EP3091540B1 - Vorrichtung zur erzeugung von thermischen neutronenstrahlen mit hoher brillanz und herstellungsverfahren - Google Patents

Vorrichtung zur erzeugung von thermischen neutronenstrahlen mit hoher brillanz und herstellungsverfahren Download PDF

Info

Publication number
EP3091540B1
EP3091540B1 EP16166567.4A EP16166567A EP3091540B1 EP 3091540 B1 EP3091540 B1 EP 3091540B1 EP 16166567 A EP16166567 A EP 16166567A EP 3091540 B1 EP3091540 B1 EP 3091540B1
Authority
EP
European Patent Office
Prior art keywords
moderator
neutrons
channels
neutron
thermal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP16166567.4A
Other languages
English (en)
French (fr)
Other versions
EP3091540A1 (de
Inventor
Dr. Ulrich RÜCKER
Prof. Dr. Thomas BRÜCKEL
Tobias CRONERT
Jan Philipp DABRUCK
Prof. Dr. Rahim NABBI
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP3091540A1 publication Critical patent/EP3091540A1/de
Application granted granted Critical
Publication of EP3091540B1 publication Critical patent/EP3091540B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G4/00Radioactive sources
    • G21G4/02Neutron sources

Definitions

  • the invention relates to a device for generating thermal neutrons for neutron scattering experiments and other applications of thermal neutron beams, e.g. Boron neutron capture therapy for tumor treatment and a method of making the device.
  • Neutron radiation used. When neutrons hit atoms, they are scattered by them. The directional distribution of the scattered neutrons is the desired quantity that can be used to determine the material structure or material properties. The generation of neutron beams for scattering experiments with high intensity and defined direction is a challenge.
  • neutron production is based on nuclear fission in thermal nuclear reactors, as described on the website http://en.wikipedia.org/wiki/Neutron.
  • the thus generated primary neutrons with energy in the MeV range must be braked in the moderator area of the reactor to energies in the range of 1 eV (thermal neutrons) and then fed into beam tubes for the neutron scattering experiments.
  • an extended moderator (usually light or heavy water) is an integral part of the nuclear reactor because the nuclear chain reaction is maintained only by thermal neutrons.
  • the neutrons for the scattering instruments are extracted from the moderator volume by tangential beam tubes. These lances are sac tubes made of a neutron transparent material that extend into the moderator and penetrate the biological shield of the reactor. Their orientation is such that the reactor core is not visible through the opening in the reactor shield, so that high-energy primary neutrons can not reach the experiments directly through the jet pipe.
  • the openings of the jet pipes and the angular range, under which neutrons can escape, are so large that several instruments are supplied from a jet pipe can be shielded by the neutron beam in the angular range between the instruments with a neutron absorber.
  • primary neutrons are generated by nuclear reactions triggered by charged particles (e.g., electrons, protons, or deuterons) that have been accelerated to high energies in an accelerator.
  • charged particles e.g., electrons, protons, or deuterons
  • a target also called a converter
  • high-energy neutrons which are then moderated in a downstream moderator.
  • a presenter is, according to the current state of the art, a massive block of water or polyethylene, which in many cases is surrounded by a graphite or beryllium reflector in order to reduce the neutron losses at the edge of the moderator.
  • the jet pipes are usually connected to the surface of the moderator block. They penetrate the reflector through an opening provided and record at the moderator surface all the divergence experienced by the neutrons as they travel through the moderation volume. This results in a uniform neutron flux over the entire moderator surface.
  • the neutron beams are removed in the case of accelerator-driven neutron sources at the periphery of the moderator, there is so much moderator volume on the neutron path that many already moderated neutrons, which actually move in the direction of the desired beam, are scattered out of this direction again.
  • the neutrons that reach the point where a beam is to be extracted come randomly randomly from all directions, so that the tapped beam has a strong isotropy.
  • the neutron flux is distributed over the entire moderator surface. Therefore, there are no excellent sites where more neutrons can be extracted than at others, and there are no excellent directions in which many neutrons are preferentially emitted from the moderator volume.
  • the neutron beams generated in this way therefore have no preferred direction and thus a low intensity (beam density per unit area) and a low brilliance (intensity per solid angle unit).
  • the direction of the neutron beam in the scattering instrument must be better defined than 2 °. Therefore, collimation systems remove all neutrons from the beam that are outside the accepted angular range.
  • the object of the invention is to extract as many suitable and as few as possible unsuitable neutrons from a moderator in beam tubes, also called neutron guides, to the neutron scattering instruments.
  • the object of the invention is achieved by a device having the features of claim 1.
  • a method comprises the features of the independent claim.
  • Advantageous embodiments emerge from the dependent claims.
  • the object of the invention is achieved by a device comprising an accelerator- or laser-driven neutron source and a moderator for moderating neutrons of the neutron source, characterized in that one or more channels are present in the moderator, or from a central region in the interior of the Guide the moderator to the moderator's interface.
  • a channel according to the present invention is much more transparent, d. H. permeable, for thermal neutrons compared to the adjoining material of the moderator.
  • a channel according to the present invention may be drilled in the moderator material if the material of the moderator is a solid. If the material of the moderator is a liquid, then a metallic tube such as an aluminum tube can serve as a channel in the sense of the present invention.
  • Thermal neutrons which move from an inner, central region of the moderator to the surface of the moderator, basically have a suitable direction, also referred to below as the forward direction, in order to be able to escape from the surface of the moderator. From such a central region, the neutron intensity in the forward direction decreases toward the outside since the thermal neutrons can be scattered or absorbed on their way to the extraction site.
  • the neutron intensity in the forward direction is completely retained. It is therefore possible to increase the intensity of thermal neutrons in the forward direction, which are led out via one channel from the moderator. As a result, the neutron flux provided for the experiments is increased, which on the one hand benefits the time required for measurement and the measurement accuracy limited by the neutron flux.
  • the interior region of the moderator is adjacent to the neutron source converter or generally adjacent to the primary neutron source.
  • This source of primary neutrons is surrounded by moderator material. Adjacent to this source, there is basically a high flux of thermal neutrons, especially in comparison to near-surface areas within the moderator, so that such an arrangement further improves the yield of thermal neutrons.
  • Adjacent means that the distance between the inner region and the neutron source is less than the distance from the inner region to a surface of the moderator.
  • the distance from the central region to the neutron source is at least half as small as the smallest distance between the central region and a surface of the moderator.
  • the inner region is a determined region with a maximum flux of thermal neutrons.
  • the center is determined in particular by computer simulation, whereby a further increase in the intensity of the thermal neutrons can be achieved.
  • Computer simulation programs with which the spatial distribution of thermal neutrons and thus a flux maximum inside a moderator can be determined, are commercially available, so that This is a simple and reliable way to determine such a region with a maximum flow, also called center.
  • the thermal flux in the moderator material increases to a certain saturation value, since already thermalized neutrons (ie thermal neutrons) can be reflected back from the outer layers of the moderator.
  • the thermal flow decreases again beyond a certain moderator volume.
  • the volume of the moderator is therefore 50-200 liters, preferably 100-150 liters, in order to be able to moderately moderate primary neutrons on the one hand and to manage on the other hand with suitable channel lengths.
  • the moderator is preferably in the form of a block, which may be spherical, cube-shaped, cuboidal, conical or ellipsoidal.
  • the moderator is cylindrical, since with this form a particularly suitable spatial distribution of the thermal neutrons is achieved and thus a plurality of thermally brilliant neutron beams are obtained particularly well.
