EP3069027B1 - Rotor device for a vacuum pump, and vacuum pump - Google Patents

Rotor device for a vacuum pump, and vacuum pump Download PDF

Info

Publication number
EP3069027B1
EP3069027B1 EP14796740.0A EP14796740A EP3069027B1 EP 3069027 B1 EP3069027 B1 EP 3069027B1 EP 14796740 A EP14796740 A EP 14796740A EP 3069027 B1 EP3069027 B1 EP 3069027B1
Authority
EP
European Patent Office
Prior art keywords
rotor
vacuum pump
elements
shaft
rotor shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14796740.0A
Other languages
German (de)
French (fr)
Other versions
EP3069027A1 (en
Inventor
Markus Henry
Jürgen BREZINA
Robert Stolle
Peter Koeppel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Leybold GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold GmbH filed Critical Leybold GmbH
Publication of EP3069027A1 publication Critical patent/EP3069027A1/en
Application granted granted Critical
Publication of EP3069027B1 publication Critical patent/EP3069027B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/173Aluminium alloys, e.g. AlCuMgPb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/174Titanium alloys, e.g. TiAl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the invention relates to a vacuum pump rotor device and a vacuum pump.
  • Vacuum pumps such as turbo molecular pumps have a rotor shaft in a pump housing.
  • the rotor shaft which is usually driven by an electric motor, carries at least one rotor element.
  • several rotor elements in the form of rotor disks are arranged on the rotor shaft.
  • the rotor shaft is rotatably mounted in the pump housing via bearing elements.
  • the vacuum pump also has a stator element arranged in the housing.
  • several stator elements designed as stator disks are provided.
  • the stator disks and the rotor disks are arranged alternately in the longitudinal direction of the pump or in the flow direction of the medium to be pumped.
  • the cooling time is approx. 5 minutes.
  • the rotor elements must be heated to approx. 120 ° C in an oven such as a convection oven.
  • the corresponding warm-up time is 1 - 2 hours.
  • the soaking times for the assembly after joining are around 1 - 2 hours to achieve room temperature. This known joining method is time-consuming and costly.
  • the pamphlet US 2009/0214348 A1 describes a method for manufacturing a rotor of a vacuum pump.
  • the aluminum rotor unit is connected to the shaft with the aid of a plug connection that engages in the steel shaft.
  • the pamphlet US 2009/0246038 A1 discloses another vacuum pump.
  • the object of the invention is to create a vacuum pump rotor device, the production of which is more cost-effective even with high operational reliability, whereby preferably joining of the components at room temperature or with only a small temperature difference between the components should be possible.
  • the vacuum pump rotor device has a rotor shaft.
  • Several rotor elements are arranged in the longitudinal direction on the rotor shaft.
  • it is a rotor device of a turbo molecular pump.
  • the rotor or rotor element is made of aluminum, titanium and / or CFRP and the rotor shaft is made of chrome-nickel steel (Cr-Ni Steel).
  • the use of aluminum, titanium and / or CFRP as a material for rotors or rotor elements has the advantage that the required strength and stability can be achieved in relation to the density of the material, which is required for the high speeds and the associated high To be able to realize forces and tensions.
  • the required properties of the shaft can be realized by a steel shaft, in particular a stainless steel shaft.
  • the shaft has JZ Cr-Ni steel with an addition of sulfur and is particularly preferably made from chromium-nickel steels with an addition of sulfur.
  • the rotor elements are made of aluminum, an aluminum alloy and / or high-strength aluminum.
  • the use of high-strength aluminum with a high tensile strength value of in particular at least 250 N / mm is particularly preferred.
  • High-strength aluminum also has the advantage that it has a high fatigue strength even at operating temperatures of 100-120 ° C.
  • the use of AW-Al Cu 2Mg 1.5 Ni is particularly preferred.
  • the rotor elements are made from titanium or a titanium alloy and / or from CFRP.
  • a significant reduction in assembly costs can be achieved according to the invention in that the coefficient of thermal expansion of the rotor shaft differs as little as possible from the coefficient of thermal expansion of the rotor elements.
  • a material pairing is used which does not tend to seize and whose thermal expansion coefficients have a small difference, so that a smaller excess is required for joining than in the prior art.
  • joining at room temperature is possible due to the small oversize required, or the components need at least only have a small temperature difference.
  • the rotor elements are made of aluminum and the rotor shaft of stainless steel, in particular Cr-Ni steel with added sulfur.
  • a preferred embodiment is a rotor device for a turbo molecular pump, in which a plurality of rotor elements are arranged in the longitudinal direction on the rotor shaft, in particular are pressed on.
  • the rotor elements can be rotor disks, with additional spacer elements being provided between rotor elements or rotor disks, if necessary. These elements can be used in particular to form an intermediate inlet in a multi-inlet pump.
  • the invention also relates to a vacuum pump which is in particular a turbo molecular pump.
  • the vacuum pump according to the invention has a rotor device according to the invention, as described above, in particular in one of the preferred developments.
  • the vacuum pump has a pump housing in which the rotor shaft is mounted via bearing elements.
  • a drive device is provided which drives the rotor shaft.
  • at least one stator element is arranged in the pump housing, it being possible for the stator element to be a stator disk. In the case of a turbo molecular pump, several stator disks are then arranged alternately in connection with several rotor disks.
  • the figure shows a greatly simplified schematic sectional view of a turbo molecular pump.
  • stator elements 16 are arranged, which in the illustrated embodiment are stator disks 16.
  • the rotor shaft 10 is mounted in the pump housing 14 via bearing elements 18, 20 and is driven by a drive device 22.
  • a sleeve-shaped spacer element 24 is also provided between two rotor disks 12. An intermediate inlet 26 is thereby formed.
  • the vacuum pump shown schematically in the drawing thus sucks in the medium to be conveyed in the direction of an arrow 28 through a main inlet. Furthermore, medium is sucked in via the intermediate inlet 26 in the direction of an arrow 30. The two media sucked in are conveyed in the direction of an outlet, as shown by arrow 32.
  • the rotor shaft 10 is made of stainless steel.
  • the individual rotor elements 12 and the spacer element 24 are made from aluminum in a preferred embodiment.
  • the rotor elements 12 and the spacer element 24 are joined by pressing on at room temperature.
  • the individual rotor elements 12 and also the spacer element 24 have an elongation due to oversize in the circumferential direction of 0.07% to 0.2%.
  • the pressing force with which the components can be joined at room temperature is in a range from 5 to 50 kN.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

