EP3085963A1 - Vakuumpumpe - Google Patents

Vakuumpumpe Download PDF

Info

Publication number
EP3085963A1
EP3085963A1 EP15164305.3A EP15164305A EP3085963A1 EP 3085963 A1 EP3085963 A1 EP 3085963A1 EP 15164305 A EP15164305 A EP 15164305A EP 3085963 A1 EP3085963 A1 EP 3085963A1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
pumping
pump
inlet
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15164305.3A
Other languages
English (en)
French (fr)
Other versions
EP3085963B1 (de
Inventor
Tobias Stoll
Michael Schweighöfer
Martin Lohse
Jan Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Priority to EP15164305.3A priority Critical patent/EP3085963B1/de
Priority to JP2016083605A priority patent/JP6225213B2/ja
Publication of EP3085963A1 publication Critical patent/EP3085963A1/de
Application granted granted Critical
Publication of EP3085963B1 publication Critical patent/EP3085963B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/046Combinations of two or more different types of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • F04D27/02Surge control
    • F04D27/0269Surge control by changing flow path between different stages or between a plurality of compressors; load distribution between compressors

Definitions

  • the invention relates to a vacuum pump, in particular a turbomolecular pump, having a housing which encloses a pump space for a gas to be pumped, in which a plurality of pump stages connected in series are arranged, wherein the pump stages each have an inlet with an inlet area located within the housing.
  • Vacuum pumps are used in various technical processes to create a vacuum that is necessary for the respective process.
  • a vacuum pump typically includes a housing that encloses a pumping chamber with a rotor shaft.
  • a pump structure of the vacuum pump Arranged in the pump chamber is a pump structure of the vacuum pump, which conveys a gas present in the pump chamber or in an area to be evacuated from an inlet to an outlet of the vacuum pump and thereby pumps it.
  • a drive for the rotor shaft is usually arranged in a separate storage space from the pump room.
  • Turbomolecular pumps are torque transfer pumps in which gas molecules entering the pump of a gas to be pumped receive a torque by impacting the moving rotor blades of the rotor shaft.
  • the pump usually includes a plurality of pump stages of series or successively arranged rotor and stator discs. Each pumping stage thus usually consists of at least one rotor and one stator disk, which are arranged in pairs.
  • a pumping stage may also consist of only one rotor disk, and this applies in particular to the pumping stage located at the downstream end. In this case, the pump ends with a rotor disk.
  • the gas molecules get due to the position of rotor and stator to each other a component of movement parallel to the axis of the pump, wherein the axis in principle corresponds to the rotor shaft.
  • multiple pump stages increase the pressure of the gas from the inlet to the outlet of the pump.
  • a turbomolecular pump basically works only effectively in pressure ranges in the molecular flow range and does not evacuate to atmospheric pressure, but is usually supported by a backing pump.
  • the working pressure range of the turbomolecular pump is usually extended by coupling a molecular pumping stage driven by the same rotor shaft, for example a Holweck pumping stage or Siegbahn pumping stage, to the outlet of the turbomolecular pump within the pump casing. This makes it possible to use lower-pressure fore-vacuum pumps because the outlet pressure of the gas is increased.
  • the combination of the turbomolecular pumping stage and the molecular pumping stage usually evacuates to a pressure of about 1 mbar, so that the roughing pump pumps to the atmosphere.
  • Vacuum pumps with multiple inlets allow the pumping of several, in particular in series successively arranged, chambers (recipients) with different pressures.
  • Such pumps typically include two to six inlets spaced along the axis of the pump.
  • the pumps usually consist of a stack of successively connected pumping stages within the pump chamber.
  • the pumping stages comprise a turbomolecular pumping unit comprising at least one set of rotor and stator blades and optionally one or more molecular pumps.
  • the highest pumping speed and the lowest pressure range are available at the first intake, ie at all other inlets.
  • the downstream inlets are in higher pressure ranges according to their order and provide lower pumping speeds.
  • Split flow vacuum pumps are also known, in which the highest pumping speed or the highest pumping speed is available at an inlet which is arranged between two further inlets, ie at the middle pumping stage or at one of the middle pumping stages.
  • the embodiment is particularly dependent on the particular application.
  • vacuum pumps with multiple inlets involve the problem that different pressures are applied to the inlets of the pumping stages connected in series.
  • Gas molecules from an upstream (upstream) region to be evacuated, to which a lower pressure is applied may potentially pass via a downstream (downstream) inlet into a higher pressure region to be evacuated associated with that inlet and contaminate it.
  • This can be particularly problematic if the areas to be evacuated are parts of a scientific instrument, for example a mass spectrometer, with several pressure ranges.
  • the backflowing gas can complicate an exact pressure setting here. If the gas pumped from an upstream region is a corrosive gas, such contamination over time can result in significant irreversible damage.
  • the vacuum pump according to the invention which is preferably a turbomolecular pump, comprises a housing which encloses a pump space for a gas to be pumped, in which a plurality of pump stages connected in series are arranged.
  • the pumping stages each have an inlet with an inlet region located within the housing.
  • at least one deflection means is provided which provides at least one outgoing from an upstream pumping stage flow path for the gas to be pumped, which leads away from the inlet region of a downstream pumping stage.
  • the deflection means prevents the gas to be pumped from flowing from a first upstream pumping stage to the inlet region of a further downstream pumping stage by deflecting the gas and thus forcing it to a flow path leading away from the inlet region.
  • the flow path can in particular also be a further or alternative flow path of the gas to be pumped. Accordingly, it can be provided that two or more flow paths are available to the gas to be pumped, with at least one leading away from the inlet region of the downstream pump.
  • the vacuum pump according to the invention has exactly two or more pumping stages.
  • the upstream and the downstream pumping stage can both follow one another directly, ie be adjacent, as well as be separated by one or more pumping stages arranged therebetween.
  • a vacuum pump according to the invention preferably has two, particularly preferably three, in particular four, pumping stages. However, there are also five or more pumping stages conceivable.
  • a pumping stage preferably comprises at least one respective rotor and stator disk, which are arranged in pairs.
  • a pumping stage may additionally comprise at least one molecular pumping stage.
  • these may be Holweck or Siegbahnpumpplantn, which can also be combined with each other.
  • a pumping stage may further comprise only one or more molecular pumping stages.
  • the deflection means comprises a partition wall arranged between two pump stages, through which extends a rotor shaft associated with the pump stages.
  • the rotor shaft is preferably assigned to all pump stages and is driven in particular by only one motor.
  • the rotor shaft substantially corresponds to the axis of the pump, along which the pumping stages are arranged one behind the other.
  • the inlets associated with the pumping stages are preferably also arranged along this axis.
  • the inlets do not necessarily have to lie on a line parallel to the axis of the pump, but can also be offset from each other. All inlets can be side inlets, but this is not mandatory.
  • the first inlet of the pump which is connected upstream of all other inlets, may be arranged on the front side.
  • the last inlet of the pump which is connected downstream of all other inlets, may be arranged on the front side.
  • the partition wall is preferably made of the same or a similar material as a stator disc and is also constructed substantially similar. Furthermore, the partition can be divided, in particular diametrically split, executed. The production of such a partition may e.g. done by wire erosion or by laser processing. Basically, those skilled in the field of turbomolecular pumps corresponding manufacturing methods and materials are known, which is why at this point is waived further comments.
  • the rotor shaft passes through an opening in the dividing wall to form a gap, wherein the flow path for the gas to be pumped passes through the gap.
  • the partition causes the flow path of the gas to be pumped is deflected substantially to the center of the pump chamber or to the axis of the pump. In this way, a direct onflow of the inlet of the downstream pumping stage and thus a backflow of the gas to be pumped in the inlet associated with the recipient is avoided.
  • the more dense the dividing wall is arranged at the downstream inlet the stronger is this advantageous effect. It is therefore particularly preferred that the downstream inlet directly adjoins the dividing wall.
  • the dividing wall in the area of the rotor shaft is extended axially into the downstream pumping stage.
  • the flow path of the gas to be pumped thereby wholly or at least largely bypass the inlet region of the downstream pumping stage or at least bring it closer to the compression region of the downstream pumping stage.
  • Such an extension can be realized for example by a mounted on the partition wall or integrally formed with the partition wall hollow cylinder or pipe socket, which surrounds the rotor shaft. In this way, the gas exchange between the pump chamber and a recipient associated with the inlet of the downstream pumping stage can be further reduced with only a low production cost.
  • the gap may additionally or alternatively be limited by pump-active structures.
  • pump-active structures These may in particular be Holweck and / or Siegbahn pumping stages.
  • the pump-active structures are preferably formed on the rotor shaft and can depending on the respective inventive deflection concept either one of the flow direction of the gas to be pumped (in the direction downstream pumping stage) or provide a pumping action opposite this between the two pumping stages.
  • the pump-active structures assigned to the gap are preferably configured such that they provide a pumping action (downstream of the pumping stage) corresponding to the flow direction of the gas to be pumped.
  • further deflecting means may be provided in embodiments according to the invention in addition to the dividing wall.
  • the pump-active structures assigned to the gap are configured in such a way that they have a pumping action (in contrast to the flow direction of the gas to be pumped) Upstream of the pumping stage). In this way, a particularly effective gas barrier between two successive pumping stages can be realized.
  • the partition wall or an opening formed in the partition wall for the rotor shaft does not provide a flow path for the gas to be pumped which leads directly into the downstream pumping stage.
  • the gap may additionally or alternatively be assigned a flow resistance.
  • the flow resistance is preferably arranged in front of the gap, in particular on the side of the upstream pumping stage.
  • the flow resistance is mounted on the rotor shaft.
  • the rotor shaft and the flow resistance can also be made in one piece.
  • the flow resistance is a disk or plate.
  • a flow resistance associated with the gap is particularly advantageous if the partition wall is to provide a gas-barrier effect between two pumping stages.
  • the deflection means defines a flow path leading out of the pump chamber.
  • a deflection means may be provided alternatively or in addition to one or more partitions.
  • Such deflection can be divided into those that return the flow path for the gas to be pumped after leaving the pump room back into this, and those in which the flow path is not returned to the pump room.
  • the deflection means which returns the flow path back into the pump chamber, an outlet of the upstream pumping stage, which through a line with another inlet of the downstream pumping stage connected is. It is irrelevant whether the upstream and the downstream pumping stage follow one another directly, ie are adjacent, or whether they are separated from each other by one or more pumping stages arranged therebetween.
  • the further inlet is arranged downstream of the respective downstream pumping stage in relation to the inlet connected to a recipient. Further, it may be preferred if both inlets are located substantially at opposite axial end portions of the pumping stage, i. with the greatest possible axial distance from each other, are arranged.
