EP3102335A1 - Kühlvorrichtung für eine spritzdüse bzw. spritzdüsenanordnung mit einer kühlvorrichtung für das thermische spritzen - Google Patents

Kühlvorrichtung für eine spritzdüse bzw. spritzdüsenanordnung mit einer kühlvorrichtung für das thermische spritzen

Info

Publication number
EP3102335A1
EP3102335A1 EP15707933.6A EP15707933A EP3102335A1 EP 3102335 A1 EP3102335 A1 EP 3102335A1 EP 15707933 A EP15707933 A EP 15707933A EP 3102335 A1 EP3102335 A1 EP 3102335A1
Authority
EP
European Patent Office
Prior art keywords
cooling device
spray nozzle
cooling
casing
sheath
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15707933.6A
Other languages
English (en)
French (fr)
Other versions
EP3102335B1 (de
Inventor
Oliver Stier
Axel Arndt
Uwe Pyritz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3102335A1 publication Critical patent/EP3102335A1/de
Application granted granted Critical
Publication of EP3102335B1 publication Critical patent/EP3102335B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/16Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas incorporating means for heating or cooling the material to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/14Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas designed for spraying particulate materials
    • B05B7/1481Spray pistols or apparatus for discharging particulate material
    • B05B7/1486Spray pistols or apparatus for discharging particulate material for spraying particulate material in dry state

