EP3101268B1 - Mikrowellenpulszündgenerator für eine verbrennungskraftmaschine - Google Patents

Mikrowellenpulszündgenerator für eine verbrennungskraftmaschine Download PDF

Info

Publication number
EP3101268B1
EP3101268B1 EP15170029.1A EP15170029A EP3101268B1 EP 3101268 B1 EP3101268 B1 EP 3101268B1 EP 15170029 A EP15170029 A EP 15170029A EP 3101268 B1 EP3101268 B1 EP 3101268B1
Authority
EP
European Patent Office
Prior art keywords
microwave
coupling section
generator
waveguide coupling
pulsed ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15170029.1A
Other languages
English (en)
French (fr)
Other versions
EP3101268A1 (de
Inventor
Armin Gallatz
Volker Gallatz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MWI MICRO WAVE IGNITION AG
Original Assignee
Mwi Micro Wave Ignition AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mwi Micro Wave Ignition AG filed Critical Mwi Micro Wave Ignition AG
Priority to EP15170029.1A priority Critical patent/EP3101268B1/de
Publication of EP3101268A1 publication Critical patent/EP3101268A1/de
Application granted granted Critical
Publication of EP3101268B1 publication Critical patent/EP3101268B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P7/00Arrangements of distributors, circuit-makers or -breakers, e.g. of distributor and circuit-breaker combinations or pick-up devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/50Sparking plugs having means for ionisation of gap

