WO2008141472A1 - Strömungskanal für einen mischer-wärmetauscher - Google Patents

Strömungskanal für einen mischer-wärmetauscher Download PDF

Info

Publication number
WO2008141472A1
WO2008141472A1 PCT/CH2008/000226 CH2008000226W WO2008141472A1 WO 2008141472 A1 WO2008141472 A1 WO 2008141472A1 CH 2008000226 W CH2008000226 W CH 2008000226W WO 2008141472 A1 WO2008141472 A1 WO 2008141472A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow channel
planes
web plates
intersecting
longitudinal axis
Prior art date
Application number
PCT/CH2008/000226
Other languages
English (en)
French (fr)
Inventor
Martin SCHÖCHLIN
Original Assignee
Atlas Holding Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlas Holding Ag filed Critical Atlas Holding Ag
Priority to EP08748356A priority Critical patent/EP2150765B1/de
Priority to AT08748356T priority patent/ATE498810T1/de
Priority to DE502008002619T priority patent/DE502008002619D1/de
Priority to US12/601,119 priority patent/US8628233B2/en
Publication of WO2008141472A1 publication Critical patent/WO2008141472A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/4316Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod
    • B01F25/43161Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor the baffles being flat pieces of material, e.g. intermeshing, fixed to the wall or fixed on a central rod composed of consecutive sections of flat pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/90Heating or cooling systems
    • B01F35/93Heating or cooling systems arranged inside the receptacle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/24Arrangements for promoting turbulent flow of heat-exchange media, e.g. by plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0052Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for mixers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0098Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for viscous or semi-liquid materials, e.g. for processing sludge