Definitions

  • the invention relates to a cooling device for a spray nozzle suitable for thermal spraying (also referred to below as nozzle for short). Moreover, the invention relates to a spray nozzle assembly with such a cooling device, in which a spray nozzle is installed.
  • the cooling device is designed as a shell, wherein the spray nozzle In ⁇ can be arranged in the nenraum.
  • the cooling device also has an inlet and an outlet for a cooling fluid, with which the cooling device can be operated.
  • This cooling fluid can be liquid (for example water) or gaseous (for example air).
  • a cooling device or spray nozzle arrangement of the type specified is known.
  • the company offers Sulzer Metco for cold gas spraying under the protected
  • Trade name "Kinetics 4000 Cold Spray Gun” means a spray nozzle arrangement in which the spray nozzle is surrounded by a pipe between the spray nozzle and the pipe, an annular gap through which cooling air can be passed, which from an inlet at the convergent part of the nozzle to a The cooling air thereby passes directly over the outside of the spray nozzle, wherein the absorption capacity of the gaseous cooling medium for the heat dissipated from the spray nozzle is comparatively limited.
  • the object of the invention is a cooling device for a spray nozzle for thermal spraying or a
  • An essential part within the meaning of the invention is understood to be a length fraction of more than two-thirds.
  • the length portion should have 90 to 100% of the length of the sheath.
  • the length of the casing in relation to the length of the bed also depict ⁇ forming nozzle êtt also a good heat transfer loading. This is the case when the sheath covers a ⁇ we substantial part of the spray nozzle, ie at least two thirds of the length, preferably even 90 to 100% of the length. Since cooling of the material of the spray nozzle according to the invention is effected by a heat transfer into the material of the sheath, it is advantageously possible to use a cooling fluid now for in ⁇ direct cooling of the spray nozzle.
  • a cooling line is provided in the casing, which has a closed cross-section and connects the inlet to the outlet.
  • a closed Sys tem ⁇ which advantageously can be reliably sealed at the inlet and at the outlet with conventional means. Since the cooling line is closed within the casing, so no wall portions of the cooling line are formed by the surface of the spray nozzle, it can not come to leaks at the transition point between the shell and spray nozzle. Therefore, it is possible to use, for example, liquid cooling fluids without concessions to the process safety, which can provide a much higher cooling performance. It is also possible to USAGE a gaseous fluid ⁇ which is under a higher pressure. This, too, can advantageously increase the cooling capacity.
  • the sheath is constructed of two half-shells, wherein a parting line between the half shells in the direction of the longitudinal extent of the sheath extends.
  • manufacturing tolerances better compensate for example, by using a filler material in the joining gap las ⁇ sen. It can therefore also choose generous game versions for the design of the mating surface, whereby the manufacturing cost decreases advantageously.
  • the diameter of the spray nozzles used can vary as a result of the production, especially if the diameter of the spray nozzles used is variable
  • Spray nozzles are made of a hard metal such as tungsten carbide-cobalt, or a ceramic such as silicon carbide. It is particularly advantageous if, in a design of the shell in half shells, each of the half shells has an independent cooling line with its own inlet and its own outlet. This has the advantage that in both half-shells ⁇ a closed system of the cooling pipe may be provided from the inlet to the outlet, without it must come to a transition of the cooling fluid between the one half-shell and the other half shell.
  • the interior of the casing has a lining to compensate for thermal expansion differences between spray nozzle and casing.
  • the efficiency of cooling can advantageously be increased since a mechanical contact between the material of the spray nozzle and the material of the casing on the Ausklei ⁇ dung can be secured.
  • the plantelei ⁇ processing is improved when compared with a variant in which an air gap can arise depending on the thermal expansion of spray and around ⁇ sheathing.
  • the thermal expansion coefficient of the lining can advantageously also at least partially prevent the formation of stresses in the bond between the jacket and the spray nozzle so that the spray nozzle expands more than the mating surface widens due to the thermal expansion of the jacket, if the thermal coefficient of the lining is less than that of the sheath.
  • the process parameters of the spraying process should be taken into account.
  • the spray nozzle experiences a certain extent due to the heating, but in many cases lies below the thermal expansion of the shell, if this is carried out metallic.
  • the spray nozzle is heated more than the sheath, from which the heat is also dissipated by means of the cooling fluid. Whether these effects are can be compensated the same or advantageous by choosing a suitable material for the lining depends on the temperatures occurring in the appropriate application.
  • the lining may be formed as a separate component, so that it can be inserted into a gap, which forms in the provision of a rough clearance between the casing and the spray nozzle. It is also possible to form the lining as an integral part of the casing. This is then firmly connected to the interior of the casing and itself forms the mating surface for the spray nozzle. In this case, for example, a fit could be chosen which allows little play between the sheath (with integrated lining) and the spray nozzle. It would also be possible to choose a transitional fit that could even be made without playing when the entire tolerance range of the fit is utilized.
  • a particular embodiment of the invention is when the liner can also find the function of an adapter for spray nozzles with smaller diameters use.
  • a specific casing with a sufficiently large internal diameter can advantageously be manufactured in large numbers, the interior being designed for the nozzle with the largest diameter. If smaller diameter nozzles are used, the excessive gap between the mating face of the shroud and the outer wall of the nozzle in this case will be bridged with a suitable lining.
  • the inlet and the outlet are arranged at that end of the casing which lies opposite the mouth of the installed spray nozzle, that is to say it faces away from the latter.
  • This has the great advantage that the mouth of the spray nozzle by using the shroud only slightly larger in terms of their required space. he will.
  • This is of particular importance when the components to be coated with the spray nozzle itself have a complicated geometry with hard to reach zones. In these cases, the accessibility of difficult to reach regions depends directly on how far the spray nozzle can be brought to the component. This is easier with a mouth of the nozzle smaller diameter. At the same time the sheath can still be brought up to the nozzle mouth to ensure optimum cooling of the same.
  • the jacket to demje ⁇ Nigen end located on the side of the mouth of the built-in nozzle is a truncated cone is formed.
  • This ⁇ be indicated that the casing decreases in diameter toward the nozzle orifice, wherein the nozzle orifice penetrates the imaginary truncated cone on its lying on the missing tip frustoconical surface.
  • This frustoconical surface may be so- ⁇ selects that their surface area is only slightly larger than the outer diameter of the nozzle at the nozzle orifice.
  • With the nozzle mouth can be the
  • a particularly favorable design for the production is obtained when the sheath is constructed of two nested shells.
  • an inner shell is provided, in whose outer circumferential surface the volume of the cooling duct forming channels are introduced. This can be done for example by milling in the surface of the inner shell. It is also conceivable that a cast body is used.
  • an outer shell is provided which rests on the outer shell ⁇ surface of the inner shell and the cross section of the Kanä ⁇ le closes to the outside.
  • This sleeve can be made, for example, a ⁇ fold by a tubular semi-finished product.
  • at a construction of the casing, consisting of two half shells are accordingly longitudinally split pipe shells for the Au ⁇ .chale used.
  • gebil ⁇ Deten structure complex guides of the duct forming the cooling duct can be realized cost-effectively, wherein in the management of the channel, a substantial coverage of the shell can be realized with the cooling line.
  • the cooling line at least in sections, has a constant cross-section and runs in a meandering manner in the casing.
  • the spaces between the meandering parts of the cooling line are constant, so that a gleichmäßi ⁇ ges cooling profile over the circumference of the sheath can be ensured.
  • the cooling line has a meandering course, at least the rectilinear sections with a constant cross section can be readily produced.
  • the sections that run parallel to the axis of symmetry of the sheath can be formed with a constant cross-section.
  • a cooling line with a substantially constant cross-section has the advantage that the cooling fluid is transported at a uniform speed through the cooling ⁇ line and no areas of Stag ⁇ nation of the cooling fluid can form. In such areas of stagnation, the cooling performance of the jacket would otherwise be reduced.
  • the object is also achieved with a spray nozzle ⁇ arrangement, wherein in this a spray nozzle is surrounded with a cooling device of the described manner.
  • these convergent-divergent Has cross-sectional profile in particular a Kalt moussedü ⁇ se is.
  • the heating of cold spray nozzles, in particular in the area of the nozzle throat presents a problem in the use of the cold spraying method, which can be effectively achieved with the sheath according to the invention.
  • this is made of a hard metal or a ceramic made. These materials are poorly heat-conductive in comparison to many metallic materials such as copper, so that the heating inside the nozzle can not be dissipated so quickly. However, since these materials are preferably used for reasons of the wear behavior of the nozzles, nozzles which are equipped with a casing according to the invention benefit in particular from the improved cooling device.
  • FIGs 1 and 2 an embodiment of the invention
  • Spray nozzle arrangement with an embodiment of the cooling device according to the invention in longitudinal section and in cross section,
  • Figure 3 shows another embodiment of the OF INVENTION ⁇ to the invention the spray nozzle assembly with an embodiment of the invention Cooling device in half-shell design
  • Embodiment of the cooling device according to the invention in a longitudinal section, in cross section and in the representation of a development of the sheath to illustrate the course of the cooling line.
  • a spray nozzle assembly 11 has a spray nozzle 12 which is surrounded by a sheath 13.
  • the spray nozzle 12 is a cold spray nozzle with a convergent section 14 and a divergent section 15, whereby such a nozzle is capable of sufficiently accelerating the particles to be processed so that they, due to their kinetic energy, on the substrate to be coated (not shown) adhere.
  • the spray nozzle 12 can be connected by means of a flange 16 to a not shown cold ⁇ injection system.
  • Cold spraying is a method known per se, are preferably accelerated at the foreseen for the coating particles by means of the convergent-divergent nozzle 12 to supersonic speed, so that they stick to ⁇ because of their impressed kinetic energy to the surface to be coated.
  • the kinetic energy of the particles is used, which leads to a plastic deformation of the same, wherein the coating particles are melted on impact only on their surface. Therefore, this method is referred to as cold gas spraying in comparison to other thermal spraying methods, because it is carried out at comparatively low temperatures at which the coating particles remain substantially fixed.
  • a cold gas spraying system is used, the one Gas heating device for heating a gas.
  • a stagnation chamber is connected, which is connected on the output side with the convergent-divergent nozzle, preferably a Laval nozzle.
  • Convergent divergent nozzles have a converging section (convergent section 14) and a flared section (divergent section 15) connected by a nozzle throat.
  • the convergent-divergent nozzle ⁇ he attests output side a powder jet in the form of a gas stream having particles therein at high speed, preferably supersonic speed.
  • the sheath 13 according to FIG. 1 is designed in one piece, an interior 17 of the sheath being cylindrical. Since the nozzle 12 is cylindrical on the outside, the casing 13 can be easily pushed over the mouth 18 of the spray nozzle 12. The interior 17 forms with the nozzle 12 a clearance fit, which ensures a displaceability of the order ⁇ coat 13.
  • the sheath 13 is made of copper, so that a heat dissipation from the spray nozzle 12 is ensured in the acting as a heat sink sheath 13 due to the good thermal conductivity of copper.
  • the heat from the Umman- telung 13 can be effectively dissipated, the Ummante ⁇ lung on a cooling line 19, which can be supplied via an inlet 20 with cooling water as cooling fluid. After the cooling water has flowed through the cooling line 19, this is discharged via an outlet 21 again.
  • the cross section of the cooling line 19 can be taken from the cross section of the nozzle arrangement 11 in FIG.
  • the sectional plane II-II can be seen in Figure 1.
  • the cutting plane of the longitudinal ⁇ section according to Figure 1 is identified in Figure 2 by II.
  • a partition wall 22 is provided between the upper part of the cooling line 19 and its lower part in the casing, which, however, does not extend to the top of the casing, thus ends before the drawing level according to FIG 2, so that the cooling fluid within the ring cross section From the upper part of the cooling line 19 can flow into the lower part.
  • individual support columns 23 are still provided in their cross section, of which four are located behind the plane of the drawing in FIG.
  • a sheath as shown in Figures 1 and 2, could be prepared, for example by means of a selec tive ⁇ laser melting process.
  • FIG. 3 another design of the sheath 13 is shown. This has two half shells, the half saddle ⁇ le 24 can be seen in Figure 3, while the other half ⁇ cup is removed from the nozzle 12th For this reason, the nozzle 12 can also be seen in the plan view according to FIG. Moreover, one looks exactly at the impact surface of the half-shell 24, which forms a parting line 25 (see also FIG. 6) after mounting the other half-shell. Evident is also the inlet 20 and the outlet 21 for the cooling fluid.
  • the nozzle 12 also allows the convergent section 14 and the divergent section 15 to be viewed from the outside, since this nozzle was manufactured with a constant wall thickness.
  • This has the advantage that in the region of the nozzle throat between the convergent gentem and divergent section 14, 15 is no greater wall ⁇ strength of the nozzle is present, that is as 12 remains constant at the nozzle inlet and at the mouth 18, the wall thickness over the length of the spray nozzle. Since the material of the spray nozzle 12th poor thermal conductivity, this can improve the dissipation of heat from the nozzle, as well as in the area of the nozzle throat, the heat dissipation can be done as quickly as at the nozzle inlet and at the nozzle orifice 18
  • Spray nozzle has an outer side with a waist 26, the sheath 13 must be constructed of half-shells, which are separated along the extension of the nozzle. Therefore, the jacket does not need to be pushed onto the nozzle, but can be placed in the radial direction of the nozzle.
  • the envelope 13 also has two Halbscha ⁇ len 24a, 24b, wherein the parting line perpendicular to the sign ⁇ plane extends (see also Figure 6, where the section VI-VI according to Figures 4 and 5 is shown).
  • a lining 28 is provided in a gap, which arises due to the intended clearance between the spray nozzle 12 and the interior 17 of the shell.
  • This lining verbes ⁇ sert heat transfer from the injection nozzle 12 into the material of the casing 13.
  • the half-shells 24a, 24b are each an independent
  • Cooling line 19 is provided. In the sectional plane IV-IV (see Figure 6), the cooling line is cut several times, with the exact course of the cooling line 19 of Figure 5 can be seen.
  • FIG. 5 shows a development of the sheath 13. It can be thought of as if the sheath with the cylindrical surface is bent up into a plane. In this plane, then the two joints 25 can be seen as dash-dotted lines.
  • the kink in the one parting line 25 according to Figure 5 is characterized zustan- de that at the mouth 18 results in a reduction of the outer diameter of the sheath due to the conical Zu secureds the Ummante ⁇ lung.
  • the cooling line 19 has a meandering course.
  • the flow direction of the cooling fluid from the inlet 20 to the outlet 21 of the respective half-shell is indicated by arrows.
  • the cooling lines according to FIG. 4 represent sections of the portions of the cooling line running in the circumferential direction of the shell. In this way, the axially extending portions of the cooling line 19, which have a constant cross-section, connected to each other. In the region of the conical inlet of the casing 13, in the unwound representation, it appears that the cross section of the cooling pipe 19 is larger. However, this is not the case, how ⁇ Fi can be found gur 4 easily, since the reduction of the
  • Diameter must be compensated in the conical region, that the cooling line is wider in the axial direction.
  • the cooling line 19 with its sections in cross-section in the casing 13 are all the same. These have a rectangular cross section, which are produced by generating milling grooves in an inner shell 29. Since the grooves of the outside ⁇ fen are radially, it is necessary that the inner shells 30 of the upper half-shell 24a and the lower half shell 24b are sealed respectively by outer shells 30th A connection of the joints can be done by soldering or gluing. However, this fluid connection is required only in the areas of the joints that must be sealed to the outside. The contact surface of the webs located between the grooves 31 to the outer shell 30 need not be materially connected, since a slight leakage between adjacent portions of the conduit 19 can be accepted.
  • the structure of inner shell 29 and outer shell 30 can be seen from Figure 4.