  • One side length of the block is generally not many times longer than other side lengths, so that the shape is compact. In principle, a diameter does not exceed the height many times in the case of a cylindrical shape so as to obtain a compact shape. So the moderator does not have a particularly elongated shape.
  • At least four, preferably at least six channels are present, which lead from an inner region of the moderator to the surface, and in particular in a star shape.
  • no more than 10, more preferably no more than 8, channels are present which lead from an inner region of the moderator to the surface.
  • an increasing number of channels leads to an improved yield of thermal neutrons.
  • primary neutrons or primary neutrons can no longer be adequately moderated so that the yield can not be continuously improved by increasing the number of channels, but, on the contrary, the intensity in each individual channel decreases.
  • the distance between channels on the surface of the moderator is at least twice the free path of thermal neutrons in the moderator material in order to increase the yield further improved.
  • the neutron source used is in particular a linear accelerator with a converter which can be produced with relatively little technical effort and which does not require any thermal neutrons for a chain reaction, so that a considerably smaller moderator volume than in a thermal nuclear reactor is possible.
  • the material of the moderator is then a solid into which the one or more channels are drilled.
  • channels are polished internally to provide a further improved thermal neutron yield by being able to be reflected from the inner portion of the moderator to the surface on the walls of the channel as they pass through the channel.
  • Mechanical polishing is sufficient, in particular in the case of beryllium, to further increase the yield of thermal neutrons.
  • the inside of the channel is preferably further coated so as to be able to conduct thermal neutrons out of the moderator in an appropriate manner. Polishing reduces surface roughness created by making the channel.
  • the channel is produced, for example by drilling.
  • a second processing step takes place, through which the surface roughness is reduced.
  • the polished surface is coated, particularly in the case of aluminum tubes, to obtain further improved results.
  • the material suitable for the coating is, in particular, nickel, which has a high reflection coefficient for neutrons.
  • Even multiple layers are suitable as a coating of the inner walls of the channels. These coatings are z. B. applied by sputtering or galvanic on the already polished inner walls of the flow channels.
  • each channel is less than the mean free path of thermal neutrons in the moderator material.
  • a channel is capable of thermal neutrons suitable from the moderator lead out. It also avoids unnecessarily dimensioning a channel, which would be detrimental to the efficiency of the moderator material.
  • each channel depends on the requirements of the connected experiment and can be reduced to the technically feasible.
  • the diameter to length ratio of the channel determines exit angles of thermal neutrons from the channel. The longer the channel is compared to the diameter, the smaller is the exit angle of thermal neutrons.
  • filters may be provided inside each channel to filter out or prevent primary neutrons from exiting the respective channel.
  • Suitable filter materials are, for example, lead and sapphire single crystals.
  • the moderator comprises an outer reflective sheath of, for example, graphite or polyethylene.
  • the yield can be improved further improved.
  • the intensity of the extracted thermal neutrons in a certain preferred direction is the forward component of the thermal neutron flux on the axis of the neutron instrumentation in the direction of the experiment.
  • both the total flux and the forward component of the flux decrease outwardly as the thermal neutrons can be scattered or absorbed on their way to the extraction site on the moderator surface.
  • the forward component of the flux is fully conserved and can be passed without attenuation, for example to the beginning of the neutron guide of the connected neutron scattering instrument. Since the forward component at this point is independent of the size of the moderator, the volume of the Moderators or the reflector are chosen so that the thermal flux in the center and thus also the forward component can be increased.
  • the moderator is surrounded by a 20 cm thick layer of graphite as a reflector, whereby the thermal flow at the surface of the moderator can be increased by an order of magnitude.
  • the axis of the cylinder lies on the beam axis of the primary ions (eg deuterium ions in the energy range of about 20 MeV energy), with the reflector at the entry point of the ions is interrupted, so that the accelerated by a linear accelerator ions strike the surface of the beryllium moderator and in the first layer of about 0.4 cm are converted into neutrons.
  • This area, where the ions are converted into neutrons, is called a converter.
  • the converter can also be moved further into the moderator.
  • the converter is also surrounded on its back by moderator and reflector material, so that backscattered neutrons in favor of the overall thermal flux are more likely to remain in the moderator.
  • this variant is associated with a higher design effort, since the converter must be laboriously cooled in most cases.
  • the moderator can be operated with many different sources of fast neutrons, resulting in a high flexibility for the use and the use.
  • the low-price segment would include commercial fusion-based neutron generators, which essentially have an isotropic neutron field.
  • linear accelerators or cyclotrons come into question.
  • Even high-intensity, short-pulse lasers are capable of generating intense primary ion beams, so that a more compact design of the entire system can be achieved with such a laser.
  • the increase of the forward thermal flux at the opening of the flow channel depends on the underlying geometric shape and arrangement of the flow channel River channel in the moderator. Different angles of attack between the flow channel and the axis of the primary ion beam are possible, depending on the intended use.
  • the thermal intensity at the opening of the flow channel in the forward direction can be increased by a factor of 6, compared to an arrangement without a channel, as studies have shown. If a smaller proportion of fast neutrons is desired, in one embodiment, the channel is positioned orthogonal to the direction of irradiation of the primary ions. The intensity of thermal neutrons is stronger by a factor of 3 in this case.
  • the neutron flux can be strongly influenced by the choice of moderator material.
  • moderator material In question are water, graphite, heavy water or beryllium, these materials increase in both moderation capacity and in terms of effort in turn.
  • a combination of beryllium as a moderator surrounded by a layer of graphite as a reflector is a preferred solution.
  • the channel can be equipped with a lead or sapphire filter to suppress the flow of fast neutrons without significantly affecting the intensity of forward thermal neutrons.
  • the channels may be arranged in a star shape, for example, so that the channels can lead away from the central area in the moderator in two or three dimensions in different directions and the various experiments do not have to restrict their space requirements.
  • the FIG. 1 shows a moderator 1 with a linear accelerator 2.
  • a moderator 1 with a linear accelerator 2.
  • the end 3 of the beam pipe for the primary ions from the linear accelerator 2 arise in a converter primary neutrons.
  • the end 3 of the linear accelerator 2 formed by the converter extends into the moderator 1.
  • the flux maximum was determined by computer simulations. Starting from this maximum flux 4, four channels 5 designed as neutron conductors extend approximately in a star shape to the surface 6 of the moderator 1.
  • FIG. 2 shows a further embodiment with six channels 5 and with an outer shell 6, for example made of graphite or polyethylene.
  • the device consists of a linear accelerator which accelerates deuterons to 25 MeV and leads through the tube 2 to the converter 3, which here consists of a 0.7 mm thick layer of beryllium.
  • Moderator 1 is a cylinder of beryllium 62 cm in diameter and 41 cm in length. The end of tube 2 and the converter 3 located there is embedded 5 cm deep along the cylinder axis in the moderator. The moderator is surrounded by a 10 cm thick reflector layer 6 made of graphite. The thermal neutron flux has in this construction its maximum 4 in 15 cm distance from the converter along the cylinder axis. At this point begin the six flow channels 5, each of which is cylindrical holes with a diameter of 2 cm.
  • the neutron beams from the two backward (backward in the direction of the ion beam) channels have a factor of 1.5 higher brilliance than the neutrons on the surface of the moderator, the neutron beams from the two channels orthogonal to the cylinder axis one around the Factor 3.5 higher brilliance than the neutrons on the surface of the moderator and the neutron beams from the two forward channels a brilliance higher by a factor of 6 than the neutrons on the surface of a moderator of the same dimensions without flow channels.