Die Erfindung betrifft eine Vakuumpumpen-Rotoreinrichtung sowie eine Vakuumpumpe.The invention relates to a vacuum pump rotor device and a vacuum pump.

Vakuumpumpen wie beispielsweise Turbomolekularpumpen weisen in einem Pumpengehäuse eine Rotorwelle auf. Die Rotorwelle, die üblicherweise von einem Elektromotor angetrieben wird, trägt mindestens ein Rotorelement. Bei einer Turbomolekularpumpe sind auf der Rotorwelle mehrere Rotorelemente in Form von Rotorscheiben angeordnet. Die Rotorwelle ist in dem Pumpengehäuse über Lagerelemente drehbar gelagert. Ferner weist die Vakuumpumpe ein in dem Gehäuse angeordnetes Statorelement auf. Bei einer Turbomolekularpumpe sind mehrere als Statorscheiben ausgebildete Statorelemente vorgesehen. Hierbei sind die Statorscheiben und die Rotorscheiben in Längsrichtung der Pumpe bzw. in Strömungsrichtung des zu pumpenden Mediums abgewechselt angeordnet.Vacuum pumps such as turbo molecular pumps have a rotor shaft in a pump housing. The rotor shaft, which is usually driven by an electric motor, carries at least one rotor element. In a turbo-molecular pump, several rotor elements in the form of rotor disks are arranged on the rotor shaft. The rotor shaft is rotatably mounted in the pump housing via bearing elements. The vacuum pump also has a stator element arranged in the housing. In the case of a turbo molecular pump, several stator elements designed as stator disks are provided. Here, the stator disks and the rotor disks are arranged alternately in the longitudinal direction of the pump or in the flow direction of the medium to be pumped.

