sie hat häufig die Form eines Kegelstumpfes oder eines Zylinders und wird in sich selbst gedreht. Die Rollmembran kann umfangsseitig festgeklemmt werden. Während des Hubs rollt sie abwechselnd am Kolben und an der Zylinderwand. Die Rollbewegung ist glatt und reibungsfrei. Es entsteht keine Gleitreibung, keine Losbrechreibung und auch kein Druckverlust.A rolling diaphragm is a flexible seal that allows a relatively long piston stroke. It often has the shape of a truncated cone or a cylinder and is rotated in itself. The rolling diaphragm can be clamped circumferentially. During the stroke, it rolls alternately on the piston and on the cylinder wall. The rolling motion is smooth and frictionless. There is no sliding friction, no breakaway friction and no pressure loss.
Wenn die Kolben 12 und 112 beziehungsweise die in den Zylindern angeordneten Membranen über eine Druckfeder bewegt werden sollen, erfolgt dies vorzugsweise in der Saugphase der jeweiligen Membranpumpe. Die Druckfedern befinden sich dann vorteilhafterweise in den Zylinderkammern 11.2 und 111.2.If the
Bei der Doppelmembranpumpe 1 kann vorgesehen sein, dass die Antriebsmittel 15 und 115 jeweils mindestens einen Sensor aufweisen. Der Sensor dient zur Erfassung der Position des Antriebskolbens 12 oder der Kolbenstange 12.1 beziehungsweise des Antriebskolbens 112 oder der Kolbenstange 112.1.In the
Als Sensor kann beispielsweise ein Endlagenschalter dienen. Mit dem Endlagenschalter kann die Endposition (Totpunkt) des Antriebsmittels 15 erfasst werden. Das Antriebsmittel 15 kann auch einen Endlagenschalter zur Erfassung der linken Endposition und einen weiteren Endlagenschalter zur Erfassung der rechten Endposition aufweisen (in den Figuren nicht gezeigt). Selbiges kann für das Antriebsmittel 115 gelten. In den
Wenn die Antriebszylinder 11 und 111 doppelt so gross wie die Membranen 10 beziehungsweise 110 oder noch grösser gewählt werden, kann auch ein Druckübersetzungsverhältnis von zum Beispiel 3:1 erreicht werden. Das heisst 6 bar Luftdruck entsprechen dann 18 bar Fluiddruck.If the
Während des Betriebs werden die Membranen 10 und 110 hin und her bewegt. Dabei kann es dazu kommen, dass die Membranen umklappen, was jedoch in der Regel unerwünscht ist, weil dieser Vorgang die Membran beschädigen kann. Um die Gefahr zu verringern, dass die Membranen 10 und 110 umklappen und dadurch mit der Zeit beschädigt werden, kann der folgende Aufbau vorgesehen sein. Die Druckkammer 14 bei der Membran 10 und die Druckkammer 114 bei der Membran 110 sind nicht mit dem Hauptventil 32, sondern mit einem Vakuumerzeuger verbunden. Dieser erzeugt ein so starkes Vakuum in den beiden Druckkammern 14 und 114, dass die Membranen 10 und 110 nicht umklappen, sondern ihre Form im Wesentlichen beibehalten.During operation, the
Die Membranen 10 bzw. 110 können vor der Förderphase mechanisch vorgespannt sein. Dadurch erzeugt die Membran gleich zu Beginn der Förderphase einen gewissen Druck in der Förderkammer und zwar etwa so lange, bis sich unter anderem der Luftdruck in der Druckkammer aufgebaut hat. Damit kann die Trägheit des Systems kompensiert und eine Feinabstimmung vorgenommen werden. Die Membranen sollten nicht zu fest vorgespannt sein, da dies sonst unter Umständen zu einem sägezahnförmigen Druckverlauf führen kann.The
- 11
- DoppelmembranpumpeDouble diaphragm pump
- 22
- Pumpeneinlasspump inlet
- 33
- Pumpenauslasspump outlet
- 44
- DruckluftanschlussCompressed air connection