  • the further inlet of the downstream pumping stage is arranged at a point of particularly high compression (pumping action). In other words, the further inlet preferably opens at a point of high pumping action into the pump chamber.
  • a Holweck and / or Siegbahn pumping stage of the respective downstream pumping stage attached to the rotor shaft can be arranged at such a location. In this way, a return flow of the gas to be pumped is particularly reliably avoided.
  • the conduit connected to the outlet in one embodiment, extends within the housing and outside the pumping space.
  • the line preferably has a closed cross-section and is in particular substantially gas-tightly separated from the pump chamber.
  • a gas-conducting connection with the pump chamber thus preferably exists only via the outlet and the further inlet.
  • the line is particularly preferably parallel to the axis of the pump, which may extend over the entire length of the pump.
  • the conduit may also orbit the pumping space spirally along the axis of the pump.
  • the line is in particular a bore or a channel.
  • the conduit comprises a tube or a hose.
  • the line may connect the outlet of the upstream pumping stage to more than one downstream pumping stage.
  • all the downstream pumping stages can each be connected to the outlet of the upstream pumping stage via a further inlet.
  • An extending between the pump chamber and housing line offers the advantage of a compact pump design. Additional external gas lines omitted, which in particular the handling of the pump is facilitated.
  • generally known types of pumps can be used whose housing is suitable for providing a corresponding line.
  • the line which is connected to the outlet of the upstream pumping stage extends outside the pump housing.
  • the outlet and / or the further inlet is then preferably a flange with which a releasable connection to the conduit can be made.
  • the line is, for example, a pipe and / or a hose, in particular a corrugated hose.
  • the conduit may be delimited by an outer wall of the housing and a component mounted on the outer wall, which is in particular made of the same or a similar material as the housing.
  • the component may itself be formed like a box.
  • the conduit extending outside the housing may be formed by a channel formed in a metal block.
  • the metal block can be firmly screwed to the pump housing, whereby the line can be sealed particularly reliable.
  • the metal block is connected to the outlet and / or the further inlet using known, standardized seals, ie, attached to the pump housing so as to form one or more conventional flange connections.
  • the metal block is made of aluminum.
  • a conduit extending outside the housing has the advantage that the flow path defined by the conduit can be varied in a vacuum pump with more than two pump stages. If all or at least most of the downstream pumping stages have an additional inlet and all or at least the most upstream pumping stages have an outlet, any desired connections can be made between the pumping stages.
  • the vacuum pump according to the invention can be adapted in this way to the type of recipient as well as to the nature of the gas to be pumped.
  • a deflection means which does not return the flow path of the gas to be pumped after leaving the pump chamber into this, preferably comprises an outlet of the upstream pumping stage, to which an external device can be connected.
  • the external device preferably comprises a backing pump.
  • connection between the outlet and the external device is e.g. through pipes and / or hoses, in particular corrugated hoses.
  • the outlet of the upstream pumping stage is assigned a molecular pumping stage, for example a Siegbahn and / or Holweck pumping stage. This causes high compression in close proximity to the outlet, allowing the gas to be pumped to be expelled at a higher pressure. It can be provided that all outlets of the pump is assigned a molecular pumping stage.
  • Particularly preferred embodiments of the vacuum pump according to the invention comprise deflection means, which both lead out of the pump chamber Define flow path and at least include a partition, as described above.
  • the invention also relates to a vacuum system comprising a device to be evacuated several chambers and at least one vacuum pump according to the invention, wherein the chambers are arranged one behind the other and each having a gas outlet which is connected in pumping operation with an inlet of one of the pumping stages of the vacuum pump.
  • Vacuum pump 10 shown comprises a housing 12 enclosed by a pump chamber 14 through which a rotor shaft 22 extends, which are associated with an upstream pumping stage 16a and a downstream pumping stage 16b.
  • Each pumping stage 16a, 16b comprises a plurality of paired rotor and stator disks 24, ie each of the two pumping stages 16a, 16b is or comprises a turbomolecular pumping stage.
  • the two pump stages 16a, 16b common rotor shaft 22 is at its in Fig. 1 right end, so in the range of lower pressure, rotatably supported by a passive permanent magnet bearing and at the opposite end by a lubricated rolling bearing.
  • the downstream pumping stage 16b comprises, in addition to the turbomolecular pumping stage, a molecular pumping stage 26, which is in particular a Holweck pumping stage.
  • the two pumping stages 16a and 16b each have an inlet 18 with an inlet region 20, wherein each inlet 18 is associated with an area to be evacuated.
  • the flow direction or an inventively provided flow path 15 of the gas to be evacuated are indicated by arrows.
  • the successive pump stages 16a and 16b are separated by a partition wall 30.
  • the rotor shaft 22 extends to form a gap 32 through an opening in the partition wall 30 therethrough.
  • the flow path 15 of the gas to be pumped passes through the gap 32. As a result, a direct onflow of the inlet region 20 of the downstream pumping stage 16b is avoided.
  • Fig. 2a shows an enlarged cross-sectional view of the partition wall 30 in the region of its opening.
  • the partition wall 30 is extended axially into the downstream pumping stage (on the left of the partition wall 30).
  • the extension is realized by a mounted on the partition 30 hollow cylinder 31, which surrounds the rotor shaft 22.
  • the flow path of the gas to be evacuated is with a Arrow indicated. If you transfer the detail view according to Fig. 2a on Fig. 1 , it becomes clear that the inlet region 20 assigned to the downstream pumping stage 16b experiences an even better shielding due to the extension.
  • Fig. 2b shows an enlarged cross-sectional view of the partition wall 30 in the region of its opening according to another embodiment.
  • the gap 32 is associated with a flow resistance 34 which is mounted on the rotor shaft 22 on the side of an upstream pumping stage.
  • a flow resistance 34 which is mounted on the rotor shaft 22 on the side of an upstream pumping stage.
  • the partition wall 30 arranged between two pumping stages is intended to be essentially gas-tight. This is the case, in particular, if a further deflecting means is provided which defines a flow path leading out of the pump chamber (cf. Fig. 3 to 8 ).
  • Fig. 3 shows a vacuum pump 10, in contrast to the vacuum pump according to Fig. 1 a channel 40 which is arranged between the housing 12 and the pump chamber 14 parallel to the rotor shaft 22.
  • the channel 40 is separated by a static component 13 of the housing 12 from the pump chamber 14 substantially gas-tight.
  • the channel 40 connects the outlet 36 of the upstream pumping stage 16a with another inlet 38 of the downstream pumping stage 16b.
  • the further inlet 38 is arranged in the immediate vicinity of a molecular pump stage 26. The increased compression at this point prevents backflow of the gas to be pumped into the channel 40.
  • the flow path 15 of the gas to be pumped by arrows is thus led out of the pump chamber 14 and fed back downstream of the pump chamber 14 at the level of the downstream pumping stage 16b.
  • the influx of the pumping stage 16b associated inlet portion 20 is thus avoided.
  • the pumping stages 16a and 16b are separated by a partition wall 30.
  • the partition wall 30 is gas-tight in this embodiment.
  • a gap between the rotor shaft 22 and the partition 30 delimiting its opening is not indicated. It can be a configuration like in Fig. 2b be provided shown.
  • pump-active structures for example Holweck and / or Siegbahn pump stages, can also be assigned to the gap 32. The pumping action provided by the pump-active structures then runs counter to the flow direction of the gas to be pumped, that is to say in the direction of the upstream pumping stage 16a.
  • Fig. 4 also shows a vacuum pump 10 with a deflection means defining a leading out of the pump chamber 14 flow path 15.
  • the difference to the vacuum pump according to Fig. 3 is that the flow path is provided by a conduit which extends outside of the housing 12.
  • the outlet 36 of the upstream pumping stage 16a is connected by a hose or a pipe 42 to the further inlet 38 of the downstream pumping stage 16b.
  • Both the outlet 36 and the inlet 38 are, in particular, a flange with which a detachable connection to the hose or tube 42 can be provided.
  • the vacuum pump 10 further includes a pump outlet 37, which is preferably connected to a roughing pump (not shown).
  • a roughing pump not shown
  • Fig. 5 shows a vacuum pump 10 with a deflection, which provides a leading out of the pump chamber 14 flow path 15.
  • the deflection means is the outlet 36 of the upstream pumping stage 16a which is connected to an external device, in particular a backing pump (not shown). is connectable.
  • both outlets 36, 37 may be connected to the same external device. Incidentally, on the remarks to the Fig. 4 to get expelled.
  • Fig. 6 shows a vacuum pump 10, in which unlike the vacuum pump according to Fig. 5 the outlet 36 of the upstream pumping stage 16a is associated with a molecular pumping stage 26, for example a Holweck or Siegbahn pumping stage. This generates a particularly high compression, so that at the outlet 36 of the pumping stage 16a, the gas to be pumped can be ejected with increased pressure. Incidentally, on the remarks to the Fig. 5 to get expelled.
  • Fig. 7 shows a vacuum pumping system 50 with a vacuum pump 10 according to the invention
  • the housing 12 has a pump chamber 14 with three pumping stages 16a, 16b and 16c.
  • the rotor shaft 22 of the pump 10 is arranged parallel to the receivers or chambers 28 of the chamber system according to the invention to be evacuated by the pump 10.
  • Each of the pumping stages 16a, 16b and 16c is associated with an inlet 18, to which an area 28 to be evacuated adjoins.
  • the pumping stage 16b is connected downstream of the pumping stage 16a, but upstream of the pumping stage 16c. Between the pumping stages 16b and 16c, a partition wall 30 is arranged.
  • the vacuum pump 10 comprises a further deflection means, as in the Fig. 3 or 4 has been described. This deflecting means is indicated here only by the flow path 15 provided thereby.
  • the pump outlet 37 is arranged frontally in this embodiment and connected to a backing pump 44. Furthermore, a recipient 28 which is not connected to the pump room 14 is connected to the roughing pump 44.
  • the vacuum pump system 50 or the chamber system to be evacuated is, in particular, a mass spectrometer.
  • FIG. 8 shows a vacuum pumping system 52 with a vacuum pump 10 according to the invention, the rotor shaft 22 is arranged perpendicular to the recipient or chambers 28.
  • the vacuum pump 10 comprises a partition wall 30 and a further deflection means as shown in FIGS Fig. 3 or 4 has been described and this is again indicated only by the provided flow path 15.
  • the inlet 18 assigned to the pumping stage 16a is arranged on the front side.
  • the inlet 18 associated with the pumping stage 16b is connected to the recipient 28 through a housing component 19.
  • the housing component 19 may in particular be a metal block which is provided with a corresponding channel and can be firmly screwed to the housing 12 and to the chamber system to be evacuated.
  • the lowest pressure range of the vacuum pumping system 52 is provided by a separate turbomolecular pump 46, the inlet 17 of which is connected to the recipient 28. Both pumps 10, 46 have an end outlet 37 and are connected to the same backing pump 44. Incidentally, on the remarks to the Fig. 7 to get expelled.
  • the vacuum pump system 52 or the chamber system to be evacuated is likewise in particular a mass spectrometer.
  • a flow path through the gap between the partition wall and the rotor shaft for example according to the Fig. 1 and 2 with an outside the pump space extending flow path eg according to the Fig. 3 to 8 be combined, so that a particular relatively smaller proportion of the gas flows along the rotor shaft in the downstream pumping stage, but a particular relatively larger proportion of the gas is guided around a relevant part of the downstream pumping stage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