Bei aus einzelnen Rotorscheiben aufgebauten Rotoren müssen die einzelnen Rotorelemente fest mit der Rotorwelle verbunden werden. Entsprechend feste lagegenaue Verbindungen zwischen der Rotorwelle und den Rotorelementen müssen in allen Betriebszuständen, dass heißt insbesondere bei den auftretenden starken Temperatur- und Drehzahlschwankungen gewährleistet sein. Dies ist bei bekannten mehrteiligen Rotoren, insbesondere mehrere Rotorscheiben aufweisende Rotoren, dadurch gelöst, dass die Rotorscheibe gegenüber der Rotorwelle ein starkes Übermaß zum Fügen aufweist. Zum Fügen ist es sodann erforderlich die Rotorwelle stark zu kühlen und die Rotorelemente stark zu erwärmen, um ein Aufpressen der Rotorelemente auf die Welle zu ermöglichen. Hierbei ist es insbesondere erforderlich, die Rotorwelle auf Temperaturen im Bereich von flüssigem Stickstoff abzukühlen und gleichzeitig die Rotorscheiben in einem Ofen beispielsweise durch Induktion stark zu erwärmen. Nach dem Fügen muss eine Lagerung bei Raumtemperatur erfolgen bis die beiden Teile Raumtemperatur aufweisen. Hierzu ist ein relativ langer Zeitraum erforderlich. Nur durch dieses hohe Übermaß und einen entsprechend aufwendigen Fügeprozess kann die erforderliche Betriebssicherheit trotz der stark schwankenden Temperaturen und Drehzahlen gewährleistet werden. Die Temperatur der Rotorelemente sowie der Rotorwelle erreichen im Betrieb bis zu ca. 120° C. Die maximalen Drehzahlen liegen bei ca. 1500 U/sec. Zum Fügen der Rotorelemente auf der Rotorwelle ist es daher erforderlich, die Rotorwelle in flüssigem Stickstoff auf ca. -190 °C abzukühlen. Je nach Baugröße beträgt die Abkühlzeit ca. 5 Minuten. Gleichzeitig müssen die Rotorelemente in einem Ofen, wie einem Umluftofen, auf ca. 120 °C erwärmt werden. Die entsprechende Aufwärmzeit beträgt 1 - 2 Stunden. Die Durchwärmungszeiten der Baugruppe nach dem Fügen betragen etwa 1 - 2 Stunden zur Erzielung von Raumtemperatur. Dieses bekannte Fügeverfahren ist zeitaufwändig und kostenintensiv.In the case of rotors made up of individual rotor disks, the individual rotor elements must be firmly connected to the rotor shaft. Correspondingly fixed, precisely positioned connections between the rotor shaft and the rotor elements must be guaranteed in all operating states, that is to say in particular with the strong temperature and speed fluctuations that occur. In the case of known multi-part rotors, in particular rotors having a plurality of rotor disks, this is achieved in that the rotor disk has a large oversize relative to the rotor shaft for joining. To the When joining, it is then necessary to cool the rotor shaft strongly and to heat the rotor elements strongly in order to enable the rotor elements to be pressed onto the shaft. In this case, it is particularly necessary to cool the rotor shaft to temperatures in the range of liquid nitrogen and at the same time to strongly heat the rotor disks in a furnace, for example by induction. After joining, storage must take place at room temperature until both parts are at room temperature. A relatively long period of time is required for this. Only through this high oversize and a correspondingly complex joining process can the required operational reliability be guaranteed despite the strongly fluctuating temperatures and speeds. The temperature of the rotor elements and the rotor shaft can reach up to approx. 120 ° C. during operation. The maximum speeds are approx. 1500 rev / sec. To join the rotor elements on the rotor shaft, it is therefore necessary to cool the rotor shaft to approx. -190 ° C in liquid nitrogen. Depending on the size, the cooling time is approx. 5 minutes. At the same time, the rotor elements must be heated to approx. 120 ° C in an oven such as a convection oven. The corresponding warm-up time is 1 - 2 hours. The soaking times for the assembly after joining are around 1 - 2 hours to achieve room temperature. This known joining method is time-consuming and costly.

Untersuchungen haben gezeigt, dass ein Fügen eines Rotors oder auch eines scheibenförmigen Rotorelements aus Aluminium auf einer Rotorwelle aus Aluminium auf Grund des erforderlichen Übermaßes bei Raumtemperatur nicht möglich ist. Wenngleich das Übermaß deutlich geringer gewählt werden kann, da keine unterschiedlichen Wärmeausdehnungskoeffizienten von Rotorelement und Welle gegeben sind, ist ein Aufpressen bei Raumtemperatur dennoch nicht möglich. Hierbei tritt ein Fressen, bzw. Verschweißen der zu fügenden Bauteile auf. Eine lagegenaue Positionierung eines Rotorelements auf der Rotorwelle ist somit nicht möglich.Investigations have shown that joining a rotor or a disc-shaped rotor element made of aluminum on a rotor shaft made of aluminum is not possible at room temperature due to the required oversize. Although the oversize can be selected to be significantly smaller, since there are no different coefficients of thermal expansion of the rotor element and the shaft, pressing on at room temperature is still not possible. In this case, the components to be joined are seized or welded together. A precise positioning of a rotor element on the rotor shaft is therefore not possible.