Definitions

  • the invention relates to a microwave pulse ignition generator for triggering the combustion of an ignitable fuel-air mixture in a combustion chamber of an engine, with at least one arranged outside the combustion chamber pulsable microwave source and one of the at least one microwave source leading to the combustion chamber microwave waveguide, and with a pulse generator control for the at least a microwave source with which at least the wavelength, the pulse duration, the pulse spacing, the pulse amplitude and / or the modulation of the microwave radiation is adjustable.
  • ignition systems for internal combustion engines which supply the necessary for triggering the combustion of a fuel-air mixture in a combustion chamber of the engine initial energy based on high-voltage induced sparks.
  • Ignition devices for internal combustion engines are also known from the prior art, in which the initial energy required for igniting the explosion of the fuel-air mixture is supplied by means of high-frequency energy waves, in particular microwaves.
  • microwave ignition Due to ever stricter legal standards for exhaust emissions and the increasing demand for lower fuel consumption of engines, The improvement of the efficiency of internal combustion engines is an important aspect in engine development. Achieving these goals is only possible with the use of microwave ignition, which significantly increases the spatial extent, the energy released and the duration of the ignition compared with the conventional spark plug so that a more homogeneous and complete combustion is possible.
  • the state of the art of microwave ignition is exemplified in the publication DE 103 56 916 A1 directed.
  • the known device for igniting the combustion of the fuel in the combustion chamber has a microwave source arranged outside the combustion chamber and a microwave window connected to the microwave source, wherein the microwave radiation can be coupled into the combustion chamber via the microwave window so that the coupled-in microwave radiation is distributed from the combustion chamber Fuel is absorbable. As a result of the absorption of energy into the fuel due to the absorption, the combustion is distributed in a large volume in the combustion chamber and can be ignited essentially simultaneously.
  • the microwave radiation in the form of one or more microwave pulses of short duration and high energy coupled, with a power of the microwave pulses between 1 and 70 kW, preferably for the ignition more microwave pulses are used with different power and / or different pulse duration.
  • This Mikrowellenzündvoriques comprises a single microwave source per combustion chamber, which is operable by a controlled pulse high voltage power supply.
  • a microwave source for example, a magnetron, klystron, gyrotron, a traveling wave tube or the like is provided. These require a complex pulse high-voltage power supply to convert the usual on-board vehicle voltage of 12 or 24 V in the operating voltage for the microwave source.
  • the associated microwave sources are of large design and also heavy, technically sensitive and expensive.
  • DE102011116340A1 describes a device for carrying high frequency microwaves in a high pressure vessel.
  • the device can be used both for the irradiation of energy in high-pressure reactors or for the ignition of combustible gas / air mixtures, such as in internal combustion engines.
  • the present invention seeks to propose a way to optimize at least the same ignition power of the microwave pulses, the size, weight and / or reliability of the Mikrowellenzündvoriques, ie in particular to provide the necessary components in a housing , which is simply fastened to a cylinder wall laterally surrounding the combustion chamber or to a cylinder head closing off at the top of the combustion chamber, wherein at the same time the microwave hollow conduit is coupled to the combustion chamber.
  • the microwave pulse ignition generator has at least two microwave sources and at least one hollow line coupling section in the microwave hollow line, with microwave feed lines each leading from the microwave sources to the hollow line coupling section and the hollow line coupling section being connectable to the combustion chamber via a microwave discharge.
  • the microwave feed lines, the waveguide coupling section and the microwave discharge are formed hollow inside.
  • the ignition power of the microwave pulse ignition generator according to the invention is dependent on the number of microwave sources used and on the strength of the pulsed supply voltage which provides the microwave control for the operation of the microwave sources.
  • the proposed waveguide coupling section allows merging, ie, bundling of the respective microwaves emanating from the microwave sources without significant loss of power.
  • a large and heavy microwave source can be easily replaced by a number of smaller microwave sources, wherein the ignition performance of the microwave pulse ignition generator advantageously remains unchanged or can be increased.
  • the size and number of the smaller microwave sources can be selected and arranged relative to one another in such a way that the overall size and the total weight of the microwave pulse ignition generator can be significantly reduced in comparison with a single strong microwave source.
  • smaller and thus less radiation microwave sources usually require a reduced operating voltage, so that the pulse generator control can be performed correspondingly weaker, lighter and thus smaller.
  • the two or more microwave sources of the microwave pulse ignition generator according to the invention are preferably connected directly to the hollow line coupling section, from which the microwave discharge leads to the combustion chamber, wherein the microwave feed lines can run in a straight line and / or bent.
  • the invention also includes that with a larger number of microwave sources used, these are guided indirectly to the hollow line coupling section connected to the combustion chamber, i. the microwave radiation from at least two of the provided microwave sources upstream of this hollow duct coupling section, which has the microwave discharge leading to the combustion chamber, brought together via at least one further upstream waveguide coupling section and only then connected to the waveguide coupling section having the microwave derivative.
  • the microwave sources used are semiconductor emitters.
  • semiconductor microwave sources are usually small, light, easy to handle, insensitive to interference and easy to control.
  • they require no complex control, since they can be operated with a relatively small DC voltage, in particular with the battery voltage.
  • semiconductor emitters are cost effective in procurement and processing.
  • the waveguide coupling portion may extend in any direction and in any arbitrary form.
  • the waveguide coupling section is straight, wherein the microwave feed lines open laterally into the waveguide coupling section, to which the microwave outlet adjoins the outlet side.
  • the microwave derivative which leads to the combustion chamber of the engine, run straight, curved or curved.
  • the microwave feed lines open in the axial direction and / or in the circumferential direction in the hollow line coupling sections offset from one another.
  • the offset is favorably chosen such that the microwaves from the various microwave feed lines after entering the waveguide coupling section do not or as little as possible mutually influence each other, resulting in a reduction of the intensity of the respective microwave radiation.
  • the offset is formed such that in the waveguide coupling section results in an amplification of the intensity of the microwave radiation, which is derived by the microwave derivative.
  • the microwave derivative preferably extends straight to the waveguide coupling section, i. the microwave dissipation includes concentrically arranged directly to the waveguide coupling section.
  • one or more of the microwave feed lines opens into the hollow line coupling section at an acute angle.
  • one of the microwave feeders also opens axially aligned in the waveguide coupling section.
  • the coaxial alignment of one of the microwave feed line to the rectilinear waveguide coupling section simplifies the entry of the microwave radiation of the associated microwave source into the waveguide coupling section.
  • the microwaves are not changed in their propagation direction, polarization and / or intensity, for example by deflection or scattering.
  • one microwave inlet is arranged at a transition of the microwave feed lines to the hollow line coupling section and only one microwave outlet is arranged at a transition of the hollow line coupling section to the microwave discharge.
  • the microwave inlets and / or the microwave outlet can be designed as simple openings or closed by means of a window having optical means, for example for beam shaping, beam steering or beam polarization.
  • the microwaves of the intended microwave sources which in particular preferably temporally and / or spatially coherently propagate towards each other, are superimposed to amplified microwave radiation entering the microwave output of the waveguide coupling section and coupled into the combustion chamber for ignition of the fuel-air mixture becomes.
  • the microwaves entering the waveguide coupling section have either different polarization directions and / or no excessive phase offset.