Die Erfindung betrifft eine Vakuumpumpe mit einem Gehäuse (12), das einen Pumpenraum (14) für ein zu pumpendes Gas einschließt, in dem mehrere hintereinander geschaltete Pumpstufen (16a, 16b) angeordnet sind, wobei die Pumpstufen (16a, 16b) jeweils einen Einlass (18) mit einem innerhalb des Gehäuses (12) gelegenen Einlassbereich (20) aufweisen. Es ist mindestens ein Umlenkmittel (30, 34, 38, 40, 42) vorgesehen, das einen von einer vorgeschalteten Pumpstufe (16a) ausgehenden Strömungspfad (15) für das zu pumpende Gas bereitstellt, der von dem Einlassbereich (20) einer nachgeschalteten Pumpstufe (16b) wegführt.

Description

  • Die Erfindung betrifft eine Vakuumpumpe, insbesondere Turbomolekularpumpe, mit einem Gehäuse, das einen Pumpenraum für ein zu pumpendes Gas einschließt, in dem mehrere hintereinander geschaltete Pumpstufen angeordnet sind, wobei die Pumpstufen jeweils einen Einlass mit einem innerhalb des Gehäuses gelegenen Einlassbereich aufweisen.
  • Vakuumpumpen werden in unterschiedlichen technischen Prozessen eingesetzt, um ein für den jeweiligen Prozess notwendiges Vakuum zu schaffen. Eine Vakuumpumpe umfasst typischerweise ein Gehäuse, das einen Pumpenraum mit einer Rotorwelle einschließt. In dem Pumpenraum ist eine Pumpstruktur der Vakuumpumpe angeordnet, die ein in dem Pumpenraum bzw. in einem zu evakuierenden Bereich vorhandenes Gas von einem Einlass zu einem Auslass der Vakuumpumpe fördert und dadurch pumpt. Ein Antrieb für die Rotorwelle ist üblicherweise in einem von dem Pumpenraum getrennten Lagerraum angeordnet.
  • Turbomolekularpumpen sind Drehmomenttransferpumpen, bei denen in die Pumpe eintretende Gasmoleküle eines zu pumpenden Gases durch einen Aufprall auf die sich bewegenden Rotorblätter der Rotorwelle ein Drehmoment erhalten. Die Pumpe enthält üblicherweise mehrere Pumpstufen von in Reihe oder hintereinander angeordneten Rotor- und Statorscheiben. Jede Pumpstufe besteht also in der Regel zumindest aus je einer Rotor- und Statorscheibe, die paarweise angeordnet sind. Gegebenenfalls kann eine Pumpstufe auch nur aus einer Rotorscheibe bestehen, wobei dies insbesondere für die am stromabwärts gelegenen Ende befindliche Pumpstufe gilt. In diesem Fall endet die Pumpe mit einer Rotorscheibe. Neben dem Drehmoment erhalten die Gasmoleküle aufgrund der Stellung von Rotor- und Statorscheiben zueinander eine Bewegungskomponente parallel zur Achse der Pumpe, wobei die Achse grundsätzlich der Rotorwelle entspricht. Generell erhöhen mehrere Pumpstufen den Druck des Gases von dem Einlass zum Auslass der Pumpe.
  • Eine Turbomolekularpumpe arbeitet grundsätzlich nur effektiv in Druckbereichen im Molekularstrombereich und evakuiert nicht zu atmosphärischem Druck, sondern wird meist von einer Vorvakuumpumpe unterstützt. Der Arbeitsdruckbereich der Turbomolekularpumpe wird üblicherweise erweitert, indem eine von der gleichen Rotorwelle angetrieben Molekularpumpstufe, beispielsweise eine HolweckPumpstufe oder Siegbahn-Pumpstufe, an den Auslass der Turbomolekularpumpe innerhalb des Pumpgehäuses gekoppelt wird. Dies ermöglicht, Vorvakuumpumpen mit geringerer Leistung einzusetzen, da der Auslassdruck des Gases erhöht ist. In diesem Fall evakuiert die Kombination aus der Turbomolekularpumpstufe und der Molekularpumpstufe üblicherweise zu einem Druck von etwa 1 mbar, so dass die Vorvakuumpumpe zur Atmosphäre pumpt.
  • Vakuumpumpen mit mehreren Einlässen, sogenannte Splitflowvakuumpumpen, ermöglichen das Pumpen von mehreren, insbesondere in Reihe hintereinander angeordneten, Kammern (Rezipienten) mit unterschiedlichen Drücken. Derartige Pumpen enthalten typischerweise zwei bis sechs Einlässe, die entlang der Achse der Pumpe beabstandet sind. Die Pumpen bestehen üblicherweise aus einem Stapel von hintereinander geschalteten Pumpstufen innerhalb des Pumpenraums. In der Regel umfassen die Pumpstufen eine Turbomolekularpumpeinheit aus zumindest einem Satz von Rotor- und Statorblättern und gegebenenfalls einer oder mehreren Molekularpumpen. Typischerweise stehen die höchste Pumpgeschwindigkeit und der niedrigste Druckbereich am ersten, d.h. am allen weiteren Einlässen vorgeschalteten Einlass zur Verfügung. Die nachgeschalteten Einlässe befinden sich entsprechend ihrer Reihenfolge in höheren Druckbereichen und liefern niedrigere Pumpgeschwindigkeiten. Es sind auch Splitflowvakuumpumpen bekannt, bei welchen die höchste Pumpgeschwindigkeit bzw. das höchste Saugvermögen an einem Einlass zur Verfügung steht, der zwischen zwei weiteren Einlässen angeordnet ist, d.h. an der mittleren Pumpstufe oder an einer der mittleren Pumpstufen. Die Ausgestaltung ist insbesondere von der jeweiligen Anwendung abhängig.
  • Im Allgemeinen besteht bei Vakuumpumpen mit mehreren Einlässen die Problematik, dass unterschiedliche Drücke an den Einlässen der hintereinander geschalteten Pumpstufen anliegen. Gasmoleküle aus einem vorgeschalteten (stromaufwärts angeordneten) zu evakuierenden Bereich, an dem ein niedrigerer Druck anliegt, können unter Umständen über einen nachgeschalteten (stromabwärts angeordneten) Einlass in einen diesem Einlass zugeordneten zu evakuierenden Bereich höheren Drucks gelangen und diesen kontaminieren. Dies kann insbesondere problematisch sein, wenn die zu evakuierenden Bereiche Teile eines wissenschaftlichen Instruments, beispielsweise eines Massenspektrometers, mit mehreren Druckbereichen sind. Das rückströmende Gas kann hier eine exakte Druckeinstellung erschweren. Handelt es sich bei dem aus einem stromaufwärts angeordneten Bereich gepumpten Gas um ein korrosives Gas, kann eine solche Kontamination mit der Zeit zu erheblichen irreversiblen Schäden führen.
  • Aufgabe der vorliegenden Erfindung ist es daher, eine Vakuumpumpe mit mehreren Einlässen bereitzustellen, welche die vorstehend beschriebenen Nachteile überwindet, d.h. eine Vakuumpumpe, mit welcher ein Gasaustauch zwischen den den Einlässen zugeordneten Rezipienten vermieden werden kann. Gleichzeitig soll die Vakuumpumpe mit geringem Aufwand herstellbar sein und zudem eine hohe Lebensdauer aufweisen.
  • Die Lösung der Aufgabe erfolgt erfindungsgemäß durch eine Vakuumpumpe mit den Merkmalen des Anspruchs 1.
  • Die erfindungsgemäße Vakuumpumpe, welche vorzugsweise eine Turbomolekularpumpe ist, umfasst ein Gehäuse, das einen Pumpenraum für ein zu pumpendes Gas einschließt, in dem mehrere hintereinander geschaltete Pumpstufen angeordnet sind. Die Pumpstufen weisen jeweils einen Einlass mit einem innerhalb des Gehäuses gelegenen Einlassbereich auf. Ferner ist zumindest ein Umlenkmittel vorgesehen, das wenigstens einen von einer vorgeschalteten Pumpstufe ausgehenden Strömungspfad für das zu pumpende Gas bereitstellt, der von dem Einlassbereich einer nachgeschalteten Pumpstufe wegführt.
  • Mit anderen Worten, das Umlenkmittel verhindert, dass das zu pumpende Gas aus einer ersten vorgeschalteten Pumpstufe den Einlassbereich einer weiteren nachgeschalteten Pumpstufe anströmt, indem es das Gas umlenkt und so auf einen vom Einlassbereich wegführenden Strömungspfad zwingt. Bei dem Strömungspfad kann es sich insbesondere auch um einen weiteren oder alternativen Strömungspfad des zu pumpenden Gases handeln. Es kann demnach vorgesehen sein, dass dem zu pumpenden Gas zwei oder mehrere Strömungspfade zur Verfügung stehen, wobei zumindest einer von dem Einlassbereich der nachgeschalteten Pumpe wegführt.
  • Es wurde erkannt, dass durch ein solches Umlenkmittel ein Rückströmen des zu pumpenden Gases in einen dem nachgeschalteten Einlass zugeordneten Rezipienten gänzlich oder zumindest weitgehend vermieden wird. Dies ermöglicht insbesondere das Anlegen eines konstanten Drucks an Rezipienten, die einem stromabwärts gelegenen Einlass der Pumpe zugeordnet sind. Ferner wird durch das Umlenkmittel die Gefahr einer durch Gasaustauch zwischen den Rezipienten verursachten Kontamination zumindest weitgehend verhindert. Insbesondere wenn es sich bei dem zu pumpenden Gas um ein korrosives Gas handelt, wirkt sich dies positiv auf die Lebensdauer des nachgeschalteten Rezipienten aus. Darüber hinaus lässt sich die erfindungsgemäße Vakuumpumpe realisieren, ohne dass die axiale Bauhöhe oder der Leistungsbedarf vergrößert werden müsste.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen, der Beschreibung und in den Figuren angegeben.