- 55
- Rückschlagventilcheck valve
- 66
- Rückschlagventilcheck valve
- 77
- DruckluftanschlussCompressed air connection
- 88th
- Absperrhahnstopcock
- 99
- Gehäusecasing
- 1010
- Membranmembrane
- 1111
- Zylindercylinder
- 11.111.1
- linke Kolbenkammerleft piston chamber
- 11.211.2
- rechte Kolbenkammerright piston chamber
- 1212
- Kolbenpiston
- 12.112.1
- Kolbenstangepiston rod
- 12.212.2
- Ringnut in der KolbenstangeRing groove in the piston rod
- 1313
- Pump- oder FörderkammerPump or delivery chamber
- 13.313.3
- PumpkammerauslassPumpkammerauslass
- 1414
- Druckkammerpressure chamber
- 1515
- Antriebsmitteldrive means
- 17.117.1
- Wandwall
- 17.217.2
- Wandwall
- 1818
- Wandwall
- 1919
- Wandwall
- 2020
- DruckeinstellerPressure regulator
- 2121
- DruckeinstellerPressure regulator
- 2222
- Manometermanometer
- 2323
- Manometermanometer
- 3030
- Steuerungcontrol
- 3131
- Flip-Flop-VentilFlip-flop valve
- 31.131.1
- Steueranschlusscontrol connection
- 31.231.2
- Steueranschlusscontrol connection
- 3232
- Hauptventilmain valve
- 32.132.1
- Steueranschlusscontrol connection
- 32.232.2
- Steueranschlusscontrol connection
- 3333
- ÜberdruckventilPressure relief valve
- 3535
- VentilValve
- 3636
- VentilValve
- 3737
- VentilValve
- 3838
- VentilValve
- 3939
- Flip-Flop-VentilFlip-flop valve
- 39.139.1
- Steueranschlusscontrol connection
- 39.239.2
- Steueranschlusscontrol connection
- 4040
- Drosselthrottle
- 4141
- Drosselthrottle
- 5050
- DruckluftquelleCompressed air source
- 105105
- Rückschlagventilcheck valve
- 106106
- Rückschlagventilcheck valve
- 110110
- Membranmembrane
- 111111
- Zylindercylinder
- 111.1111.1
- linke Kolbenkammerleft piston chamber
- 111.2111.2
- rechte Kolbenkammerright piston chamber
- 112112
- Kolbenpiston
- 112.1112.1
- Kolbenstangepiston rod
- 112.2112.2
- Ringnut in der KolbenstangeRing groove in the piston rod
- 113113
- Pump- oder FörderkammerPump or delivery chamber
- 113.3113.3
- PumpkammerauslassPumpkammerauslass
- 114114
- Druckkammerpressure chamber
- 115115
- Antriebsmitteldrive means
- p1p1
-
Druck am Ausgang der Doppelmembranpumpe 1Pressure at the outlet of the
double diaphragm pump 1 - p13p13
-
Druck in der Pumpkammer 13Pressure in the
pumping chamber 13 - p113p113
-
Druck in der Pumpkammer 113Pressure in the
pumping chamber 113 - pvpv
- Vordruckform
Claims (17)
bei der mindestens eines der Antriebsmittel (15, 115) ein mit Druckluft betreibbares Antriebsmittel ist.Double membrane pump according to one of the claims 1 to 7,
in which at least one of the drive means (15, 115) is a drive means operable with compressed air.
bei der die Antriebsmittel (15, 115) jeweils einen in einem Zylinder (11, 111) beweglichen Kolben (12, 112) oder eine Membrane aufweisen, die mit Druckluft bewegbar ist.Double diaphragm pump according to one of claims 1 to 8,
in which the drive means (15, 115) each have a piston (12, 112) which is movable in a cylinder (11, 111) or a diaphragm which is movable with compressed air.
bei der die Antriebsmittel (15, 115) jeweils einen in einem Zylinder (11, 111) beweglichen Kolben (12, 112) oder eine Membrane aufweisen, die mindestens in eine Richtung mit einem federnden Element bewegbar ist.Double diaphragm pump according to one of claims 1 to 8,
in which the drive means (15, 115) each one in a cylinder (11, 111) have movable piston (12, 112) or a membrane which is movable in at least one direction with a resilient element.