Die Druckschrift US 2009/0214348 A1 beschreibt eine Methode zur Herstellung eines Rotors einer Vakuumpumpe. Hierbei wird die aus Aluminium bestehende Rotoreinheit mit Hilfe einer in die Stahlwelle eingreifenden Steckverbindung mit der Welle verbunden.The pamphlet US 2009/0214348 A1 describes a method for manufacturing a rotor of a vacuum pump. Here, the aluminum rotor unit is connected to the shaft with the aid of a plug connection that engages in the steel shaft.

Die Druckschrift US 2009/0246038 A1 offenbart eine weitere Vakuumpumpe.The pamphlet US 2009/0246038 A1 discloses another vacuum pump.

Aufgabe der Erfindung ist es eine Vakuumpumpen-Rotoreinrichtung zu schaffen, deren Herstellung auch bei hoher Betriebssicherheit kostengünstiger ist, wobei vorzugsweise ein Fügen der Bauteile bei Raumtemperatur oder nur geringem Temperaturunterschied der Bauteile möglich sein soll.The object of the invention is to create a vacuum pump rotor device, the production of which is more cost-effective even with high operational reliability, whereby preferably joining of the components at room temperature or with only a small temperature difference between the components should be possible.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1.The object is achieved according to the invention by the features of claim 1.

Die erfindungsgemäße Vakuumpumpen-Rotoreinrichtung weist eine Rotorwelle auf. Auf der Rotorwelle sind mehrere Rotorelemente in Längsrichtung angeordnet. Insbesondere handelt es sich um eine Rotoreinrichtung einer Turbomolekularpumpe.The vacuum pump rotor device according to the invention has a rotor shaft. Several rotor elements are arranged in the longitudinal direction on the rotor shaft. In particular, it is a rotor device of a turbo molecular pump.

Untersuchungen haben gezeigt, dass ein Fügen von Rotoren bzw. Rotorelementen bei Raumtemperatur und gleichzeitig hoher Betriebssicherheit möglich ist, wenn der Rotor bzw. das Rotorelement Aluminium, Titan und/ oder CFK aufweist und die Rotorwelle einen Chrom-Nickel-Stahl (Cr-Ni-Stahl) aufweist. Die Verwendung von Aluminium, Titan und/ oder CFK als Werkstoff für Rotoren oder Rotorelemente weist den Vorteil auf, dass die erforderliche Festigkeit und Stabilität im Verhältnis zu der Dichte des Werkstoffs realisiert werden kann, die gefordert ist um die hohen Drehzahlen und die damit verbundenen hohen Kräfte und Spannungen realisieren zu können. Die geforderten Eigenschaften der Welle können durch eine Stahlwelle, insbesondere eine Edelstahlwelle realisiert werden. Die Welle weist erfindungsgemäß J Z Cr-Ni-Stahl mit einem Schwefelzusatz auf und ist besonders bevorzugt aus Chrom-Nickel-Stählen mit Schwefelzusatz hergestellt.Investigations have shown that the joining of rotors or rotor elements at room temperature and at the same time a high level of operational reliability is possible if the rotor or rotor element is made of aluminum, titanium and / or CFRP and the rotor shaft is made of chrome-nickel steel (Cr-Ni Steel). The use of aluminum, titanium and / or CFRP as a material for rotors or rotor elements has the advantage that the required strength and stability can be achieved in relation to the density of the material, which is required for the high speeds and the associated high To be able to realize forces and tensions. The required properties of the shaft can be realized by a steel shaft, in particular a stainless steel shaft. According to the invention, the shaft has JZ Cr-Ni steel with an addition of sulfur and is particularly preferably made from chromium-nickel steels with an addition of sulfur.