Description

  • Die Erfindung betrifft eine Vorrichtung zur Erzeugung von thermischen Neutronen für Neutronenstreuexperimente und weitere Anwendungen von thermischen Neutronenstrahlen, z.B. Bor-Neutroneneinfangtherapie zur Tumorbehandlung und ein Verfahren zur Herstellung der Vorrichtung.
  • Zur Untersuchung von Stoffeigenschaften wie zum Beispiel der Struktur eines Materials werden u.a. Neutronenstrahlen, eingesetzt. Wenn Neutronen auf Atome treffen, werden sie von diesen gestreut. Die Richtungsverteilung der gestreuten Neutronen ist die gesuchte Messgröße, anhand der Materialstruktur oder Stoffeigenschaften bestimmt werden können. Die Erzeugung von Neutronenstrahlen für Streuexperimente mit hoher Intensität und definierter Richtung stellt eine Herausforderung dar.
  • In den meisten heutigen Forschungsneutronenquellen basiert die Neutronenerzeugung auf Kernspaltung in thermischen Kernreaktoren, wie dies auf der Internetseite http://de.wikipedia.org/wiki/Neutron beschrieben wird. Die derart erzeugten Primärneutronen mit Energien im MeV-Bereich müssen im Moderatorbereich des Reaktors auf Energien im Bereich von 1 eV (thermische Neutronen) abgebremst und anschließend in Strahlrohre für die Neutronenstreuexperimente eingespeist werden.
  • Im thermischen Kernreaktor ist ein ausgedehnter Moderator (meist leichtes oder schweres Wasser) ein integraler Bestandteil des Kernreaktors, da die nukleare Kettenreaktion nur durch thermische Neutronen aufrechterhalten wird. In modernen Forschungsreaktoren, wie z.B. dem FRM II in Garching, werden die Neutronen für die Streuinstrumente durch tangentiale Strahlrohre aus dem Moderatorvolumen extrahiert. Diese Strahlrohre sind Sackrohre aus einem neutronentransparenten Material, die in den Moderator hineinreichen und die biologische Abschirmung des Reaktors durchdringen. Ihre Orientierung ist so, dass durch die Öffnung in der Reaktorabschirmung der Reaktorkern nicht sichtbar ist, so dass hochenergetische Primärneutronen nicht direkt durch das Strahlrohr zu den Experimenten gelangen können.
  • Die Öffnungen der Strahlrohre und der Winkelbereich, unter dem Neutronen austreten können, sind so groß, dass mehrere Instrumente aus einem Strahlrohr versorgt werden können, indem der Neutronenstrahl im Winkelbereich zwischen den Instrumenten mit einem Neutronenabsorber abgeschirmt wird.
  • Alternativ werden Primärneutronen durch Kernreaktionen erzeugt, die durch geladene Teilchen (z.B. Elektronen, Protonen oder Deuteronen) ausgelöst werden, welche in einem Beschleuniger auf hohe Energien beschleunigt wurden. In solchen beschleunigergetriebenen Neutronenquellen gibt es ein Target, auch Konverter genannt, welches mit hochenergetischen geladenen Teilchen aus dem Beschleuniger beschossen wird. Dort entstehen hochenergetische Neutronen, welche anschließend in einem nachgeschalteten Moderator moderiert werden. Ein solcher Moderator ist nach heutigem Stand der Technik ein massiver Block aus Wasser oder Polyethylen, der in vielen Fällen von einem Grafit- oder Berylliumreflektor umgeben ist, um die Neutronenverluste am Rand des Moderators zu reduzieren. Die Strahlrohre werden üblicherweise an der Oberfläche des Moderatorblocks angeschlossen. Sie durchdringen den Reflektor durch eine vorgesehene Öffnung und nehmen an der Moderatoroberfläche die gesamte Divergenz auf, die die Neutronen bei ihrem Weg durch das gesamte Moderatorvolumen erfahren. Daraus ergibt sich ein gleichmäßiger Neutronenfluss auf der gesamten Moderatoroberfläche.
  • Dadurch, dass die Neutronenstrahlen im Fall von beschleunigergetriebenen Neutronenquellen an der Peripherie des Moderators abgenommen werden, befindet sich so viel Moderatorvolumen auf dem Neutronenpfad, dass viele bereits moderierte Neutronen, die sich eigentlich in Richtung des gewünschten Strahls bewegen, wieder aus dieser Richtung herausgestreut werden. Die Neutronen, die die Stelle erreichen, an denen ein Strahl extrahiert werden soll, kommen statistisch zufällig aus allen Richtungen, so dass der abgegriffene Strahl eine starke Isotropie aufweist. Darüber hinaus wird der Neutronenfluss über die gesamte Moderatoroberfläche verteilt. Es gibt daher keine ausgezeichneten Stellen, an denen mehr Neutronen extrahiert werden können, als an anderen und es gibt keine ausgezeichneten Richtungen, in die vorzugsweise viele Neutronen aus dem Moderatorvolumen emittiert werden. Die derart erzeugten Neutronenstrahlen haben daher keine Vorzugsrichtung und damit eine niedrige Intensität (Strahldichte pro Flächeneinheit) und eine niedrige Brillanz (Intensität pro Raumwinkeleinheit).
  • Um den dem Experiment bereitgestellten thermischen Neutronenfluss zu erhöhen, ist man nach dem Stand der Technik dazu gezwungen, die Leistung des Beschleunigers zu erhöhen. Für kommerzielle Beschleuniger sind verschiedene Technologien im Einsatz. Jede dieser Technologien ist auf einen bestimmten Leistungsbereich limitiert, wobei der Sprung von einem Leistungsbereich in einen höheren mit einem überproportional hohen technischen Aufwand verbunden ist. Mit der Steigerung der Beschleunigerleistung geht ein Zuwachs der durch den Primärionenstrahl im Target deponierten Wärmemenge einher. Eine daher notwendige Erhöhung der Kühlleistung am Target ist mit einem weiteren technischen Aufwand verbunden.
  • Für die meisten Untersuchungsmethoden muss die Richtung des Neutronenstrahls im Streuinstrument besser als 2° genau definiert sein. Daher werden durch Kollimationssysteme alle Neutronen aus dem Strahl entfernt, die außerhalb des akzeptierten Winkelbereichs liegen.
  • Die Erfindung hat die Aufgabe, möglichst viele geeignete und möglichst wenige ungeeignete Neutronen aus einem Moderator in Strahlrohre, auch Neutronenleiter genannt, zu den Neutronenstreuinstrumenten zu extrahieren.
  • Die Aufgabe der Erfindung wird durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 gelöst. Zur Lösung der Aufgabe umfasst ein Verfahren die Merkmale des Nebenanspruchs. Vorteilhafte Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