Definitions

  • the invention relates to a flow channel for a mixer-heat exchanger, which flow channel is tubular with a longitudinal axis and a circular in cross-section inner surface with an inner diameter and at least one mixing insert a length with a plurality of parallel to the longitudinal axis of the flow channel over the length of the mixing insert guided tubes having an inner diameter and arranged with a plurality of crossed, with the longitudinal axis of the flow channel at an angle including web plates of a width, wherein the web plates are arranged in two intersecting, a plurality of parallel planes with an intermediate spacing plane shares, and a third, a plurality of parallel planes having a width of the web plates corresponding spacing having plane group which intersects two intersecting plane shares at right angles, wherein the intersection lines of the planes of two intersecting planes of planes form with the planes of the third layer family longitudinal edges of the web plates arranged alternately between adjacent planes of the third group of planes in the planes of the two intersecting planes of planes, wherein the tubes are guided
  • a flow channel of the aforementioned type is known from EP 1 067 352 B1.
  • the invention has for its object to provide a flow channel of the type mentioned above, which leads to a significant improvement in the heat exchange, especially in highly viscous liquids and the construction o allows a compact heat exchanger.
  • each mixing insert has at least 28 web plates crossed in pairs, the ratio of the web width to the inner diameter of the flow channel is at least 0.25, the ratio of the length of the mixing insert to the inner diameter of the flow channel is at least 0.4 and the angle of the web plates to the longitudinal axis the flow channel 30 ° to 60 ° and the ratio of the distance between adjacent planes of the intersecting, the web plates having planes level to the inner diameter of the flow channel o at most 0.3 and the inner diameter of the tubes is less than 6.
  • the ratio of the distance between adjacent electrodes is preferably NEN of the intersecting, the web plates having planes level to the inner diameter of the tubes less than 4, in particular less than 3.
  • the mentioned Nusselt number is a dimensionless measure from the theory of similarity of heat transfer, which measures the improvement of heat transfer from a surface, if one compares the actual conditions with the conditions in which only heat conduction through a dormant layer would occur. Surprisingly, falls below the ratio of the above-defined land distance to the inner diameter of the tubes below a certain value, a hitherto unexplained further improvement of the heat transfer. This phenomenon can be seen in FIG. 5.
  • the crossed web plates can have a different angle to the longitudinal axis of the flow channel. However, an equal angle is preferred.
  • the planes of the two intersecting layers of planes can have different distances between them. However, an equal spacing is preferred.
  • the planes of the two intersecting planes of planes can have a slight curvature in the longitudinal axis of the flow channel.
  • the planes of the third group of planes may have a different intermediate distance, i.
  • the web plates can be different widths. However, an equal spacing of the planes and, accordingly, a same width of all web plates is preferred.
  • the mixing inserts in the flow channel are arranged one behind the other, wherein the adjacent mixing inserts are rotated by an angle of 90 ° about the longitudinal axis of the flow channel against each other.
  • the freely positionable tubes may be brazed or welded to the web plates or the web plates may have shrunk to the tubes.
  • a second component via at least one tube with at least one hole for a liquid outlet, preferably over several pipes with several Reren holes, a first, flowing in the flow channel component are mixed.
  • mixing inserts can be arranged one behind the other with distances of at most three times the length of a mixing insert, with the mixing inserts being rotated against each other by an angle of 90 ° according to the distances.
  • the flow channel according to the invention is suitable as a static mixer.
  • 1 is a side view of two adjacent mixing inserts for a flow channel.
  • FIG. 2 shows an oblique view of a mixing insert
  • FIG 3 is a view of a mixing insert in a flow channel in the direction of the longitudinal axis of the flow channel.
  • Fig. 5 shows the dependence of the Nusselt number on the ratio of the web distance to the tube inner diameter. Description of exemplary embodiments
  • Two mixing inserts 10, 12 having a length L and pointing in their longitudinal axis m for media flowing in a flow channel, according to FIG. 2, have a tube bundle 14 arranged at 188 parallel to the longitudinal axis m over the entire length Length L extending tubes 16 on.
  • Each mixing insert 10, 12 has a plurality of intersecting web plates 18 A, 18 B.
  • the web plates 18 A, 18 B all have the same width b and lie in mutually parallel with the same distance a arranged planes EA, EB, the two intersecting plane shares A, B form.
  • the planes EA of the plane group A include with the longitudinal axis m in each case an equal angle ⁇ A, ⁇ B of 45 °.
  • Layers EC of a third group of planes C arranged parallel to one another with a spacing b corresponding to the width b of the web plates 18 A, 18 B extend parallel to the longitudinal axis m and intersect the planes EA, EB of the two intersecting planes A, B at right angles.
  • the lines of intersection of the planes EA, EB of the two intersecting planes A, B form the planes EC of the third plane group C longitudinal edges 20 A, 20 B alternately between adjacent planes EC in the planes EA, EB of the two intersecting planes A, B arranged web plates 18 A, 18 B.
  • the adjoining mixing inserts 10, 12 are arranged rotated by an angle of 90 ° about its longitudinal axis m against each other.
  • Fig. 3 the mutually rotated by an angle of 90 ° about its longitudinal axis m mixing inserts 10, 12 in a tubular flow channel 22 having an inner circumferential surface 24 with a circular cross-section, an inner diameter Di and a pipe or Strömungskanall Kunststoffsachse x.
  • the longitudinal axes m of the mixing inserts 10, 12 lie in the longitudinal direction.
  • All web plates 18 A, 18 B extend within each mixing insert 10, 12 via their respective maximum through the end faces of the mixing inserts 10, 12 and through the inner wall of the flow channel, maximum length, the contour of the web plates 18 A, 18 B the circular Cross-section of the flow channel 22 is adapted so that the web plates 18 A, 18 B adjoin the inner circumferential surface 24 of the flow channel 22 with a small clearance.
  • the tubes 16 pass through the web plates 18 A, 18 B via openings arranged in these, which have according to the angle between the web plate 18 A, 18 B and tube 16 an elliptical edge boundary.
  • the tubes 16 are secured in the region of the openings via a soldering or welding point on the web plates 18 A, 18 B.
  • the web plates 18 A, 18 B are connected to each other at their intersections via soldering or welding points.
  • the individual mixing inserts 10, 12 are prefabricated by the crossed arrangement of the corresponding number of web plates 18 A, 18 B.
  • the prefabricated mixing inserts 10, 12 are rotated by 90 ° against each other in their longitudinal axis m strung together.
  • the tubes 16 are pushed parallel to the longitudinal axis m through the openings in the web plates 18 A, 18 B and secured thereto.
  • the insert thus manufactured is subsequently inserted into the flow channel.
  • FIG. 5 graphically shows the results of measurements of the heat transfer at three differently constructed flow channels S1, S2, S3 as Nusselt number (Nu) as a function of the ratio between web distance (a) / inner pipe diameter (di) at a constant reference Peclete number (Pe ref ) shown.
  • Nusselt number Nu
  • Pe ref Peclete number
  • the web distance (a) results from the measured values from the ratio between the web distance (a) / inner pipe diameter (di) in FIG. 5. From FIG. 5, the surprising effect that the heat transfer suddenly rises unexpectedly when falling below a certain ratio is clear seen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Fluid Mechanics (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Bei einem Strömungskanal (22) mit einem Mischeinsatz und einer Vielzahl von parallel zur Längsachse des Strömungskanals (22) über die Länge (L) des Mischeinsatzes (10,12) geführten Rohren (16) weist jeder Mischeinsatz (10, 12) mindestens achtundzwanzig paarweise gekreuzte Stegplatten (18 A, 18 B) auf, das Verhältnis der Breite (b) der Stegplatten (18 A, 18 B) zum Innendurchmesser (Di) des Strömungskanals (22) beträgt höchstens 0.25, das Verhältnis der Länge (L) des Mischeinsatzes (10, 12) zum Innendurchmesser (Di) des Strömungskanals (22) mindestens 0.4 und der Winkel (alpha) der Stegplatten (18 A, 18 B) zur Längsachse (x) des Strömungskanals (22) 30- bis 60- und das Verhältnis des Zwischenabstandes (a) benachbarter Ebenen (EA, EB) zum Innendurchmesser (Di) des Strömungskanals (22) beträgt höchstens 0.3 und zum Innendurchmesser (di) der Rohre (16) weniger als 6.