Die Rotorelemente sind in bevorzugter Ausführungsform aus Aluminium, einer Aluminiumlegierung und/ oder hochfestem Aluminium hergestellt.
Besonders bevorzugt ist die Verwendung von hochfestem Aluminium mit einem hohen Zugfestigkeitswert von insbesondere mindestens 250 N/mm. Hochfestes Aluminium weist ferner den Vorteil auf, dass es auch bei Einsatztemperaturen von 100 - 120 °C eine hohe Dauerfestigkeit aufweist. Besonders bevorzugt ist die Verwendung von AW-AI Cu 2Mg 1,5 Ni.
In a preferred embodiment, the rotor elements are made of aluminum, an aluminum alloy and / or high-strength aluminum.
The use of high-strength aluminum with a high tensile strength value of in particular at least 250 N / mm is particularly preferred. High-strength aluminum also has the advantage that it has a high fatigue strength even at operating temperatures of 100-120 ° C. The use of AW-Al Cu 2Mg 1.5 Ni is particularly preferred.

Des Weiteren ist es bevorzugt, dass die Rotorelemente aus Titan oder einer Titanlegierung und/ oder aus CFK hergestellt sind.Furthermore, it is preferred that the rotor elements are made from titanium or a titanium alloy and / or from CFRP.

Durch die erfindungsgemäße vorstehend beschriebene Kombination der beiden Bauteile ist es möglich, die Rotorelemente bei Raumtemperatur auf die Rotorwelle zu Fügen ohne dass hierbei ein Fressen oder Verschweißen auftritt. Hierdurch kann die Fertigungszeit erheblich verkürzt werden.The above-described combination of the two components according to the invention makes it possible to join the rotor elements onto the rotor shaft at room temperature without seizing or welding. This can significantly reduce the manufacturing time.

Eine deutliche Verringerung der Montagekosten kann erfindungsgemäß dadurch realisiert werden, dass sich der Wärmeausdehnungskoeffizient der Rotorwelle vom Wärmeausdehnungskoeffizient der Rotorelemente möglichst wenig unterscheidet. Erfindungsgemäß erfolgt somit die Verwendung einer Materialpaarung, die nicht zum Fressen neigt, und deren Wärmeausdehnungskoeffizienten eine geringe Differenz aufweisen, so dass zum Fügen ein geringeres Übermaß als im Stand der Technik erforderlich ist. Dies hat zur Folge, dass ein Fügen bei Raumtemperatur aufgrund des geringen erforderlichen Übermaßes möglich ist oder die Bauteile zumindest nur eine geringe Temperaturdifferenz aufweisen müssen. Bei einer derartigen Materialpaarung mit sich geringfügig unterscheidenden Wärmeausdehnungskoeffizienten ist sichergestellt, dass auch bei hohen Temperatur- und Drehzahlschwankungen die Betriebssicherheit gewährleistet ist. Besonders bevorzugt ist es, als Materialpaarung eine Materialpaarung aus insbesondere hochfestem Aluminium und Edelstahl vorzusehen. Hierbei ist es bevorzugt, dass die Rotorelemente aus Aluminium und die Rotorwelle aus Edelstahl, insbesondere Cr-Ni-Stahl mit Schwefelzusatz, hergestellt sind.A significant reduction in assembly costs can be achieved according to the invention in that the coefficient of thermal expansion of the rotor shaft differs as little as possible from the coefficient of thermal expansion of the rotor elements. According to the invention, a material pairing is used which does not tend to seize and whose thermal expansion coefficients have a small difference, so that a smaller excess is required for joining than in the prior art. As a result, joining at room temperature is possible due to the small oversize required, or the components need at least only have a small temperature difference. With such a material pairing with slightly different thermal expansion coefficients, it is ensured that operational reliability is guaranteed even with high temperature and speed fluctuations. It is particularly preferred to provide a material pairing of particularly high-strength aluminum and stainless steel as the material pairing. It is preferred here that the rotor elements are made of aluminum and the rotor shaft of stainless steel, in particular Cr-Ni steel with added sulfur.

Besonders geeignet ist die Verwendung von Edelstahl X8CrNiS18-9, mit der Werkstoffnummer 1.4305 für die Rotorwelle.The use of stainless steel X8CrNiS18-9 with the material number 1.4305 for the rotor shaft is particularly suitable.

