EP3081285A1 - Statische mischvorrichtung für fliessfähige stoffe - Google Patents

Statische mischvorrichtung für fliessfähige stoffe Download PDF

Info

Publication number
EP3081285A1
EP3081285A1 EP15163858.2A EP15163858A EP3081285A1 EP 3081285 A1 EP3081285 A1 EP 3081285A1 EP 15163858 A EP15163858 A EP 15163858A EP 3081285 A1 EP3081285 A1 EP 3081285A1
Authority
EP
European Patent Office
Prior art keywords
webs
flow channel
mixing device
mixing
adjacent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP15163858.2A
Other languages
English (en)
French (fr)
Other versions
EP3081285B1 (de
Inventor
Adrian Eihozer
Daniel Altenburger
Silvano Andreoli
Alain Georg
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FLUITEC INVEST AG
Original Assignee
FLUITEC INVEST AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FLUITEC INVEST AG filed Critical FLUITEC INVEST AG
Priority to EP15163858.2A priority Critical patent/EP3081285B1/de
Publication of EP3081285A1 publication Critical patent/EP3081285A1/de
Application granted granted Critical
Publication of EP3081285B1 publication Critical patent/EP3081285B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/47Mixing liquids with liquids; Emulsifying involving high-viscosity liquids, e.g. asphalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/2805Mixing plastics, polymer material ingredients, monomers or oligomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0422Numerical values of angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0413Numerical information
    • B01F2215/0418Geometrical information
    • B01F2215/0431Numerical size values, e.g. diameter of a hole or conduit, area, volume, length, width, or ratios thereof