Description

Strömungskanal für einen Mischer-Wärmetauscher
Technisches Gebiet
Die Erfindung betrifft einen Strömungskanal für einen Mischer-Wärmetauscher, welcher Strömungskanal rohrförmig mit einer Längsachse und mit einer im Querschnitt kreisrunden Innenmantelfläche mit einem inneren Durchmesser ausgebildet ist und mindestens einen Mischeinsatz einer Länge mit einer Vielzahl von parallel zur Längsachse des Strömungskanals über die Länge des Mischeinsatzes geführten Rohren mit einem inneren Durchmesser und mit einer Vielzahl von gekreuzt angeordneten, mit der Längsachse des Strömungskanals einen Winkel einschliessenden Stegplatten einer Breite aufweist, wobei die Stegplatten in zwei sich kreuzenden, eine Vielzahl von parallelen Ebenen mit einem Zwischenabstand aufweisenden Ebenenscharen angeordnet sind, und eine dritte, eine Vielzahl von parallelen Ebenen mit einen der Breite der Stegplatten entsprechenden Zwischenabstand aufweisende Ebenenschar die zwei sich kreuzenden Ebenenscharen rechtwinklig schneidet, wobei die Schnittlinien der Ebenen der zwei sich kreuzenden Ebenenscharen mit den Ebenen der dritten Ebenenschar Längskanten der zwischen benachbarten Ebenen der dritten Ebenenschar alternierend in den Ebenen der zwei sich kreuzenden Ebenenscharen angeordneten Stegplatten bilden, wobei die Rohre durch Öffnun- gen in den Stegplatten hindurchgeführt und an den Stegplatten befestigt sind. Stand der Technik
Aus DE 28 08 854 C3 ist ein nach üblichem Sprachgebrauch als "statischer Mischer" bezeichneter Strömungskanal für einen Wärmeaustausch mit Einbau- 5 ten aus parallelen Gruppen von einander durchkreuzenden, an ihren Kreuzungsstellen miteinander verbundenen Stegen bekannt. Diese Vorrichtung mischt hauptsächlich den Stoffstrom. Das Umlenken der Stoffströme bewirkt an der Rohrwand eine Verbesserung des Wärmeüberganges. Die Doppelmantelkonstruktion wird jedoch sehr lang und der Druckverlust entsprechend hoch.0
Ein Strömungskanal der eingangs genannten Art ist aus EP 1 067 352 B1 bekannt.
5 Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, einen Strömungskanal der eingangs genannten Art zu schaffen, der insbesondere bei hochviskosen Flüssigkeiten zu einer wesentlichen Verbesserung des Wärmeaustausches führt und den Bau o eines kompakten Wärmetauschers ermöglicht.
Zur erfindungsgemässen Lösung der Aufgabe führt, dass jeder Mischeinsatz mindestens achtundzwanzig paarweise gekreuzte Stegplatten aufweist, das Verhältnis der Stegbreite zum Innendurchmesser des Strömungskanals höchs-5 tens 0.25, das Verhältnis der Länge des Mischeinsatzes zum Innendurchmesser des Strömungskanals mindestens 0.4 und der Winkel der Stegplatten zur Längsachse des Strömungskanals 30° bis 60° und das Verhältnis des Abstandes zwischen benachbarten Ebenen der sich kreuzenden, die Stegplatten aufweisenden Ebenenscharen zum Innendurchmesser des Strömungskanals o höchstens 0.3 und zum Innendurchmesser der Rohre weniger als 6 beträgt.
Bevorzugt beträgt das Verhältnis des Abstandes zwischen benachbarten Ebe- nen der sich kreuzenden, die Stegplatten aufweisenden Ebenenscharen zum Innendurchmesser der Rohre weniger als 4, insbesondere weniger als 3.
Bei der aus EP 1 067 352 B1 bekannten und im Markt eingeführten Vorrichtung weisen die Stegplatten aus fertigungstechnischen Gründen einen Winkel von 45° auf, und das Verhältnis des definierten senkrechten Stegabstandes zwischen zwei benachbarten Stegplatten zum Rohrdurchmesser ergibt sich mit 0.3 bis 0.35. Bei den verfahrenstechnischen Untersuchungen haben sich diese Geometrien ausserordentlich bewährt und werden zunehmend in High-Tech- Prozessen eingesetzt.
Da bei Wärmetauschern ein Scale-Up mit einem geometrisch ähnlichen Apparat immer zu einem schlechteren Oberflächen/Volumen-Verhältnis führt, muss mit zusätzlicher Oberfläche, bei der vorliegenden Erfindung mit zusätzlichen Rohren, das Oberflächen/Volumen-Verhältnis verbessert werden.
Aus Fig. 4 ist jedoch deutlich zu erkennen, dass mit zunehmender Anzahl Rohre die Nusselt-Zahl abnimmt, so dass mit zusätzlichen Rohren kein und nur ein geringer zusätzlicher Wärmübergang erzielt wird.