  • Different polarization directions can For example, be achieved by provided at the microwave inputs polarization filter. Such filters are expensive and naturally reduce the radiation intensity of the passing microwaves, which is unfavorable.
  • a phase shift of typically 360 ° after passing through the microwave inlets is provided in the waveguide coupling section.
  • This can be technically particularly simple and inexpensive to achieve, since in the pulse generator control no frequency modulator for the modulation of microwaves is necessary. Due to this special phase offset, the wave crests and the wave troughs of the respective microwaves are substantially congruent, so that the interference automatically results in an amplification of the microwave radiation up to the microwave discharge.
  • the microwave inlets along the waveguide coupling section are preferably arranged at a distance from each other which is a whole multiple of the wavelength of the unmodulated microwave radiation.
  • the microwaves are preferably millimeter or centimeter waves, the corresponding distances of the microwave inputs to one another can be easily realized.
  • the respective distance is the distance of the central axis of the microwave inputs to one another.
  • an overmodulation over the frequency of the microwaves may be provided, which reduces a possible partial extinction of the microwave radiation.
  • the pulse generator control has an electrolytic power capacitor as energy store and / or at least one EMC filter, wherein the pulse generator control is preferably operable with an operating voltage of 12 V or an integral multiple thereof.
  • the electrolytic power capacitor By the electrolytic power capacitor, a sufficient power supply of the pulsed microwave source is ensured.
  • the at least one EMC filter reliably prevents or at least reduces the emission of interference pulses by the pulse generator control and / or microwave sources essential.
  • the microwave pulse ignition generator according to the invention is particularly suitable for the use of motor-driven means of locomotion.
  • the microwave sources, the microwave feeders, the waveguide coupling section, the microwave discharge and the pulse generator control are arranged together in a metallic well-heat generator housing, wherein the microwave feed lines, the waveguide coupling section and the microwave discharge are preferably formed integrally with the generator housing.
  • the generator housing also has integrated cooling channels through passage of a coolant.
  • the sensitive components of the microwave pulse ignition generator according to the invention such as the microwave sources and the pulse generator control for a long life sufficiently tempered, i. be cooled.
  • the generator housing is for example a diecast part, which is preferably made of aluminum.
  • the generator housing has a connection flange for attachment to a cylinder head or a cylinder wall of the internal combustion engine, which terminate the combustion chamber, wherein the connection flange is preferably round and has a thread and / or a bayonet lock.
  • the connecting flange with the fastening means provided therefor allows a quick and easy attachment outside of the internal combustion engine.
  • the intended connection flange can also be deviating, with suitable connection means to the motor being present in each case.
  • the internal combustion engine according to the invention with at least one combustion chamber for combustion of a fuel-air mixture and with a Mikrowellenzündsystem for igniting the combustion of the fuel-air mixture has a Mikrowellenpulszündgenerator, as described above, as Mikrowellenzündsystem.
  • the term fuel-air mixture also includes a fuel-oxygen mixture, since the essential component of air for combustion is the oxygen required for this purpose.
  • the fuel is high energy density liquid or gaseous fuel whose chemical energy is converted to motive power by combustion in internal combustion engines, such as in gasoline or diesel engines, gas turbines, rocket engines, or other internal combustion engines.
  • Such motor drives can be provided for driving any means of transportation or stationary use for the operation of any stationary mechanical devices.
  • fuel is to be understood as meaning, in particular, a substance which is used to drive a means of locomotion or to operate a stationary machine.
  • FIG. 1 schematically shows the structure of a designed as a reciprocating engine according to the invention internal combustion engine 1. It is only a single cylinder 2 of the internal combustion engine 1 shown.
  • the cylinder 2 has, as usual, a combustion chamber 3, which is bounded by a movable piston 4, a cylinder 5 and a cylinder head 6.
  • a microwave pulse ignition generator 7 is arranged centrally. This is provided for triggering the combustion of an ignitable fuel-air mixture in the combustion chamber 3, which is not shown in the figure.
  • the microwave pulse ignition generator 7 comprises at least two microwave sources 8, at least one microwave waveguide 9 leading to the combustion chamber and a pulse generator controller 10 for the at least two microwave sources 8 with which at least the wavelength, the pulse duration, the pulse spacing, the pulse amplitude and / or the modulation of the microwave radiation can be set ,
  • the components of the microwave pulse ignition generator 7 are in the FIG. 1 only partially and incompletely represented.
  • the FIG. 2 shows the microwave pulse ignition generator 7 in an enlarged view, with all the essential components of the microwave pulse ignition generator 7 are completely shown.
  • the microwave sources 8, the microwave hollow conduit 9 and the pulse generator control 10 are arranged in a generator housing 11, which has a round connection flange 12 for fixing to the cylinder head 6.
  • the connecting flange 12 carries on its outer circumference a connecting thread with which the Mikrowellenpulszündgenerators 7 similar to a spark plug in a provided on the cylinder head 6 internal thread can be screwed.
  • the microwave pulse ignition generator 7 has in its center 13 a plurality of microwave sources 8 which are connected to a hollow line coupling section 15 of the microwave hollow line 9, in each case microwave feed lines 14 lead from the microwave sources 8 to the hollow line coupling section 15 and to the hollow line coupling section 15 on the outlet side a microwave discharge line 16 connects, which is connectable or connected to the combustion chamber 3.
  • microwave feed lines 14 lead from the microwave sources 8 to the hollow line coupling section 15 and to the hollow line coupling section 15 on the outlet side a microwave discharge line 16 connects, which is connectable or connected to the combustion chamber 3.
  • To the pulse generator controller 10 lead from the outside electrical connection lines and from the pulse generator controller 10 to the microwave sources 8 each electrical connection lines, which in the FIG. 2 are not visible.
  • the illustrated waveguide coupling section 15 is straight, with all the microwave feed lines 14 open laterally except for one into the waveguide coupling section 15, to which the microwave discharge line 16 adjoins the outlet side centrically.
  • the microwave discharge 16 extends in a straight line to the hollow line coupling
  • FIG. 3 clearly shows, extend laterally into the hollow line coupling section 15 Mikrowellenzu effet 14 at an acute angle to the waveguide coupling section 15 and corresponding to the Hohl effetskoppelabites 15. Furthermore, one of the Mikrowellenzu effet 14 opens axially aligned at the microwave lead 16 remote end into the waveguide coupling section 15th At the ends of the microwave feed lines 14 remote from the waveguide coupling section 15, a microwave source 8 is arranged in each case.
  • the microwave feed lines 14, the waveguide coupling section 15 and the microwave discharge line 16 form the hollow microwave waveguide 9 of the microwave pulse ignition generator 7. This is designed to be very smooth inside and preferably polished.
  • a microwave inlet 17 is arranged in each case and a single microwave outlet 18 is arranged at a transition of the hollow line coupling section 15 to the microwave discharge line 16.
  • the intended microwave inlets 17 are distributed uniformly along the waveguide coupling section 15 at a distance from each other which is a whole multiple of the wavelength of the microwave radiation.
  • the in the FIG. 2 schematically illustrated pulse generator control 10 has an electrolytic power capacitor, not shown in the drawing from energy storage and a likewise not shown EMC filter.
  • the pulse generator controller 10 is operated with an operating voltage of 12 V. That in the FIG. 2 Fully shown generator housing 11, in which the microwave sources 8, the microwave feeders 14, the waveguide coupling section 15, the microwave line 16 and the pulse generator control 10 are arranged together, is made of a good heat conductive metallic material, preferably made of aluminum.
  • the intended microwave feed lines 14, the waveguide coupling section 15 and the microwave discharge line 16 are formed integrally with the generator housing 11, preferably as bores.
  • 11 cooling channels 19 are introduced for the passage of a coolant, not shown in the drawing in the generator housing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma Technology (AREA)
  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