Definitions

  • the present invention relates to a static mixing device having a tubular, a longitudinal axis and an inner diameter having flow channel having at least one arranged in the flow channel mixing element of a length and a substantially the inner diameter of the flow channel corresponding diameter, each mixing element arranged a plurality of crosswise, with the longitudinal axis of the flow channel having an angle greater than 0 ° including webs, wherein the webs are arranged in two intersecting, a plurality of mutually parallel, mutually separated by an equal distance planes levels and in projection of the two level coulters (A, B) a projection plane lying perpendicular to the longitudinal axis (X) of the flow channel (10) has at least partially an intermediate spacing between adjacent webs.
  • Static mixers are now used in all areas of chemical engineering. A characteristic feature of static mixers is that only the liquids or gases to be mixed are moved. In contrast to dynamic mixing systems, no stirring takes place, but pumps, blowers or compressors continuously convey the media to be mixed to the mixing tube, which with the Equipped mixing elements. Static mixers can be used in many applications such as mixing of pumpable liquids, dispersing and emulsifying intoluble components, mixing reactive liquids, mixing and homogenizing plastic melts, gas-liquid contacting, mixing gases, heat exchange of viscous substances and the use as residence time with narrow residence time behavior are used, to name a few key applications.
  • a spiral mixer is known and has helically curved, sheet-like, alternating left- and right-handed plates or mixing elements that lined up with intersecting front edges divide the flow of substances to be mixed as they enter each element.
  • the flow channel is the same in shape and cross section in each of the elements.
  • the spiral mixer is used in particular for mixing in the turbulent range. In the laminar field, the spiral mixer is only partially usable because of its moderate mixing performance.
  • a special family of static mixers are the so-called X-mixers. These consist of intersecting webs or plates.
  • X-mixer On off AT 330 135 B
  • Known X-mixer has in a tube at least one mixing insert in the form of a web and slots having plate pair. In each case, the webs of a plate extend through the slots of the other plate crossing therethrough.
  • the plates are arranged inclined to one another and to the axis of the tube.
  • the supplied stream of substances to be mixed is split by the webs as a result of the inclination of the plates in terms of time and place offset into partial streams.
  • the web approaches form strong dead zones, which can unnecessarily increase the residence time and damage critical fluids.
  • the plates must be positioned with countless welds, which can lead to increased corrosion.
  • the assembly of the plates is very time consuming and therefore costly.
  • This known device is used in particular for mixing in the laminar range. In the turbulent range, it is only partially usable because of its high pressure loss.
  • CSE-X mixer The geometry known as CSE-X mixer is in CH 693 560 A5 described.
  • This patent shows a device for static mixing, consisting of a tubular housing with at least one mixing insert arranged therein in the form of a webs and slots having plate which is bent.
  • the plates Preferably, the plates have projections at the web edges and have elliptical peripheral shapes.
  • Two curved plates, each with the webs of one plate passing through the slits of the other plate, are attached to the protrusions.
  • the mixing inserts can be positioned one behind the other in the tubular housing, wherein the mixing inserts can touch directly or can also have spacings between the inserts.
  • the device can mix well with this simple geometry in all flow areas.
  • the mixing quality is determined only by the number of mixing inserts and their installation position.
  • the mixed use was known on the market especially as 4-, 6- and 8-bar construction and also has an increasing with increasing number of webs, high pressure loss.
  • EP 2 286 904 B1 shows a particularly innovative mixing device with waisted mixing bars.
  • the edge zones of the mixer are opened significantly, so that an additional reduction of the pressure loss occurs.
  • type V has a very high mixing performance with very low pressure loss.
  • Micromacromixing is the targeted use of static mixers of various geometries and nominal diameters. Basically, first a uniform pre-distribution in the macro mixer must be achieved, then in the micro mixer the best possible fine distribution is achieved.
  • the basics typically used are the CSE-X mixers.
  • static mixers have also been used as heat exchangers.
  • Static mixers are equipped with a double jacket.
  • Static mixers which are used as heat exchangers are referred to today as mixer heat exchangers.
  • a typical design is in the DE 2'808'854 described.
  • Further mixer heat exchangers are in the EP 2'113'732 .
  • Mixer heat exchangers are generally characterized by a high heat transfer capacity and at the same time a narrow residence time behavior. As a result, static mixer heat exchangers are increasingly used in reaction technology.
  • static mixer heat exchangers as reactors is detailed in the journal Chemical Engineer Technology 2005,77 , No. 6 described.
  • Static mixers with a double jacket are preferably used as residence time reactors or as dwellers.
  • the possible slim design of the mixer heat exchanger causes a tight retention time, which has a particularly positive effect on the product quality of the flowing product in the pipe.
  • a tight design also causes shorter residence times or very long mixers.
  • the residence time behavior in static mixers can be described by means of the Bodenstein number.
  • the present invention seeks to provide a static mixing device with good mixing effect and low pressure drop, which additionally has a tighter and more defined residence time behavior as known mixer.
  • the mixing device should preferably be able to be used in the laminar flow region and in the transition region and a substantially complete Ensure thorough mixing.
  • the mixing elements should be simple and inexpensive to manufacture, have a low pressure drop and mechanically stable can be assembled to mixer bars.
  • the mixing elements should be able to be positioned as short as possible as well as long designs in the flow channel.
  • the flow channel should be able to have a round, rectangular or square cross section.
  • the webs between the adjacent intersections are formed at least partially waisted and in the middle between adjacent intersections, the webs their smallest width and adjacent webs have their greatest spacing, and the inner wall of the flow channel adjacent webs between the front edge edges of the sidecut of the webs corresponding recess having the smallest width to form a largest in the middle between the front edge edges wall distance.
  • the measured over the diameter of the mixing element sum of the smallest width of the webs is at least 40% of the diameter of the mixing element.
  • the webs of the inner cross 14A, 14B have no tapered webs, so that a laminar flow profile is largely prevented.
  • the remaining waisted webs lead to the necessary pressure loss reduction.
  • the webs At the end of the webs, where an elliptical contour would form when the pipe wall touched, the webs will now only touch the pipe wall selectively, taking into account tolerances, so that the marginality is reduced to a minimum.
  • the webs are sharpened, for example, on the tube inner wall, so that the mixer rests only at small points.
  • a connection of the mixing elements, for example with a welded connection, must be ensured for stability reasons.
  • a static mixing device has a flow channel with at least one mixing element arranged in the flow channel.
  • Each mixing element has a plurality of crosswise arranged, with the longitudinal axis of the flow channel at an angle greater than 0 ° including webs. The webs between adjacent intersections are formed waisted.
  • the webs, which are adjacent to the inner wall of the flow channel, have, between frontal butt edges, a recess corresponding to the sidecut of the webs, forming a largest wall spacing in the middle between the end-side butt edges.
  • the measured over the diameter of the mixing element sum of the smallest widths of the webs can be at least 40% of the diameter of the mixing element.
  • the mixer according to the invention has a narrower residence time spectrum compared to commercially available static mixers.
  • the residence time spectrum in a static mixer is generally important. In particular, dead zones must be prevented, since the longer residence time can damage the product quality or significantly disrupt the process.
  • flows with Reynolds number> 10,000 are turbulent. This applies to static mixers as well as for the empty pipe.
  • flows with Reynolds numbers ⁇ 20 are called laminar. In between there is a transition area.
  • Fig. 5 schematically shows the turbulent and laminar flow.
  • a parabolic flow 85 is formed in the flow channel 10, which has a very poor residence time spectrum.
  • the residence time spectrum is usually measured with a Dirac impact.
  • the measurement and detection of a residence time spectrum is well known to those skilled in the art and will not be described in detail. It is also known that measuring a Dirac impact in the laminar flow regime is difficult because inlet and outlet perturbations can significantly affect the results.
  • the typical measured residence-time shifts and light tailing in the curve are characteristic of a residence time distribution in a static mixer in the laminar flow regime.
  • Fig. 6 shows in comparison the residence time distribution of a static mixer according to the patent CH 642 564 and CH 693 560 to the 1D dispersion model.
  • the Bodenstein number (also called Bo for short) is a dimensionless characteristic number from the reaction technique and describes the ratio of the convection current to the dispersion current.
  • the Bodenstein number characterizes the backmixing within a system and thus allows statements about whether and how strongly volume elements or substances within the dweller mix by the prevailing currents.
  • the Bodenstein number is usually described with the 1-d dispersion model. This model concept takes the 1-dimensional process in a flow tube (plug flow) as a starting point. In the direction z, a flow velocity u z, which is practically constant at the respective mixers cross section A is carried out.
  • the residence time cumulative curve can be used for comparison of the residence time spectra.
  • Fig. 7 shows a comparison of different mixing elements.
  • the mixer according to CH 693 560 has a relationship with the dashed curve 202, the mixer according to EP 2 286 904 B1 a ratio according to curve 201.
  • the features according to the invention make it possible with such a mixer to achieve a significantly improved residence time behavior.
  • the comparison is based on identical flow conditions, the same diameter and the same mixer lengths.
  • the resistance factor can be used as a power comparison.
  • the resistance factor of the mixer 1 is standardized at 100%.
  • the mixer decreases EP 2 286 904 B1 with 38% the worse residence time behavior than the mixer after the CH 693 560 on. It is therefore all the more surprising that the mixer according to the invention with 60% compared to the mixer after CH 693 560 a considerable one has better residence time behavior.
  • Fig. 1 shows a side view of a portion of a flow channel 10 with two adjoining mixing elements 12 with six webs according to an embodiment of the invention.
  • the following description is also based on the Fig. 2 with a view of the mixing element 12 of Fig. 1 in the flow channel 10 in the direction of the longitudinal axis of the flow channel 10; on the Fig. 3 with a plan view of web plates before welding to a mixing element 12 with webs to be joined, on the Fig. 4 with a plan view of a web plate of a mixing element 12 with six web parts before welding to a mixing element, on the Fig. 9 with a view of a web plate of a mixing element with four web parts before welding to a mixing element and finally to the Fig. 10 with a plan view of the web plates of Fig. 9 before bending to a mixing element with webs to be joined.
  • the Fig. 8 Finally, a perspective view of a mixer follows Fig. 1 ,
  • tubular flow channel 10 having a longitudinal axis x and an inner diameter D has two adjoining, a length L having identical mixing elements 12 with a substantially the inner diameter D of the flow channel 10 corresponding Umhüllungs trimmesser.
  • the two mixing elements 12 are arranged with respect to the longitudinal axis x of the flow channel 10 at an angle of 90 ° to each other rotated.
  • the mixing element 12 consists of a plurality of intersecting webs 14A, 14B.
  • the webs 14A, 14B are arranged in mutually parallel planes separated from each other by an equal distance and forming two intersecting planes A, B.
  • the two level shares A, B close with the longitudinal axis x of the flow channel an angle ⁇ of 45 ° and with each other an angle of 90 °.
  • the mixing element 12 shown by way of example in the drawing has six web layers, each with two webs 14A, 14B which intersect alternately, and thus corresponds to a 6-web mixer.
  • a common other number of bars is four or eight.
  • All webs 14A, 14B extend within the mixing element 12 via their respective maximum length which is limited by the end faces of the mixing element 12 and by the inner wall of the flow channel 10, the contour of the webs 14A, 14B close to the wall being the circular cross-section of the wall Flow channel 10 is only partially adapted so that in the near-wall webs 14A, 14B - as in the other webs - only front end portions 22 adjoin the inner wall of the flow channel 10 with little play.
  • the adjoining the inner wall of the flow channel 10 webs 14A, 14B are provided on the directed against the inner wall side with a recess 24 which extends between the end-side end portions or butt edges 22 with the inner wall of the flow channel 10 and corresponding to the waist of the webs largest Wall distance c have, which in the present case is 50% of the greatest distance between a adjacent bars 14A, 14B.
  • the webs 14A, 14B at each intended intersection point 16 a notch 18 or the notch depth of the notch 18 corresponding, a projection 20 generating cutback on.
  • the assembly of the mixing element 12 is carried out in a simple manner of two in Fig. 10 shown web plates 26 with four arranged alternately, the four in Fig. 9 shown webs 14A, 14B corresponding half webs 14A ', 14B' and the four in Fig. 9 illustrated webs 14A, 14B.
  • two web plates 26 are bent around an axis by an angle of 90 ° and in the in Fig. 1 shown connected by ends 28 of the two middle web halves 14A ', 14B' by welding together.
  • four webs 14A, 14B are placed over the notches 18 and projections 20 at the intersections 16 on the curved and welded together web plates 24 and partially welded at the intersections 16.
  • All embodiments have in common that the areas of the ends 28, which lie in known mixers in the context of the game on the inner wall of the flow tube, are cut out.
  • the cutouts can, as in Fig. 4 to recognize straight cuts 122 at the ends which leave a small end portion which further adjoins the flow tube.
  • the cutout 122 at the longest land portion is steeper than the cutout 122 at a shorter land.
  • the cutouts 122 can be seen with respect to the usual non-cutout end regions 22, the latter being shown in dashed lines. These lines 22 correspond to the inner diameter of the flow tube.
  • some cutouts 122 are concave, others have a polygonal course, for example, two sections meeting at a concave point.
  • the end region 28 may have an edge region adjoining the tube, have only one point or, as at the web 14A 'in FIG Fig. 10 bottom right, be cut from both sides, so that even the top of the convex here polygon no longer touches the wall of the flow tube.
  • Fig. 5 schematically shows the turbulent and laminar flow.
  • a parabolic flow 85 is formed in the flow channel 10, which has a very poor residence time spectrum.
  • there are very slow fluid fractions 86 at the tube edges while there are fast fluid fractions 87 in the middle.
  • a distribution results according to curve 82, while with a mixer according to the invention a distribution according to curve 81 can be achieved, in which both the edge flow and the center flow have comparable speeds.
  • the Fig. 6 shows the residence time distribution of static mixers according to CH 642 564 and CH 693 560 compared to different Bodenstein numbers according to the 1D dispersion model and the Fig. 7 shows dwell sum curves of various Mixers of the prior art and a mixer according to an embodiment of the invention. It is shown that the opening of the edge regions by recesses between the inner tube edge 22 and the web end by cutting 122 of the edge-side end regions accelerates the volume flow in the edge regions by a Mass that a high homogeneous velocity distribution as the flow 81 after Fig. 5 results. In the plan view along the longitudinal axis x, the mixing elements continue to be substantially full-surface, in particular on the main axis along the intersection 16, so that a good mixing takes place.
  • an additional lateral wall clearance is created, which is defined by the angle of the straight cuts, the depth of the concave round recesses or the depth of the polygons with a point.
  • the alternating concerns of edge regions 22 and the removed portions 122 so that there is a mixing in the edge regions.
  • FIG. 11 another embodiment is shown.
  • a mixer according to FIG. 1 an additional elongated, rod-shaped profile element 30 is arranged, which extends parallel to the longitudinal direction of the mixer and passes through it.
  • the mixer can also be penetrated by several such profile elements.
  • the at least one profile element 30 is slidably held in the mixer or firmly connected to the mixer. It is preferably made of metal.
  • the at least profile element 30 is hollow or solid, depending on the embodiment. completed formed. It preferably has a round cross-section. If it is hollow, in particular designed as a tube, it may be empty. Preferably, however, at least one temperature sensor is arranged in the tube. Alternatively or additionally, the tube may include a heat transfer medium, for example a thermal oil or water.
  • the profile element serves as a mechanical reinforcement of the mixer and / or improve the heat transfer.