Aus diesem Grund werden erfindungsgemäss zur Verbesserung der Wärmeübertragung zusätzliche Stegplatten eingesetzt. Mit der Erhöhung der Anzahl Stegplatten verringert sich auch das Verhältnis des definierten senkrechten Stegabstandes zwischen zwei benachbarten Stegplatten zum Innendurchmes- ser des Strömungskanals. Diese zusätzliche Massnahme führt zu einer bis zu 60 % verbesserten Wärmeübertragung.
Die erwähnte Nusselt-Zahl (Formelzeichen: Nu, nach Wilhelm Nusselt) ist eine dimensionslose Kennzahl aus der Ähnlichkeitstheorie der Wärmeübertragung, die die Verbesserung der Wärmeübertragung von einer Oberfläche misst, wenn man die tatsächlichen Verhältnisse mit den Verhältnissen vergleicht, bei denen nur Wärmeleitung durch eine ruhende Schicht auftreten würde. Überraschenderweise tritt beim Unterschreiten des Verhältnisses des vorstehend definierten Stegabstandes zum Innendurchmesser der Rohre unter einen bestimmten Wert eine bislang nicht erklärbare weitere Verbesserung der Wär- meübertragung ein. Dieses Phänomen ist aus der Fig. 5 ersichtlich.
Die gekreuzt angeordneten Stegplatten können zur Längsachse des Strömungskanals einen unterschiedlichen Winkel aufweisen. Bevorzugt ist jedoch ein gleicher Winkel.
Die Ebenen der zwei sich kreuzenden Ebenenscharen können unterschiedliche Zwischenabstände aufweisen. Bevorzugt ist jedoch ein gleicher Zwischenabstand.
Die Ebenen der zwei sich kreuzenden Ebenenscharen können in der Längsachse des Strömungskanals eine leichte Krümmung aufweisen.
Die Ebenen der dritten Ebenenschar können einen unterschiedlichen Zwi- schenabstandaufweisen, d.h. die Stegplatten können unterschiedlich breit sein. Bevorzugt ist jedoch ein gleicher Zwischenabstand der Ebenen und dementsprechend eine gleiche Breite aller Stegplatten.
Bevorzugt sind die Mischeinsätze im Strömungskanal hintereinander angeordnet, wobei die aneinander grenzenden Mischeinsätze um einem Winkel von 90° um die Längsachse des Strömungskanals gegeneinander verdreht sind.
Die frei positionierbaren Rohre können an die Stegplatten gelötet oder ge- schweisst sein, oder die Stegplatten können an die Rohre geschrumpft sein.
Bei der Verwendung des erfindungsgemässen Strömungskanals als Mischer kann eine zweite Komponente über mindestens ein Rohr mit mindestens einem Loch für einen Flüssigkeitsaustritt, vorzugsweise über mehrere Rohre mit meh- reren Löcher, einer ersten, im Strömungskanal fliessenden Komponente beigemischt werden.
Im Strömungskanal können mehrere Mischeinsätze hintereinander mit Abstän- den der maximal dreifachen Länge eines Mischeinsatzes angeordnet sein, wobei die Mischeinsätze nach den Abständen um einem Winkel von 90° gegeneinander verdreht sind.
Der erfind ungsgemässe Strömungskanal ist als statischer Mischer geeignet.
Kurze Beschreibung der Zeichnung
Weitere Vorteile, Merkmale und Einzelheiten ergeben sich aus der nachfolgen- den Beschreibung eines Ausführungsbeispiels sowie anhand der Zeichnung; diese zeigt in
Fig. 1 eine Seitenansicht von zwei aneinander grenzenden Mischeinsätzen für einen Strömungskanal;
Fig. 2 eine Schrägsicht auf einen Mischeinsatz;
Fig. 3 eine Sicht auf einen Mischeinsatz in einem Strömungskanal in Blickrichtung der Längsachse des Strömungskanals;
Fig. 4 die Abhängigkeit der Nusselt-Zahl von der Anzahl Rohre in einem Strömungskanal;
Fig. 5 die Abhängigkeit der Nusselt-Zahl vom Verhältnis des Stegabstandes zum Rohrinnendurchmesser. Beschreibung von Ausführungsbeispielen
Zwei in Fig. 1 gezeigte, in ihrer Längsachse m aneinander grenzende, eine Länge L aufweisende Mischeinsätze 10, 12 für in einem Strömungskanal strö- mende Medien weisen gemäss Fig. 2 ein Rohrbϋndel 14 mit 188 parallel zur Längsachse m angeordneten, sich über die gesamte Länge L erstreckenden Rohren 16 auf. Jeder Mischeinsatz 10, 12 weist eine Vielzahl von sich kreuzenden Stegplatten 18 A, 18 B auf. Die Stegplatten 18 A, 18 B weisen alle eine gleiche Breite b auf und liegen in parallel zueinander mit gleichem Zwischenab- stand a angeordneten Ebenen EA, EB, die zwei sich kreuzende Ebenenscharen A, B bilden. Die Ebenen EA der Ebenenschar A schliessen mit der Längsachse m jeweils einen gleich grossen Winkel αA, αB von 45° ein.