  • Die Erfindung betrifft einen Mikrowellenpulszündgenerator zum Auslösen der Verbrennung eines zündfähigen Treibstoff-Luft-Gemisches in einem Brennraum eines Motors, mit mindestens einer außerhalb des Brennraumes angeordneten pulsbaren Mikrowellenquelle und einer von der mindestens einen Mikrowellenquelle zum Brennraum führenden Mikrowellenhohlleitung, und mit einer Pulsgeneratorsteuerung für die mindestens eine Mikrowellenquelle, mit der zumindest die Wellenlänge, die Impulsdauer, der Impulsabstand, die Impulsamplitude und/oder die Modulation der Mikrowellenstrahlung einstellbar ist.
  • Im Stand der Technik sind Zündsysteme für Verbrennungsmotoren bekannt, die die zum Auslösen der Verbrennung eines Treibstoff-Luft-Gemisches in einem Brennraum des Motors notwendige Initialenergie basierend auf hochspannungsinduzierten Zündfunken zuführen. Aus dem Stand der Technik sind auch Zündeinrichtungen für Brennkraftmaschinen bekannt, bei der die zum Zünden der Explosion des Treibstoff-Luft-Gemisches benötigte Initialenergie mittels hochfrequenter Energiewellen, insbesondere Mikrowellen, zugeführt wird.
  • Aufgrund immer strengerer gesetzlicher Normen für die Abgasemission und der zunehmenden Forderung nach geringerem Treibstoffverbrauch von Motoren, stellt die Verbesserung des Wirkungsgrades von Brennkraftmaschinen einen wichtigen Aspekt bei der Motorenentwicklung dar. Diese Ziele zu erreichen, ist nur durch den Einsatz der Mikrowellenzündung möglich, mit der die räumliche Ausdehnung, die freigesetzte Energie und die Dauer der Zündung gegenüber der herkömmlichen Zündkerze deutlich vergrößert werden, so dass eine homogenere und vollständigere Verbrennung möglich ist. Zum Stand der Technik der Mikrowellenzündung wird beispielhaft auf die Druckschrift DE 103 56 916 A1 verwiesen.
  • Aus der DE 103 56 916 A1 ist es bekannt, in einem Brennraum eines Verbrennungsmotors mittels Mikrowellenenergie eine Raumzündung zu bewirken, um damit die Verbrennung des über ein Treibstoff-Luft-Gemisch eingebrachten Treibstoffes besser zu zünden und zu verbrennen. Die bekannte Vorrichtung zum Zünden der Verbrennung des Treibstoffes in dem Brennraum weist eine außerhalb des Brennraums angeordnete Mikrowellenquelle und ein mit der Mikrowellenquelle verbundenes Mikrowellenfenster auf, wobei über das Mikrowellenfenster die Mikrowellenstrahlung in den Verbrennungsraum einkoppelbar ist, so dass die eingekoppelte Mikrowellenstrahlung von dem im Verbrennungsraum verteilten Kraftstoff absorbierbar ist. Durch den aufgrund der Absorption entstehenden Energieeintrag in den Kraftstoff ist die Verbrennung großvolumig im Verbrennungsraum verteilt und im Wesentlichen gleichzeitig zündbar. Dazu wird die Mikrowellenstrahlung in Form von einem oder mehreren Mikrowellenimpulsen kurzer Zeitdauer und hoher Energie eingekoppelt, und zwar mit einer Leistung der Mikrowellenimpulse zwischen 1 und 70 kW, wobei für den Zündvorgang vorzugsweise mehrere Mikrowellenimpulse mit unterschiedlicher Leistung und/oder unterschiedlicher Impulsdauer verwendet werden. Diese Mikrowellenzündvorrichtung umfasst eine einzige Mikrowellenquelle pro Brennraum, die durch ein gesteuertes Impuls-Hochspannungsnetzteil betreibbar ist. Als Mikrowellenquelle ist beispielsweise ein Magnetron, Klystron, Gyrotron, eine Wanderfeldröhre oder dergleichen vorgesehen. Diese benötigen ein aufwändiges Impuls-Hochspannungsnetzteil, um die bei Kraftfahrzeugen übliche Bordspannung von 12 oder 24 V in die Betriebsspannung für die Mikrowellenquelle umzuwandeln. Außerdem sind die zugeordneten Mikrowellenquellen von großer Bauform und zudem schwer, technisch empfindlich und teuer.
  • DE102011116340A1 beschreibt eine Vorrichtung zur Durchführung von hochfrequenten Mikrowellen in einen Hochdruckbehälter. Die Vorrichtung ist einsetzbar sowohl zur Einstrahlung von Energie in Hochdruckreaktoren oder zur Zündung von brennbaren Gas-/ Luftgemischen, wie z.B. in Verbrennungsmaschinen. Ausgehend von dem vorgehend genannten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Möglichkeit vorzuschlagen, bei mindestens gleicher Zündleistung der Mikrowellenimpulse, die Größe, das Gewicht und/oder die Zuverlässigkeit der Mikrowellenzündvorrichtung zu optimieren, d.h. insbesondere die nötigen Komponenten in einem Gehäuse bereitzustellen, das einfach an einer den Brennraum seitlich umgebenden Zylinderwand oder an einem dem Brennraum oben abschließenden Zylinderkopf einfach befestigbar ist, wobei gleichzeitig die Mikrowellenhohlleitung mit der Brennraum gekoppelt wird. Der Erfindung liegt außerdem die Aufgabe zugrunde, einen Verbrennungsmotor mit einer entsprechend optimierten Mikrowellenzündanlage zu schaffen.
    Diese Aufgabe wird erfindungsgemäß durch einen Mikrowellenpulszündgenerator mit den Merkmalen des unabhängigen Patentanspruchs 1 sowie durch einen Verbrennungsmotor mit den Merkmalen des nebengeordneten Patentanspruchs 15 gelöst. Weitere vorteilhafte Ausgestaltungen sind den rückbezogenen Patentansprüchen zu entnehmen.
    Erfindungsgemäß weist der Mikrowellenpulszündgenerator mindestens zwei Mikrowellenquellen und mindestens einen Hohlleitungskoppelabschnitt in der Mikrowellenhohlleitung auf, wobei von den Mikrowellenquellen jeweils Mikrowellenzuleitungen zu dem Hohlleitungskoppelabschnitt führen und der Hohlleitungskoppelabschnitt über eine Mikrowellenableitung mit dem Brennraum verbindbar ist. Die Mikrowellenzuleitungen, der Hohlleitungskoppelabschnitt und die Mikrowellenableitung sind innen hohl ausgebildet. Die Zündleistung der erfindungsgemäßen Mikrowellenpulszündgenerators ist abhängig von der Anzahl der verwendeten Mikrowellenquellen und von der Stärke der gepulsten Versorgungsspannung die die Mikrowellensteuerung für den Betrieb der Mikrowellenquellen zur Verfügung stellt. Der vorgesehene Hohlleitungskoppelabschnitt ermöglicht das Zusammenführen, d.h. das Bündeln der jeweils von den Mikrowellenquellen ausgehenden Mikrowellen ohne erhebliche Leistungseinbuße.
  • Somit kann eine große und schwere Mikrowellenquelle auf einfache Weise durch eine Anzahl von kleineren Mikrowellenquellen ersetzt werden, wobei die Zündleistung des Mikrowellenpulszündgenerators vorteilhafterweise unverändert bleibt oder auch gesteigert werden kann. Insbesondere können die kleineren Mikrowellenquellen in ihrer Größe und Anzahl so gewählt und zueinander angeordnet werden, dass die Baugröße und das Gesamtgewicht des Mikrowellenpulszündgenerators gegenüber einer einzigen starken Mikrowellenquelle deutlich reduzierbar ist. Zudem benötigen kleinere und damit strahlungsschwächere Mikrowellenquellen in der Regel auch eine reduzierte Betriebsspannung, sodass die Pulsgeneratorsteuerung entsprechend schwächer, leichter und damit auch kleiner ausgeführt werden können.
  • Vorzugsweise sind die zwei oder mehr Mikrowellenquellen des erfindungsgemäßen Mikrowellenpulszündgenerators direkt mit dem Hohlleitungskoppelabschnitt verbunden, von dem aus die Mikrowellenableitung zum Brennraum führt, wobei die Mikrowellenzuleitungen geradlinig und/oder gebogen verlaufen können. Die Erfindung schließt jedoch auch ein, dass bei einer größeren Anzahl von verwendeten Mikrowellenquellen diese indirekt zu dem mit dem Brennraum verbundenen Hohlleitungskoppelabschnitt geführt sind, d.h. die Mikrowellenstrahlung von mindestens zwei der vorgesehenen Mikrowellenquellen stromaufwärts dieses Hohlleitungskoppelabschnitts, der die zum Brennraum führende Mikrowellenableitung aufweist, über mindestens einen weiteren vorgeschalteten Hohlleitungskoppelabschnitt zusammengeführt und erst dann mit dem die Mikrowellenableitung aufweisenden Hohlleitungskoppelabschnitt verbunden sind.
  • Vorzugsweise handelt es sich bei den verwendeten Mikrowellenquellen um Halbleiteremitter. Derartige Halbleitermikrowellenquellen sind üblicherweise klein, leicht, einfach handhabbar, störunempfindlich und einfach steuerbar. Sie benötigen außerdem kein aufwändige Steuerung, da diese mit relativ kleiner Gleichspannung, insbesondere mit der Batteriespannung betreibbar sind. Zudem sind solche Halbleiteremitter in der Beschaffung und in der Bearbeitung kostengünstig.