Abstract

Eine statische Mischvorrichtung weist einen Strömungskanal mit mindestens einem im Strömungskanal angeordneten Mischelement auf. Jedes Mischelement weist eine Vielzahl von kreuzweise angeordneten, mit der Längsachse des Strömungskanals einen Winkel grösser 0° einschliessenden Stegen (14A, 14B) auf. Mindestens jeweils einer der Stege (14A, 14B) zwischen benachbarten Kreuzungsstellen sind tailliert ausgebildet. In der Mitte zwischen benachbarten Kreuzungsstellen (16) aufweisen die Stege (14A, 14B) ihre kleinste Breite (b) und einander benachbarte Stege (14A, 14B) ihren grössten Zwischenabstand (a). Die der Innenwand des Strömungskanals (10) benachbarten Randbereiche der Stege (14A, 14B) aufweisen eine gegenüber der Innenwand des Strömungskanals (10) bestehende Ausnehmung (122).

Description

    TECHNISCHES GEBIET
  • Die vorliegende Erfindung betrifft eine statische Mischvorrichtung mit einem rohrförmigen, eine Längsachse und einen Innendurchmesser aufweisenden Strömungskanal mit mindestens einem im Strömungskanal angeordneten Mischelement einer Länge und einem im Wesentlichen dem Innendurchmesser des Strömungskanals entsprechenden Durchmesser, wobei jedes Mischelement eine Vielzahl von kreuzweise angeordneten, mit der Längsachse des Strömungskanals einen Winkel grösser 0° einschliessenden Stegen aufweist, wobei die Stege in zwei sich kreuzenden, eine Vielzahl von parallel zueinander angeordneten, von einander durch einen gleichen Abstand getrennten Ebenen aufweisenden Ebenenscharen angeordnet sind und bei Projektion der beiden Ebenenscharen (A, B) auf eine senkrecht zur Längsachse (X) des Strömungskanals (10) liegende Projektionsebene einander benachbarte Stege zumindest teilweise einen Zwischenabstand aufweisen.
  • STAND DER TECHNIK
  • Eine solche Mischvorrichtung ist aus der EP 2 286 904 der Anmelderin bekannt, wie weiter unten erläutert wird.
  • Statische Mischer werden heute in allen Bereichen des Chemie-Ingenieur-Wesens eingesetzt. Charakteristisch für statische Mischer ist, dass nur die zu mischenden Flüssigkeiten oder Gase bewegt werden. Im Gegensatz zu dynamischen Mischsystemen findet kein Rühren statt, sondern Pumpen, Gebläse oder Kompressoren fördern kontinuierlich die zu mischenden Medien zum Mischrohr, welches mit den Mischelementen ausgerüstet ist. Statische Mischer können in vielen Anwendungsbereichen wie dem Vermischen von pumpbaren Flüssigkeiten, dem Dispergieren und Emulgieren von ineinander unlöslichen Komponenten, dem Mischen von reaktiven Flüssigkeiten, dem Mischen und Homogenisieren von Kunststoffschmelzen, dem Gas-Flüssig-Kontaktieren, dem Mischen von Gasen, dem Wärmeaustausch von viskosen Stoffen und dem Einsatz als Verweilzeitstrecke mit engen Verweilzeitverhalten eingesetzt werden, um einige wesentliche Einsatzgebiete zu nennen.
  • Aus der US 3 286 992 A ist ein Wendelmischer bekannt und weist schraubenförmig gekrümmte, blattartige, abwechselnd links- und rechtsgängige Platten bzw. Mischelemente auf, die mit sich kreuzenden Stirnkanten aneinandergereiht den Strom der zu mischenden Stoffe beim Eintritt in jedes Element aufteilen. Der Strömungskanal ist in jedem der Elemente in Form und Querschnitt gleich bleibend. Der Wendelmischer dient insbesondere zum Mischen im turbulenten Bereich. Im laminaren Bereich ist der Wendelmischer wegen seiner mässigen Mischleistung nur bedingt einsetzbar.
  • Eine spezielle Familie der statischen Mischer sind die so genannten X-Mischer. Diese bestehen aus sich kreuzenden Stegen oder Platten. Ein aus AT 330 135 B bekannter X-Mischer weist in einem Rohr mindestens einen Mischeinsatz in Form eines Steges und Schlitze aufweisenden Plattenpaares auf. Dabei erstrecken sich jeweils die Stege der einen Platte durch die Schlitze der anderen Platte kreuzend hindurch. Die Platten sind zueinander und zur Achse des Rohres geneigt angeordnet. Der zugeführte Strom der zu mischenden Stoffe wird durch die Stege infolge der Schrägstellung der Platten zeitlich und örtlich versetzt in Teilströme aufgespaltet. Bei diesem bekannten Mischer bilden die Stegansätze starke Totzonen, die die Verweilzeit unnötig erhöhen und kritische Flüssigkeiten beschädigen können. Zudem müssen die Platten mit unzähligen Schweissnähten positioniert werden, was zu erhöhter Korrosion führen kann. Das Zusammenstellen der Platten ist sehr zeitaufwändig und daher kostenintensiv. Diese bekannte Vorrichtung dient insbesondere zum Mischen im laminaren Bereich. Im turbulenten Bereich ist sie wegen ihres hohen Druckverlustes nur bedingt einsetzbar.
  • Die Entwicklung des Mischers gemäss CH 642 564 A5 im Jahr 1979 stellte eine Verbesserung der statischen Mischtechnik für laminar strömende Medien dar. Seither hat sich dieser Mischer bewährt und er wird in einem sehr breiten Feld von Anwendungen mit meist hochviskosen Medien erfolgreich eingesetzt. Er ist in CH 642 564 A5 in Fig. 1 dargestellt als Mischer mit 8 Steglagen, auch als 8-Steg-Mischer bezeichnet, mit einem L/D-Verhältnis von 1. Der Mischer besitzt einen sehr hohen Druckverlust.
  • Die als CSE-X Mischer bekannte Geometrie ist in CH 693 560 A5 beschrieben. Diese Patentschrift zeigt eine Vorrichtung zum statischen Mischen, bestehend aus einem rohrartigen Gehäuse mit mindestens einem darin angeordneten Mischeinsatz in Form einer Stege und Schlitze aufweisenden Platte, welche gebogen wird. Vorzugsweise weisen die Platten an den Stegkanten Vorsprünge auf und besitzen elliptische Umfangsformen. Zwei gebogene Platten, bei denen jeweils die Stege der einen Platte durch die Schlitze der anderen Platte hindurchreichen, werden an den Vorsprüngen befestigt. Die Mischeinsätze können im rohrartigen Gehäuse hintereinander positioniert werden, wobei sich die Mischeinsätze direkt berühren oder auch Abstände zwischen den Einsätzen aufweisen können. Die Vorrichtung kann mit dieser einfachen Geometrie in sämtlichen Strömungsbereichen hervorragend mischen. Die Mischgüte wird nur durch die Anzahl der Mischeinsätze und deren Einbaulage bestimmt. Der Mischeinsatz wurde am Markt insbesondere als 4-, 6- und 8-Steg-Konstruktion bekannt und weist ebenfalls einen mit steigender Anzahl Stege zunehmenden, hohen Druckverlust auf.
  • EP 2 286 904 B1 zeigt eine besonders innovative Mischvorrichtung mit taillierten Mischstegen. Zudem sind die Randzonen des Mischer erheblich geöffnet, so dass eine zusätzliche Reduktion des Druckverlustes eintritt. Insbesondere Typ V weist eine sehr hohe Mischleistung bei sehr geringem Druckverlust auf.
  • Die Fachzeitschrift Pharma und Food 2/2004 beschreibt die mikromakro® Technologie mit statischen Mischern. Unter Mikromakromischen versteht man den gezielten Einsatz von Statikmischern verschiedener Geometrien und Nennweiten. Grundsätzlich muss zuerst eine gleichmäßige Vorverteilung im Makro-Mischer erreicht werden, danach wird im Mikro-Mischer eine bestmögliche Feinverteilung erzielt. Als Grundlagen werden typischerweise die CSE-X Mischer eingesetzt.
  • Fasst man die Untersuchungen an X-Mischern der letzten Jahre zusammen, so wurden jeweils folgende mögliche Parameter variiert: das L/D-Verhältnis eines Mischelementes, die Anzahl an Steglagen, die Dicke der Stege, die Winkellage der Stege, die Form der Stege und die Breite der Stege.