Parallel zueinander mit einem der Breite b der Stegplatten 18 A, 18 B entspre- chenden Zwischenabstand b angeordnete Ebenen EC einer dritten Ebenenschar C verlaufen parallel zur Längsachse m und schneiden die Ebenen EA, EB der zwei sich kreuzenden Ebenenscharen A, B rechtwinklig. Hierbei bilden die Schnittlinien der Ebenen EA, EB der zwei sich kreuzenden Ebenenscharen A, B mit den Ebenen EC der dritten Ebenenschar C Längskanten 20 A, 20 B der zwischen benachbarten Ebenen EC alternierend in den Ebenen EA, EB der zwei sich kreuzenden Ebenenscharen A, B angeordneten Stegplatten 18 A, 18 B.
Wie in Fig. 1 gezeigt, sind die aneinander grenzenden Mischeinsätze 10, 12 um einen Winkel von 90° um ihre Längsachse m gegeneinander verdreht angeordnet.
In Fig. 3 sind die um einen Winkel von 90° um ihre Längsachse m gegeneinander verdrehten Mischeinsätze 10, 12 in einem rohrförmigen Strömungskanal 22 mit einer Innenmantelfläche 24 mit kreisförmigem Querschnitt, einem Innendurchmesser Di und einer Rohr- oder Strömungskanallängsachse x angeordnet. Hierbei Liegen die Längsachsen m der Mischeinsätze 10, 12 in der Längs- achse x des Strömungskanals 22.
Sämtliche Stegplatten 18 A, 18 B erstrecken sich innerhalb jedes Mischeinsatzes 10, 12 über jeweils ihre durch die Stirnseiten der Mischeinsätze 10, 12 und durch die Innenwand des Strömungskanals begrenzte, maximal mögliche Länge, wobei die Kontur der Stegplatten 18 A, 18 B dem kreisförmigen Querschnitt des Strömungskanals 22 so angepasst ist, dass die Stegplatten 18 A, 18 B mit kleinem Spiel an die Innenmantelfläche 24 des Strömungskanals 22 angrenzen.
Die Rohre 16 durchsetzen die Stegplatten 18 A, 18 B über in diesen angeordnete Öffnungen, die entsprechend dem Winkel zwischen Stegplatte 18 A, 18 B und Rohr 16 eine elliptische Randbegrenzung aufweisen. Die Rohre 16 sind im Bereich der Öffnungen über eine Löt- oder Schweissstelle an den Stegplatten 18 A, 18 B befestigt. Ebenso sind die Stegplatten 18 A, 18 B an ihren Kreuzungsstellen über Löt- oder Schweissstellen miteinander verbunden.
Beim Zusammenbau eines Mischer-Wärmetauschers werden die einzelnen Mischeinsätze 10, 12 durch die gekreuzte Anordnung der entsprechenden An- zahl von Stegplatten 18 A, 18 B vorgefertigt. Die vorgefertigten Mischeinsätze 10, 12 werden um 90° gegeneinander verdreht in ihrer Längsachse m aneinandergereiht. Anschliessend werden die Rohre 16 parallel zur Längsachse m durch die Öffnungen in den Stegplatten 18 A, 18 B hindurch geschoben und an diesen befestigt. Das so gefertigte Einsatzteil wird nachfolgend in den Strö- mungskanal eingeschoben.
In Fig. 5 sind die Ergebnisse von Messungen der Wärmeübertragung an drei unterschiedlich aufgebauten Strömungskanälen S1 , S2, S3 als Nusseltzahl (Nu) in Abhängigkeit vom Verhältnis Stegabstand (a) / Rohrinnendurchmesser (di) bei einer konstanten Referenz-Pecletzahl (Peref) grafisch dargestellt. Der Aufbau der Strömungskanäle S1 , S2, S3 ist aus der nachstehenden Tabelle ersichtlich. Tabelle: Aufbau der untersuchten Strömungskanäle
Figure imgf000010_0001
Der Stegabstand (a) ergibt sich aus dem Messwerten aus dem Verhältnis Stegabstand (a) / Rohrinnendurchmesser (di) in Fig. 5. Aus der Fig. 5 ist der überraschende Effekt, dass der Wärmeübergang beim Unterschreiten eines bestimmten Verhältnisses plötzlich unerwartet ansteigt, klar ersichtlich.
Bezugszeichenliste
10 erster Mischeinsatz
12 zweiter Mischeinsatz
14 Rohrbündel
16 Rohre
18 A, B Steg platten
20 Längskanten
22 Strömungskanal
24 Innenmantelfläche
EA erste Ebenen
EB zweite Ebenen
EC dritte Ebenen
A erste Ebenenschar
B zweite Ebenenschar
C dritte Ebenenschar
L Länge von 10, 12 a Zwischenabstand von EA, EB b Zwischenabstand von EC (Breite der Stegplatten 15 A, B) m Längsachse von 10, 12 x Längsachse von 22