  • Die Aufgabe der Erfindung wird gelöst durch eine Vorrichtung umfassend eine beschleuniger- oder lasergetriebene Neutronenquelle und einen Moderator zur Moderierung von Neutronen der Neutronenquelle, dadurch gekennzeichnet, dass ein oder mehrere Kanäle im Moderator vorhanden sind, der bzw. die von einem mittleren Bereich im Inneren des Moderators zur Oberfläche des Moderators führen.
  • Ein Kanal im Sinne der vorliegenden Erfindung ist wesentlich transparenter, d. h. durchlässiger, für thermische Neutronen im Vergleich zum angrenzenden Material des Moderators. Ein Kanal im Sinne der vorliegenden Erfindung kann in das Moderatormaterial gebohrt sein, wenn das Material des Moderators ein Feststoff ist. Handelt es sich beim Material des Moderators um eine Flüssigkeit, so kann ein metallisches Rohr wie zum Beispiel ein Aluminiumrohr als Kanal im Sinne der vorliegenden Erfindung dienen.
  • Schnelle Neutronen verlieren durch elastische Streuung mit den Atomkernen des Moderators ihre Energie und gelangen so nach einigen Stößen in den thermischen Energiebereich. Thermische Neutronen verlieren im Mittel keine weitere Energie bei elastischen Stößen, sondern werden auf ihrer Flugbahn abgelenkt. Ein als Moderator geeignetes Material fungiert daher auch als Reflektor für thermische Neutronen. Thermische Neutronen, die sich von einem inneren, mittleren Bereich des Moderators zur Oberfläche des Moderators bewegen, verfügen grundsätzlich über eine geeignete Richtung, nachfolgend auch Vorwärtsrichtung genannt, um geeignet aus der Oberfläche des Moderators austreten zu können. Von einem solchen mittleren Bereich aus betrachtet nimmt die Neutronenintensität in Vorwärtsrichtung nach außen hin ab, da die thermischen Neutronen auf ihrem Weg zum Extraktionsort gestreut oder absorbiert werden können. Durch den Einsatz eines Kanals vom mittleren Bereich des Moderators bis zur Moderatoroberfläche bleibt die Neutronenintensität in Vorwärtsrichtung vollständig erhalten. Es gelingt daher eine Steigerung der Intensität von thermischen Neutronen in Vorwärtsrichtung, die über jeweils einen Kanal aus dem Moderator herausgeführt werden. Dadurch wird der den Experimenten zur Verfügung gestellte Neutronenfluss erhöht, was einerseits der aufzuwendenden Messzeit als auch der durch die Neutronenfluss limitierten Messgenauigkeit zugutekommt.
  • In einer Ausgestaltung der Erfindung befindet sich der innere Bereich des Moderators benachbart zum Konverter der Neutronenquelle oder allgemein benachbart zur Quelle der Primärneutronen. Diese Quelle von Primärneutronen wird von Moderatormaterial umgeben. Benachbart zu dieser Quelle gibt es grundsätzlich einen hohen Fluss an thermischen Neutronen und zwar insbesondere im Vergleich zu oberflächennahen Bereichen innerhalb des Moderators, so dass eine solche Anordnung weiter verbessert die Ausbeute an thermischen Neutronen steigert. Benachbart meint, dass der Abstand zwischen dem inneren Bereich und der Neutronenquelle geringer ist als der Abstand von dem inneren Bereich zu einer Oberfläche des Moderators. Vorzugsweise ist der Abstand von dem mittleren Bereich zu der Neutronenquelle mindestens halb so gering wie der geringste Abstand zwischen dem mittleren Bereich und einer Oberfläche des Moderators. Erfindungsgemäß ist der innere Bereich ein ermittelter Bereich mit einem Flussmaximum thermischer Neutronen. Das Zentrum wird insbesondere durch Computersimulation ermittelt, wodurch eine weitere Steigerung der Intensität der thermischen Neutronen erreicht werden kann. Computersimulationsprogramme, mit denen die räumliche Verteilung thermischer Neutronen und damit ein Flussmaximum im Inneren eines Moderators ermittelt werden kann, sind kommerziell erhältlich, so dass dies ein einfacher und zuverlässiger Weg ist, um einen solchen Bereich mit einem Flussmaximum, auch Zentrum genannt, zu bestimmen.
  • Mit zunehmendem Moderatorvolumen nimmt der thermische Fluss im Moderatormaterial bis zu einem bestimmten Sättigungswert zu, da bereits thermalisierte Neutronen (also thermische Neutronen) von den äußeren Schichten des Moderators wieder zurückreflektiert werden können. An der Oberfläche des Moderators, an dem üblicherweise die Neutronen zum Experiment extrahiert werden, nimmt der thermische Fluss allerdings ab einem bestimmten Moderatorvolumen wieder ab. In einer Ausgestaltung der Erfindung beträgt das Volumen des Moderators daher 50-200 Liter, vorzugsweise 100-150 Liter, um einerseits primäre Neutronen geeignet moderieren zu können und andererseits mit geeigneten Kanallängen auskommen zu können. Der Moderator liegt vorzugsweise in Form eines Blocks vor, der kugelförmig, würfelförmig, quaderförmig, kegelförmig oder ellipsoidförmig sein kann. Besonders bevorzugt ist der Moderator zylinderförmig, da mit dieser Form eine besonders geeignete räumliche Verteilung der thermischen Neutronen erreicht wird und damit besonders gut eine Mehrzahl von thermisch brillanten Neutronenstrahlen erhalten werden. Eine Seitenlänge des Blocks ist grundsätzlich nicht um ein Mehrfaches länger als andere Seitenlängen, so dass also die Form kompakt ist. Ein Durchmesser übersteigt die Höhe im Fall einer Zylinderform grundsätzlich nicht um ein Mehrfaches, um so eine kompakte Form zu erhalten. Der Moderator weist also nicht eine besonders langgestreckte Form auf.
  • In einer Ausgestaltung der Erfindung sind wenigstens vier, vorzugsweise wenigstens sechs Kanäle vorhanden, die von einem inneren Bereich des Moderators zur Oberfläche führen und zwar insbesondere sternförmig. Vorzugsweise sind nicht mehr als 10, besonders bevorzugt nicht mehr als 8 Kanäle vorhanden, die von einem inneren Bereich des Moderators zur Oberfläche führen. Es kann so weiter verbessert die Ausbeute an thermischen Neutronen gesteigert werden, in dem z. B. mehrere Neutronenstreuinstrumente von je einem Kanal mit thermischen Neutronen versorgt werden. Zunächst führt eine zunehmende Anzahl an Kanälen zu einer verbesserten Ausbeute an thermischen Neutronen. Sind allerdings zu viele Kanäle vorhanden, so können primäre Neutronen bzw. Primärneutronen nicht mehr hinreichend moderiert werden, sodass sich die Ausbeute nicht durch Steigerung der Zahl der Kanäle immer weiter verbessern lässt, sondern im Gegenteil die Intensität in jedem einzelnen Kanal abnimmt.