Landscapes

  • Nozzles (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

Die Erfindung betrifft eine Kühlvorrichtung für eine Spritzdüse (12), insbesondere für das Kaltgasspritzen sowie eine Spritzdüsenanordnung, die mit einer solchen Kühlvorrichtung ausgestattet ist. Die Spritzdüse (12) ist mit einer die Kühlvorrichtung bildenden Ummantelung (13) umgeben, wobei erfindungsgemäß vorgesehen ist, dass eine Kühlleitung (19) innerhalb der Ummantelung ein geschlossenes System ausbildet, welches über einen Einlass (20) und einen Auslass (21) mit einem Kühlmedium versorgt werden kann. Das Kühlmedium kommt vorteilhaft daher nicht mit der Spritzdüse (12) in Kontakt, die mittels einer Spielpassung (17) in einer Aufnahmeöffnung der Ummantelung eingefügt ist. Vorteilhaft kann die Ummantelung auch kegelförmig spitz zur Mündung (18) der Spritzdüse (12) zulaufen, so dass mittels der erfindungsgemäßen Spritzdüsenanordnung (11) auch Beschichtungen an schwer zugänglichen Bauteilen angebracht werden können.

Description

Beschreibung
Kühlvorrichtung für eine Spritzdüse bzw. Spritzdüsenanordnung mit einer Kühlvorrichtung für das thermische Spritzen
Die Erfindung betrifft eine Kühlvorrichtung für eine für das thermische Spritzen geeignete Spritzdüse (im Folgenden auch kurz Düse genannt) . Außerdem betrifft die Erfindung eine Spritzdüsenanordnung mit einer solchen Kühlvorrichtung, in die eine Spritzdüse eingebaut ist. Die Kühlvorrichtung ist als Ummantelung ausgeführt, wobei die Spritzdüse in deren In¬ nenraum angeordnet werden kann. Die Kühlvorrichtung weist außerdem einen Einlass und einen Auslass für ein Kühlfluid auf, mit dem die Kühlvorrichtung betrieben werden kann. Dieses Kühlfluid kann flüssig (beispielsweise Wasser) oder gasförmig (beispielsweise Luft) sein.
Eine Kühlvorrichtung bzw. Spritzdüsenanordnung der eingangs angegebenen Art ist bekannt. Beispielsweise bietet die Firma Sulzer Metco für das Kaltgasspritzen unter dem geschützten
Handelsnamen „Kinetics 4000 Cold Spray Gun" eine Spritzdüsenanordnung an, bei der die Spritzdüse mit einem Rohr umgeben ist. Zwischen der Spritzdüse und dem Rohr entsteht ein Ringspalt, durch den Kühlluft geleitet werden kann, welche von einem Einlass am konvergenten Teil der Düse zu einem Auslass an der Düsenmündung strömt. Die Kühlluft überstreicht dabei direkt die Außenseite der Spritzdüse, wobei die Aufnahmekapa- zität des gasförmigen Kühlmediums für die aus der Spritzdüse abgeleiteten Wärme vergleichsweise begrenzt ist.
Die Aufgabe der Erfindung besteht darin, eine Kühlvorrichtung für eine Spritzdüse zum thermischen Spritzen bzw. eine
Spritzdüsenanordnung mit einer solchen Kühlvorrichtung anzugeben, mit der eine effektive Kühlung der Spritzdüse möglich ist, ohne dass Einschränkungen für die Sicherheit oder Viel¬ seitigkeit des Betriebs der Kaltspritzdüse hingenommen werden müssen . Diese Aufgabe wird mit der eingangs angegebenen Kühlvorrich¬ tung erfindungsgemäß dadurch gelöst, dass der Innenraum der Ummantelung als Passfläche ausgeführt ist, welche sich zumin¬ dest über einen wesentlichen Teil der Längsausdehnung der Um- mantelung erstreckt, wobei sich bei der Montage der Spritzdü¬ se im Innenraum eine Passung zwischen der Spritzdüse und der Ummantelung ausbildet. Diese Maßnahme bewirkt vorteilhaft, dass die Spritzdüse in die Ummantelung eingepasst werden kann und ein direkter Wärmeübergang zwischen dem Material der Spritzdüse und dem Material der Ummantelung erfolgen kann. Hierbei kann vorteilhaft für die Ummantelung ein Material ausgewählt werden, das einerseits eine gute Wärmeableitung gewährleistet und andererseits eine hohe Wärmekapazität auf¬ weist. Es eignen sich insbesondere metallische Werkstoffe, wobei Kupfer das bevorzugte Material darstellt. Dieses verei¬ nigt die oben angegebenen Anforderungen mit einem günstigen Anschaffungspreis und einer guten Verarbeitbarkeit . Durch Einlegen der Spritzdüse in die Ummantelung erhält man die erfindungsgemäße Spritzdüsenanordnung. Die und im Folgenden be- schriebenen Weiterbildungen und Vorteile gelten für die erfindungsgemäße Kühlvorrichtung und Spritzdüsenanordnung gleichermaßen, da die die Kühlvorrichtung einen Bestandteil der Spritzdüsenanordnung bildet. Die Erstreckung der Passfläche der Ummantelung zumindest über einen wesentlichen Teil der Längenausdehnung der Ummantelung gewährleistet, dass eine genügende Fläche für einen Wärme¬ übergang von der eingebauten Spritzdüse zur Ummantelung zur Verfügung steht. Als wesentlicher Teil im Sinne der Erfindung wird ein Längenanteil von mehr als zwei Dritteln verstanden. Bevorzugt sollte der Längenanteil 90 bis 100 % der Länge der Ummantelung haben. Außerdem ist es vorteilhaft, wenn auch die Länge der Ummantelung im Verhältnis zur Länge der auch einzu¬ bettenden Spritzdüse ebenfalls einen guten Wärmeübergang be- günstigt. Dies ist der Fall, wenn die Ummantelung einen we¬ sentlichen Teil der Spritzdüse abdeckt, also mindestens zwei Drittel der Länge, bevorzugt sogar 90 bis 100 % der Länge. Da eine Kühlung des Materials der Spritzdüse erfindungsgemäß durch einen Wärmeübergang in das Material der Ummantelung erfolgt, ist es vorteilhaft möglich, ein Kühlfluid nun zur in¬ direkten Kühlung der Spritzdüse einzusetzen. Dies wird erfin- dungsgemäß dadurch erreicht, dass in der Ummantelung eine Kühlleitung vorgesehen ist, die einen geschlossenen Querschnitt aufweist und den Einlass mit dem Auslass verbindet. Auf diese Weise entsteht vorteilhaft ein abgeschlossenes Sys¬ tem, welches sich am Einlass und am Auslass vorteilhaft mit gebräuchlichen Mitteln zuverlässig abdichten lässt. Da die Kühlleitung innerhalb der Ummantelung geschlossen ist, also keine Wandanteile der Kühlleitung durch die Oberfläche der Spritzdüse gebildet werden, kann es an der Übergangsstelle zwischen Ummantelung und Spritzdüse nicht zu Leckagen kommen. Deswegen ist es möglich, beispielsweise flüssige Kühlfluide ohne Zugeständnisse an die Prozesssicherheit zu verwenden, mit denen sich eine wesentlich höhere Kühlleistung erbringen lässt. Auch ist es möglich, ein gasförmiges Fluid zu verwen¬ den, welches unter einem höheren Druck steht. Auch hierdurch lässt sich die Kühlleistung vorteilhaft erhöhen.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist vorgesehen, dass die Ummantelung aus zwei Halbschalen aufgebaut ist, wobei eine Trennfuge zwischen den Halbschalen in Richtung der Längsausdehnung der Ummantelung verläuft. Dies bedeutet, dass sich die Ummantelung vorteilhaft auseinander¬ nehmen lässt, wodurch die Spritzdüse auf einfache Weise in die Ummantelung eingelegt werden kann. Anschließend wird die Ummantelung wieder verschlossen. Vorteilhaft hierbei ist, dass sich Fertigungstoleranzen beispielsweise durch Verwendung eines Füllmaterials im Fügespalt besser ausgleichen las¬ sen. Es lassen sich daher auch großzügige Spielfassungen für die Gestaltung der Passfläche wählen, wodurch der Fertigungsaufwand vorteilhaft sinkt. Hierbei ist auch zu berücksichti- gen, dass der Durchmesser der verwendeten Spritzdüsen herstellungsbedingt variieren kann, insbesondere wenn die