  • Seit vielen Jahren werden statische Mischer auch als Wärmetauscher eingesetzt. Dabei werden statische Mischer mit einem Doppelmantel ausgerüstet. Statische Mischer, welche als Wärmetauscher eingesetzt werden, bezeichnet man heute als Mischer-Wärmetauscher. Eine typische Ausführung ist in der DE 2'808'854 beschrieben. Weitere Mischer-Wärmetauscher sind in den EP 2'113'732 , EP 1'067'352 , WO2008/141472 und DE 2'839'564 beschrieben, wobei der Wärmeübergang an kleinen Rohren im Mischerrohr stattfindet. Mischer-Wärmetauscher zeichnen sich generell mit einem hohen Wärmeübergangsvermögen bei gleichzeitig engem Verweilzeitverhalten aus. Dies führt dazu, dass statische Mischer-Wärmetauscher vermehrt in der Reaktionstechnik eingesetzt werden. Der Einsatz von statischen Mischer-Wärmetauschern als Reaktoren wird ausführlich in der Zeitschrift Chemie Ingenieur Technik 2005,77. No. 6 beschrieben. Statische Mischer mit einem Doppelmantel werden dabei vorzugsweise als Verweilzeitreaktoren oder als Verweiler verwendet. Die mögliche schlanke Bauform des Mischer-Wärmetauschers bewirkt ein enges Verweilzeitverhalten, was sich besonders positiv auf die Produktqualität des im Rohr strömenden Produktes auswirkt. Eine enge Bauform bewirkt aber auch wiederum kürzere Verweilzeiten oder sehr lange Mischer. Das Verweilzeitverhalten in statischen Mischern kann mittels der Bodenstein-Zahl beschrieben werden.
  • DARSTELLUNG DER ERFINDUNG
  • Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine statische Mischvorrichtung mit guter Mischwirkung und geringem Druckabfall zu schaffen, welche zusätzlich ein engeres und definierteres Verweilzeitverhalten als bekannte Mischer aufweist.
  • Die Mischvorrichtung soll dabei vorzugsweise im laminaren Strömungsbereich und im Übergangsbereich eingesetzt werden können und eine weitgehend vollständige Durchmischung gewährleisten. Die Mischelemente sollen einfach und kostengünstig gefertigt werden können, einen geringen Druckverlust aufweisen und mechanisch stabil zu Mischerstangen zusammengestellt werden können. Die Mischelemente sollen als möglichst kurze wie auch als lange Bauformen im Strömungskanal positioniert werden können. Der Strömungskanal soll dabei einen runden, rechteckigen, oder quadratischen Querschnitt aufweisen können.
  • Zur erfindungsgemässen Lösung der Aufgabe führt, dass unterschiedlich zur EP 2 286 904 B1 die Stege zwischen den benachbarten Kreuzungsstellen zumindest teilweise tailliert ausgebildet sind und in der Mitte zwischen benachbarten Kreuzungsstellen die Stege ihre kleinste Breite und einander benachbarte Stege ihren grössten Zwischenabstand aufweisen, und die der Innenwand des Strömungskanals benachbarten Stege zwischen stirnseitigen Stosskanten eine der Taillierung der Stege entsprechende Ausnehmung mit der kleinsten Breite unter Bildung eines in der Mitte zwischen den stirnseitigen Stosskanten grössten Wandabstandes aufweisen. Dabei beträgt vorteilhafterweise die über den Durchmesser des Mischelementes gemessene Summe der kleinsten Breite der Stege mindestens 40 % des Durchmessers des Mischelementes.
  • Insbesondere weisen die Stege des inneren Kreuzes 14A,14B keine verjüngten Stege auf, so dass ein laminares Strömungsprofil weitestgehend verhindert wird. Die restlichen taillierten Stege führen zur nötigen Druckverlustreduktion.
  • Am Ende der Stege, dort wo sich bei der Berührung der Rohrwand eine ellipsenförmige Kontur bilden würde, werden neu die Stege die Rohrwand, unter Berücksichtigung von Toleranzen, nur noch punktuell berühren, so dass die Randgängigkeit auf ein Minimum reduziert wird. Die Stege werden beispielsweise an der Rohrinnenwand zugespitzt, so dass der Mischer nur noch an kleinen Punkten aufliegt. Ein Verbinden der Mischelemente, beispielsweise mit einer Schweissverbindung, muss aus Stabilitätsgründen gewährleistet sein.
  • Überraschend wurde festgestellt, dass das nahezu vollständige Öffnen der Randzone zu keinen oder nur zu sehr geringen Randgängigkeiten führt. Letztendlich wird die hohe Mischleistung des Mischelementes durch die neuen konstruktiven Massnahmen nicht negativ beeinflusst.
  • Eine statische Mischvorrichtung weist einen Strömungskanal mit mindestens einem im Strömungskanal angeordneten Mischelement auf. Jedes Mischelement weist eine Vielzahl von kreuzweise angeordneten, mit der Längsachse des Strömungskanals einen Winkel grösser 0° einschliessenden Stegen auf. Die Stege zwischen benachbarten Kreuzungsstellen sind tailliert ausgebildet. Die der Innenwand des Strömungskanals benachbarten Stege weisen zwischen stirnseitigen Stosskanten eine der Taillierung der Stege entsprechende Ausnehmung unter Bildung eines in der Mitte zwischen den stirnseitigen Stosskanten grössten Wandabstandes auf. Dabei kann die über den Durchmesser des Mischelementes gemessene Summe der kleinsten Breiten der Stege mindestens 40 % des Durchmessers des Mischelementes betragen.
  • Bevorzugte Ausführungen der erfindungsgemässen statischen Mischvorrichtung weisen eine oder mehrere der nachfolgend angeführten Merkmale auf:
    • Der Mischer weist Stege auf, die zwischen den benachbarten Kreuzungsstellen nur teilweise tailliert ausgebildet sind.
    • Das innere Kreuz des Mischelementes wird nicht tailliert ausgeführt, um eine hohe radiale Mischung zu gewährleisten.
    • Die Stege weisen unterschiedliche Breiten auf.
    • Die Stege werden an der Rohrwand zugespitzt, so dass das Mischelement keine Totwasserzonen aufweist.
    • Das Mischelement weist sechs Steglagen auf.
  • Der Mischer gemäss der Erfindung weist ein engeres Verweilzeitspektrum im Vergleich zu handelsüblichen statischen Mischern auf.
  • Weitere Ausführungsformen sind in den abhängigen Ansprüchen angegeben.
  • Das Verweilzeitspektrum in einem statischen Mischer ist generell wichtig. Insbesondere müssen Totzonen verhindert werden, da durch die längere Verweildauer die Produktqualität geschädigt oder der Prozess erheblich gestört werden kann. Es ist einerseits bekannt, dass Strömungen mit Reynolds-Zahl > 10'000 turbulent sind. Dies gilt für statische Mischer sowie für das Leerrohr. Andererseits werden Strömungen mit Reynolds-Zahlen < 20 als laminar bezeichnet. Dazwischen befindet sich ein Übergangsbereich.
  • Fig. 5 zeigt schematisch die turbulente und laminare Strömung. Bei der laminaren Strömung bildet sich eine Parabelströmung 85 im Strömungskanal 10, welche ein sehr schlechtes Verweilzeitspektrum aufweist. Das Verweilzeitspektrum wird üblicherweise mit einem Dirac-Stoss gemessen. Das Messen und Erfassen eines Verweilzeitspektrums ist dem Fachmann ausreichend bekannt und wird nicht detailliert beschrieben. Es ist auch bekannt, dass das Messen eines Dirac-Stosses im laminaren Strömungsbereich schwierig ist, da Einlauf- und Auslaufstörungen die Resultate erheblich beeinflussen können. Die typisch gemessenen Verschiebungen des Verweilzeitspektrums und das leichte Tailing in der Kurve sind charakteristisch für eine Verweilzeitverteilung in einem statischen Mischer im laminaren Strömungsbereich.
  • Fig. 6 zeigt im Vergleich die Verweilzeitverteilung eines statischen Mischers gemäss Patentschrift CH 642 564 und CH 693 560 zum 1D-Dispersionsmodell. Die Bodenstein-Zahl (auch kurz Bo genannt) ist eine dimensionslose Kennzahl aus der Reaktionstechnik und beschreibt das Verhältnis des Konvektionsstroms zum Dispersionsstrom. Damit charakterisiert die Bodenstein-Zahl die Rückvermischung innerhalb eines Systems und ermöglicht somit Aussagen darüber, ob und wie stark sich Volumenelemente oder Stoffe innerhalb des Verweilers durch die herrschenden Strömungen vermischen. Die Bodenstein-Zahl wird üblicherweise mit dem 1-d Dispersionsmodell beschrieben. Diese Modellvorstellung nimmt den 1-dimensionalen Vorgang in einem Strömungsrohr (Pfropfenströmung) als Ansatzpunkt. In Richtung z erfolgt eine Strömungsgeschwindigkeit uz, die bei dem jeweiligen Mischerquerschnitt A praktisch konstant ist. Durch molekulare Diffusion, turbulente Konvektion und durch das durch Randreibung (Rauheit) bewirkte parabolische Geschwindigkeitsprofil (bsp. laminare Rohrströmung) wird es zu Abweichungen von der idealen Rohrströmung kommen. Als Größe zur Erfassung dieser Effekte wird der axiale Dispersionskoeffizient Dax verwendet, der somit ein Mass für die Rückvermischung ist. Die Ansatzgleichung für das 1-d Dispersionsmodell lautet: c t = - u z c z + D ax 2 c z 2
    Figure imgb0001