  • Der Hohlleitungskoppelabschnitt kann sich in räumlich beliebiger Richtung und in beliebiger Form erstrecken. Bei einer bevorzugten Ausführungsform der Erfindung verläuft der Hohlleitungskoppelabschnitt gerade, wobei die Mikrowellenzuleitungen in den Hohlleitungskoppelabschnitt seitlich einmünden, an dem die Mikrowellenableitung austrittsseitig anschließt. Dabei kann die Mikrowellenableitung, die zum Brennraum des Motors führt, geradlinig, gebogen oder geschwungen verlaufen.
  • Vorzugsweise münden die Mikrowellenzuleitungen in axialer Richtung und/oder in Umfangsrichtung in den Hohlleitungskoppelabschnitte versetzt zueinander. Der Versatz ist dabei günstigerweise derart gewählt, dass sich die Mikrowellen aus den verschiedenen Mikrowellenzuleitungen nach dem Eintritt in den Hohlleitungskoppelabschnitt nicht oder möglichst kaum gegenseitig so beeinflussen, dass daraus eine Minderung der Intensität der jeweiligen Mikrowellenstrahlung resultiert. Bevorzugt wird der Versatz derart ausgebildet, dass sich im Hohlleitungskoppelabschnitt eine Verstärkung der Intensität der Mikrowellenstrahlung ergibt, die durch die Mikrowellenableitung abgeleitet wird. Dabei erstreckt sich die Mikrowellenableitung vorzugsweise geradlinig zu dem Hohlleitungskoppelabschnitt, d.h. die Mikrowellenableitung schließt konzentrisch angeordnet direkt an den Hohlleitungskoppelabschnitt an.
  • Bei einer favorisierten Ausführungsform des erfindungsgemäßen Mikrowellenpulszündgenerators mündet eine oder mehrere der Mikrowellenzuleitungen in einem spitzen Winkel in den Hohlleitungskoppelabschnitt. Bei einer Ausführungsform der Erfindung mündet zudem eine der Mikrowellenzuleitungen axial fluchtend in den Hohlleitungskoppelabschnitt. Die koaxial fluchtende Anreihung einer der Mikrowellenzuleitung an den geradlinig verlaufenden Hohlleitungskoppelabschnitt vereinfacht den Eintritt der Mikrowellenstrahlung der zugeordneten Mikrowellenquelle in den Hohlleitungskoppelabschnitt. Vorteilhafterweise werden dabei die Mikrowellen nicht in ihrer Ausbreitungsrichtung, Polarisierung und/oder Intensität, beispielsweise durch Umlenkung oder Streuung, verändert. Bei den seitlich in den geradlinig verlaufenden Hohlleitungskoppelabschnitt mündenden Mikrowellenzuleitungen ist der spitze Winkel zwischen der Mittelachse der jeweiligen Mikrowellenzuleitung und der Mittelachse des Hohlleitungskoppelabschnittes derart definiert, dass die Mikrowellenstrahlung in Richtung der Mikrowellenableitung in den Hohlleitungskoppelabschnitt eintritt. Der spitze Eintrittswinkel in den Hohlleitungskoppelabschnitt ist vorzugsweise bei allen Mikrowellenzuleitungen identisch vorgesehen. Die eintretende Mikrowellenstrahlung wird so nur geringfügig in der jeweiligen Ausbreitungsrichtung verändert, was dazu führt, dass die Phasenbeziehung der seitlich eintretenden Mikrowellen zueinander im Wesentlichen erhalten bleibt. Insbesondere haben alle seitlich eintretenden Mikrowellen bezüglich den stirnseitig in den Hohlleitungskoppelabschnitt eintretenden Mikrowellen und zueinander die gleiche Phasenbeziehung vor und nach dem Eintritt in den Hohlleitungskoppelabschnitt.
  • Bei einer vorteilhaften Ausführungsform der Erfindung ist an einem Übergang der Mikrowellenzuleitungen zu dem Hohlleitungskoppelabschnitt jeweils ein Mikrowelleneintritt und an einem Übergang des Hohlleitungskoppelabschnitts zu der Mikrowellenableitung nur ein Mikrowellenaustritt angeordnet. Die Mikrowelleneintritte und/oder der Mikrowellenaustritt können als einfache Öffnungen ausgeführt oder mittels eines Fensters verschlossen sein, das optische Mittel, beispielsweise zur Strahlformung, Strahllenkung oder Strahlpolarisierung aufweist.
  • In dem Hohlleitungskoppelabschnitt überlagern sich die Mikrowellen der vorgesehenen Mikrowellenquellen, die sich insbesondere vorzugsweise zeitlich und/oder räumlich kohärent einander gegenüber ausbreiten, zu einer verstärkten Mikrowellenstrahlung, die in die Mikrowellenableitung des Hohlleitungskoppelabschnitts eintritt und zur Zündung des Treibstoff-Luft-Gemisches in den Brennraum eingekoppelt wird. Damit ist bei der Interferenz der in den Hohlleitungskoppelabschnitt eingetretenen Mikrowellen nicht zu einer totalen oder teilweise Auslöschung der Mikrowellenstrahlung kommt, muss dafür Sorge getragen werden, dass die in den Hohlleitungskoppelabschnitt eintretenden Mikrowellen entweder unterschiedliche Polarisationsrichtungen und/oder keinen allzu großen Phasenversatz aufweisen. Unterschiedliche Polarisationsrichtungen können beispielsweise durch an den Mikrowelleneintritten vorgesehene Polarisationsfilter erreicht werden. Derartige Filter sind teuer und reduzieren naturgemäß die Strahlungsintensität der hindurchtretenden Mikrowellen, was unvorteilhaft ist.
  • Daher ist bei einer vorteilhaften Ausführungsform der Erfindung ein Phasenversatz von typisch 360° nach dem Durchtritt durch die Mikrowelleneintritte in den Hohlleitungskoppelabschnitt vorgesehen. Dies lässt sich technisch besonders einfach und kostengünstig erreichen, da dabei in der Pulsgeneratorsteuerung kein Frequenzmodulator zur Modulation der Mikrowellen notwendig ist. Bedingt durch diesen speziellen Phasenversatz sind die Wellenberge und die Wellentäler der jeweiligen Mikrowellen im Wesentlichen deckungsgleich, so dass sich durch die Interferenz automatisch eine Verstärkung der Mikrowellenstrahlung bis hin zu der Mikrowellenableitung ergibt. Dazu sind die Mikrowelleneintritte entlang den Hohlleitungskoppelabschnitt vorzugsweise in einem Abstand zueinander angeordnet, der ein ganzes Vielfaches der Wellenlänge der unmodulierten Mikrowellenstrahlung beträgt. Da es sich bei den Mikrowellen vorzugsweise um Millimeter- oder Zentimeterwellen handelt, können die entsprechenden Abstände der Mikrowelleneintritte zueinander einfach realisiert werden. Der jeweilige Abstand ist die Entfernung der Mittelachse der Mikrowelleneintritte zueinander. Zusätzlich kann noch eine Übermodulation über die Frequenz der Mikrowellen vorgesehen sein, die eine mögliche teilweise Auslöschung der Mikrowellenstrahlung reduziert.
  • Bei bevorzugten Ausführungsformen des erfindungsgemäßen Mikrowellenzündpulsgenerators weist die Pulsgeneratorsteuerung einen Elektrolytleistungskondensator als Energiespeicher und/oder mindestens einen EMV-Filter auf, wobei die Pulsgeneratorsteuerung vorzugsweise mit einer Betriebsspannung von 12 V oder einem ganzzahligen Vielfachen davon betreibbar ist. Durch den Elektrolytleistungskondensator ist eine ausreichende Energieversorgung der gepulsten Mikrowellenquelle sichergestellt. Der mindestens eine EMV-Filter verhindert die Ausstrahlung von Störimpulsen durch die Pulsgeneratorsteuerung und/oder Mikrowellenquellen zuverlässig oder vermindert diese zumindest wesentlich. Indem die Pulsgeneratorsteuerung mit einer bei Kraftfahrzeugen üblichen Betriebsspannung betreibbar ist, ist der erfindungsgemäße Mikrowellenpulszündgenerators speziell zum Einsatz von motorangetriebenen Fortbewegungsmitteln geeignet.
  • Bei einer speziellen bevorzugten Ausführungsform der Erfindung sind die Mikrowellenquellen, die Mikrowellenzuleitungen, der Hohlleitungskoppelabschnitt, die Mikrowellenableitung und die Pulsgeneratorsteuerung gemeinsam in einem metallischen gut Wärme leitenden Generatorgehäuse angeordnet, wobei die Mikrowellenzuleitungen, der Hohlleitungskoppelabschnitt und die Mikrowellenableitung vorzugsweise integral mit dem Generatorgehäuse ausgebildet sind. Dadurch wird eine besonders kompakte Bauform des vorgeschlagenen Mikrowellenpulszündgenerators geschaffen, die durch ihren geringen Raumbedarf in jedem Fortbewegungsmittel an dem Verbrennungsmotor nahe dem Brennraum anordenbar ist. Vorzugsweise weist das Generatorgehäuse zudem noch integrierte Kühlkanäle durch Durchleitung eines Kühlmittels auf. Damit können die empfindlichen Komponenten des erfindungsgemäßen Mikrowellenpulszündgenerators, wie beispielsweise die Mikrowellenquellen und die Pulsgeneratorsteuerung für eine lange Lebensdauer hinreichend temperiert, d.h. gekühlt werden. Das Generatorgehäuse ist beispielsweise ein Druckgussteil, das vorzugsweise aus Aluminium hergestellt ist.