  • In einer vorteilhaften Ausgestaltung der Erfindung beträgt der Abstand zwischen Kanälen auf der Oberfläche des Moderators wenigstens die doppelte freie Weglänge thermischer Neutronen im Moderatormaterial, um die Ausbeute weiter verbessert zu steigern.
  • Als Neutronenquelle dient insbesondere ein Linearbeschleuniger mit einem Konverter, der mit relativ geringem technischem Aufwand hergestellt werden kann und der keine thermischen Neutronen für eine Kettenreaktion erfordert, sodass ein erheblich geringeres Moderatorvolumen als in einem thermischen Kernreaktor möglich ist.
  • Als besonders geeignetes Material für den Moderator hat sich insbesondere Beryllium herausgestellt. Das Material des Moderators ist dann ein Feststoff, in den die ein oder mehreren Kanäle hineingebohrt werden.
  • Vorzugsweise werden Kanäle innen poliert, um eine weiter verbesserte Ausbeute an thermischen Neutronen zu erhalten, indem diese auf dem Weg durch den Kanal vom inneren Bereich des Moderators zur Oberfläche an den Wänden des Kanals reflektiert werden können. Ein mechanisches Polieren genügt insbesondere im Fall von Beryllium, um dadurch weiter verbessert die Ausbeute an thermischen Neutronen zu steigern. Im Fall von Aluminium wird die Innenseite des Kanals vorzugsweise darüber hinaus beschichtet, umso weiter verbessert thermische Neutronen aus dem Moderator in geeigneter Weise heraus leiten zu können. Durch das Polieren werden Oberflächenrauigkeiten reduziert, die durch die Herstellung des Kanals erzeugt wurden. Es wird also in einem ersten Schritt der Kanal hergestellt, so zum Beispiel durch Bohren. Anschließend findet ein zweiter Bearbeitungsschritt statt, durch den die Oberflächenrauigkeiten reduziert werden. In einem dritten Bearbeitungsschritt wird in einer Ausführungsform die polierte Oberfläche beschichtet und zwar insbesondere im Fall von Aluminiumrohren, um weiter verbesserte Ergebnisse zu erhalten. Als Material für die Beschichtung eignet sich insbesondere Nickel, das einen hohen Reflexionskoeffizienten für Neutronen aufweist. Auch Mehrfachschichten (sogenannte Superspiegel) sind als Beschichtung der Innenwände der Kanäle geeignet. Diese Beschichtungen werden z. B. mittels Sputtern oder galvanisch auf die bereits polierten Innenwände der Flusskanäle aufgebracht.
  • Um eine Ausbeute weiter zu verbessern, ist der Durchmesser eines jeden Kanals kleiner als die mittlere freie Weglänge von thermischen Neutronen im Moderatormaterial. Ein solcher Kanal vermag thermische Neutronen geeignet aus dem Moderator herauszuführen. Auch wird so vermieden, einen Kanal unnötig zu dimensionieren, was nachteilhaft zu Lasten der Effizienz des Moderatormaterials gehen würde.
  • Der Durchmesser eines jeden Kanals richtet sich nach den Erfordernissen des angeschlossenen Experiments und kann auf das technisch Machbare reduziert sein. Das Verhältnis von Durchmesser zu Länge des Kanals bestimmt Austrittswinkel von thermischen Neutronen aus dem Kanal. Je länger der Kanal im Vergleich zum Durchmesser ist, umso kleiner ist der Austrittswinkel von thermischen Neutronen.
  • In einer Ausgestaltung der Erfindung können im Inneren eines jeden Kanals Filter vorhanden sein, um primäre Neutronen herauszufiltern bzw. davon abzuhalten, aus dem jeweiligen Kanal auszutreten. Geeignete Filtermaterialien sind zum Beispiel Blei und Saphir-Einkristalle. Hierdurch wird verbessert vermieden, dass Primärneutronen, also Neutronen mit hoher Energie im MeV-Bereich, zu Instrumenten oder Proben gelangen, ohne aber den Anteil an thermischen Neutronen im Strahl zu schwächen.
  • Vorzugsweise umfasst der Moderator eine äußere reflektierende Hülle zum Beispiel aus Graphit oder Polyethylen. Hierdurch lässt sich die Ausbeute weiter verbessert steigern.
  • Vor allem für Streuexperimente ist die Intensität der extrahierten thermischen Neutronen in eine bestimmte Vorzugsrichtung, die Richtung des Experimentes, und damit die Brillanz von besonderer Bedeutung. Es handelt sich dabei um die Vorwärtskomponente des thermischen Neutronenflusses auf der Achse der Neutroneninstrumentierung in Richtung des Experimentes.
  • Im Zentrum des Moderators ist nicht nur der Gesamtfluss thermischer Neutronen maximal sondern auch dessen Vorwärtskomponente (bzw. Radialkomponente nach außen). Vom Zentrum aus betrachtet nimmt sowohl der Gesamtfluss als auch die Vorwärtskomponente des Flusses nach außen hin ab, da die thermischen Neutronen auf ihrem Weg zum Extraktionsort an der Moderatoroberfläche gestreut oder absorbiert werden können. Durch den Einsatz eines Kanals vom Zentrum des Moderators, dem Punkt des maximalen thermischen Flusses, bis zur Moderatoroberfläche bleibt die Vorwärtskomponente des Flusses vollständig erhalten und kann ohne Abschwächung zum Beispiel zum Anfang des Neutronenleiters des angeschlossenen Neutronenstreuinstruments geleitet werden. Da die Vorwärtskomponente an dieser Stelle unabhängig ist von der Größe des Moderators, kann das Volumen des Moderators bzw. des Reflektors so gewählt werden, dass der thermische Fluss im Zentrum und damit auch die Vorwärtskomponente gesteigert werden kann.
  • Untersuchungen haben gezeigt, dass sich die thermische Intensität in Vorwärtsrichtung (θ≤2° bzgl. der Achse des Flusskanals) und damit die Brillanz um bis zu einen Faktor 6 steigern lässt, abhängig von der Position des Flusskanals im Moderator.