bei der die Antriebsmittel (15, 115) jeweils mindestens einen Sensor zur Erfassung der Endposition aufweisen.Double membrane pump according to one of the claims 1 to 10,
in which the drive means (15, 115) each have at least one sensor for detecting the end position.
bei der die Steuerung (30) derart ausgebildet und betreibbar ist, dass sie die beiden Antriebsmittel (15, 115) abhängig von dem vom Sensor (35 - 38) stammenden Signal steuert.Double membrane pump according to claim 11,
wherein the controller (30) is configured and operable to control the two drive means (15, 115) in response to the signal from the sensor (35-38).
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15176316.6A EP3115607B1 (en) | 2015-07-10 | 2015-07-10 | Double membrane pump |
JP2016119864A JP7118581B2 (en) | 2015-07-10 | 2016-06-16 | double diaphragm pump |
US15/196,159 US10738769B2 (en) | 2015-07-10 | 2016-06-29 | Double diaphragm pump |
CN201610536517.1A CN106337799B (en) | 2015-07-10 | 2016-07-07 | Double diaphragm pump |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15176316.6A EP3115607B1 (en) | 2015-07-10 | 2015-07-10 | Double membrane pump |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3115607A1 true EP3115607A1 (en) | 2017-01-11 |
EP3115607B1 EP3115607B1 (en) | 2018-02-21 |
Family
ID=53541570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15176316.6A Active EP3115607B1 (en) | 2015-07-10 | 2015-07-10 | Double membrane pump |
Country Status (4)
Country | Link |
---|---|
US (1) | US10738769B2 (en) |
EP (1) | EP3115607B1 (en) |
JP (1) | JP7118581B2 (en) |
CN (1) | CN106337799B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111648945A (en) * | 2020-05-27 | 2020-09-11 | 金凯威(廊坊)压缩机有限公司 | Diaphragm compressor |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107829921B (en) * | 2017-11-13 | 2020-01-21 | 中鼎恒盛气体设备(芜湖)有限公司 | Diaphragm compressor using asymmetric tee joint |
US11466676B2 (en) * | 2018-07-17 | 2022-10-11 | Autoquip, Inc. | Control arrangement and method for operating diaphragm pump systems |
CN111878365A (en) * | 2020-07-23 | 2020-11-03 | 嘉善边锋机械股份有限公司 | Diaphragm pump upper cover for realizing counting and control, diaphragm pump and counting and control method of diaphragm pump |
CN116420019A (en) * | 2020-11-09 | 2023-07-11 | 辟缔熙机械股份有限公司 | Hydraulically driven diaphragm compressor system |
KR102290492B1 (en) * | 2021-01-25 | 2021-08-18 | 주식회사 앤씰 | Mattress apparatus |
DE102021125005A1 (en) | 2021-09-28 | 2023-03-30 | Lewa Gmbh | Diaphragm pump with hydraulic drive |
US20230142326A1 (en) * | 2021-11-08 | 2023-05-11 | Pdc Machines, Inc. | High-throughput diaphragm compressor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3876169T2 (en) | 1987-08-17 | 1993-05-06 | Aro Corp | DOUBLE DIAPHRAGM PUMP. |
EP0959247A1 (en) * | 1998-05-20 | 1999-11-24 | J. Wagner Gmbh | Double diaphragm pump for viscous liquids |
DE10318004B3 (en) * | 2003-04-19 | 2004-12-09 | J. Wagner Ag | Conveying device for paint and other viscous media has a drive motor operated by compressed air and formed in the end layers of a controllable adjusting piston arranged in a cylinder |
DE102007039964A1 (en) * | 2007-08-23 | 2009-02-26 | Timmer Pneumatik Gmbh | High pressure double diaphragm pump and diaphragm element for such a pump |
EP2085614A1 (en) * | 2008-01-31 | 2009-08-05 | J. Wagner AG | Pumping device, in particular double diaphragm pump driven by a piston pump |
DE102013003620A1 (en) * | 2013-02-18 | 2014-08-21 | Dürr Systems GmbH | Coating agent pump and cleaning method for a coating agent pump |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB697822A (en) * | 1950-07-21 | 1953-09-30 | Bataafsche Petroleum | Improved diaphragm pump |