  • Bei einer bevorzugten Ausführungsform besitzt das Generatorgehäuse einen Anschlussflansch zum Befestigen an einem Zylinderkopf oder einer Zylinderwandung des Verbrennungsmotors, die den Brennraum abschließen, wobei der Anschlussflansch vorzugsweise rund ausgebildet und ein Gewinde und/oder eine Bajonettverriegelung aufweist. Der Anschlussflansch mit den daran vorgesehenen Befestigungsmitteln ermöglicht eine schnelle und einfache Befestigung außen an dem Verbrennungsmotor. Der vorgesehene Anschlussflansch kann auch abweichend ausgebildet sein, wobei in jedem Fall geeignete Verbindungsmittel zum Motor vorhanden sind.
  • Der erfindungsgemäße Verbrennungsmotor mit mindestens einem Brennraum zur Verbrennung eines Treibstoff-Luft-Gemisches und mit einem Mikrowellenzündsystem zum Zünden der Verbrennung des Treibstoff-Luft-Gemisches weist einen Mikrowellenpulszündgenerator, wie vorstehend beschrieben, als Mikrowellenzündsystem auf. In den Begriff Treibstoff-Luft-Gemisch auch ein Treibstoff-Sauerstoff-Gemisch eingeschlossen, da der wesentliche Bestandteil von Luft für die Verbrennung der dazu notwendige Sauerstoff ist. Der Treibstoff ist flüssiger oder gasförmiger Brennstoff hoher Energiedichte, dessen die chemische Energie durch Verbrennung in Verbrennungskraftmaschinen, wie beispielsweise in Benzin- oder Dieselmotoren, Gasturbinen, Raketentriebwerken oder anderen Verbrennungsmotoren in Antriebskraft umgewandelt wird. Derartige motorische Antriebe können zum Antrieb von Fortbewegungsmitteln jeglicher Art oder zu stationären Einsatz zum Betrieb von beliebigen ortsfesten mechanischen Geräten vorgesehen sein. Mögliche Bauformen des erfindungsgemäßen Verbrennungsmotors sind Hubkolbenmotoren, Rotationskolbenmotoren oder Turbinenmotoren. Als Treibstoff wird in diesem Zusammenhang entsprechend insbesondere ein Stoff verstanden, der zum Antrieb eines Fortbewegungsmittels oder zum Betrieb einer stationären Maschine verwendet wird. Besonders gängig ist der Begriff Treibstoff im Bereich der Schiff-, Luft- und Raumfahrt. Dieser schließt den für Landfahrzeuge üblichen Begriff Kraftstoff ein.
  • Nachfolgend wird die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Weitere Merkmale der Erfindung ergeben sich aus der folgenden Beschreibung des Ausführungsbeispiels in Verbindung mit den Ansprüchen und den beigefügten Figuren. Die einzelnen Merkmale der Erfindung können für sich allein oder zu mehreren bei unterschiedlichen Ausführungsformen der Erfindung verwirklicht sein. Es zeigen:
  • Figur 1
    den Aufbau eines erfindungsgemäßen Verbrennungsmotors mit einem Mikrowellenpulszündgenerator pro Brennraum, in schematischer Darstellung;
    Figur 2
    den Mikrowellenpulszündgenerator mit Hohlleitungskoppelabschnitt aus Figur 1 in einer vergrößerten Schnittdarstellung; und
    Figur 3
    den Hohlleitungskoppelabschnitt aus Figur 2 in einer vergrößerten Ausschnittdarstellung.
  • Figur 1 zeigt schematisch den Aufbau eines als Hubkolbenmotor ausgeführten erfindungsgemäßen Verbrennungsmotors 1. Es ist nur ein einzelner Zylinder 2 des Verbrennungsmotors 1 abgebildet. Der Zylinder 2 weist wie üblich einen Brennraum 3 auf, der von einem beweglichen Hubkolben 4, einer Zylinderwandung 5 und einem Zylinderkopf 6 begrenzt ist. An dem Zylinderkopf 6 ist mittig ein erfindungsgemäßer Mikrowellenpulszündgenerator 7 angeordnet. Dieser ist zum Auslösen der Verbrennung eines zündfähigen Treibstoff-Luft-Gemisches in dem Brennraum 3 vorgesehen, das in der Figur nicht abgebildet ist. Der Mikrowellenpulszündgenerator 7 umfasst mindestens zwei Mikrowellenquellen 8, mindestens eine zum Brennraum führende Mikrowellenhohlleitung 9 und eine Pulsgeneratorsteuerung 10 für die mindestens zwei Mikrowellenquellen 8, mit der zumindest die Wellenlänge, die Impulsdauer, der Impulsabstand, die Impulsamplitude und/oder die Modulation der Mikrowellenstrahlung einstellbar ist. Die Komponenten des Mikrowellenpulszündgenerators 7 sind in der Figur 1 nur teilweise und unvollständig dargestellt. Die Figur 2 zeigt den Mikrowellenpulszündgenerator 7 in vergrößerter Darstellung, wobei alle wesentlichen Komponenten des Mikrowellenpulszündgenerators 7 vollständig dargestellt sind. Die Mikrowellenquellen 8, die Mikrowellenhohlleitung 9 und die Pulsgeneratorsteuerung 10 sind in einem Generatorgehäuse 11 angeordnet, das einen runden Anschlussflansch 12 zum Festlegen an dem Zylinderkopf 6 aufweist. Der Anschlussflansch 12 trägt an seinem Außenumfang ein Anschlussgewinde, mit dem der Mikrowellenpulszündgenerators 7 ähnlich einer Zündkerze in ein am Zylinderkopf 6 vorgesehenes Innengewinde einschraubbar ist.
  • Der Figur 2 ist zu entnehmen, dass der Mikrowellenpulszündgenerator 7 in seinem Zentrum 13 mehrere Mikrowellenquellen 8 aufweist, die an einen Hohlleitungskoppelabschnitt 15 der Mikrowellenhohlleitung 9 angeschlossen sind, wobei von den Mikrowellenquellen 8 jeweils Mikrowellenzuleitungen 14 zu dem Hohlleitungskoppelabschnitt 15 führen und an den Hohlleitungskoppelabschnitt 15 austrittseitig eine Mikrowellenableitung 16 anschließt, die mit dem Brennraum 3 verbindbar bzw. verbunden ist. Zu der Pulsgeneratorsteuerung 10 führen von außen elektrische Anschlussleitungen und von der Pulsgeneratorsteuerung 10 zu den Mikrowellenquellen 8 jeweils elektrische Verbindungsleitungen, die in der Figur 2 nicht sichtbar sind. Der dargestellte Hohlleitungskoppelabschnitt 15 verläuft gerade, wobei alle Mikrowellenzuleitungen 14 bis auf eine in den Hohlleitungskoppelabschnitt 15 seitlich münden, an den die Mikrowellenableitung 16 austrittsseitig zentrisch anschließt. Die Mikrowellenableitung 16 erstreckt sich geradlinig zu dem Hohlleitungskoppelabschnitt 15 und führt kurvenlos zu dem Brennraum 3 des Zylinders 2.
  • Wie der Figur 3 deutlich zeigt, verlaufen die seitlich in den Hohlleitungskoppelabschnitt 15 mündenden Mikrowellenzuleitungen 14 in einem spitzen Winkel zu dem Hohlleitungskoppelabschnitt 15 und münden entsprechend in den Hohlleitungskoppelabschnitt 15. Des Weiteren mündet eine der Mikrowellenzuleitungen 14 axial fluchtend an dem der Mikrowellenableitung 16 fernen Ende in den Hohlleitungskoppelabschnitt 15. An den dem Hohlleitungskoppelabschnitt 15 fernen Enden der Mikrowellenzuleitungen 14 ist jeweils eine Mikrowellenquelle 8 angeordnet. Die Mikrowellenzuleitungen 14, der Hohlleitungskoppelabschnitt 15 und die Mikrowellenableitung 16 bilden die Mikrowellenhohlleitung 9 des Mikrowellenpulszündgenerators 7. Diese ist innen sehr glatt und vorzugsweise poliert ausgebildet ist.
  • An einem Übergang der Mikrowellenzuleitungen 14 zu dem Hohlleitungskoppelabschnitt 15 ist jeweils ein Mikrowelleneintritt 17 und an einem Übergang des Hohlleitungskoppelabschnitts 15 zu der Mikrowellenableitung 16 ein einziger Mikrowellenaustritt 18 angeordnet. Die vorgesehenen Mikrowelleneintritte 17 sind entlang dem Hohlleitungskoppelabschnitt 15 gleichmäßig verteilt in einem Abstand zueinander angeordnet, der ein ganzes Vielfaches der Wellenlänge der Mikrowellenstrahlung beträgt.
  • Die in der Figur 2 schematisch dargestellte Pulsgeneratorsteuerung 10 weist einen in der Zeichnung nicht dargestellten Elektrolytleistungskondensator aus Energiespeicher und einen ebenso nicht abgebildeten EMV-Filter auf. Die Pulsgeneratorsteuerung 10 wird mit einer Betriebsspannung von 12 V betrieben. Das in der Figur 2 vollständig gezeigte Generatorgehäuse 11, in dem die Mikrowellenquellen 8, die Mikrowellenzuleitungen 14, der Hohlleitungskoppelabschnitt 15, die Mikrowellenleitung 16 sowie die Pulsgeneratorsteuerung 10 gemeinsam angeordnet sind, ist aus einem gut Wärme leitenden metallischen Material, vorzugsweise aus Aluminium hergestellt. Dabei sind die vorgesehenen Mikrowellenzuleitungen 14, der Hohlleitungskoppelabschnitt 15 und die Mikrowellenableitung 16 integral mit dem Generatorgehäuse 11, vorzugsweise als Bohrungen ausgebildet. Außerdem sind in dem Generatorgehäuse 11 Kühlkanäle 19 zur Durchleitung eines in der Zeichnung nicht dargestellten Kühlmittels eingebracht.