    und wird, um eine Lösung zu erleichtern, in dimensionsloser Form angeschrieben. Für den stationären Fall entsteht dann: c c 0 t τ = - c c 0 z L + D ax u z L 2 c c 0 z L 2 = 0
    Figure imgb0002
  • Darin ist die dimensionslose Kenngröße enthalten, nämlich die so genannte Bodenstein-Zahl, Bo = u z L D ax
    Figure imgb0003

    die mit einer "charakteristischen Länge" L des Mischer-Wärmetauscher Gehäuses definiert ist. Die exakte Lösung der stationären und dimensionslosen Gleichung lautet (nach Levenspiel und Smith): c i θ Bo = h θ = Bo 4 π θ e - 1 - θ 2 Bo 4 θ
    Figure imgb0004
  • Als Grenzfälle des Dispersionsmodells ergeben sich das Verdrängungs-Modell ohne axiale Dispersion für Bo = ∞ (ideale Rohrströmung) und das Rückvermischungsmodell mit axialer Dispersion für Bo = 0 (idealer Rührkessel). In der Fig. 6 entsprechen der Peak einem idealen Strömungsrohr 100, die weiteren Kurven 109 Bo=7, 108 Bo=20, 107 Bo= 60, 106 Bo=120 und 105 Bo=400. Die CFD-Berechnung ist mit der Kurve 110 eingezeichnet.
  • Die Auswertung von Fig. 6 zeigt überraschenderweise, dass auch bei einer CFD Berechnung 110 einerseits die Verschiebung und anderseits das Tailing deutlich ersichtlich wird. Die Kurvenverschiebung weist somit nach der Theorie der realen Strömung deutlich auf Totzonen hin. Diese weisen gemäss Fig. 6 eine geschätzten Betrag von 30% auf, was wiederum sehr unwahrscheinlich ist. Es muss also eine weiterer Effekt diese Verschiebung verursachen. Detaillierte Untersuchungen von instationären CFD Berechnungen ergaben überraschenderweise folgende Effekte:
    • herkömmliche statische Mischer weisen auch eine Parabelströmung auf, allerdings ist diese weniger ausgeprägt als beim Leerrohr
    • je kleiner der Widerstandsfaktor ist, desto ausgeprägter die Parabelströmung
    • Statische Mischer weisen an den Randzonen generell schwach durchströmte Zonen auf, insbesondere dort, wo die Stege in einem Winkel zur Achse an der Rohrwand anliegen. Dies führt zu zusätzlichen längeren Verweilzeiten.
  • Es wurden etliche Berechnungen durchgeführt, um das Verweilzeitspektrum der Mischer, ohne Ein- und Auslaufstörungen, zu vergleichen. Zum Vergleich der Verweilzeitspektren kann vorzugsweise die Verweilzeitsummenkurve heran gezogen werden. Fig. 7 zeigt einen Vergleich verschiedener Mischelemente. Die Kurve 200 zeigt das ideale Verhalten; keinerlei Anteile der durch das Mischelement fliessenden Fluide hat eine Verweilzeit t zur mittleren Verweilzeit τ (Tau) von kleiner 1. Bei einem grösseren Verhältnis q als 1 sind es 100 %, was als H(q)=1 angegeben wird. Der Mischer gemäss CH 693 560 weist ein Verhältnis mit der gestrichelten Kurve 202 auf, der Mischer gemäss EP 2 286 904 B1 ein Verhältnis gemäss Kurve 201. Die durchgezogene Kurve 203 schliesslich zeigt das Verweilzeitverhalten für einen Mischer gemäss einem Ausführungsbeispiel gemäss der Erfindung. Es fällt auf, dass bei diesem Mischer zum einen die Kurve den Wert H(q) = 0,5 bei q=1 schneidet; 50% der Fluidanteile weisen eine überdurchschnittliche Verweilzeit (q<=1) und 50% eine unterdurchschnittliche Verweilzeit (q>=1) auf. Es besteht also eine Kompensation von schnelleren durch langsamere Anteile in symmetrischer Art und Weise, während beim Stand der Technik einige schnell durch den Mischer hindurchtretende Fluidanteile einem grösseren Anteil von langsameren Fluidanteilen gegenüberstehen. Die Geschwindigkeitsspreizung ist bei der Erfindung viel geringer. Dies ist verbunden mit dem zweiten Unterschied, der darin liegt, dass die langsameren Fluidanteile, auf die mit dem Bezugszeichen 210 hingewiesen wird, eine weniger geringe Verweilzeit als der Schnitt haben; es gibt fast keine Anteile mit einem q < 0.75 und im wesentlichen befinden sich die Fluidanteile mit einem q > 0,85.
  • Durch die erfindungsgemässen Merkmale gelingt es bei einem solchen Mischer, ein deutlich verbessertes Verweilzeitverhalten zu erzielen. Der Vergleich basiert auf identischen Strömungsverhältnissen, gleichem Durchmesser und gleichen Mischerlängen. Somit kann der Widerstandsfaktor als Leistungsvergleich herangezogen werden. Dabei wird der Widerstandsfaktor des Mischers 1 mit 100% normiert. Wie erwartet weist der Mischer nach EP 2 286 904 B1 mit 38% das schlechtere Verweilzeitverhalten als der Mischer nach der CH 693 560 auf. Es ist daher umso erstaunlicher, dass der Mischer gemäss der Erfindung mit 60% im Vergleich zum Mischer nach CH 693 560 ein erheblich besseres Verweilzeitverhalten aufweist.
  • KURZE BESCHREIBUNG DER ZEICHNUNGEN
  • Weitere Erklärungen, Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung bevorzugter Ausführungsformen sowie anhand der Zeichnungen, die lediglich zur Erläuterung dienen und nicht einschränkend auszulegen ist. Die Zeichnungen zeigen schematisch in
  • Fig. 1
    eine Seitenansicht eines Teils eines Strömungskanals mit zwei aneinander grenzenden Mischelementen mit sechs Stegen gemäss einem Ausführungsbeispiel der Erfindung;
    Fig. 2
    die Sicht auf ein Mischelement im Strömungskanal von Fig. 1 in Blickrichtung der Längsachse des Strömungskanals;
    Fig. 3
    die Draufsicht auf Stegplatten vor dem Schweissen zu einem Mischelement mit zu verbindenden Stegen;
    Fig. 4
    die Draufsicht auf eine Stegplatte eines Mischelementes mit sechs Stegteilen vor dem Schweissen zu einem Mischelement;
    Fig. 5
    eine schematische Darstellung von turbulenter und laminarer Strömung in einem Lehrrohr, in einer Prinzipdarstellung und an Mischern gemäss dem Stand der Technik und gemäss der Erfindung;
    Fig. 6
    die Verweilzeitverteilung von statischen Mischern gemäss CH 642 564 und CH 693 560 im Vergleich zu verschiedenen Bodenstein-Zahlen nach dem 1D Dispersionsmodell;
    Fig. 7
    Verweilzeitsummenkurven von verschiedenen Mischern des Standes der Technik und gemäss einem Ausführungsbeispiel der Erfindung;
    Fig. 8
    eine perspektivische Darstellung eines statischen Mischers gemäss Fig. 1;
    Fig. 9
    die Draufsicht auf eine Stegplatte eines Mischelementes mit vier Stegteilen vor dem Schweissen zu einem Element nach Fig, 10;
    Fig. 10
    die Draufsicht auf die Stegplatten von Fig. 9 vor dem Biegen zu einem Mischelement mit zu verbindenden Stegen und
    Fig. 11
    eine perspektivische Darstellung eines statischen Mischer gemäss Fig. 1 mit zusätzlichen Rohr oder Profilelement zur Verstärkung resp. zum verbesserten Wärmeübergang.
    BESCHREIBUNG BEVORZUGTER AUSFÜHRUNGSFORMEN
  • Fig. 1 zeigt eine Seitenansicht eines Teils eines Strömungskanals 10 mit zwei aneinander grenzenden Mischelementen 12 mit sechs Stegen gemäss einem Ausführungsbeispiel der Erfindung. Die folgende Beschreibung stützt sich gleichfalls ab auf die Fig. 2 mit einer Sicht auf das Mischelement 12 von Fig. 1 im Strömungskanal 10 in Blickrichtung der Längsachse des Strömungskanals 10; auf die Fig. 3 mit einer Draufsicht auf Stegplatten vor dem Schweissen zu einem Mischelement 12 mit zu verbindenden Stegen, auf die Fig. 4 mit einer Draufsicht auf eine Stegplatte eines Mischelementes 12 mit sechs Stegteilen vor dem Schweissen zu einem Mischelement, auf die Fig. 9 mit einer Sicht auf eine Stegplatte eines Mischelementes mit vier Stegteilen vor dem Schweissen zu einem Mischelement und schliesslich auf die Fig. 10 mit einer Draufsicht auf die Stegplatten von Fig. 9 vor dem Biegen zu einem Mischelement mit zu verbindenden Stegen. Die Fig. 8 schliesslich zeigt eine perspektivische Ansicht eines Mischers nach Fig. 1.
  • Ein in Fig. 1 gezeigter, rohrförmiger Strömungskanal 10 mit einer Längsachse x und einem Innendurchmesser D weist zwei aneinander grenzende, eine Länge L aufweisende identische Mischelemente 12 mit einem im Wesentlichen dem Innendurchmesser D des Strömungskanals 10 entsprechenden Umhüllungsdurchmesser auf. Die beiden Mischelemente 12 sind bezüglich der Längsachse x des Strömungskanals 10 um einen Winkel von 90° gegeneinander verdreht angeordnet. Das Mischelement 12 besteht aus einer Vielzahl von sich kreuzenden Stegen 14A, 14B. Die Stege 14A, 14B liegen in parallel zueinander angeordneten, von einander durch einen gleichen Abstand getrennten Ebenen, die zwei sich kreuzende Ebenenscharen A, B bilden. Die beiden Ebenenscharen A, B schliessen mit der Längsachse x des Strömungskanals einen Winkel α von 45° und untereinander einen Winkel von 90° ein. Das in der Zeichnung beispielhaft dargestellte Mischelement 12 weist sechs Steglagen mit je zwei sich alternierend kreuzenden Stegen 14A, 14B auf und entspricht somit einem 6-Steg-Mischer. Eine übliche andere Anzahl von Stegen ist vier oder acht.