Claims

Patentansprüche
1. Strömungskanal für einen Mischer-Wärmetauscher, welcher Strömungskanal (22) rohrförmig mit einer Längsachse (x) und mit einer im Querschnitt kreisrunden Innenmantelfläche mit einem inneren Durchmesser (Di) ausgebildet ist und mindestens einen Mischeinsatz (10, 12) einer Länge (L) mit einer Vielzahl von parallel zur Längsachse (x) des Strömungskanals (22) über die Länge (L) des Mischeinsatzes (10, 12) geführten Rohren (16) mit einem inneren Durchmesser (di) und mit einer Vielzahl von gekreuzt angeordneten, mit der Längsachse (x) des Strömungskanals (22) einen Winkel (α) ein- schliessenden Stegplatten (18 A, 18 B) einer Breite (b) aufweist, wobei die Stegplatten (18 A, 18 B) in zwei sich kreuzenden, eine Vielzahl von parallelen Ebenen (EA, EB) mit einem Zwischenabstand (a) aufweisenden Ebenenscharen (A, B) angeordnet sind, und eine dritte, eine Vielzahl von parallelen Ebenen (EC) mit einen der Breite (b) der Stegplatten (18 A, 18 B) entsprechenden Zwischenabstand (b) aufweisende Ebenenschar (C) die zwei sich kreuzenden Ebenenscharen (A, B) rechtwinklig schneidet, wobei die Schnittlinien der Ebenen (EA1 EB) der zwei sich kreuzenden Ebenenscharen (A, B) mit den Ebenen (EC) der dritten Ebenenschar (C) Längskanten (20) der zwischen benachbarten Ebenen (EC) der dritten Ebenenschar (C) alternierend in den Ebenen (EA, EB) der zwei sich kreuzenden Ebenenscharen (A, B) angeordneten Stegplatten (18 A, 18 B) bilden, wobei die Rohre (16) durch Öffnungen in den Stegplatten (18 A, 18 B) hindurchgeführt und an den Stegplatten (18 A, 18 B) befestigt sind,
dadurch gekennzeichnet, dass
jeder Mischeinsatz (10, 12) mindestens achtundzwanzig paarweise gekreuzte Stegplatten (18 A, 18 B) aufweist, das Verhältnis der Breite (b) der Stegplatten (18 A, 18 B) zum Innendurchmesser (Di) des Strömungskanals (22) höchstens 0.25, das Verhältnis der Länge (L) des Mischeinsatzes (10, 12) zum Innendurchmesser (Di) des Strömungskanals (22) mindestens 0.4 und der Winkel (α) der Stegplatten (18 A, 18 B) zur Längsachse (x) des Strömungskanals (22) 30° bis 60° und das Verhältnis des Zwischenabstan- des (a) benachbarter Ebenen (EA, EB) der sich kreuzenden, die Stegplatten (18 A, 18 B) aufweisenden Ebenenscharen (EA, EB) zum Innendurchmesser (Di) des Strömungskanals (22) höchstens 0.3 und zum Innendurchmesser (di) der Rohre (16) weniger als 6 beträgt.
2. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass das Verhältnis des Zwischenabstandes (a) benachbarter Ebenen (EA, EB) der sich kreuzenden, die Stegplatten (18 A, 18 B) aufweisenden Ebenenscharen (EA, EB) zum Innendurchmesser (di) der Rohre (16) weniger als 4, vorzugsweise weniger als 3, beträgt.
3. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass die gekreuzt angeordneten Stegplatten (18 A, 18 B) zur Längsachse (x) des Strömungskanals (22) einen gleichen Winkel (α) aufweisen.
4. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass die Ebenen (EA, EB) der zwei sich kreuzenden Ebenenscharen (A, B) einen gleichen Zwischenabstand (a) aufweisen.
5. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass die Ebenen (EA, EB) der zwei sich kreuzenden Ebenenscharen (A, B) in der Längsachse (x) des Strömungskanals (20) eine leichte Krümmung aufweisen.
6. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass die Ebenen (EC) der dritten Ebenenschar (C) einen der Breite (b) der Stegplatten (18 A, 18 B) entsprechenden gleichen Zwischenabstand (b) aufweisen.
7. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass die Mischeinsätze (10, 12) im Strömungskanal (22) hintereinander angeordnet sind, wobei die aneinander grenzenden Mischeinsätze (10, 12) um einem Winkel von 90° um die Längsachse (x) des Strömungskanals (22) gegeneinander verdreht sind.
8. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass die Rohre (14) frei positionierbar sind.
9. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass mindestens ein Rohr (14) mindestens ein Loch für einen Flüssigkeitsaustritt aufweist.
10. Strömungskanal nach Anspruch 1 , dadurch gekennzeichnet, dass im Strömungskanal (22) mehrere Mischeinsätze (10, 12) hintereinander mit Abständen der maximal dreifachen Länge (L) eines Mischeinsatzes (10, 12) angeordnet sind, wobei die Mischeinsätze (10, 12) nach dem den Abständen um einem Winkel von 90° gegeneinander verdreht sind.
11. Verwendung eines Strömungskanals (22) nach einem der vorangehenden Ansprüche als statischer Mischer.
PCT/CH2008/000226 2007-05-24 2008-05-20 Strömungskanal für einen mischer-wärmetauscher WO2008141472A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP08748356A EP2150765B1 (de) 2007-05-24 2008-05-20 Strömungskanal für einen mischer-wärmetauscher
AT08748356T ATE498810T1 (de) 2007-05-24 2008-05-20 Strömungskanal für einen mischer-wärmetauscher
DE502008002619T DE502008002619D1 (de) 2007-05-24 2008-05-20 Strömungskanal für einen mischer-wärmetauscher
US12/601,119 US8628233B2 (en) 2007-05-24 2008-05-20 Flow channel for a mixer heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07405151 2007-05-24
EP07405151.7 2007-05-24