Claims (15)

  1. Mikrowellenpulszündgenerator (7) zum Auslösen der Verbrennung eines zündfähigen Treibstoff-Luft-Gemisches in einem Brennraum (3) eines Motors (1), mit mindestens einer außerhalb des Brennraumes (3) angeordneten pulsbaren Mikrowellenquelle (8) und einer von der mindestens einen Mikrowellenquelle (8) zum Brennraum (3) führenden Mikrowellenhohlleitung (9), und mit einer Pulsgeneratorsteuerung (10) für die mindestens eine Mikrowellenquelle (8), mit der zumindest die Wellenlänge, die Impulsdauer, der Impulsabstand, die Impulsamplitude und/oder die Modulation der Mikrowellenstrahlung einstellbar ist, gekennzeichnet durch mindestens zwei Mikrowellenquellen (8) und mindestens ein Hohlleitungskoppelabschnitt (15) in der Mikrowellenhohlleitung (9), wobei von den Mikrowellenquellen (8) jeweils Mikrowellenzuleitungen (14) zu dem Hohlleitungskoppelabschnitt (15) führen und der Hohlleitungskoppelabschnitt (15) über eine Mikrowellenableitung (16) mit dem Brennraum (3) verbindbar ist.
  2. Mikrowellenpulszündgenerator nach Anspruch 1, dadurch gekennzeichnet, dass die Mikrowellenquellen (8) Halbleiteremitter sind.
  3. Mikrowellenpulszündgenerator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Hohlleitungskoppelabschnitt (15) gerade verläuft und die Mikrowellenzuleitungen (14) in den Hohlleitungskoppelabschnitt (15), an den die Mikrowellenableitung (16) austrittseitig anschließt, seitlich und stirnseitig münden.
  4. Mikrowellenpulszündgenerator nach Anspruch 3, dadurch gekennzeichnet, dass die Mikrowellenableitung (16) sich geradlinig zu dem Hohlleitungskoppelabschnitt (15) erstreckt.
  5. Mikrowellenpulszündgenerator nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass eine oder mehrere der Mikrowellenzuleitungen (14) in einem spitzen Winkel in den Hohlleitungskoppelabschnitt (15) münden.
  6. Mikrowellenpulszündgenerator nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass eine der Mikrowellenzuleitungen (14) axial fluchtend in den Hohlleitungskoppelabschnitt (15) mündet.
  7. Mikrowellenpulszündgenerator nach einem der vorstehenden Ansprüche 3 bis 6, dadurch gekennzeichnet, dass an einem Übergang der Mikrowellenzuleitungen (14) zu dem Hohlleitungskoppelabschnitt (15) jeweils ein Mikrowelleneintritt (17) und an einem Übergang des Hohlleitungskoppelabschnitts (15) zu der Mikrowellenableitung (16) ein Mikrowellenaustritt (18) angeordnet ist.
  8. Mikrowellenpulszündgenerator nach Anspruch 7, dadurch gekennzeichnet, dass die Mikrowelleneintritte (17) entlang dem Hohlleitungskoppelabschnitt (13) in einem Abstand zueinander angeordnet sind, der ein ganzes Vielfaches der Wellenlänge der Mikrowellenstrahlung beträgt.
  9. Mikrowellenpulszündgenerator nach einem der vorstehende Ansprüche, dadurch gekennzeichnet, dass die Pulsgeneratorsteuerung (10) einen Elektrolytleistungskondensator als Energiespeicher und/oder mindestens einen EMV-Filter aufweist.
  10. Mikrowellenpulszündgenerator nach einem der vorstehende Ansprüche, dadurch gekennzeichnet, dass die Pulsgeneratorsteuerung (10) mit einer Betriebsspannung von 12 Volt oder einem ganzzahligen Vielfachen davon betreibbar ist.
  11. Mikrowellenpulszündgenerator nach einem der vorstehende Ansprüche, dadurch gekennzeichnet, dass die Mikrowellenquellen (8), die Mikrowellenzuleitungen (14), der Hohlleitungskoppelabschnitt (15), die Mikrowellenableitung (16) und die Pulsgeneratorsteuerung (10) gemeinsam in einem metallischen gut Wärme leitenden Generatorgehäuse (11) angeordnet sind, wobei die Mikrowellenzuleitungen (14), der Hohlleitungskoppelabschnitt (15) und die Mikrowellenableitung (16) integral mit dem Generatorgehäuse (11) ausgebildet sind.
  12. Mikrowellenpulszündgenerator nach Anspruch 11, dadurch gekennzeichnet, dass das Generatorgehäuse (11) Kühlkanäle (19) zur Durchleitung eines Kühlmittels aufweist.
  13. Mikrowellenpulszündgenerator nach Anspruch 11 oder 12, dadurch gekennzeichnet, dass das Generatorgehäuse (11) einen Anschlussflansch (12) zum Befestigen an einem Zylinderkopf (6) oder einer Zylinderwandung (5) des Motors (1) aufweist, die den Brennraum (3) begrenzen, wobei der Anschlussflansch (12) vorzugsweise rund ausgebildet ist und ein Gewinde und/oder eine Bajonettverriegelung aufweist.
  14. Mikrowellenpulszündgenerator nach einem der vorstehenden Ansprüche 11 bis 13, dadurch gekennzeichnet, dass das Generatorgehäuse (11) ein Druckgussteil, vorzugsweise aus Aluminium ist.
  15. Verbrennungsmotor (1), mit mindestens einem Brennraum (3) zur Verbrennung eines Treibstoff-Luft-Gemisches und mit einem Mikrowellenzündsystem zum Zünden der Verbrennung, dadurch gekennzeichnet, dass das Mikrowellenzündsystem einen Mikrowellenpulszündgenerator (7) gemäß einem der vorstehenden Ansprüche 1 bis 14 aufweist.
EP15170029.1A 2015-06-01 2015-06-01 Mikrowellenpulszündgenerator für eine verbrennungskraftmaschine Active EP3101268B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15170029.1A EP3101268B1 (de) 2015-06-01 2015-06-01 Mikrowellenpulszündgenerator für eine verbrennungskraftmaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15170029.1A EP3101268B1 (de) 2015-06-01 2015-06-01 Mikrowellenpulszündgenerator für eine verbrennungskraftmaschine