  • Verwendet wurde ein zylinderförmiger Moderator aus Beryllium mit einem Radius von r=31cm einer Länge von l=41cm, was einem Volumen von 125 Litern entspricht. Parameterstudien haben gezeigt, dass dieses Volumen einen guten Kompromiss von maximalem thermischen Fluss und technischem Aufwand darstellt. Der Moderator ist umgeben von einer 20 cm dicken Schicht Grafit als Reflektor, wodurch der thermische Fluss an der Oberfläche des Moderators um eine Größenordnung gesteigert werden kann. Die Achse des Zylinders liegt auf der Strahlachse der Primärionen (z.B. Deuterium-Ionen im Energiebereich von etwa 20 MeV Energie), wobei der Reflektor an der Eintrittsstelle der Ionen unterbrochen ist, sodass die durch einen Linearbeschleuniger beschleunigten Ionen auf die Oberfläche des Beryllium-Moderators treffen und in der ersten Schicht von ca. 0,4 cm in Neutronen umgewandelt werden. Dieser Bereich, in dem die Ionen in Neutronen umgewandelt werden, wird Konverter genannt. Im Prinzip kann der Konverter auch weiter in den Moderator hineinverlegt werden. In diesem Fall ist der Konverter auch auf dessen Rückseite von Moderator- und Reflektormaterial umgeben, sodass rückwärts gestreute Neutronen zugunsten des thermischen Gesamtflusses mit größerer Wahrscheinlichkeit im Moderator zu verbleiben. Diese Variante ist allerdings mit einem höheren Konstruktionsaufwand verbunden, da der Konverter in den meisten Fällen aufwändig gekühlt werden muss.
  • Durch seinen kompakten Aufbau kann der Moderator mit vielen verschiedenen Quellen schneller Neutronen betrieben werden, woraus sich eine hohe Flexibilität für den Einsatz und die Nutzung ergibt. Im Niedrigpreissegment wären kommerzielle fusionsbasierte Neutronengeneratoren zu nennen, die im Wesentlichen ein isotropes Neutronenfeld aufweisen. Um höhere Neutronenintensitäten zu erzielen, kommen Linearbeschleuniger oder Zyklotrone infrage. Sogar hochintensive Kurzpulslaser sind in der Lage, intensive Primärionenstrahlen zu erzeugen, sodass mit solch einem Laser eine noch kompaktere Bauweise der gesamten Anlage erzielt werden kann.
  • Der Zuwachs des thermischen Flusses in Vorwärtsrichtung an der Öffnung des Flusskanals hängt von der zugrundeliegenden geometrischen Form und Anordnung des Flusskanals im Moderator ab. Es sind verschiedene Anstellwinkel zwischen Flusskanal und Achse des Primärionenstrahls möglich, je nach Einsatzzweck.
  • Mit einer Neigung von 40° bezüglich der Richtung des Primärionenstrahls lässt sich die thermische Intensität an der Öffnung des Flusskanals in Vorwärtsrichtung um einen Faktor 6 steigern, verglichen mit einer Anordnung ohne Kanal, wie Untersuchungen gezeigt haben. Wenn ein geringerer Anteil schneller Neutronen gewünscht ist, wird der Kanal in einer Ausgestaltung orthogonal zur Einstrahlrichtung der Primärionen positioniert. Die Intensität thermischer Neutronen ist in diesem Fall um einen Faktor 3 stärker.
  • Der Neutronenfluss kann durch die Wahl des Moderatormaterials stark beeinflusst werden. Infrage kommen Wasser, Grafit, Schwerwasser oder Beryllium, wobei diese Materialien sowohl in der Moderationsfähigkeit wie auch hinsichtlich des Aufwands der Reihe nach ansteigen. Unter Berücksichtigung des wirtschaftlichen und radiologischen Aspektes, Lebensdauer, Strahlenbelastung und des technischen Aufwandes stellt beispielsweise eine Kombination aus Beryllium als Moderator umgeben von einer Schicht Grafit als Reflektor eine bevorzugte Lösung dar.
  • Der Kanal kann mit einem Blei- oder Saphirfilter ausgestattet werden, um den Fluss an schnellen Neutronen zu unterdrücken, ohne die Intensität thermischer Neutronen in Vorwärtsrichtung wesentlich zu beeinträchtigen.
  • Untersuchungen haben gezeigt, dass sich mehrere Flusskanäle in einem thermischen Moderator bis zu einer bestimmten Anzahl nicht gegenseitig beeinträchtigen müssen. Aus diesem Grund ist es möglich, mehrere Flusskanäle für thermische Neutronen an einem einzelnen Moderatorsystem zu betreiben. Die Kanäle können dabei beispielsweise sternförmig angeordnet sein, sodass die Kanäle in verschiedene Richtungen zwei- oder dreidimensional vom mittleren Bereich im Moderator wegführen können und die verschiedenen Experimente sich in ihrem Platzbedarf nicht einschränken müssen.
  • Die Figur 1 zeigt einen Moderator 1 mit einem Linearbeschleuniger 2. Am Ende 3 des Strahlrohrs für die Primärionen aus dem Linearbeschleuniger 2 entstehen in einem Konverter Primärneutronen. Das durch den Konverter gebildete Ende 3 des Linearbeschleunigers 2 reicht in den Moderator 1 hinein. In Beschleunigungsrichtung des Linearbeschleunigers befindet sich benachbart zum Ende 3 ein Flussmaximum 4 an thermischen Neutronen. Das Flussmaximum wurde durch Computersimulationen ermittelt. Von diesem Flussmaximum 4 ausgehend erstrecken sich vier als Neutronenleiter ausgestaltete Kanäle 5 in etwa sternförmig bis zur Oberfläche 6 des Moderators 1.
  • Die Figur 2 zeigt eine weitere Ausführungsform mit sechs Kanälen 5 und mit einer äußeren Hülle 6 zum Beispiel aus Graphit oder Polyethylen.
  • In diesem Ausführungsbeispiel gemäß Figur 2 besteht die Vorrichtung aus einem Linearbeschleuniger, der Deuteronen auf 25 MeV beschleunigt und durch das Rohr 2 auf den Konverter 3 führt, der hier aus einer 0,7 mm dicken Schicht Beryllium besteht. Der Moderator 1 ist ein Zylinder aus Beryllium mit 62 cm Durchmesser und 41 cm Länge. Das Ende von Rohr 2 und der dort befindliche Konverter 3 ist 5 cm tief entlang der Zylinderachse in den Moderator eingelassen. Der Moderator ist von einer 10 cm dicken Reflektorschicht 6 aus Grafit umgeben. Der thermische Neutronenfluss hat bei diesem Aufbau sein Maximum 4 in 15 cm Abstand vom Konverter entlang der Zylinderachse. An dieser Stelle beginnen die sechs Flusskanäle 5, bei denen es sich jeweils um zylindrische Bohrungen mit einem Durchmesser von 2 cm handelt.
  • In dieser Ausführung haben die Neutronenstrahlen aus den beiden rückwärts gerichteten (zurück in Richtung des lonenstrahls gerichteten) Kanälen eine um den Faktor 1,5 höhere Brillanz als die Neutronen an der Oberfläche des Moderators, die Neutronenstrahlen aus den beiden Kanälen orthogonal zur Zylinderachse eine um den Faktor 3,5 höhere Brillanz als die Neutronen an der Oberfläche des Moderators und die Neutronenstrahlen aus den beiden vorwärts gerichteten Kanälen eine um den Faktor 6 höhere Brillanz als die Neutronen an der Oberfläche eines Moderators gleicher Abmessungen ohne Flusskanäle.