Spritzdüsen aus einem Hartmetall, wie Wolframcarbid-Kobalt , oder einer Keramik, wie Siliziumcarbid, hergestellt werden. Besonders vorteilhaft ist es, wenn bei einer Gestaltung der Ummantelung in Halbschalen jede der Halbschalen eine unabhängige Kühlleitung mit einem eigenen Einlass und einem eigenen Auslass aufweist. Dies hat den Vorteil, dass in beiden Halb¬ schalen ein geschlossenes System der Kühlleitung vom Einlass zum Auslass vorgesehen werden kann, ohne dass es zu einer Überleitung des Kühlfluids zwischen der einen Halbschale und der anderen Halbschale kommen muss.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung kann vorgesehen werden, dass der Innenraum der Ummantelung eine Auskleidung zum Ausgleich von Wärmedehnungsunterschieden zwischen Spritzdüse und Ummantelung aufweist. Hier- durch kann vorteilhaft die Effizienz der Kühlung gesteigert werden, da ein mechanischer Kontakt zwischen dem Material der Spritzdüse und dem Material der Ummantelung über die Ausklei¬ dung sichergestellt werden kann. Hierbei wird die Wärmelei¬ tung verbessert, wenn man dies mit einer Variante vergleicht, wo in Abhängigkeit der Wärmedehnungen von Spritzdüse und Um¬ mantelung ein Luftspalt entstehen kann. Andererseits kann über den Wärmedehnungskoeffizienten der Auskleidung vorteilhaft auch zumindest teilweise verhindert werden, dass in dem Verband zwischen Ummantelung und Spritzdüse dadurch Spannun- gen entstehen, dass sich die Spritzdüse stärker ausdehnt als sich die Passfläche aufgrund der Wärmedehnung der Ummantelung aufweitet, wenn der Wärmekoeffizient der Auskleidung geringer ist, als derjenige der Ummantelung. Bei der Auslegung von der Ummantelung und evtl. der Auskleidung sind die Prozessparameter des ablaufenden Spritzverfahrens zu berücksichtigen. Einerseits erfährt die Spritzdüse aufgrund der Erwärmung eine gewisse Ausdehnung, die jedoch in vielen Fällen unterhalb der Wärmedehnung der Ummantelung liegt, wenn diese metallisch ausgeführt ist. Allerdings ist auch zu berücksichtigen, dass sich die Spritzdüse stärker erwärmt als die Ummantelung, aus der die Wärme überdies mittels des Kühlfluids abgeleitet wird. Ob sich diese Effekte aus- gleichen oder vorteilhaft durch Wahl eines geeigneten Materials für die Auskleidung kompensiert werden können, hängt von den auftretenden Temperaturen im entsprechenden Einsatzfall ab .
Die Auskleidung kann als eigenes Bauteil ausgebildet sein, so dass dieses in einen Zwischenraum eingelegt werden kann, welcher sich bei dem Vorsehen einer groben Spielpassung zwischen der Ummantelung und der Spritzdüse ausbildet. Es ist auch möglich, die Auskleidung als festen Bestandteil der Ummantelung auszubilden. Diese ist dann fest mit dem Innenraum der Ummantelung verbunden und bildet selbst die Passfläche für die Spritzdüse. In diesem Fall könnte beispielsweise eine Passung gewählt werden, welche nur wenig Spiel zwischen der Ummantelung (mit integrierter Auskleidung) und der Spritzdüse zulässt. Auch könnte eine Übergangspassung gewählt werden, die bei Ausnutzung des gesamten Toleranzbereichs der Passung sogar ohne Spiel ausgeführt sein könnte. Eine besondere Ausgestaltung der Erfindung liegt vor, wenn die Auskleidung auch die Funktion eines Adapters für Spritzdüsen mit geringeren Durchmessern Verwendung finden kann. Hierbei ist die Entstehung eines Baukastens denkbar. Eine be¬ stimmte Ummantelung mit einem genügend großen Innendurchmes- ser kann vorteilhaft in großer Stückzahl gefertigt werden, wobei der Innenraum auf die Düse mit dem größten Durchmesser ausgelegt wird. Werden Spritzdüsen mit kleinerem Durchmesser verwendet, so wird der in diesem Fall entstehende zu große Zwischenraum zwischen der Passfläche der Ummantelung und der Außenwand der Düse mit einer geeigneten Auskleidung überbrückt .
Besonders vorteilhaft ist es, wenn der Einlass und der Aus- lass an demjenigen Ende der Ummantelung angeordnet sind, wel- ches der Mündung der eingebauten Spritzdüse gegenüberliegt, also dieser abgewandt ist. Dies hat den großen Vorteil, dass die Mündung der Spritzdüse durch Verwendung der Ummantelung hinsichtlich ihres benötigten Bauraums nur unwesentlich grö- ßer wird. Dies ist vorrangig dann von Bedeutung, wenn die Bauteile, die mit der Spritzdüse beschichtet werden sollen, selbst eine komplizierte Geometrie mit schwer zugänglichen Zonen aufweist. In diesen Fällen hängt die Erreichbarkeit der schwer erreichbaren Regionen direkt davon ab, wie weit die Spritzdüse an das Bauteil herangeführt werden kann. Dies ist mit einer Mündung der Spritzdüse mit kleinerem Durchmesser einfacher möglich. Gleichzeitig kann die Ummantelung dennoch bis an die Düsenmündung herangeführt werden, um eine optimale Kühlung derselben zu gewährleisten.
Besonders vorteilhaft ist es, wenn die Ummantelung an demje¬ nigen Ende, das auf der Seite der Mündung der eingebauten Spritzdüse liegt, kegelstumpfförmig ausgebildet ist. Dies be¬ deutet, dass die Ummantelung in ihrem Durchmesser zur Düsenmündung hin abnimmt, wobei die Düsenmündung den gedachten Kegelstumpf auf seiner an der fehlenden Spitze liegenden Kegelstumpffläche durchdringt. Diese Kegelstumpffläche kann so ge¬ wählt werden, dass ihr Flächeninhalt nur unwesentlich größer ist, als der Außendurchmesser der Spritzdüse an der Düsenmündung. Vorteilhaft wird hierdurch die Handhabbarkeit der
Spritzdüsenanordnung mit der ummantelten Düse nur unwesentlich eingeschränkt. Mit der Düsenmündung lässt sich die
Spritzdüse trotz der Ummantelung nah an das zu beschichtende Werkstück annähern, auch wenn der Winkel der Symmetrieachse der Düse zur zu beschichtenden Oberfläche ungleich 90° ist.
Eine besonders günstige Ausführung für die Fertigung erhält man, wenn die Ummantelung aus zwei ineinanderliegenden Scha- len aufgebaut ist. Dabei ist eine Innenschale vorgesehen, in deren äußere Mantelfläche das Volumen der Kühlleitung bildende Kanäle eingebracht sind. Dies kann beispielsweise durch Fräsen in die Oberfläche der Innenschale erfolgen. Auch ist es denkbar, dass ein Gusskörper zur Anwendung kommt. Außerdem ist eine Außenschale vorgesehen, die auf der äußeren Mantel¬ fläche der Innenschale aufliegt und den Querschnitt der Kanä¬ le nach außen schließt. Diese Hülse kann beispielsweise ein¬ fach durch ein rohrförmiges Halbzeug hergestellt werden. Bei einem Aufbau der Ummantelung, bestehend aus zwei Halbschalen, kommen dementsprechend längs geteilte Rohrschalen für die Au¬ ßenschale zum Einsatz. Mit dem erfindungsgemäß weiter gebil¬ deten Aufbau können kostengünstig komplexe Führungen des die Kühlleitung bildenden Kanals verwirklicht werden, wobei bei der Führung des Kanals eine weitgehende Abdeckung der Ummantelung mit der Kühlleitung realisiert werden kann.