  • Für die Bereitstellung des Umlenkmittels ist es grundsätzlich unerheblich, ob die erfindungsgemäße Vakuumpumpe genau zwei oder mehrere Pumpstufen aufweist. Die vorgeschaltete und die nachgeschaltete Pumpstufe können sowohl unmittelbar aufeinanderfolgen, also benachbart sein, als auch durch eine oder mehrere dazwischen angeordnete Pumpstufen getrennt sein. Bevorzugt weist eine erfindungsgemäße Vakuumpumpe zwei, besonders bevorzugt drei, insbesondere vier, Pumpstufen auf. Es sind jedoch auch fünf und mehr Pumpstufen denkbar.
  • Wie oben bereits erwähnt, umfasst eine Pumpstufe vorzugsweise zumindest je eine Rotor- und Statorscheibe, die paarweise angeordnet sind. Daneben kann eine Pumpstufe zusätzlich mindestens eine Molekularpumpstufe umfassen. Beispielsweise kann es sich dabei um Holweck- oder Siegbahnpumpstufen handeln, die auch miteinander kombiniert werden können. Eine Pumpstufe kann ferner ausschließlich eine oder mehrere Molekularpumpstufen umfassen.
  • Gemäß einer vorteilhaften Ausführungsform der erfindungsgemäßen Vakuumpumpe umfasst das Umlenkmittel eine zwischen zwei Pumpstufen angeordnete Trennwand, durch die sich eine den Pumpstufen zugeordnete Rotorwelle erstreckt.
  • Die Rotorwelle ist dabei vorzugsweise allen Pumpstufen zugeordnet und wird insbesondere von nur einem Motor angetrieben. Wie oben bereits erwähnt, entspricht die Rotorwelle im Wesentlichen der Achse der Pumpe, entlang derer die Pumpstufen hintereinander angeordnet sind. Die den Pumpstufen zugeordneten Einlässe sind vorzugsweise ebenfalls entlang dieser Achse angeordnet. Die Einlässe müssen nicht notwendigerweise auf einer Linie parallel zur Achse der Pumpe liegen, sondern können auch gegeneinander versetzt angeordnet sein. Alle Einlässe können seitliche Einlässe sein, wobei dies aber nicht zwingend ist. Insbesondere kann der erste Einlass der Pumpe, welcher allen anderen Einlässen vorgeschaltet ist, stirnseitig angeordnet sein. Ebenso kann der letzte Einlass der Pumpe, welcher allen anderen Einlässen nachgeschaltet ist, stirnseitig angeordnet sein.
  • Die Trennwand besteht vorzugsweise aus demselben oder einem ähnlichen Material wie eine Statorscheibe und ist im Wesentlichen auch ähnlich aufgebaut. Des Weiteren kann die Trennwand geteilt, insbesondere diametral geteilt, ausgeführt sein. Die Herstellung einer solchen Trennwand kann z.B. durch Drahterosion oder durch eine Laserbearbeitung erfolgen. Grundsätzlich sind dem Fachmann auf dem Gebiet der Turbomolekularpumpen entsprechende Fertigungsmethoden und Materialien bekannt, weshalb an dieser Stelle auf weitere Ausführungen verzichtet wird.
  • Gemäß einer weiteren Ausführungsform führt die Rotorwelle unter Ausbildung eines Spalts durch eine Öffnung in der Trennwand, wobei der Strömungspfad für das zu pumpende Gas durch den Spalt verläuft. Die Trennwand bewirkt also, dass der Strömungspfad des zu pumpenden Gases im Wesentlichen zur Mitte des Pumpenraumes bzw. zur Achse der Pumpe umgelenkt wird. Auf diese Weise wird ein direktes Anströmen des Einlasses der nachgeschalteten Pumpstufe und damit ein Rückströmen des zu pumpenden Gases in den dem Einlass zugeordneten Rezipienten vermieden. Grundsätzlich ist dieser vorteilhafte Effekt umso stärker, je dichter die Trennwand an dem nachgeschalteten Einlass angeordnet ist. Es ist daher insbesondere bevorzugt, dass sich der nachgeschaltete Einlass unmittelbar an die Trennwand anschließt.
  • Um diesen Effekt noch weiter zu verstärken, ist bei einer bevorzugten Weiterbildung der Vakuumpumpe die Trennwand im Bereich der Rotorwelle axial in die nachgeschaltete Pumpstufe hinein verlängert. Mit besonderem Vorteil lässt sich dadurch der Strömungspfad des zu pumpenden Gases ganz oder zumindest weitgehend an dem Einlassbereich der nachgeschalteten Pumpstufe vorbeiführen oder zumindest näher an den Kompressionsbereich der nachgeschalteten Pumpstufe heranführen. Eine solche Verlängerung lässt sich beispielsweise durch einen an der Trennwand angebrachten oder einstückig mit der Trennwand ausgebildeten Hohlzylinder oder Rohrstutzen realisieren, der die Rotorwelle umschließt. Auf diese Weise kann mit einem nur geringen Herstellungsaufwand der Gasaustausch zwischen Pumpenraum und einem dem Einlass der nachgeschalteten Pumpstufe zugeordneten Rezipienten noch weiter verringert werden.
  • Des Weiteren kann der Spalt zusätzlich oder alternativ von pumpaktiven Strukturen begrenzt sein. Dabei kann es sich insbesondere um Holweck- und/oder Siegbahn-Pumpstufen handeln. Die pumpaktiven Strukturen sind vorzugsweise an der Rotorwelle ausgebildet und können in Abhängigkeit von dem jeweiligen erfindungsgemäßen Umlenk-Konzept entweder eine der Strömungsrichtung des zu pumpenden Gases entsprechende (in Richtung nachgeschalteter Pumpstufe) oder eine dieser entgegengesetzte Pumpwirkung zwischen den zwei Pumpstufen bereitstellen.
  • In Ausführungsformen der erfindungsgemäßen Vakuumpumpe, die als Umlenkmittel ausschließlich zumindest eine Trennwand umfassen, sind die dem Spalt zugeordneten pumpaktiven Strukturen vorzugsweise so konfiguriert, dass sie eine der Strömungsrichtung des zu pumpenden Gases entsprechende Pumpwirkung (in Richtung nachgeschalteter Pumpstufe) bereitstellen.
  • Wie unten noch ausführlicher beschrieben, können in erfindungsgemäßen Ausführungsformen zusätzlich zu der Trennwand weitere Umlenkmittel vorgesehen sein. In einem solchen Fall kann es insbesondere bevorzugt sein, dass die dem Spalt zugeordneten pumpaktiven Strukturen derart konfiguriert sind, dass sie eine der Strömungsrichtung des zu pumpenden Gases entgegengesetzte Pumpwirkung (in Richtung vorgeschalteter Pumpstufe) bereitstellen. Auf diese Weise lässt sich eine besonders effektive Gassperre zwischen zwei aufeinanderfolgenden Pumpstufen realisieren. Mit anderen Worten, es kann bevorzugt sein, dass die Trennwand bzw. eine in der Trennwand ausgebildete Öffnung für die Rotorwelle keinen unmittelbar in die nachgeschaltete Pumpstufe führenden Strömungspfad für das zu pumpende Gas bereitstellt.
  • Des Weiteren kann dem Spalt zusätzlich oder alternativ ein Strömungswiderstand zugeordnet sein. Der Strömungswiderstand ist bevorzugt vor dem Spalt, insbesondere auf der Seite der vorgeschalteten Pumpstufe, angeordnet. Besonders bevorzugt ist der Strömungswiderstand auf der Rotorwelle angebracht. Die Rotorwelle und der Strömungswiderstand können auch einstückig ausgeführt sein. Beispielsweise handelt es sich bei dem Strömungswiderstand um eine Scheibe oder Platte. Ein dem Spalt zugeordneter Strömungswiderstand ist insbesondere vorteilhaft, wenn die Trennwand eine gassperrende Wirkung zwischen zwei Pumpstufen bereitstellen soll.
  • Gemäß einer weiteren Ausführungsform der erfindungsgemäßen Vakuumpumpe definiert das Umlenkmittel einen aus dem Pumpenraum herausführenden Strömungspfad. Ein solches Umlenkmittel kann alternativ oder zusätzlich zu einer oder mehreren Trennwänden vorgesehen sein.
  • Derartige Umlenkmittel lassen sich unterteilen in solche, die den Strömungspfad für das zu pumpende Gas nach dem Verlassen des Pumpenraums wieder in diesen zurückführen, und in solche, bei denen der Strömungspfad nicht in den Pumpenraum zurückgeführt wird.
  • Vorzugsweise umfasst das Umlenkmittel, welches den Strömungspfad wieder in den Pumpenraum zurückführt, einen Auslass der vorgeschalteten Pumpstufe, der durch eine Leitung mit einem weiteren Einlass der nachgeschalteten Pumpstufe verbunden ist. Dabei ist es unerheblich, ob die vorgeschaltete und die nachgeschaltete Pumpstufe unmittelbar aufeinanderfolgen, also benachbart sind, oder ob sie durch eine oder mehrere dazwischen angeordnete Pumpstufen voneinander getrennt sind.
  • Bevorzugt ist der weitere Einlass im Verhältnis zu dem mit einem Rezipienten verbundenen Einlass der betreffenden nachgeschalteten Pumpstufe stromabwärts angeordnet bzw. nachgeschaltet. Ferner kann es bevorzugt sein, wenn beide Einlässe im Wesentlichen an entgegengesetzten axialen Endbereichen der Pumpstufe, d.h. mit größtmöglichem axialen Abstand voneinander, angeordnet sind. Besonders bevorzugt ist der weitere Einlass der nachgeschalteten Pumpstufe an einer Stelle besonders hoher Kompression (Pumpwirkung) angeordnet. Mit anderen Worten, der weitere Einlass mündet vorzugsweise an einer Stelle hoher Pumpwirkung in den Pumpenraum. An einer solchen Stelle kann insbesondere eine an der Rotorwelle angebrachte Holweck- und/oder Siegbahn-Pumpstufe der betreffenden nachgeschalteten Pumpstufe angeordnet sein. Auf diese Weise wird ein Rückströmen des zu pumpenden Gases besonders sicher vermieden.