Claims (14)

  1. Vorrichtung zur Erzeugung von thermischen Neutronen für Neutronenstreuexperimente umfassend eine beschleuniger- oder lasergetriebene Neutronenquelle (3) und einen Moderator (1) zur Moderation von Neutronen der Neutronenquelle (2, 3), dadurch gekennzeichnet, dass ein oder mehrere Kanäle (5) im Moderator (1) vorhanden sind, der bzw. die von einem inneren Bereich (4) im Moderator (1) zur Oberfläche (6) des Moderators (1) führen, dadurch gekennzeichnet, dass sich der innere Bereich (4) beim oder im Flussmaximum thermischer Neutronen befindet.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Moderator (1) aus einem Feststoff besteht und die Kanäle (5) in den Feststoff hinein gebohrt sind.
  3. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass der Feststoff aus Beryllium besteht.
  4. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der innere Bereich (4) benachbart zur Neutronenquelle (3) angeordnet ist.
  5. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Neutronenquelle ein Konverter (3) am Ende eines Linearbeschleunigers (2) ist.
  6. Vorrichtung nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass sich der innere Bereich (4) in Beschleunigungsrichtung des Linearbeschleunigers (2) gesehen hinter dem Linearbeschleuniger befindet.
  7. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich die Neutronenquelle (3) im Moderator (1) befindet.
  8. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Moderator ein Volumen von 100-150 Liter aufweist.
  9. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass 4-10 Kanäle (5) im Moderator (1) vorhanden sind, die von einem inneren Bereich (4) zur Oberfläche (6) des Moderators (1) führen.
  10. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Durchmesser eines jeden Kanals (5) kleiner als das Doppelte der mittleren freien Weglänge der thermischen Neutronen im Moderator ist.
  11. Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Moderator (1) mit einer äußeren Hülle aus Graphit oder Polyethylen umgeben ist.
  12. Verfahren zur Herstellung einer Vorrichtung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Flussmaximum an thermischen Neutronen im Moderator ermittelt wird und Enden der Kanäle (5) im Bereich des ermittelten Flussmaximums angeordnet werden.
  13. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Oberflächen der Kanäle innen poliert bzw. mit einer polierten Beschichtung ausgekleidet werden.
  14. Vorrichtung nach den vorhergehenden Ansprüchen, dadurch gekennzeichnet, dass im Inneren eines oder mehrerer Kanäle ein Filter aus Blei oder Saphir-Einkristall vorhanden ist, um primäre schnelle Neutronen herauszufiltern.
EP16166567.4A 2015-05-08 2016-04-22 Vorrichtung zur erzeugung von thermischen neutronenstrahlen mit hoher brillanz und herstellungsverfahren Active EP3091540B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015208564.3A DE102015208564A1 (de) 2015-05-08 2015-05-08 Vorrichtung zur Erzeugung von thermischen Neutronenstrahlen mit hoher Brillanz und Herstellungsverfahren