Zum Beispiel ist es möglich, dass die Kühlleitung zumindest abschnittsweise einen konstanten Querschnitt aufweist und in der Ummantelung meanderförmig verläuft. Dabei sind idealerweise die Zwischenräume zwischen den meanderförmig verlaufenden Teilen der Kühlleitung konstant, so dass ein gleichmäßi¬ ges Kühlprofil über den Umfang der Ummantelung gewährleistet werden kann. Wenn die Kühlleitung einen meanderförmigen Verlauf aufweist, sind zumindest die geradlinigen Abschnitte mit einem konstanten Querschnitt ohne Weiteres herstellbar. Bevorzugt die Abschnitte, die parallel zur Symmetrieachse der Ummantelung laufen, können mit einem konstanten Querschnitt ausgebildet sein. An den Stellen, wo ein Richtungswechsel der Kühlleitung in Umfangsrichtung der Ummantelung erfolgt, können Querschnittssprünge in Anbetracht einer einfacheren Fer¬ tigung hingenommen werden. Eine Kühlleitung mit einem weitgehend konstanten Querschnitt hat den Vorteil, dass das Kühl- fluid mit einer gleichmäßigen Geschwindigkeit durch die Kühl¬ leitung transportiert wird und sich keine Bereiche der Stag¬ nation des Kühlfluids ausbilden können. In solchen Bereichen einer Stagnation wäre die Kühlleistung der Ummantelung ansonsten vermindert.
Erfindungsgemäß wird die Aufgabe auch mit einer Spritzdüsen¬ anordnung gelöst, wobei bei dieser eine Spritzdüse mit einer Kühlvorrichtung der beschriebenen Weise umgeben ist. Die mit der verwendeten Kühlvorrichtung verbundenen Vorteile sind be- reits ausführlich erläutert worden.
Gemäß einer vorteilhaften Ausgestaltung der Spritzdüsenanordnung ist vorgesehen, dass diese einen konvergent-divergenten Querschnittsverlauf aufweist, insbesondere eine Kaltspritzdü¬ se ist. Die Erwärmung von Kaltspritzdüsen, insbesondere im Bereich der Düsenkehle, stellt ein Problem bei der Anwendung des Kaltspritzverfahrens dar, welches mit der erfindungsgemä- ßen Ummantelung wirksam gelöst werden kann. Gleichzeitig leidet hierbei, wie bereits erläutert, nicht die vielseitige An¬ wendbarkeit der Kaltspritzvorrichtung, insbesondere, wenn die Ummantelung im Bereich der Düsenmündung den Durchmesser der Düse nur wenig vergrößert und Zuflüsse und Abflüsse der Kühl- Vorrichtung (für das Kühlfluid) an dem der Düsenmündung abgewandten Ende der Kühlvorrichtung angebracht sind.
Gemäß einer anderen Ausgestaltung der Erfindung ist vorgesehen, dass diese aus einem Hartmetall oder einer Keramik ge- fertigt ist. Diese Materialien sind im Vergleich vielen metallischen Materialien wie zum Beispiel Kupfer schlecht wärmeleitend, so dass die Erwärmung im Inneren der Düse nicht so schnell abgeleitet werden kann. Da diese Materialien aber aus Gründen des Verschleißverhaltens der Düsen bevorzugt verwen- det werden, profitieren Düsen, die mit einer erfindungsgemäßen Ummantelung ausgestattet werden, in besonderer Weise von der verbesserten Kühlvorrichtung.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszei¬ chen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen :
Figur 1 und 2 ein Ausführungsbeispiel der erfindungsgemäßen
Spritzdüsenanordnung mit einem Ausführungsbeispiel der erfindungsgemäßen Kühlvorrichtung im Längsschnitt und im Querschnitt,
Figur 3 ein anderes Ausführungsbeispiel der erfin¬ dungsgemäßen Spritzdüsenanordnung mit einem Ausführungsbeispiel der erfindungsgemäßen Kühlvorrichtung in Halbschalen-Bauweise
Aufsicht im geöffneten Zustand und
Figur 4 bis 6 ein weiteres Ausführungsbeispiel der erfin- dungsgemäßen Spritzdüsenanordnung mit einem
Ausführungsbeispiel der erfindungsgemäßen Kühlvorrichtung im Längsschnitt, im Querschnitt und in der Darstellung einer Abwicklung der Ummantelung zur Darstellung des Ver- laufs der Kühlleitung.
Eine Spritzdüsenanordnung 11 weist eine Spritzdüse 12 auf, die von einer Ummantelung 13 umgeben ist. Bei der Spritzdüse 12 handelt es sich um eine Kaltspritzdüse mit einem konver- genten Abschnitt 14 und einem divergenten Abschnitt 15, wobei eine solche Düse geeignet ist, die zu verarbeitenden Partikel genügend stark zu beschleunigen, damit diese aufgrund ihrer kinetischen Energie auf dem zu beschichtenden Substrat (nicht dargestellt) haften bleiben. Die Spritzdüse 12 kann mit Hilfe eines Flansches 16 an eine nicht näher dargestellte Kalt¬ spritzanlage angeschlossen werden.
Das Kaltgasspritzen ist ein an sich bekanntes Verfahren, bei dem für die Beschichtung vorgesehene Partikel mittels der konvergent-divergenten Spritzdüse 12 vorzugsweise auf Überschallgeschwindigkeit beschleunigt werden, damit diese auf¬ grund ihrer eingeprägten kinetischen Energie auf der zu beschichtenden Oberfläche haften bleiben. Hierbei wird die kinetische Energie der Teilchen genutzt, welche zu einer plas- tischen Verformung derselben führt, wobei die Beschichtungs- partikel beim Auftreffen lediglich an ihrer Oberfläche aufgeschmolzen werden. Deshalb wird dieses Verfahren im Vergleich zu anderen thermischen Spritzverfahren als Kaltgasspritzen bezeichnet, weil es bei vergleichsweise tiefen Tem- peraturen durchgeführt wird, bei denen die Beschichtungspar- tikel im Wesentlichen festbleiben. Vorzugsweise wird zum Kaltgasspritzen, welches auch als kinetisches Spritzen bezeichnet wird, eine Kaltgasspritzanlage verwendet, die eine Gasheizeinrichtung zum Erhitzen eines Gases aufweist. An die Gasheizeinrichtung wird eine Stagnationskammer angeschlossen, die ausgangsseitig mit der konvergent-divergenten Düse, vorzugsweise einer Lavaldüse verbunden wird. Konvergent- divergente Düsen weisen einen zusammenlaufenden Teilabschnitt (konvergenter Abschnitt 14) sowie einen sich aufweitenden Teilabschnitt (divergenter Abschnitt 15) auf, die durch einen Düsenhals verbunden sind. Die konvergent-divergente Düse er¬ zeugt ausgangsseitig einen Pulverstrahl in Form eines Gas- Stroms mit darin befindlichen Partikeln mit hoher Geschwindigkeit, vorzugsweise Überschallgeschwindigkeit.
Die Ummantelung 13 gemäß Figur 1 ist einteilig ausgeführt, wobei ein Innenraum 17 der Ummantelung zylindrisch ausgebil- det ist. Da auch die Düse 12 außen zylindrisch ist, kann die Ummantelung 13 einfach über die Mündung 18 der Spritzdüse 12 geschoben werden. Der Innenraum 17 bildet dabei mit der Düse 12 eine Spielpassung aus, die eine Verschiebbarkeit der Um¬ mantelung 13 gewährleistet.