Publications (1)

Publication Number Publication Date
WO2008141472A1 true WO2008141472A1 (de) 2008-11-27

Family

ID=38596587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2008/000226 WO2008141472A1 (de) 2007-05-24 2008-05-20 Strömungskanal für einen mischer-wärmetauscher

Country Status (5)

Country Link
US (1) US8628233B2 (de)
EP (1) EP2150765B1 (de)
AT (1) ATE498810T1 (de)
DE (1) DE502008002619D1 (de)
WO (1) WO2008141472A1 (de)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2596860A1 (de) 2011-11-25 2013-05-29 Fluitec Invest AG Mit einem Wärmetauscher versehener Kreislaufreaktor
EP2851118A1 (de) 2013-09-20 2015-03-25 Promix Solutions AG Vorrichtung zum Mischen und zum Wärmetausch und Verfahren zu seiner Herstellung
EP2881154A1 (de) 2013-12-04 2015-06-10 Fluitec Invest AG Vorrichtung und Verfahren zur Entspannungsverdampfung
EP3081285A1 (de) 2015-04-16 2016-10-19 Fluitec Invest AG Statische mischvorrichtung für fliessfähige stoffe
DE102015113501A1 (de) * 2015-08-14 2017-02-16 Falk + Thomas Engineering GmbH Wärmeüberträger
EP3181221A1 (de) 2015-12-16 2017-06-21 Fluitec Invest AG Verfahren zur überwachung einer chemischen reaktion und reaktor
EP3620230A1 (de) 2018-09-07 2020-03-11 Fluitec Invest AG Einrichtung eines chemischen reaktors und verfahren
US10933398B2 (en) 2015-11-11 2021-03-02 Fluitec Invest Ag Device for carrying out a chemical reaction by a continuous method
EP3932531A1 (de) 2020-07-02 2022-01-05 Fluitec Invest AG Kontinuierliches reaktionskalorimeter
WO2022032401A1 (de) 2020-08-14 2022-02-17 Sulzer Management Ag Vorrichtung zur zu- oder abfuhr von wärme, zur durchführung von reaktionen, und zum mischen und dispergieren von strömenden medien
EP4292699A1 (de) 2022-06-17 2023-12-20 Fluitec Invest AG Vorrichtung und verfahren zur durchführung einer nicht-selektiven chemischen reaktion

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015010749A (ja) * 2013-06-28 2015-01-19 株式会社日立製作所 伝熱装置
CN107883803B (zh) * 2017-11-06 2019-10-15 深圳中广核工程设计有限公司 管壳式换热器
CN115727691B (zh) * 2022-11-18 2023-11-21 大连理工大学 基于Sigmoid函数杂化方法的极小曲面与Kagome桁架结构的多孔介质换热器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2808854A1 (de) * 1977-05-31 1979-01-04 Sulzer Ag Ein mit einbauten versehener stroemungskanal fuer ein an einem indirekten austausch, insbesondere waermeaustausch beteiligtes medium
DE8019476U1 (de) * 1979-10-26 1981-03-12 Gebrüder Sulzer AG, 8401 Winterthur Statische mischvorrichtung
EP1067352A1 (de) * 1999-07-07 2001-01-10 Fluitec Georg AG Vorrichtung für den Wärmetausch

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1496345A (en) * 1923-09-28 1924-06-03 Frank E Lichtenthaeler Apparatus for mixing liquids
US2784948A (en) * 1951-05-18 1957-03-12 Crown Cork & Seal Co Liquid mixing device
US3190618A (en) * 1963-04-30 1965-06-22 Katzen Raphael Fluid mixer
US3743250A (en) * 1972-05-12 1973-07-03 E Fitzhugh Fluid blending device to impart spiral axial flow with no moving parts
US6102561A (en) * 1998-01-05 2000-08-15 Komax Systems, Inc. Device for enhancing heat transfer and uniformity of a fluid stream with layers of helical vanes
DE10005457A1 (de) * 2000-02-08 2001-08-09 Bayer Ag Statischer Mischer
ATE378102T1 (de) * 2002-07-15 2007-11-15 Sulzer Chemtech Ag Anordnung von kreuzungselementen und verfahren zu deren herstellung
DE10233506B4 (de) * 2002-07-24 2004-12-09 Bayer Technology Services Gmbh Mischer/Wärmeaustauscher
DE10359565A1 (de) 2003-12-18 2005-07-14 Robert Bosch Gmbh Wärmetauscher, insbesondere zur Erwärmung von Süßwarenmassen
TWI417135B (zh) * 2007-06-22 2013-12-01 Sulzer Chemtech Ag 靜態混合元件