  • Aus der in Fig. 2 dargestellten Projektion der beiden Ebenenscharen A, B auf eine senkrecht zur Längsachse x des Strömungskanals 10 liegende Projektionsebene ist erkennbar, dass die Stege 14A, 14B zwischen Kreuzungsstellen 16 symmetrisch tailliert ausgebildet sind und alle eine in der Mitte zwischen benachbarten Kreuzungsstellen 16 gleiche kleinste Breite b aufweisen, die 50% der Breite b' an den Kreuzungsstellen 16 beträgt. Alle Stege 14A, 14B sind in gleicher Weise tailliert und weisen gleiche Dimensionen auf. Im vorliegenden Fall entspricht der grösste Zwischenabstand a benachbarter Stege 14A, 14B dem Ort der kleinsten Stegbreite b.
  • Sämtliche Stege 14A, 14B erstrecken sich innerhalb des Mischelements 12 über jeweils ihre durch die Stirnseiten des Mischelements 12 und durch die Innenwand des Strömungskanals 10 begrenzte, maximal mögliche Länge, wobei die Kontur der wandnahen Stege 14A, 14B zur Wahrung eines Wandabstandes dem kreisförmigen Querschnitt des Strömungskanals 10 nur teilweise so angepasst ist, dass bei den wandnahen Stegen 14A, 14B -- wie bei den übrigen Stegen -- nur stirnseitige Endbereiche 22 mit kleinem Spiel an die Innenwand des Strömungskanals 10 angrenzen. Die an die Innenwand des Strömungskanals 10 angrenzenden Stege 14A, 14B sind auf der gegen die Innenwand gerichteten Seite mit einer Ausnehmung 24 versehen, die sich zwischen den stirnseitigen Endbereichen oder Stosskanten 22 mit der Innenwand des Strömungskanals 10 erstreckt und entsprechend der Taillierung der Stege einen grössten Wandabstand c aufweisen, der im vorliegenden Fall 50% des grössten Zwischenabstandes a benachbarter Stege 14A, 14B beträgt.
  • Wie aus den Figs. 3 und 4 oder Figs. 9 und 10 erkennbar, weisen die Stege 14A, 14B an jeder vorgesehenen Kreuzungsstelle 16 eine Einkerbung 18 oder einen der Kerbtiefe der Einkerbung 18 entsprechenden, einen Vorsprung 20 erzeugenden Rückschnitt auf.
  • Der Zusammenbau des Mischelements 12 erfolgt auf einfache Weise aus zwei in Fig. 10 gezeigten Stegplatten 26 mit vier alternierend angeordneten, den vier in Fig. 9 dargestellten Stegen 14A, 14B entsprechenden halben Stegen 14A', 14B' und den vier in Fig. 9 dargestellten Stegen 14A, 14B. Hierbei werden zwei Stegplatten 26 um eine Achse um einen Winkel von 90° gebogen und in der in Fig. 1 gezeigten Art über Enden 28 der beiden mittleren Steghälften 14A', 14B' durch Schweissen miteinander verbunden. Die in Fig. 9 dargestellten vier Stege 14A, 14B werden über die Einkerbungen 18 und Vorsprünge 20 an den Kreuzungsstellen 16 auf die gebogenen und miteinander verschweissten Stegplatten 24 aufgesteckt und an den Kreuzungsstellen 16 teilweise verschweisst.
  • Allen Ausführungsformen ist gemeinsam, dass die Bereiche der Enden 28, die bei bekannten Mischern im Rahmen des Spiels an der Innenwand des Strömungsrohrs anliegen, ausgeschnitten sind. Die Ausschnitte können, wie in Fig. 4 zu erkennen, geraden Schnitten 122 an den Enden entsprechen, die einen kleinen Endabschnitt übriglassen, der weiterhin an das Strömungsrohr angrenzt. Der Ausschnitt 122 am längsten Stegabschnitt ist steiler als der Ausschnitt 122 an einem kürzeren Steg.
  • In den Figs. 9 und 10 sind die Ausschnitte 122 gegenüber den üblichen nicht ausgeschnittenen Endbereichen 22 zu erkennen, wobei letztere strichliniert dargestellt sind. Diese Linien 22 entsprechen dem Innendurchmesser des Strömungsrohrs. Dabei sind einige Ausschnitte 122 konkav ausgestaltet, andere weisen einen Polygonzug auf, beispielsweise zwei sich an einem konkaven Punkt treffenden Streckenabschnitte. Dabei kann der Endbereich 28 einen an das Rohr angrenzenden Kantenbereich aufweisen, nur einen Punkt aufweisen oder, wie an dem Steg 14A' in Fig. 10 rechts unten, von beiden Seiten her angeschnitten sein, so dass selbst die Spitze des hier konvexen Polygonzuges die Wand des Strömungsrohrs nicht mehr berührt.
  • Fig. 5 zeigt schematisch die turbulente und laminare Strömung. Bei der laminaren Strömung bildet sich eine Parabelströmung 85 im Strömungskanal 10, welche ein sehr schlechtes Verweilzeitspektrum aufweist. Mit anderen Worten, an den Rohrrändern bestehen sehr langsame Fluidanteile 86, während in der Mitte schnelle Fluidanteile 87 bestehen. Für eine turbulente Strömung ergibt sich eine Verteilung nach Kurve 82, während mit einem Mischer nach der Erfindung eine Verteilung nach Kurve 81 erreichbar ist, bei der sowohl die Randströmung, als auch die Mittenströmung vergleichbare Geschwindigkeiten aufweisen.
  • Die Fig. 6 zeigt die Verweilzeitverteilung von statischen Mischern gemäss CH 642 564 und CH 693 560 im Vergleich zu verschiedenen Bodenstein-Zahlen nach dem 1D Dispersionsmodell und die Fig. 7 zeigt Verweilzeitsummenkurven von verschiedenen Mischern des Standes der Technik und einem Mischer gemäss einem Ausführungsbeispiel der Erfindung. Dabei zeigt sich, dass das Öffnen der Randbereiche durch Ausnehmungen zwischen dem Innenrohrrand 22 und dem Stegende durch Abschneiden 122 der Randseitigen Endbereiche den Volumendurchfluss in den Randbereichen um ein Mass beschleunigt, dass sich eine hohe homogene Geschwindigkeitsverteilung wie die Strömung 81 nach Fig. 5 ergibt. In der Draufsicht entlang der Längsachse x sind die Mischelemente weiterhin im Wesentlichen vollflächig, insbesondere auf der Hauptachse entlang der Kreuzungsstelle 16, so dass eine gute Durchmischung stattfindet. Es wird neben den durch die Ausnehmungen 24 erzeugten Wandabstand c in der Breitenrichtung der Stege ein zusätzlicher seitlicher Wandabstand erzeugt, der durch den Winkel der geraden Schnitte, die Tiefe der konkaven runden Ausnehmungen oder die Tiefe der Polygonzüge mit einer Spitze definiert wird. Vorteilhaft ist das abwechselnde Anliegen von Randbereichen 22 und den weggenommenen Abschnitten 122, so dass auch in den Randbereichen eine Durchmischung stattfindet.
  • In Figur 11 ist ein weiteres Ausführungsbeispiel dargestellt. In einem Mischer gemäss Figur 1 ist ein zusätzliches längliches, stabförmiges Profilelement 30 angeordnet, welches sich parallel zur Längsrichtung des Mischers erstreckt und diesen durchsetzt. Vorzugsweise ist genau ein Profilelement 30 vorhanden. Der Mischer kann jedoch auch von mehreren derartigen Profilelementen durchsetzt sein.
  • Das mindestens eine Profilelement 30 ist verschieblich im Mischer gehalten oder fest mit dem Mischer verbunden. Es besteht vorzugsweise aus Metall. Das mindestens Profilelement 30 ist je nach Ausführungsform hohl oder massiv, d.h. ausgefüllt ausgebildet. Es weist vorzugsweise einen runden Querschnitt auf. Ist es hohl, insbesondere als Rohr ausgebildet, so kann es leer sein. Vorzugsweise ist jedoch mindestens ein Temperatursensor im Rohr angeordnet. Alternativ oder zusätzlich kann das Rohr ein Wärmeträgermedium, beispielsweise ein Thermoöl oder Wasser, beinhalten.
  • Das Profilelement dient als mechanische Verstärkung des Mischers und/oder verbessern den Wärmeübergang.
  • BEZUGSZEICHENLISTE
  • 10 Strömungskanal 201 Verweilzeitsummenkurve von EP 2 286 904
    12 Mischelement
    14A(') Steg 202 Verweilzeitsummenkurve von CH 693 560
    14B(') Steg
    16 Kreuzungsstelle 203 Verweilzeitsummenkurve bei einem Mischer nach der Erfindung
    18 Einkerbung
    20 Vorsprung
    22 stirnseitige Endbereiche 210 langsamere Fluidanteile
    24 Ausnehmung 30 Profilelement
    26 Stegplatte a grösster Zwischenabstand der Stege
    28 Ende
    81 turbulente Strömung b kleinste Breite der Stege
    82 turbulente Strömung b' grösste Breite an einer Kreuzungsstelle der Stege
    85 Parabelströmung
    86 langsame Randströmung c grösster Wandabstand der Stege
    87 schnelle Zentralströmung
    100 ideale Verweilzeit A,B Ebenenscharen der jeweiligen Stege 14A bzw. 14B
    105 Verweilzeit bei Bo=400
    106 Verweilzeit bei Bo=120 X Längsachse des Strömungskanals
    107 Verweilzeit bei Bo=60
    108 Verweilzeit bei Bo=20 D Innendurchmesser des Strömungskanals
    109 Verweilzeit bei Bo=7
    110 CFD berechnete Verweilzeit L Länge des Mischelements
    122 abgeschnittene stirnseitige Endbereiche
    200 ideale Verweilzeitsummenkurve