Die Ummantelung 13 ist aus Kupfer hergestellt, so dass eine Wärmeableitung aus der Spritzdüse 12 in die als Kühlkörper wirkende Ummantelung 13 aufgrund der guten Wärmeleitfähigkeit von Kupfer gewährleistet ist. Damit die Wärme aus der Umman- telung 13 wirksam abgeführt werden kann, weist die Ummante¬ lung eine Kühlleitung 19 auf, die über einen Einlass 20 mit Kühlwasser als Kühlfluid versorgt werden kann. Nachdem das Kühlwasser die Kühlleitung 19 durchströmt hat, wird dieses über einen Auslass 21 wieder abgeführt.
Der Querschnitt der Kühlleitung 19 ist dem Querschnitt der Düsenanordnung 11 in Figur 2 zu entnehmen. Die Schnittebene II-II ist in Figur 1 zu erkennen. Die Schnittebene des Längs¬ schnitts gemäß Figur 1 ist in Figur 2 mit I-I gekennzeichnet.
Zu erkennen ist, dass der Kühlkanal 19, der vom Einlass 20 kommt, die ganze obere Hälfte des ringförmigen Querschnitts der Ummantelung 13 einnimmt. In der unteren Hälfte dieses Querschnitts verläuft die Kühlleitung zum Auslass 21. Auf diese Weise wird sichergestellt, dass das Kühlfluid im oberen Teil der Kühlleitung bis zur Spitze der Ummantelung 13, d. h. dem an der Mündung 18 der Spritzdüse 12 liegenden Ende, ge- führt wird und eine Kühlung auf der gesamten Länge der Ummantelung 13 gewährleistet ist. Hierzu ist zwischen dem oberen Teil der Kühlleitung 19 und deren unteren Teil in der Ummantelung eine Trennwand 22 vorgesehen, die allerdings nicht bis in die Spitze der Ummantelung reicht, also vor der Zeichen- ebene gemäß Figur 2 endet, so dass das Kühlfluid innerhalb des Ringquerschnitts vom oberen Teil der Kühlleitung 19 in den unteren Teil fließen kann.
Um die Kühlleitung zu stabilisieren, sind in deren Quer- schnitt weiterhin einzelne Stützsäulen 23 vorgesehen, von denen in Figur 2 vier hinter der Zeichenebene liegende zu erkennen sind. Eine Ummantelung, wie in den Figuren 1 und 2 dargestellt, ließe sich beispielsweise mit Hilfe eines selek¬ tiven Laserschmelzverfahrens herstellen.
In Figur 3 ist eine andere Bauform der Ummantelung 13 dargestellt. Diese weist zwei Halbschalen auf, wobei die Halbscha¬ le 24 in Figur 3 zu erkennen ist, während die andere Halb¬ schale von der Düse 12 entfernt ist. Deswegen ist die Düse 12 in der Aufsicht gemäß Figur 3 auch zu erkennen. Man blickt überdies genau auf die Stoßfläche der Halbschale 24, die nach Montage der anderen Halbschale eine Trennfuge 25 (vgl. auch Figur 6) ausbildet. Zu erkennen ist auch der Einlass 20 und der Auslass 21 für das Kühlfluid.
Der Düse 12 lässt sich der konvergente Abschnitt 14 und der divergente Abschnitt 15 auch von außen ansehen, da diese Düse mit einer konstanten Wandstärke hergestellt wurde. Dies hat den Vorteil, dass im Bereich der Düsenkehle zwischen konver- gentem und divergentem Abschnitt 14, 15 keine größere Wand¬ stärke der Düse vorliegt, als am Düseneintritt und an der Mündung 18, die Wandstärke über die Länge der Spritzdüse 12 also konstant bleibt. Da das Material der Spritzdüse 12 schlecht wärmeleitend ist, kann hierdurch die Ableitung der Wärme aus der Düse verbessert werden, da auch im Bereich der Düsenkehle die Wärmeableitung genauso schnell erfolgen kann wie am Düseneintritt und an der Düsenmündung 18. Da die
Spritzdüse eine Außenseite mit einer Taille 26 aufweist, muss die Ummantelung 13 aus Halbschalen aufgebaut sein, die längs der Ausdehnung der Düse getrennt sind. Die Ummantelung braucht deswegen nicht auf die Düse aufgeschoben zu werden, sondern kann in radialer Richtung auf die Düse aufgesetzt werden.
Gemäß Figur 4 weist die Umhüllung 13 ebenfalls zwei Halbscha¬ len 24a, 24b auf, wobei die Trennfuge senkrecht zur Zeichen¬ ebene verläuft (vgl. auch Figur 6, wo der Schnitt VI-VI gemäß Figuren 4 und 5 dargestellt ist) . Nach dem Zusammensetzen der Ummantelung 13 aus den Halbschalen 24a, 24b werden diese mit Hilfe von Klemmringen 27 zusammengehalten. In einem Zwischenraum, der aufgrund der vorgesehenen Spielpassung zwischen der Spritzdüse 12 und dem Innenraum 17 der Ummantelung entsteht, ist eine Auskleidung 28 vorgesehen. Diese kann beispielsweise aus einer Aluminiumfolie bestehen. Diese Auskleidung verbes¬ sert den Wärmeübergang von der Spritzdüse 12 in das Material der Ummantelung 13. In den Halbschalen 24a, 24b ist jeweils eine unabhängige
Kühlleitung 19 vorgesehen. In der Schnittebene IV-IV (vgl. Figur 6) wird die Kühlleitung mehrfach geschnitten, wobei sich der genaue Verlauf der Kühlleitung 19 der Figur 5 entnehmen lässt. Die Figur 5 stellt eine Abwicklung der Ummante- lung 13 dar. Man kann sich das so vorstellen, als ob die Ummantelung mit der zylindrischen Mantelfläche in eine Ebene aufgebogen wird. In dieser Ebene sind dann die beiden Trennfugen 25 als strichpunktierte Linien zu erkennen. Der Knick in der einen Trennfuge 25 gemäß Figur 5 kommt dadurch zustan- de, dass sich aufgrund des konischen Zulaufens der Ummante¬ lung an der Mündung 18 eine Verringerung des Außendurchmessers der Ummantelung ergibt. Wie sich der Figur 5 entnehmen lässt, hat die Kühlleitung 19 einen meandernden Verlauf. Die Flussrichtung des Kühlfluids vom Einlass 20 zum Auslass 21 der jeweiligen Halbschale ist durch Pfeile angedeutet. Zu erkennen ist dabei, dass die Kühlleitungen gemäß Figur 4 Schnitte der in Umfangsrichtung der Ummantelung verlaufenden Anteile der Kühlleitung darstellen. Auf diese Weise werden die axial verlaufenden Anteile der Kühlleitung 19, die einen konstanten Querschnitt aufweisen, miteinander verbunden. Im Bereich des konischen Zulau- fens der Ummantelung 13 hat es in der abgewickelten Darstellung den Anschein, als ob der Querschnitt der Kühlleitung 19 größer sei. Dies ist allerdings nicht der Fall, wie sich Fi¬ gur 4 unschwer entnehmen lässt, da die Verringerung des
Durchmessers im konischen Bereich dadurch ausgeglichen werden muss, dass die Kühlleitung in axialer Richtung breiter ist.
Der Figur 6 lässt sich entnehmen, dass die Kühlleitung 19 mit ihren Abschnitten im Querschnitt in der Ummantelung 13 alle gleich gewählt sind. Diese weisen einen rechteckigen Quer- schnitt auf, der durch Erzeugen von Fräsnuten in einer Innenschale 29 erzeugt werden. Da die Nuten nach radial außen of¬ fen sind, ist es erforderlich, dass die Innenschalen 30 der oberen Halbschale 24a und der unteren Halbschale 24b jeweils durch Außenschalen 30 verschlossen werden. Eine Verbindung der Stoßstellen kann durch Löten oder Kleben erfolgen. Erforderlich ist diese Stoffflüssige Verbindung allerdings nur in den Bereichen der Stoßstellen, die nach außen abgedichtet werden müssen. Die Berührungsfläche der zwischen den Nuten befindlichen Stege 31 zu der Außenschale 30 müssen nicht stoffschlüssig verbunden werden, da eine geringfügige Leckage zwischen benachbarten Abschnitten der Leitung 19 hingenommen werden kann. Der Aufbau aus Innenschale 29 und Außenschale 30 lässt sich aus Figur 4 entnehmen.