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2808854A1 (de) * 1977-05-31 1979-01-04 Sulzer Ag Ein mit einbauten versehener stroemungskanal fuer ein an einem indirekten austausch, insbesondere waermeaustausch beteiligtes medium
DE8019476U1 (de) * 1979-10-26 1981-03-12 Gebrüder Sulzer AG, 8401 Winterthur Statische mischvorrichtung
EP1067352A1 (de) * 1999-07-07 2001-01-10 Fluitec Georg AG Vorrichtung für den Wärmetausch

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2596860A1 (de) 2011-11-25 2013-05-29 Fluitec Invest AG Mit einem Wärmetauscher versehener Kreislaufreaktor
EP2851118A1 (de) 2013-09-20 2015-03-25 Promix Solutions AG Vorrichtung zum Mischen und zum Wärmetausch und Verfahren zu seiner Herstellung
EP2881154A1 (de) 2013-12-04 2015-06-10 Fluitec Invest AG Vorrichtung und Verfahren zur Entspannungsverdampfung
EP3081285A1 (de) 2015-04-16 2016-10-19 Fluitec Invest AG Statische mischvorrichtung für fliessfähige stoffe
DE102015113501A1 (de) * 2015-08-14 2017-02-16 Falk + Thomas Engineering GmbH Wärmeüberträger
US10933398B2 (en) 2015-11-11 2021-03-02 Fluitec Invest Ag Device for carrying out a chemical reaction by a continuous method
EP3181221A1 (de) 2015-12-16 2017-06-21 Fluitec Invest AG Verfahren zur überwachung einer chemischen reaktion und reaktor
EP3620230A1 (de) 2018-09-07 2020-03-11 Fluitec Invest AG Einrichtung eines chemischen reaktors und verfahren
EP3932531A1 (de) 2020-07-02 2022-01-05 Fluitec Invest AG Kontinuierliches reaktionskalorimeter
WO2022032401A1 (de) 2020-08-14 2022-02-17 Sulzer Management Ag Vorrichtung zur zu- oder abfuhr von wärme, zur durchführung von reaktionen, und zum mischen und dispergieren von strömenden medien
EP4292699A1 (de) 2022-06-17 2023-12-20 Fluitec Invest AG Vorrichtung und verfahren zur durchführung einer nicht-selektiven chemischen reaktion

Also Published As

Publication number Publication date
DE502008002619D1 (de) 2011-03-31
ATE498810T1 (de) 2011-03-15
EP2150765B1 (de) 2011-02-16
EP2150765A1 (de) 2010-02-10
US8628233B2 (en) 2014-01-14
US20100163216A1 (en) 2010-07-01

Similar Documents

Publication Publication Date Title
EP2150765B1 (de) Strömungskanal für einen mischer-wärmetauscher
EP2286904B1 (de) Statische Mischvorrichtung für fliessfähige Stoffe
EP2158027B1 (de) Statisches mischelement
DE2808854C2 (de) Mit Einbauten versehener Strömungskanal für ein an einem indirekten Austausch, insbesondere Wärmeaustausch, beteiligtes Medium
EP1067352B1 (de) Vorrichtung für den Wärmetausch
DE60021263T2 (de) Statischer wirbelmischer und methode zur verwendung desselben
EP1967806B1 (de) Vorrichtung zur wärmetauschenden und mischenden Behandlung von fluiden Medien
CH642564A5 (de) Statische mischvorrichtung.
DE1269144B (de) Plattenwaermetauscher
EP0800857A1 (de) Mischrohr für niedrigviskose Fluide
DE3212727C2 (de) Wärmeaustauscher
CH643467A5 (de) Mischer, enthaltend mindestens einen einsatz, welcher mindestens zwei sich kreuzende scharen von kanaelen enthaelt.
DE202011101066U1 (de) Statischer Mischer
DE3126618C2 (de) Wärmeaustauscher aus Hohlfäden
DE2340483A1 (de) In eine leitung einsetzbarer gitterrost
EP1540662B1 (de) Abstandhalter
EP3081285B1 (de) Statische mischvorrichtung für fliessfähige stoffe
DE102012007063B4 (de) Lamellen-Rohr-Wärmetauscher mit verbesserter Wärmeübertragung
DE3043219C2 (de) Wärmeaustauscherelement
EP3625511A1 (de) Vorrichtung zum kühlen, wärmen oder wärmeübertragen
DE19846347A1 (de) Wärmeaustauscher aus Aluminium oder einer Aluminium-Legierung
DE3518744C1 (de) Wärmetauscher mit Reinigungsvorrichtung
CH649373A5 (de) Waermetauscher.
EP4089357A1 (de) Wärmetauscher
DE102005002432B3 (de) Laminarströmungs-Plattenwärmetauscher

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08748356

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008748356

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12601119

Country of ref document: US