Publications (2)

Publication Number Publication Date
EP3101268A1 EP3101268A1 (de) 2016-12-07
EP3101268B1 true EP3101268B1 (de) 2018-01-31

Family

ID=53298179

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15170029.1A Active EP3101268B1 (de) 2015-06-01 2015-06-01 Mikrowellenpulszündgenerator für eine verbrennungskraftmaschine

Country Status (1)

Country Link
EP (1) EP3101268B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021001830A1 (de) 2021-04-09 2022-10-13 Mathias Herrmann Verfahrenskonzept für Verbrennungskraftmaschinen (z.B. Otto- / Dieselmotoren), Turbinen und Brennräumen zur Steigerung und Regulierung elektromagnetischer Zündung (z.b. mittels Mikrowellen) Mit dem Ziel einer möglichst gerichteten und effektiven Verbrennung. - Konzept für "katalytische Raumzündung"

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110285426A (zh) * 2019-07-01 2019-09-27 东莞理工学院 一种实验室用的固体废弃物微波辅助燃烧装置与方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3733560A (en) * 1972-03-03 1973-05-15 Hughes Aircraft Co Elliptical structure for combining the power of many microwave sources
DE10356916B3 (de) 2003-12-01 2005-06-23 Volker Gallatz Verfahren zum Zünden der Verbrennung eines Kraftstoffes in einem Verbrennungsraum eines Motors, zugehörige Vorrichtung und Motor
US7430442B2 (en) * 2004-04-30 2008-09-30 Shiping He Miniature bidirectional amplifier
US8040189B2 (en) * 2005-12-20 2011-10-18 Leek Paul H Microwave system for driving a linear accelerator
KR101335974B1 (ko) * 2006-09-20 2013-12-04 이마지니어링 가부시키가이샤 점화장치, 내연기관, 점화 플러그, 플라즈마장치, 배기가스 분해장치, 오존 발생·멸균·소독장치 및 소취장치
CN102080619B (zh) * 2010-12-03 2012-05-23 清华大学 一种基于微波等离子体的发动机点火装置
DE102011116340A1 (de) * 2011-10-19 2013-04-25 Heinz Brümmer Vorrichtung zur Durchführung von hochfrequenten Mikrowellen in einen Hochdruckbehälter
JP2014197834A (ja) * 2013-03-07 2014-10-16 有限会社ディアックス マイクロ波電力増幅器及びマイクロ波電力増幅器の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021001830A1 (de) 2021-04-09 2022-10-13 Mathias Herrmann Verfahrenskonzept für Verbrennungskraftmaschinen (z.B. Otto- / Dieselmotoren), Turbinen und Brennräumen zur Steigerung und Regulierung elektromagnetischer Zündung (z.b. mittels Mikrowellen) Mit dem Ziel einer möglichst gerichteten und effektiven Verbrennung. - Konzept für "katalytische Raumzündung"

Also Published As

Publication number Publication date
EP3101268A1 (de) 2016-12-07

Similar Documents

Publication Publication Date Title
EP1697634B1 (de) Verfahren zum zünden der verbrennung eines kraftstoffes in einem verbrennungsraum eines motors, zugehörige vorrichtung und motor
DE2439961C2 (de) Plasmalichtquelle
DE3626922C2 (de)
DE60127672T2 (de) Verbrennungsverbesserungssystem und methode
DE102008062572A1 (de) Zündkerze
DE10297852T5 (de) Systeme und Verfahren zum Konditionieren oder Verdampfen von Brennstoff in einer Hubkolbenverbrennungsmaschine
AT506201A1 (de) Laserzündeinrichtung
WO2010007066A1 (de) Laserzündkerze mit vorrichtung zur beeinflussung der strömung des luft-kraftstoff-gemisches und zur verbesserung der entflammung
WO2010112279A1 (de) Laserzündkerze und vorkammermodul hierfür
DE102010016327A1 (de) Treibstoffeinspritzdüse
EP3101268B1 (de) Mikrowellenpulszündgenerator für eine verbrennungskraftmaschine
DE10037536C2 (de) Verfahren und Vorrichtung einer Plasmazündung in Verbrennungsmotoren
DE102020100827A1 (de) Vorkammersystem, Verbrennungsmotor mit Vorkammersystem sowie Verfahren zur Zündung eines Kraftstoff-Luft-Gemisches
WO2006018379A1 (de) Plasma-zünd-verfahren und -vorrichtung zur zündung von kraftstoff/luft-gemischen in verbrennungskraftmaschinen
EP3529481B1 (de) Verfahren zum betreiben eines antriebsaggregates mit hohem wirkungsgrad und antriebsaggregat
DE2810057A1 (de) Stehwellen-linearbeschleuniger
EP2057373B1 (de) Zündeinrichtung für eine brennkraftmaschine
DE19802745C2 (de) Mikrowellentechnische Zünd- und Verbrennungsunterstützungs-Einrichtung für einen Kraftstoffmotor
DE10239409B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10239414B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE112018007599T5 (de) Zündspulenvorrichtung für Verbrennungsmotor
WO2008151335A1 (de) Vorrichtung zur erzeugung von plasma oder radikalen mittels mikrowellen
DE4112946A1 (de) Gepulstes gasentladungslasersystem
DE112016000670T5 (de) Zündkerze für eine interne Verbrennungsmaschine
EP3662150B1 (de) Plasmaapplikator zur behandlung eines gases sowie verfahren zur schadstoffreduktion bei verbrennungsprozessen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20151212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MWI MICRO WAVE IGNITION AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 967641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015002940

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180131

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180430

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180501

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180531

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015002940

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181102

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180601

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190619

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190619

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150601

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180131

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180131

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 967641

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502015002940

Country of ref document: DE

Representative=s name: WITTE, WELLER & PARTNER PATENTANWAELTE MBB, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230725

Year of fee payment: 9