  • Die Leitung, die mit dem Auslass verbunden ist, verläuft bei einer Ausführungsform innerhalb des Gehäuses und außerhalb des Pumpenraumes. Die Leitung hat vorzugsweise einen geschlossenen Querschnitt und ist insbesondere im Wesentlichen gasdicht von dem Pumpenraum getrennt. Eine gasleitende Verbindung mit dem Pumpenraum besteht also bevorzugt nur über den Auslass und den weiteren Einlass. Die Leitung verläuft besonders bevorzugt parallel zu der Achse der Pumpe, wobei sie sich über die gesamte Länge der Pumpe erstrecken kann. Die Leitung kann allerdings auch den Pumpenraum spiralförmig entlang der Achse der Pumpe umlaufen. Bei der Leitung handelt es sich insbesondere um eine Bohrung oder einen Kanal. Es ist jedoch auch denkbar, dass die Leitung ein Rohr oder einen Schlauch umfasst.
  • Des Weiteren kann die Leitung den Auslass der vorgeschalteten Pumpstufe mit mehr als einer nachgeschalteten Pumpstufe verbinden. Insbesondere können alle nachgeschalteten Pumpstufen jeweils über einen weiteren Einlass mit dem Auslass der vorgeschalteten Pumpstufe verbunden sein.
  • Eine zwischen Pumpenraum und Gehäuse verlaufende Leitung bietet den Vorteil einer kompakten Pumpenkonstruktion. Zusätzliche externe Gasleitungen entfallen, wodurch insbesondere auch das Handling der Pumpe erleichtert wird. Zudem können grundsätzlich bekannte Pumpentypen herangezogen werden, deren Gehäuse sich für das Bereitstellen einer entsprechenden Leitung eignet.
  • Gemäß einer weiteren Ausführungsform verläuft die Leitung, die mit dem Auslass der vorgeschalteten Pumpstufe verbunden ist, außerhalb des Pumpengehäuses.
  • Bei dem Auslass und/oder dem weiteren Einlass handelt es sich dann vorzugsweise um einen Flansch, mit dem eine lösbare Verbindung zu der Leitung hergestellt werden kann. Bei der Leitung handelt es sich beispielsweise um ein Rohr und/oder einen Schlauch, insbesondere einen Wellschlauch. In einer Ausführungsform kann die Leitung von einer Außenwand des Gehäuses und einem auf die Außenwand aufgesetzten Bauteil begrenzt sein, das insbesondere aus dem gleichen oder einem ähnlichen Material besteht wie das Gehäuse. Das Bauteil kann selbst gehäuseartig ausgebildet sein. Beispielsweise kann die außerhalb des Gehäuses verlaufende Leitung von einem in einem Metallblock ausgebildeten Kanal gebildet sein. Der Metallblock kann mit dem Pumpengehäuse fest verschraubt werden, wodurch sich die Leitung besonders zuverlässig abdichten lässt. Vorzugsweise ist der Metallblock unter Verwendung bekannter, standardisierter Dichtungen mit dem Auslass und/oder dem weiteren Einlass verbunden, d.h. insofern unter Ausbildung einer oder mehrerer herkömmlicher Flanschverbindungen an dem Pumpengehäuse angebracht. Insbesondere besteht der Metallblock aus Aluminium.
  • Eine außerhalb des Gehäuses verlaufende Leitung bietet den Vorteil, dass sich der durch die Leitung definierte Strömungspfad bei einer Vakuumpumpe mit mehr als zwei Pumpstufen variieren lässt. Verfügen alle oder zumindest die meisten nachgeschalteten Pumpstufen über einen weiteren Einlass und alle oder zumindest die meisten vorgeschalteten Pumpstufen über einen Auslass, lassen sich zwischen den Pumpstufen beliebige Verbindungen bereitstellen. Die erfindungsgemäße Vakuumpumpe kann auf diese Weise an die Art der Rezipienten sowie an die Art des zu pumpenden Gases angepasst werden.
  • Ein Umlenkmittel, welches den Strömungspfad des zu pumpenden Gases nach dem Verlassen des Pumpenraums nicht wieder in diesen zurückführt, umfasst vorzugsweise einen Auslass der vorgeschalteten Pumpstufe, an den eine externe Einrichtung anschließbar ist. Die externe Einrichtung umfasst bevorzugt eine Vorvakuumpumpe. Im Idealfall findet bei dieser Ausführungsform der erfindungsgemäßen Vakuumpumpe überhaupt kein Gasaustausch mehr zwischen den Rezipienten statt.
  • Die Verbindung zwischen dem Auslass und der externen Einrichtung erfolgt z.B. durch Rohre und/oder Schläuche, insbesondere Wellschläuche.
  • Bei einer bevorzugten Weiterbildung ist dem Auslass der vorgeschalteten Pumpstufe eine Molekularpumpstufe, beispielsweise eine Siegbahn- und/oder Holweck-Pumpstufe, zugeordnet. Dies bewirkt eine hohe Kompression in unmittelbarer Nähe zum Auslass, wodurch das zu pumpende Gas mit höherem Druck ausgestoßen werden kann. Es kann vorgesehen sein, dass allen Auslässen der Pumpe eine Molekularpumpstufe zugeordnet ist.
  • Besonders bevorzugte Ausführungsformen der erfindungsgemäßen Vakuumpumpe umfassen Umlenkmittel, die sowohl einen aus dem Pumpenraum herausführenden Strömungspfad definieren als auch mindestens eine Trennwand umfassen, wie sie oben beschrieben wurde.
  • Die Erfindung betrifft außerdem ein Vakuumsystem mit einer mehrere zu evakuierende Kammern umfassenden Einrichtung und zumindest einer erfindungsgemäßen Vakuumpumpe, wobei die Kammern hintereinander angeordnet sind und jeweils einen Gasauslass aufweisen, der im Pumpbetrieb mit einem Einlass einer der Pumpstufen der Vakuumpumpe verbunden ist.
  • Die vorstehenden und weitere Merkmale und Vorteile der Erfindung werden anhand der nachstehenden Beschreibung der beispielhaften Ausführungsformen unter Bezugnahme auf die beigefügten Zeichnungen, in der identische Bezugszeichen zur Darstellung identischer Elemente verwendet werden, näher erläutert. Es zeigen:
  • Fig. 1
    eine Vakuumpumpe gemäß einer Ausführungsform der Erfindung in schematischer Darstellung im Querschnitt,
    Fig. 2a und 2b
    jeweils eine Detailansicht eines Spalts einer erfindungsgemäßen Vakuumpumpe in schematischer Darstellung im Querschnitt,
    Fig. 3 bis 6
    jeweils eine Vakuumpumpe gemäß einer Ausführungsform der Erfindung in schematischer Darstellung im Querschnitt, und
    Fig. 7 und 8
    jeweils ein Vakuumpumpsystem mit einer Vakuumpumpe gemäß einer Ausführungsform der Erfindung in schematischer Darstellung im Querschnitt.
  • Die in Fig. 1 gezeigte Vakuumpumpe 10 umfasst einen von einem Gehäuse 12 umschlossenen Pumpenraum 14, durch den sich eine Rotorwelle 22 erstreckt, welcher eine vorgeschaltete Pumpstufe 16a und eine nachgeschaltete Pumpstufe 16b zugeordnet sind. Jede Pumpstufe 16a, 16b umfasst mehrere paarweise angeordnete Rotor- und Statorscheiben 24, d.h. jede der beiden Pumpstufen 16a, 16b ist oder umfasst eine Turbomolekularpumpstufe. Die beiden Pumpstufen 16a, 16b gemeinsame Rotorwelle 22 ist an ihrem in Fig. 1 rechten Ende, also im Bereich niedrigeren Drucks, durch ein passives Permanentmagnetlager und am entgegengesetzten Ende durch eine geschmiertes Wälzlager drehbar gelagert.
  • Die nachgeschaltete Pumpstufe 16b umfasst zusätzlich zu der Turbomolekularpumpstufe eine Molekularpumpstufe 26, bei der es sich insbesondere um eine Holweck-Pumpstufe handelt. Die beiden Pumpstufen 16a und 16b weisen jeweils einen Einlass 18 mit einem Einlassbereich 20 auf, wobei jedem Einlass 18 ein zu evakuierender Bereich 28 zugeordnet ist. Die Strömungsrichtung bzw. ein erfindungsgemäß bereitgestellter Strömungspfad 15 des zu evakuierenden Gases sind mit Pfeilen angedeutet.
  • Die hintereinander geschalteten Pumpstufen 16a und 16b sind durch eine Trennwand 30 voneinander getrennt. Die Rotorwelle 22 erstreckt sich unter Ausbildung eines Spalts 32 durch eine Öffnung in der Trennwand 30 hindurch. Der Strömungspfad 15 des zu pumpenden Gases verläuft durch den Spalt 32. Dadurch wird ein direktes Anströmen des Einlassbereichs 20 der nachgeschalteten Pumpstufe 16b vermieden.
  • Fig. 2a zeigt eine vergrößerte Querschnittsdarstellung der Trennwand 30 im Bereich ihrer Öffnung. Die Trennwand 30 ist axial in die nachgeschaltete Pumpstufe (links der Trennwand 30) hinein verlängert. Die Verlängerung ist durch einen an der Trennwand 30 angebrachten Hohlzylinder 31, der die Rotorwelle 22 umschließt, realisiert. Der Strömungspfad des zu evakuierenden Gases ist mit einem Pfeil angedeutet. Überträgt man die Detailansicht gemäß Fig. 2a auf Fig. 1, wird deutlich, dass der der nachgeschalteten Pumpstufe 16b zugeordnete Einlassbereich 20 durch die Verlängerung eine noch bessere Abschirmung erfährt.