Claims

Patentansprüche
1. Kühlvorrichtung für eine für das thermische Spritzen geeignete Spritzdüse (12), wobei
- die Kühlvorrichtung als Ummantelung (13) ausgeführt ist, in deren Innenraum (17) die Spritzdüse (12) angeordnet werden kann,
- die Kühlvorrichtung einen Einlass (20) und einen Auslass
(21) für ein Kühlfluid aufweist
d a d u r c h g e k e n n z e i c h n e t,
dass
- der Innenraum (17) der Ummantelung als Passfläche ausgeführt ist, welche sich zumindest über einen wesentlichen Teil der Längsausdehnung der Ummantelung (13) erstreckt, wobei sich bei Montage der Spritzdüse (12) im Innenraum
(17) eine Passung zwischen der Spritzdüse (12) und der Ummantelung (13) ausbildet und
- in der Ummantelung (13) eine Kühlleitung (19) vorgesehen ist, die einen geschlossenen Querschnitt aufweist und den Einlass (20) mit dem Auslass (21) verbindet.
2. Kühlvorrichtung nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t,
dass die Ummantelung aus zwei Halbschalen (24a, 24b) aufge- baut ist, wobei eine Trennfuge (25) zwischen den Halbschalen in Richtung der Längenausdehnung der Ummantelung verläuft.
3. Kühlvorrichtung nach Anspruch 2,
d a d u r c h g e k e n n z e i c h n e t,
dass jede der Halbschalen (24a, 24b) eine unabhängige Kühl¬ leitung (19) mit einen eigenen Einlass (20) und einem eigenen Auslass (21) aufweist.
4. Kühlvorrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t,
dass der Innenraum (17) der Ummantelung (13) eine Auskleidung (28) zum Ausgleich von Wärmedehnungsunterschieden zwischen Spritzdüse (12) und Ummantelung (13) aufweist.
5. Kühlvorrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t,
dass der Innenraum (17) der Ummantelung (13) eine Auskleidung als Adapter für Spritzdüsen (12) mit geringeren Durchmessern aufweist .
6. Kühlvorrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t,
dass der Einlass (20) und der Auslass (21) an demjenigen Ende der Ummantelung (17) angeordnet sind, das der Mündung der eingebauten Spritzdüse (12) gegenüber liegt.
7. Kühlvorrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t,
dass die Ummantelung (17) an demjenigen Ende, das auf der Seite der Mündung der eingebauten Spritzdüse liegt, kegel¬ stumpfförmig ausgebildet ist.
8. Kühlvorrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t,
dass die Ummantelung aus zwei ineinander liegenden Schalen aufgebaut ist, einer Innenschale (29) in deren äußere Mantel¬ fläche das Volumen der Kühlleitung (19) bildende Kanäle ein- gebracht sind und einer Außenschale (30), die auf der äußeren Mantelfläche der Innenschale aufliegt und den Querschnitt der Kanäle nach außen hin schließt.
9. Kühlvorrichtung nach einem der voranstehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t,
dass die Kühlleitung zumindest abschnittsweise einen konstan¬ ten Querschnitt aufweist und in der Ummantelung mäanderförmig verläuft .
10. Spritzdüsenanordnung mit einer Kühlvorrichtung, wobei
- die Kühlvorrichtung als Ummantelung (13) ausgeführt ist, in deren Innenraum (17) eine Spritzdüse (12) angeordnet ist, - die Kühlvorrichtung einen Einlass (20) und einen Auslass
(21) für ein Kühlfluid aufweist
d a d u r c h g e k e n n z e i c h n e t,
dass
- der Innenraum (17) der Ummantelung als Passfläche +16 ausgeführt ist, welche sich zumindest über einen wesent¬ lichen Teil der Längsausdehnung der Ummantelung (13) erstreckt, wobei sich im Innenraum (17) eine Passung zwischen der Spritzdüse (12) und der Ummantelung (13) ausbildet und
- in der Ummantelung (13) eine Kühlleitung (19) vorgesehen ist, die einen innerhalb der Ummantelung geschlossenen Querschnitt aufweist und den Einlass (20) mit dem Aus¬ lass (21) verbindet.
11. Spritzdüsenanordnung nach Anspruch 10,
d a d u r c h g e k e n n z e i c h n e t,
dass diese einen konvergent-divergenten Querschnittsverlauf aufweist, insbesondere eine Kaltspritzdüse ist.
12. Spritzdüsenanordnung nach einem der Ansprüche 10 oder 11 d a d u r c h g e k e n n z e i c h n e t,
dass diese aus einem Hartmetall oder einer Keramik gefertigt ist .
EP15707933.6A 2014-03-21 2015-03-03 Kühlvorrichtung für eine spritzdüse bzw. spritzdüsenanordnung mit einer kühlvorrichtung für das thermische spritzen Active EP3102335B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014205343.9A DE102014205343A1 (de) 2014-03-21 2014-03-21 Kühlvorrichtung für eine Spritzdüse bzw. Spritzdüsenanordnung mit einer Kühlvorrichtung für das thermische Spritzen
PCT/EP2015/054404 WO2015139948A1 (de) 2014-03-21 2015-03-03 Kühlvorrichtung für eine spritzdüse bzw. spritzdüsenanordnung mit einer kühlvorrichtung für das thermische spritzen