Claims (16)

  1. Statische Mischvorrichtung mit einem rohrförmigen, eine Längsachse und einen Innendurchmesser aufweisenden Strömungskanal (10) mit mindestens einem im Strömungskanal (10) angeordneten Mischelement (12) einer vorbestimmten Länge und einem im Wesentlichen dem Innendurchmesser des Strömungskanals (10) entsprechenden Durchmesser (D), wobei jedes Mischelement (12) eine Vielzahl von kreuzweise angeordneten, mit der Längsachse (X) des Strömungskanals (10) einen Winkel grösser 0° einschliessenden Stegen (14A, 14B) aufweist, wobei die Stege (14A, 14B) in zwei sich kreuzenden, eine Vielzahl von parallel zueinander angeordneten, von einander durch einen gleichen Abstand getrennten Ebenen aufweisenden Ebenenscharen (A, B) angeordnet sind und bei Projektion der beiden Ebenenscharen (A, B) auf eine senkrecht zur Längsachse (x) des Strömungskanals (10) liegende Projektionsebene einander benachbarte Stege (14A, 14B) zumindest teilweise einen Zwischenabstand aufweisen und dass die Stegenden an der Rohrwand nur noch punktuell anliegen, so dass trotzdem die Befestigung der Mischelemente zu einer Mischerstange gewährleistet ist, dadurch gekennzeichnet, dass mindestens jeweils einer der Stege (14A, 14B) zwischen benachbarten Kreuzungsstellen (16) tailliert ausgebildet ist und in der Mitte zwischen benachbarten Kreuzungsstellen (16) die Stege (14A, 14B) ihre kleinste Breite (b) und einander benachbarte Stege (14A, 14B) ihren grössten Zwischenabstand (a) aufweisen, und die der Innenwand des Strömungskanals (10) benachbarten Randbereiche der Stege (14A, 14B) eine gegenüber der Innenwand des Strömungskanals (10) bestehende Ausnehmung (122) aufweisen.
  2. Mischvorrichtung nach Anspruch 1, wobei die Ausnehmung (122) der der Innenwand des Strömungskanals (10) benachbarten Randbereiche eine der Taillierung der Stege (14A, 14B) entsprechende Ausnehmung mit der kleinsten Breite (b) unter Bildung eines in der Mitte zwischen den stirnseitigen Stosskanten (22) grössten Wandabstandes (c) ist.
  3. Mischvorrichtung nach Anspruch 2, wobei die über den Durchmesser des Mischelementes (12) gemessene Summe der kleinsten Breiten (b) der Stege (14A, 14B) mindestens 40 % des Durchmessers des Mischelementes (12) beträgt.
  4. Mischvorrichtung nach einem der Ansprüche 1 bis 3, wobei angrenzend an die Ausnehmungsränder stirnseitige Stosskanten (22) der Stege (14A, 14B) bestehen, die an die Innenwand des Strömungskanals (10) angrenzen.
  5. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei die Ausnehmungen gerade Schnitte oder konkave Ausnehmungen (122) der Stosskanten der Stege (14A, 14B) sind.
  6. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei die Stege (14A, 14B) an der Innenwand des Strömungskanals (10) zugespitzt sind, so dass das Mischelement (12) keine Totwasserzonen aufweist, insbesondere dass die Stege (14A, 14B) die Innenwand des Strömungskanals (10) nicht berühren.
  7. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei das innere Kreuz des Mischelementes (12) nicht tailliert ausgeführt wird.
  8. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei die Stege (14A, 14B) unterschiedliche Breiten aufweisen, und/oder wobei alle Stege (14A, 14B) die gleiche kleinste Breite (b) aufweisen.
  9. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei alle Stege (14A, 14B) mit der Längsachse (x) des Strömungskanals (10) einen Winkel (α) von 45° einschliessen.
  10. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei. das Mischelement (12) vier, sechs oder acht Steglagen aufweist.
  11. Mischvorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass alle einander benachbarten Stege (14A, 14B) den gleichen grössten Zwischenabstand (a) aufweisen.
  12. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei die kleinste Breite (b) der Stege (14A, 14B) 50 % ihrer Breite (b') an den Kreuzungsstellen (16) der Stege (14A, 14B) beträgt.
  13. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei die kleinste Breite (b) der Stege (14A, 14B) gleich gross ist wie der grösste Zwischenabstand (a) benachbarter Stege (14A, 14B).
  14. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei der grösste Wandabstand (c) 50% der kleinsten Breite (b) der Stege (14A, 14B) und 50% des grössten Zwischenabstandes (a) benachbarter Stege (14A, 14B) beträgt.
  15. Mischvorrichtung nach einem der vorstehenden Ansprüche, wobei mindestens ein längliches Profilelement vorhanden ist, welches den Mischer durchsetzt.
  16. Verwendung einer statischen Mischvorrichtung nach einem der vorangehenden Ansprüche zum Mischen von Medien, wobei mindestens eines davon ein laminar strömendes Medium, insbesondere eine Polymerschmelze oder ein anderes hochviskoses Fluid, ist.
EP15163858.2A 2015-04-16 2015-04-16 Statische mischvorrichtung für fliessfähige stoffe Active EP3081285B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP15163858.2A EP3081285B1 (de) 2015-04-16 2015-04-16 Statische mischvorrichtung für fliessfähige stoffe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP15163858.2A EP3081285B1 (de) 2015-04-16 2015-04-16 Statische mischvorrichtung für fliessfähige stoffe