  • Fig. 2b zeigt eine vergrößerte Querschnittsdarstellung der Trennwand 30 im Bereich ihrer Öffnung gemäß einer weiteren Ausgestaltung. Dem Spalt 32 ist ein Strömungswiderstand 34 zugeordnet, der auf der Seite einer vorgeschalteten Pumpstufe an der Rotorwelle 22 angebracht ist. Anhand des durch den Pfeil angedeuteten Strömungspfades 15 ist erkennbar, dass der Durchtritt des Gases durch den Spalt 32 erschwert ist. Diese Ausführungsform ist bevorzugt, wenn die zwischen zwei Pumpstufen angeordnete Trennwand 30 im Wesentlichen gassperrend ausgebildet sein soll. Dies ist insbesondere der Fall, wenn ein weiteres Umlenkmittel vorgesehen ist, das einen aus dem Pumpenraum herausführenden Strömungspfad definiert (vgl. Fig. 3 bis 8).
  • Fig. 3 zeigt eine Vakuumpumpe 10, die im Unterschied zu der Vakuumpumpe gemäß Fig. 1 einen Kanal 40 umfasst, der zwischen dem Gehäuse 12 und dem Pumpenraum 14 parallel zur Rotorwelle 22 angeordnet ist. Der Kanal 40 ist durch eine statische Komponente 13 des Gehäuses 12 von dem Pumpenraum 14 im Wesentlichen gasdicht getrennt. Der Kanal 40 verbindet den Auslass 36 der vorgeschalteten Pumpstufe 16a mit einem weiteren Einlass 38 der nachgeschalteten Pumpstufe 16b. Der weitere Einlass 38 ist in unmittelbare Nähe zu einer Molekularpumpstufe 26 angeordnet. Die erhöhte Kompression an dieser Stelle verhindert ein Rückströmen des zu pumpenden Gases in den Kanal 40. Der durch Pfeile dargestellte Strömungspfad 15 des zu pumpenden Gases wird somit aus dem Pumpenraum 14 herausgeführt und stromabwärts auf Höhe der nachgeschalteten Pumpstufe 16b dem Pumpenraum 14 wieder zugeführt. Das Anströmen des der Pumpstufe 16b zugeordneten Einlassbereichs 20 wird so vermieden.
  • Des Weiteren sind in dieser Ausführungsform die Pumpstufen 16a und 16b durch eine Trennwand 30 voneinander getrennt. Die Trennwand 30 ist in dieser Ausführungsform gassperrend ausgebildet. Zur Verdeutlichung dieses Umstands ist ein Spalt zwischen der Rotorwelle 22 und der deren Öffnung begrenzenden Trennwand 30 nicht angedeutet. Es kann eine Konfiguration wie in Fig. 2b dargestellt vorgesehen sein. Zusätzlich oder alternativ zu dem Strömungswiderstand 34 können dem Spalt 32 ferner pumpaktive Strukturen, beispielsweise Holweck- und/oder Siegbahnpumpstufen, zugeordnet sein. Die von den pumpaktiven Strukturen bereitgestellte Pumpwirkung verläuft dann entgegen der Strömungsrichtung des zu pumpenden Gases, also in Richtung der vorgeschalteten Pumpstufe 16a.
  • Fig. 4 zeigt ebenfalls eine Vakuumpumpe 10 mit einem Umlenkmittel, das einen aus dem Pumpenraum 14 herausführenden Strömungspfad 15 definiert. Der Unterschied zu der Vakuumpumpe gemäß Fig. 3 besteht darin, dass der Strömungspfad durch eine Leitung bereitgestellt wird, die außerhalb des Gehäuses 12 verläuft. Der Auslass 36 der vorgeschalteten Pumpstufe 16a ist durch einen Schlauch oder ein Rohr 42 mit dem weiteren Einlass 38 der nachgeschalteten Pumpstufe 16b verbunden. Sowohl bei dem Auslass 36 als auch bei dem Einlass 38 handelt es sich insbesondere um einen Flansch, mit dem eine lösbare Verbindung zu dem Schlauch bzw. Rohr 42 bereitgestellt werden kann.
  • Die Vakuumpumpe 10 umfasst ferner einen Pumpenauslass 37, der vorzugsweise mit einer Vorvakuumpumpe verbunden ist (nicht gezeigt). In Bezug auf die Ausgestaltung der Trennwand 30 und den Verlauf des Strömungspfads kann auf die Ausführungen zu der Fig. 3 verwiesen werden.
  • Fig. 5 zeigt eine Vakuumpumpe 10 mit einem Umlenkmittel, das einen aus dem Pumpenraum 14 herausführenden Strömungspfad 15 bereitstellt. Bei dem Umlenkmittel handelt es sich um den Auslass 36 der vorgeschalteten Pumpstufe 16a, der an eine externe Einrichtung, insbesondere eine Vorvakuumpumpe (nicht gezeigt) anschließbar ist. Gegebenenfalls können beide Auslässe 36, 37 mit derselben externen Einrichtung verbunden sein. Im Übrigen kann auf die Ausführungen zu der Fig. 4 verwiesen werden.
  • Fig. 6 zeigt eine Vakuumpumpe 10, bei der im Unterschied zu der Vakuumpumpe gemäß Fig. 5 dem Auslass 36 der vorgeschalteten Pumpstufe 16a eine Molekularpumpstufe 26, beispielsweise eine Holweck- oder eine Siegbahnpumpstufe, zugeordnet ist. Diese erzeugt eine besonders hohe Kompression, so dass am Auslass 36 der Pumpstufe 16a das zu pumpende Gas mit erhöhtem Druck ausgestoßen werden kann. Im Übrigen kann auf die Ausführungen zu der Fig. 5 verwiesen werden.
  • Fig. 7 zeigt ein Vakuumpumpsystem 50 mit einer erfindungsgemäßen Vakuumpumpe 10, deren Gehäuse 12 einen Pumpenraum 14 mit drei Pumpstufen 16a, 16b und 16c aufweist. Die Rotorwelle 22 der Pumpe 10 ist parallel zu den Rezipienten oder Kammern 28 des mittels der erfindungsgemäßen Pumpe 10 zu evakuierenden Kammersystems angeordnet.
  • Jeder der Pumpstufen 16a, 16b und 16c ist ein Einlass 18, an den sich ein zu evakuierender Bereich 28 anschließt, zugeordnet. Die Pumpstufe 16b ist der Pumpstufe 16a nachgeschaltet, der Pumpstufe 16c jedoch vorgeschaltet. Zwischen den Pumpstufen 16b und 16c ist eine Trennwand 30 angeordnet. Ferner umfasst die Vakuumpumpe 10 ein weiteres Umlenkmittel, wie es in den Fig. 3 oder 4 beschrieben worden ist. Dieses Umlenkmittel ist hier lediglich durch den dadurch bereitgestellten Strömungspfad 15 angedeutet.
  • Bei dieser Konfiguration wird ein Gasaustausch zwischen dem der Pumpstufe 16c zugeordneten Bereich 28 einerseits und den der Pumpstufen 16b und 16a zugeordneten Bereichen 28 verhindert.
  • Der Pumpenauslass 37 ist bei dieser Ausführungsform stirnseitig angeordnet und mit einer Vorvakuumpumpe 44 verbunden. Des Weiteren ist ein Rezipient 28, der nicht mit dem Pumpenraum 14 verbunden ist, an die Vorvakuumpumpe 44 angeschlossen. Bei dem Vakuumpumpsystem 50 bzw. dem zu evakuierenden Kammersystem handelt es sich insbesondere um ein Massenspektrometer.
  • Fig. 8 zeigt ein Vakuumpumpsystem 52 mit einer erfindungsgemäßen Vakuumpumpe 10, deren Rotorwelle 22 senkrecht zu den Rezipienten oder Kammern 28 angeordnet ist. Die Vakuumpumpe 10 umfasst eine Trennwand 30 sowie ein weiteres Umlenkmittel, wie es in den Fig. 3 oder 4 beschrieben worden ist und das hier wiederum lediglich durch den bereitgestellten Strömungspfad 15 angedeutet ist.
  • Der der Pumpstufe 16a zugeordnete Einlass 18 ist stirnseitig angeordnet. Der der Pumpstufe 16b zugeordnete Einlass 18 ist durch eine Gehäusekomponente 19 mit dem Rezipienten 28 verbunden. Bei der Gehäusekomponente 19 kann es sich insbesondere um einen Metallblock handeln, der mit einem entsprechenden Kanal versehen ist und mit dem Gehäuse 12 sowie dem zu evakuierenden Kammersystem fest verschraubt werden kann.
  • Der niedrigste Druckbereich des Vakuumpumpsystems 52 wird durch eine separate Turbomolekularpumpe 46 bereitgestellt, deren Einlass 17 mit dem Rezipienten 28 verbunden ist. Beide Pumpen 10, 46 haben einen stirnseitigen Auslass 37 und sind mit derselben Vorvakuumpumpe 44 verbunden. Im Übrigen kann auf die Ausführungen zu der Fig. 7 verwiesen werden. Bei dem Vakuumpumpsystem 52 bzw. dem zu evakuierenden Kammersystem handelt es sich ebenfalls insbesondere um ein Massenspektrometer.
  • Wie vorstehend bereits erwähnt, kann ein Strömungspfad durch den Spalt zwischen Trennwand und Rotorwelle z.B. gemäß den Fig. 1 und 2 mit einem außerhalb des Pumpenraumes verlaufenden Strömungspfad z.B. gemäß den Fig. 3 bis 8 kombiniert werden, so dass ein insbesondere relativ kleinerer Anteil des Gases entlang der Rotorwelle in die nachgeschaltete Pumpstufe strömt, ein insbesondere relativ größerer Anteil des Gases aber um einen relevanten Teil der nachgeschalteten Pumpstufe herum geführt wird.
  • Bezugszeichenliste
  • 10
    Vakuumpumpe
    12
    Gehäuse
    13
    statische Komponente
    14
    Pumpenraum
    15
    Strömungspfad
    16a, 16b, 16c
    Pumpstufen
    17
    Einlass für separate Turbomolekularpumpe
    18
    Einlass
    19
    Gehäusekompenente
    20
    Einlassbereich
    22
    Rotorwelle
    24
    Stator-/Rotorscheiben-Paar
    26
    Molekularpumpstufe
    28
    zu evakuierende Kammer, Rezipient
    30
    Trennwand
    31
    Hohlzylinder
    32
    Spalt
    34
    Strömungswiderstand
    36
    Auslass
    37
    Pumpenauslass
    38
    weiterer Einlass
    40
    Kanal, Bohrung
    42
    Rohr, Schlauch
    44
    Vorvakuumpumpe
    46
    separate Turbomolekularpumpe
    50,52
    Vakuumpumpsystem