Publications (2)

Publication Number Publication Date
EP3102335A1 true EP3102335A1 (de) 2016-12-14
EP3102335B1 EP3102335B1 (de) 2019-06-12

Family

ID=52627204

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15707933.6A Active EP3102335B1 (de) 2014-03-21 2015-03-03 Kühlvorrichtung für eine spritzdüse bzw. spritzdüsenanordnung mit einer kühlvorrichtung für das thermische spritzen

Country Status (7)

Country Link
US (1) US10166558B2 (de)
EP (1) EP3102335B1 (de)
CN (1) CN106061621B (de)
CA (1) CA2943226C (de)
DE (1) DE102014205343A1 (de)
DK (1) DK3102335T3 (de)
WO (1) WO2015139948A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014205343A1 (de) 2014-03-21 2015-09-24 Siemens Aktiengesellschaft Kühlvorrichtung für eine Spritzdüse bzw. Spritzdüsenanordnung mit einer Kühlvorrichtung für das thermische Spritzen
JP6889862B2 (ja) * 2017-07-05 2021-06-18 プラズマ技研工業株式会社 コールドスプレーガン及びそれを備えたコールドスプレー装置
CN109059606A (zh) * 2018-05-31 2018-12-21 嘉兴懿铄精密模具有限公司 一种分级式冷却装置的喷嘴
US20190366362A1 (en) * 2018-06-05 2019-12-05 United Technologies Corporation Cold spray deposition apparatus, system, and method
US20190366361A1 (en) * 2018-06-05 2019-12-05 United Technologies Corporation Cold spray deposition apparatus, system, and method
DE102018124662A1 (de) * 2018-10-05 2020-04-09 Vermes Microdispensing GmbH Dosiersystem mit Kühleinrichtung
WO2020093087A1 (en) * 2018-11-07 2020-05-14 Effusiontech Pty Ltd A method of 3d printing
WO2020214199A1 (en) * 2019-04-17 2020-10-22 Fisher Controls International Llc Desuperheater and spray nozzles therefor
CN110408921B (zh) * 2019-07-04 2022-02-22 广东省新材料研究所 一种喷嘴及其加工方法
CN111185316A (zh) * 2020-03-16 2020-05-22 广东省新材料研究所 一种喷嘴装置、喷枪及其应用

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE600917A (fr) * 1960-05-18 1961-07-03 Arbed Dispositif de fixation d'une tuyers antiabrasive dans une lance d'affinage métallurgique.
US3856457A (en) * 1972-12-29 1974-12-24 Air Prod & Chem Burner of the oxy-fuel type
CH675431A5 (de) * 1988-04-28 1990-09-28 Castolin Sa
DE3903887C2 (de) 1989-02-10 1998-07-16 Castolin Sa Vorrichtung zum Flammspritzen von pulverförmigen Werkstoffen mittels autogener Flamme
DE8909503U1 (de) * 1989-08-08 1989-09-28 UTP Schweißmaterial GmbH & Co KG, 7812 Bad Krozingen Hochgeschwindigkeitsflammspritzpistole
US5467925A (en) * 1994-09-06 1995-11-21 Riano; Marcos D. Sulfur gun assembly with rapid service capability
DE4440323A1 (de) 1994-11-11 1996-05-15 Sulzer Metco Ag Düse für einen Brennerkopf eines Plasmaspritzgeräts
JP3333699B2 (ja) 1996-11-22 2002-10-15 仲道 山崎 連続水熱反応における原料粒子噴霧方法および装置
DE102009006132C5 (de) * 2008-10-09 2015-06-03 Kjellberg Finsterwalde Plasma Und Maschinen Gmbh Düse für einen flüssigkeitsgekühlten Plasmabrenner, Düsenkappe für einen flüssigkeitsgekühlten Plasmabrenner sowie Plasmabrennerkopf mit derselben/denselben
DE102009052970A1 (de) * 2009-11-12 2011-05-19 Mtu Aero Engines Gmbh Kaltgasspritzdüse und Kaltgasspritzvorrichtung mit einer derartigen Spritzdüse
DE102014205343A1 (de) 2014-03-21 2015-09-24 Siemens Aktiengesellschaft Kühlvorrichtung für eine Spritzdüse bzw. Spritzdüsenanordnung mit einer Kühlvorrichtung für das thermische Spritzen

Also Published As

Publication number Publication date
US20170100732A1 (en) 2017-04-13
WO2015139948A1 (de) 2015-09-24
EP3102335B1 (de) 2019-06-12
CA2943226A1 (en) 2015-09-24
CA2943226C (en) 2022-12-13
DE102014205343A1 (de) 2015-09-24
CN106061621A (zh) 2016-10-26
US10166558B2 (en) 2019-01-01
CN106061621B (zh) 2019-07-19
DK3102335T3 (da) 2019-08-26

Similar Documents

Publication Publication Date Title
EP3102335B1 (de) Kühlvorrichtung für eine spritzdüse bzw. spritzdüsenanordnung mit einer kühlvorrichtung für das thermische spritzen
EP1390152B1 (de) Verfahren und vorrichtung zum kaltgasspritzen
EP1999297B1 (de) Kaltgasspritzpistole
EP1369498B1 (de) Verfahren und Vorrichtung zum Hochgeschwindigkeits-Flammspritzen
EP2558217B1 (de) Aussen mischende mehrstoffdüse
DE102008051872A1 (de) Zweistoffdüse
EP3526519B1 (de) Brennerspitze mit einem luftkanalsystem und einem brennstoffkanalsystem für einen brenner und verfahren zu deren herstellung
DE202011110485U1 (de) Sprühsystem zum Einsprühen eines sekundären Fluids in ein primäres Fluid
EP1735579A1 (de) Verfahren zum reinigen der rohre eines wärmetauschers mit hilfe eines strahlmittels und dafür geeignete vorrichtung
EP2743582A1 (de) Brennerspitze und Brenner
DE102009005528A1 (de) Zweistoffdüse
DE102013200062A1 (de) Vorrichtung zum thermischen Beschichten einer Oberfläche
EP2974796B1 (de) Kaltgasspritzvorrichtung
EP2499278A1 (de) Verfahren und vorrichtung zur bauteilbeschichtung
DE102012220792A1 (de) Wärmetauscheranordnung, insbesondere für ein Fahrzeugheizgerät
WO2009124839A2 (de) Kaltgasspritzanlage
DE102006022282A1 (de) Kaltgasspritzpistole
EP3074181A1 (de) Verfahren und vorrichtung zur reinigung eines strahltriebwerks
EP2251091A2 (de) Rotordüse
EP3559301B1 (de) Düsenaufbau für das thermische spritzen mittels einer suspension oder einer präcursorlösung
EP3168031B1 (de) Heizvorrichtung, insbesondere für eine kantenstreifenaufbringvorrichtung oder für eine schneidvorrichtung zum schneiden von folien oder werkstücken aus kunststoff oder hartschaum oder für eine vorrichtung zum schweissen von werkstücken
DE102014001199A1 (de) Innenbrenner
DE102012216655A1 (de) Drehantreibbares zerspanungswerkzeug
DE102009009474A1 (de) Gasspritzanlage und Verfahren zum Gasspritzen
DE102014008908A1 (de) Kaltgasspritzvorrichtung und Verfahren zum Beschichten eines Bauteils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20160908

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190212

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1141912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190615

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015009305

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20190823

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190612

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190912

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191014

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191012

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015009305

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

26N No opposition filed

Effective date: 20200313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1141912

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190612

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230317

Year of fee payment: 9

Ref country code: DK

Payment date: 20230323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220620

Year of fee payment: 9

Ref country code: BE

Payment date: 20230321

Year of fee payment: 9

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230612

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240409

Year of fee payment: 10