Publications (2)

Publication Number Publication Date
EP3091540A1 EP3091540A1 (de) 2016-11-09
EP3091540B1 true EP3091540B1 (de) 2017-11-29

Family

ID=55919599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP16166567.4A Active EP3091540B1 (de) 2015-05-08 2016-04-22 Vorrichtung zur erzeugung von thermischen neutronenstrahlen mit hoher brillanz und herstellungsverfahren

Country Status (5)

Country Link
EP (1) EP3091540B1 (de)
DE (1) DE102015208564A1 (de)
DK (1) DK3091540T3 (de)
ES (1) ES2658093T3 (de)
HU (1) HUE036291T2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114283952B (zh) * 2021-11-19 2023-05-16 核工业西南物理研究院 垂直向中子相机屏蔽与准直结构

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3778627A (en) * 1973-04-17 1973-12-11 Atomic Energy Commission High intensity, pulsed thermal neutron source
BE1008113A3 (fr) * 1994-03-04 1996-01-23 Ion Beam Applic Sa Procede de production de neutrons thermiques, dispositif pour la mise en oeuvre dudit procede, et utilisation pour la production de radio-isotopes.
CN102855954A (zh) * 2011-06-30 2013-01-02 长春工业大学 14MeV中子热化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
ES2658093T3 (es) 2018-03-08
EP3091540A1 (de) 2016-11-09
HUE036291T2 (hu) 2018-06-28
DK3091540T3 (en) 2018-02-05
DE102015208564A1 (de) 2016-11-10

Similar Documents

Publication Publication Date Title
EP1987859B1 (de) Partikeltherapieanlage
EP2183026B1 (de) Partikeltherapieanlage
EP1883093B1 (de) Computertomograph
RU2717364C1 (ru) Система нейтрон-захватной терапии
DE102005012059A1 (de) Laserbestrahlter Hohlzylinder als Linse für Ionenstrahlen
DE102004057726A1 (de) Medizinische Untersuchungs- und Behandlungseinrichtung
DE202013105829U1 (de) Stehwellen-Elektronenlinearbeschleuniger mit kontinuierlich regelbarer Energie
EP2353647A1 (de) Vorrichtung mit einer Kombination aus einer Magnetresonanzvorrichtung und einer Strahlentherapievorrichtung
DE2805111A1 (de) Neutronen-strahlentherapiegeraet
EP1482519B1 (de) Energiefiltereinrichtung
DE212022000080U1 (de) Eine Strahlformungsvorrichtung für thermische Neutronen
EP3091540B1 (de) Vorrichtung zur erzeugung von thermischen neutronenstrahlen mit hoher brillanz und herstellungsverfahren
WO2009106603A1 (de) Teilchenstrahl-therapiesystem
DE3138693A1 (de) "thermonuklearer fusionsreaktor"
WO2013007484A1 (de) Monochromatische röntgenquelle
DE1279859B (de) Einrichtung zur Erzeugung von Neutronen aus Kernfusionsreaktionen
EP3174069A1 (de) Degrader mit borcarbid
DE102008035210B4 (de) Röntgentarget, Linearbeschleuniger und Verfahren zur Erzeugung von Röntgenstrahlen
JP2023542251A (ja) 中性子捕捉療法のための中性子ビームの生成、減速および構成のためのデバイス
EP2652746A1 (de) Chromatisches energiefilter
DE2511926A1 (de) Ring-laser fuer durchdringende elektromagnetische wellen
DE102008044781A1 (de) Verfahren und Vorrichtung zur Beschleunigung von Ionen eines Ionenstrahls
DE102012025244A1 (de) Fusionsraktor mit sphärischer Petawattlasereinstrahlung
DE102005018342A1 (de) Vorrichtung und Verfahren zur Erzeugung von Röntgenstrahlung
DE102010035132A1 (de) Verfahren und Vorrichtung zum Erzeugen von freien Neutronen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170509

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170706

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 951077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502016000312

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20180131

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2658093

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180308

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171129

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180301

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E036291

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502016000312

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171129

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171129

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180329

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 951077

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210422

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210422

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230428

Year of fee payment: 8

Ref country code: FR

Payment date: 20230417

Year of fee payment: 8

Ref country code: ES

Payment date: 20230517

Year of fee payment: 8

Ref country code: DK

Payment date: 20230419

Year of fee payment: 8

Ref country code: DE

Payment date: 20230418

Year of fee payment: 8

Ref country code: CH

Payment date: 20230502

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230419

Year of fee payment: 8

Ref country code: HU

Payment date: 20230419

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230420

Year of fee payment: 8