Claims (13)

  1. Vakuumpumpe, insbesondere Turbomolekularpumpe,
    mit einem Gehäuse (12), das einen Pumpenraum (14) für ein zu pumpendes Gas einschließt, in dem mehrere hintereinander geschaltete Pumpstufen (16a, 16b) angeordnet sind,
    wobei die Pumpstufen (16a, 16b) jeweils einen Einlass (18) mit einem innerhalb des Gehäuses (12) gelegenen Einlassbereich (20) aufweisen, und wobei mindestens ein Umlenkmittel (30, 34, 38, 40, 42) vorgesehen ist, das zumindest einen von einer vorgeschalteten Pumpstufe (16a) ausgehenden Strömungspfad (15) für das zu pumpende Gas bereitstellt, der von dem Einlassbereich (20) einer nachgeschalteten Pumpstufe (16b) wegführt.
  2. Vakuumpumpe nach Anspruch 1, wobei das Umlenkmittel eine zwischen zwei Pumpstufen (16a, 16b) angeordnete Trennwand (30) umfasst, durch die sich eine den Pumpstufen (16a, 16b) zugeordnete Rotorwelle (22) erstreckt.
  3. Vakuumpumpe nach Anspruch 2, wobei die Rotorwelle (22) unter Ausbildung eines Spalts (32) durch eine Öffnung in der Trennwand (30) hindurchführt.
  4. Vakuumpumpe nach Anspruch 3, wobei der Strömungspfad (15) durch den Spalt (32) verläuft.
  5. Vakuumpumpe nach Anspruch 3 oder 4, wobei die Trennwand (30) im Bereich der Rotorwelle (22) axial in die nachgeschaltete Pumpstufe (16b) hinein verlängert ist.
  6. Vakuumpumpe nach einem der Ansprüche 3 bis 5, wobei der Spalt (32) von pumpaktiven Strukturen begrenzt ist.
  7. Vakuumpumpe nach einem der Ansprüche 3 bis 6, wobei dem Spalt (32) als Umlenkmittel ein Strömungswiderstand (34) zugeordnet ist.
  8. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei das Umlenkmittel einen aus dem Pumpenraum (14) herausführenden Strömungspfad definiert.
  9. Vakuumpumpe nach einem der vorhergehenden Ansprüche, wobei das Umlenkmittel einen Auslass (36) der vorgeschalteten Pumpstufe (16a) umfasst, der durch eine Leitung (40, 42) mit einem weiteren Einlass (38) der nachgeschalteten Pumpstufe (16b) verbunden ist und/oder an den eine externe Einrichtung anschließbar ist.
  10. Vakuumpumpe nach Anspruch 9, wobei die Leitung (40) innerhalb des Gehäuses (12) und außerhalb des Pumpenraumes (14) verläuft.
  11. Vakuumpumpe nach Anspruch 9, wobei die Leitung (42) außerhalb des Gehäuses (12) verläuft.
  12. Vakuumpumpe nach einem der Ansprüche 9 bis 11, wobei dem Auslass (36) zumindest eine Molekularpumpstufe (26) zugeordnet ist.
  13. Vakuumsystem mit einer mehrere zu evakuierende Kammern (28) umfassenden Einrichtung und zumindest einer Vakuumpumpe (10) nach einem der vorhergehenden Ansprüche,
    wobei die Kammern (28) hintereinander angeordnet sind und jeweils einen Gasauslass aufweisen, der im Pumpbetrieb mit einem Einlass (18) einer der Pumpstufen (16a, 16b, 16c) der Vakuumpumpe (10) verbunden ist.
EP15164305.3A 2015-04-20 2015-04-20 Vakuumpumpe Active EP3085963B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15164305.3A EP3085963B1 (de) 2015-04-20 2015-04-20 Vakuumpumpe
JP2016083605A JP6225213B2 (ja) 2015-04-20 2016-04-19 真空ポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15164305.3A EP3085963B1 (de) 2015-04-20 2015-04-20 Vakuumpumpe