CN85205457U (en) * | 1985-12-17 | 1987-01-14 | 北京市太阳能研究所 | Simple and easy solar energy water pump with double membrance |
JPH0673651B2 (en) * | 1986-10-31 | 1994-09-21 | トリニテイ工業株式会社 | Coating agent supply device |
JPH03179184A (en) * | 1989-12-05 | 1991-08-05 | Nippon Pillar Packing Co Ltd | Reciprocating pump |
JPH04125685U (en) * | 1991-05-07 | 1992-11-16 | 山口日本電気株式会社 | bellows pump |
US5332372A (en) * | 1992-04-20 | 1994-07-26 | Warren Rupp, Inc. | Modular double-diaphragm pump |
JP3179184B2 (en) | 1992-05-29 | 2001-06-25 | オリンパス光学工業株式会社 | Ultrasound probe with observation function |
JP3197672B2 (en) * | 1993-04-05 | 2001-08-13 | 株式会社櫻製作所 | Diaphragm structure of diaphragm pump |
US5707217A (en) * | 1996-06-06 | 1998-01-13 | Vaughn Thermal Corporation | Pressure transfer modules |
JP2001115968A (en) * | 1999-10-20 | 2001-04-27 | Advance Denki Kogyo Kk | Injector |
JP3574641B2 (en) * | 2002-04-19 | 2004-10-06 | 株式会社イワキ | Pump system |
JP2004293502A (en) * | 2003-03-28 | 2004-10-21 | Yamagiwa Kanagata:Kk | Bellows pump |
JP2005214014A (en) * | 2004-01-27 | 2005-08-11 | Iwaki Co Ltd | Twin reciprocating bellows pump with interlocking shaft |
JP4125685B2 (en) | 2004-03-05 | 2008-07-30 | 株式会社東芝 | Drawing method and apparatus |
US7658598B2 (en) * | 2005-10-24 | 2010-02-09 | Proportionair, Incorporated | Method and control system for a pump |
DE102006041420A1 (en) * | 2006-09-04 | 2008-03-20 | Bran + Luebbe Gmbh | pump device |
DE102010013107A1 (en) * | 2010-03-26 | 2011-09-29 | Promera Gmbh & Co. Kg | Valve for alternately filling two working spaces of a piston-cylinder system of a pump |
DE102010013108A1 (en) * | 2010-03-26 | 2011-09-29 | Promera Gmbh & Co. Kg | Double diaphragm pump |
-
2015
- 2015-07-10 EP EP15176316.6A patent/EP3115607B1/en active Active
-
2016
- 2016-06-16 JP JP2016119864A patent/JP7118581B2/en active Active
- 2016-06-29 US US15/196,159 patent/US10738769B2/en active Active
- 2016-07-07 CN CN201610536517.1A patent/CN106337799B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3876169T2 (en) | 1987-08-17 | 1993-05-06 | Aro Corp | DOUBLE DIAPHRAGM PUMP. |
EP0959247A1 (en) * | 1998-05-20 | 1999-11-24 | J. Wagner Gmbh | Double diaphragm pump for viscous liquids |
DE10318004B3 (en) * | 2003-04-19 | 2004-12-09 | J. Wagner Ag | Conveying device for paint and other viscous media has a drive motor operated by compressed air and formed in the end layers of a controllable adjusting piston arranged in a cylinder |
DE102007039964A1 (en) * | 2007-08-23 | 2009-02-26 | Timmer Pneumatik Gmbh | High pressure double diaphragm pump and diaphragm element for such a pump |
EP2085614A1 (en) * | 2008-01-31 | 2009-08-05 | J. Wagner AG | Pumping device, in particular double diaphragm pump driven by a piston pump |
DE102013003620A1 (en) * | 2013-02-18 | 2014-08-21 | Dürr Systems GmbH | Coating agent pump and cleaning method for a coating agent pump |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111648945A (en) * | 2020-05-27 | 2020-09-11 | 金凯威(廊坊)压缩机有限公司 | Diaphragm compressor |
Also Published As
Publication number | Publication date |
---|---|
US20170009760A1 (en) | 2017-01-12 |
CN106337799A (en) | 2017-01-18 |
EP3115607B1 (en) | 2018-02-21 |
JP7118581B2 (en) | 2022-08-16 |
US10738769B2 (en) | 2020-08-11 |
CN106337799B (en) | 2020-12-25 |
JP2017020499A (en) | 2017-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3115607B1 (en) | Double membrane pump | |
DE3441054C2 (en) | ||
DE602004006802T2 (en) | pump | |
DE2626954A1 (en) | COMPRESSED AIR OPERATED HYDRAULIC PUMP | |