Publications (2)

Publication Number Publication Date
EP3081285A1 true EP3081285A1 (de) 2016-10-19
EP3081285B1 EP3081285B1 (de) 2018-02-14

Family

ID=52997263

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15163858.2A Active EP3081285B1 (de) 2015-04-16 2015-04-16 Statische mischvorrichtung für fliessfähige stoffe

Country Status (1)

Country Link
EP (1) EP3081285B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019126535A1 (de) * 2019-10-01 2021-04-01 Bitzer Kühlmaschinenbau Gmbh Wärmeübertrager, Kälte- oder Wärmeanlage mit einem solchen Wärmeübertrager

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3932531A1 (de) 2020-07-02 2022-01-05 Fluitec Invest AG Kontinuierliches reaktionskalorimeter

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286992A (en) 1965-11-29 1966-11-22 Little Inc A Mixing device
AT330135B (de) 1973-06-06 1976-06-10 Bayer Ag Vorrichtung zum statischen mischen von stromenden medien
DE2808854A1 (de) 1977-05-31 1979-01-04 Sulzer Ag Ein mit einbauten versehener stroemungskanal fuer ein an einem indirekten austausch, insbesondere waermeaustausch beteiligtes medium
DE2839564A1 (de) 1978-09-12 1980-03-20 Hoechst Ag Vorrichtung zur waermetauschenden und mischenden behandlung von stroemenden medien
CH642564A5 (de) 1979-10-26 1984-04-30 Sulzer Ag Statische mischvorrichtung.
EP1067352A1 (de) 1999-07-07 2001-01-10 Fluitec Georg AG Vorrichtung für den Wärmetausch
CH693560A5 (de) 2001-11-05 2003-10-15 Fluitec Georg Ag Statische Mischvorrichtung für fliessfähige Stoffe.
WO2008141472A1 (de) 2007-05-24 2008-11-27 Atlas Holding Ag Strömungskanal für einen mischer-wärmetauscher
EP2113732A1 (de) 2008-04-30 2009-11-04 Fluitec Invest AG Mischer-Wärmetauscher
EP2286904A1 (de) 2009-08-12 2011-02-23 Fluitec Invest AG Statische Mischvorrichtung für fliessfähige Stoffe

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3286992A (en) 1965-11-29 1966-11-22 Little Inc A Mixing device
AT330135B (de) 1973-06-06 1976-06-10 Bayer Ag Vorrichtung zum statischen mischen von stromenden medien
DE2808854A1 (de) 1977-05-31 1979-01-04 Sulzer Ag Ein mit einbauten versehener stroemungskanal fuer ein an einem indirekten austausch, insbesondere waermeaustausch beteiligtes medium
DE2839564A1 (de) 1978-09-12 1980-03-20 Hoechst Ag Vorrichtung zur waermetauschenden und mischenden behandlung von stroemenden medien
CH642564A5 (de) 1979-10-26 1984-04-30 Sulzer Ag Statische mischvorrichtung.
EP1067352A1 (de) 1999-07-07 2001-01-10 Fluitec Georg AG Vorrichtung für den Wärmetausch
CH693560A5 (de) 2001-11-05 2003-10-15 Fluitec Georg Ag Statische Mischvorrichtung für fliessfähige Stoffe.
WO2008141472A1 (de) 2007-05-24 2008-11-27 Atlas Holding Ag Strömungskanal für einen mischer-wärmetauscher
EP2113732A1 (de) 2008-04-30 2009-11-04 Fluitec Invest AG Mischer-Wärmetauscher
EP2286904A1 (de) 2009-08-12 2011-02-23 Fluitec Invest AG Statische Mischvorrichtung für fliessfähige Stoffe
EP2286904B1 (de) 2009-08-12 2012-04-18 Fluitec Invest AG Statische Mischvorrichtung für fliessfähige Stoffe

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZEITSCHRIFT CHEMIE INGENIEUR TECHNIK, vol. 77, no. 6, 2005

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019126535A1 (de) * 2019-10-01 2021-04-01 Bitzer Kühlmaschinenbau Gmbh Wärmeübertrager, Kälte- oder Wärmeanlage mit einem solchen Wärmeübertrager
US11421938B2 (en) 2019-10-01 2022-08-23 Bitzer Kühlmaschinenbau Gmbh Heat exchanger, refrigeration or heating system with such a heat exchanger

Also Published As

Publication number Publication date
EP3081285B1 (de) 2018-02-14

Similar Documents

Publication Publication Date Title
EP2286904B1 (de) Statische Mischvorrichtung für fliessfähige Stoffe
DE60115932T2 (de) Verfahren zur Herstellung eines Gerätes zum statischen Mischen
EP2158027B2 (de) Statisches mischelement
DE2430487C2 (de) &#34;Vorrichtung zum Mischen von gasförmigen und/oder flüssigen Medien in einem Rohr&#34;
EP1216747B1 (de) Statischer Mischer
EP2181827B1 (de) Statischer Mischer
DE60021263T2 (de) Statischer wirbelmischer und methode zur verwendung desselben
CH642564A5 (de) Statische mischvorrichtung.
CH669336A5 (de)
EP2150765B1 (de) Strömungskanal für einen mischer-wärmetauscher
DE2205371A1 (de) Mischeinrichtung
DE2419696A1 (de) Mischvorrichtung
DE2525020B2 (de) Statischer mischer fuer fluide stoffe
DE10009326A1 (de) Kavitationsmischer
CH664505A5 (de) Statische mischeinrichtung, insbesondere fuer hochviskose kunststoffschmelzen verarbeitende maschinen.
DE19813600A1 (de) Statischer Scheibenmischer
DE60110602T2 (de) Statisches mischelement und verfahren zum mischen zweier fluide
DE10019759A1 (de) Statisches Mischsystem
DE2323930A1 (de) Vorrichtung zum erzeugen von um eine achse verlaufenden wendelfoermigen stroemungen
EP3081285B1 (de) Statische mischvorrichtung für fliessfähige stoffe
DE2622530A1 (de) Mischvorrichtung
EP3669133B1 (de) Wärmeübertrager
DE102007011205A1 (de) Hochdruckhomogenisator
DE3032132C2 (de) Verfahren und Vorrichtung zum Mischen von Stoffen
WO2004079748A2 (de) Abstandhalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20170331

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: B01F 3/10 20060101ALI20171005BHEP

Ipc: B01F 5/06 20060101AFI20171005BHEP

INTG Intention to grant announced

Effective date: 20171027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ALTENBURGER, DANIEL

Inventor name: GEORG, ALAIN

Inventor name: ANDREOLI, SILVANO

Inventor name: EIHOLZER, ADRIAN

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015003054

Country of ref document: DE

Ref country code: AT

Ref legal event code: REF

Ref document number: 969523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER AND PEDRAZZINI AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180514

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180515

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015003054

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181115

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180416

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180214

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180614

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 969523

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200416

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502015003054

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0005060000

Ipc: B01F0025400000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230420

Year of fee payment: 9

Ref country code: CH

Payment date: 20230502

Year of fee payment: 9