Publications (2)

Publication Number Publication Date
EP3085963A1 true EP3085963A1 (de) 2016-10-26
EP3085963B1 EP3085963B1 (de) 2019-09-04

Family

ID=52987975

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15164305.3A Active EP3085963B1 (de) 2015-04-20 2015-04-20 Vakuumpumpe

Country Status (2)

Country Link
EP (1) EP3085963B1 (de)
JP (1) JP6225213B2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3693610A1 (de) * 2020-01-27 2020-08-12 Pfeiffer Vacuum Technology AG Molekularvakuumpumpe
EP3767110A1 (de) * 2019-07-15 2021-01-20 Pfeiffer Vacuum Gmbh Vakuumsystem

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767109B1 (de) 2019-07-15 2021-09-08 Pfeiffer Vacuum Gmbh Vakuumsystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228313A1 (de) * 1992-08-26 1994-03-03 Leybold Ag Gegenstrom-Lecksucher mit Hochvakuumpumpe
WO2005113986A1 (en) * 2004-05-21 2005-12-01 The Boc Group Plc Pumping arrangement
WO2006048603A1 (en) * 2004-11-01 2006-05-11 The Boc Group Plc Vacuum pump
DE602004008089T2 (de) * 2003-09-30 2008-04-17 Edwards Ltd., Crawley Vakuumpumpe

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0503946D0 (en) * 2005-02-25 2005-04-06 Boc Group Plc Vacuum pump
DE102013109637A1 (de) * 2013-09-04 2015-03-05 Pfeiffer Vacuum Gmbh Vakuumpumpe sowie Anordnung mit einer Vakuumpumpe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4228313A1 (de) * 1992-08-26 1994-03-03 Leybold Ag Gegenstrom-Lecksucher mit Hochvakuumpumpe
DE602004008089T2 (de) * 2003-09-30 2008-04-17 Edwards Ltd., Crawley Vakuumpumpe
WO2005113986A1 (en) * 2004-05-21 2005-12-01 The Boc Group Plc Pumping arrangement
WO2006048603A1 (en) * 2004-11-01 2006-05-11 The Boc Group Plc Vacuum pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3767110A1 (de) * 2019-07-15 2021-01-20 Pfeiffer Vacuum Gmbh Vakuumsystem
US11480181B2 (en) 2019-07-15 2022-10-25 Pfeiffer Vacuum Gmbh Vacuum system with a multi-stage and multi-inlet vacuum pump with a directional element separating pump stages
EP3693610A1 (de) * 2020-01-27 2020-08-12 Pfeiffer Vacuum Technology AG Molekularvakuumpumpe
EP3851680A1 (de) * 2020-01-27 2021-07-21 Pfeiffer Vacuum Technology AG Molekularvakuumpumpe und verfahren zum beeinflussen des saugvermögens einer solchen

Also Published As

Publication number Publication date
EP3085963B1 (de) 2019-09-04
JP2016205392A (ja) 2016-12-08
JP6225213B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
EP3347598B1 (de) Turbo-lüfter mit kühlkörper
EP2295812B1 (de) Vakuumpumpe
EP1090231B2 (de) Reibungsvakuumpumpe mit chassis, rotor und gehäuse sowie einrichtung, ausgerüstet mit einer reibungsvakuumpumpe dieser art
EP3436702A1 (de) Vakuumpumpe mit schalldämpfung
EP3085963B1 (de) Vakuumpumpe
EP3112688B2 (de) Splitflow-vakuumpumpe sowie vakuum-system mit einer splitflow-vakuumpumpe
DE602004008089T2 (de) Vakuumpumpe
EP2975268B1 (de) Vakuumsystem
EP2846044B1 (de) Vakuumpumpe sowie anordnung mit einer vakuumpumpe
DE102008009715A1 (de) Vakuumpump-System und Verwendung einer Mehrstufen-Vakuumpumpe
DE3722164C2 (de) Turbomolekularpumpe
EP2039941B1 (de) Vakuumpumpe
EP1706645B1 (de) Mehrstufige reibungsvakuumpumpe
EP2228540B1 (de) Anordnung mit Vakuumpumpe
EP3472471A1 (de) Massenspektrometrischer lecksucher mit turbomolekularpumpe und boosterpumpe auf gemeinsamer welle
EP1165965A1 (de) Seitenkanalverdichter
EP3026303A1 (de) Vakuumpumpe, vakuumzubehör und dichtung zu dessen abdichtung
EP3112689B1 (de) Splitflow-vakuumpumpe
DE19901340B4 (de) Reibungsvakuumpumpe mit Chassis, Rotor und Gehäuse sowie Einrichtung, ausgerüstet mit einer Reibungsvakuumpumpe dieser Art
EP3296571B1 (de) Vakuumpumpe
EP3396171B1 (de) Vakuumgerät mit wellendichtung
WO2010105908A1 (de) Multi-inlet-vakuumpumpe
DE102016100642A1 (de) Vakuumpumpe
EP2886870B2 (de) Vakuumpumpe mit verbesserter Einlassgeometrie
EP2902637B1 (de) Vakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170418

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190325

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1175724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015010210

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190904

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191204

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191205

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200224

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015010210

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG2D Information on lapse in contracting state deleted

Ref country code: IS

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200105

26N No opposition filed

Effective date: 20200605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200420

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200420

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1175724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200420

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190904

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230426

Year of fee payment: 9

Ref country code: DE

Payment date: 20230627

Year of fee payment: 9

Ref country code: CZ

Payment date: 20230412

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 9