AT8986U1 (en) | HYDRAULIC PRESSURE SUPPLY UNIT, AND ELECTRO-HYDRAULIC WORKING UNIT AND CLAMPING SYSTEM WITH SUCH A PRESSURE SUPPLY UNIT | |
EP0927123A1 (en) | Hydraulic brake system with hydraulic servo brake | |
DE2338267A1 (en) | TWO-STAGE PNEUMATIC-HYDRAULIC BOOSTER | |
EP3317538A1 (en) | Apparatus for the production of a mixture of at least one gas and at least one liquid plastic component | |
EP2553270A2 (en) | Valve for alternately filling two working chambers of a piston-cylinder system of a pump | |
WO1996018825A1 (en) | Hydraulic pressure booster | |
DE102014215338A1 (en) | Powder dispenser and powder coating machine for powder spray coating of articles | |
DE3821321A1 (en) | Pressure source for a hydraulic brake system | |
AT517359B1 (en) | Device with intermittently provided liquid plastic component | |
DE19527402A1 (en) | pump | |
CH704896B1 (en) | Hydraulic drive device for plunger hydraulic cylinders of a powder press. | |
CH698995B1 (en) | Electrical separation unit for a fluid-conveying conduit. | |
DE2413531C3 (en) | Pneumatically driven double-acting piston engine | |
DE202009017678U1 (en) | Dosing and mixing device for sealants and adhesives | |
DE2065829C3 (en) | ||
EP1332288B1 (en) | Method for controlling a pump arrangement consisting of two hydraulically driven plunger piston pumps | |
WO1995000251A1 (en) | High pressure spraying device | |
EP0121001B1 (en) | Process and apparatus for accelerating the exchange of air during the filling or emptying of a pressurized space | |
DE10320550B4 (en) | Lackdosiereinrichtung | |
DE10025188B4 (en) | Booster station | |
EP3567248A1 (en) | Method for operating a multiple membrane pump |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170711 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F04B 45/047 20060101ALI20171012BHEP Ipc: F04B 43/073 20060101ALI20171012BHEP Ipc: F04B 43/06 20060101AFI20171012BHEP Ipc: F04B 45/053 20060101ALI20171012BHEP Ipc: F04B 45/04 20060101ALI20171012BHEP |
|
INTG | Intention to grant announced |
Effective date: 20171106 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015003121 Country of ref document: DE Ref country code: AT Ref legal event code: REF Ref document number: 972042 Country of ref document: AT Kind code of ref document: T Effective date: 20180315 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: WAGNER INTERNATIONAL AG, CH Free format text: FORMER OWNER: J. WAGNER AG, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20180221 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180521 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180522 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180521 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015003121 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20181122 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180710 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180731 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180731 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150710 Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20180621 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 972042 Country of ref document: AT Kind code of ref document: T Effective date: 20200710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200710 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230621 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20230728 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502015003121 Country of ref document: DE Representative=s name: NUECKEL, THOMAS, DIPL.-ING. (UNIV.), CH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240731 Year of fee payment: 10 |