Insbesondere bei der Verwendung von Edelstahl X8CrNiS18-9 und Aluminium AI ist es möglich die beiden Bauteile bei Raumtemperatur zu fügen, insbesondere zu verpressen. Dies ist auch möglich, wenn in besonders bevorzugter Ausführungsform die Rotorelemente gegenüber der Rotorwelle ein Übermaß aufweist, bei der Dehnungen in Umfangsrichtung von 0,25 % bis 0,35 % auftreten können. Durch dieses Übermaß kann die Betriebssicherheit trotz der hohen Temperaturschwankungen sichergestellt werden, wobei gleichzeitig dennoch ein Fügen der Bauteile bei Raumtemperatur möglich ist.Especially when using stainless steel X8CrNiS18-9 and aluminum AI, it is possible to join the two components at room temperature, in particular to press them. This is also possible if, in a particularly preferred embodiment, the rotor elements are oversized with respect to the rotor shaft, at which expansion in the circumferential direction of 0.25% to 0.35% can occur. As a result of this excess, operational safety can be ensured despite the high temperature fluctuations, while at the same time the components can still be joined at room temperature.

Bei einer bevorzugten Ausführungsform handelt es sich um eine Rotoreinrichtung für eine Turbomolekularpumpe, bei der mehrere Rotorelemente in Längsrichtung auf der Rotorwelle angeordnet, insbesondere aufgepresst sind.A preferred embodiment is a rotor device for a turbo molecular pump, in which a plurality of rotor elements are arranged in the longitudinal direction on the rotor shaft, in particular are pressed on.

Bei den Rotorelementen kann es sich um Rotorscheiben handeln, wobei gegebenenfalls zusätzlich Distanzelemente zwischen Rotorelementen bzw. Rotorscheiben vorgesehen sind. Diese Elemente können insbesondere zur Ausbildung eines Zwischeneinlasses bei einer Multi-Inlet-Pumpe dienen.The rotor elements can be rotor disks, with additional spacer elements being provided between rotor elements or rotor disks, if necessary. These elements can be used in particular to form an intermediate inlet in a multi-inlet pump.

Ferner betrifft die Erfindung eine Vakuumpumpe bei der es sich insbesondere um eine Turbomolekularpumpe handelt. Die erfindungsgemäße Vakuumpumpe weist eine erfindungsgemäße Rotoreinrichtung, wie vorstehend beschrieben, insbesondere in einer der bevorzugten Weiterbildungen auf. Ferner weist die Vakuumpumpe ein Pumpengehäuse auf, in dem die Rotorwelle über Lagerelemente gelagert ist. Desweiteren ist eine Antriebseinrichtung vorgesehen, die die Rotorwelle antreibt. Ferner ist in dem Pumpengehäuse mindestens ein Statorelement angeordnet, wobei es sich bei dem Statorelement um eine Statorscheibe handeln kann. Bei einer Turbomolekularpumpe sind sodann in Verbindung mit mehreren Rotorscheiben mehrere Statorscheiben abwechselnd angeordnet.The invention also relates to a vacuum pump which is in particular a turbo molecular pump. The vacuum pump according to the invention has a rotor device according to the invention, as described above, in particular in one of the preferred developments. Furthermore, the vacuum pump has a pump housing in which the rotor shaft is mounted via bearing elements. Furthermore, a drive device is provided which drives the rotor shaft. Furthermore, at least one stator element is arranged in the pump housing, it being possible for the stator element to be a stator disk. In the case of a turbo molecular pump, several stator disks are then arranged alternately in connection with several rotor disks.

Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung näher erläutert.The invention is explained in more detail below on the basis of a preferred embodiment with reference to the accompanying drawing.

Die Figur zeigt eine stark vereinfachte schematische Schnittansicht einer Turbomolekularpumpe.The figure shows a greatly simplified schematic sectional view of a turbo molecular pump.

In der stark vereinfachten Darstellung einer Turbomolekularpumpe sind auf einer Rotorwelle 10 mehrere Rotorelemente 12 in Form von Rotorscheiben durch Aufpressen angeordnet. In einem Pumpengehäuse 14 sind Statorelemente 16 angeordnet bei denen es ich im dargestellten Ausführungsbeispiel um Statorscheiben 16 handelt.In the greatly simplified representation of a turbo molecular pump, several rotor elements 12 in the form of rotor disks are arranged on a rotor shaft 10 by being pressed on. In a pump housing 14, stator elements 16 are arranged, which in the illustrated embodiment are stator disks 16.

Ferner ist die Rotorwelle 10 über Lagerelemente 18, 20 in dem Pumpengehäuse 14 gelagert und wird von einer Antriebseinrichtung 22 angetrieben.Furthermore, the rotor shaft 10 is mounted in the pump housing 14 via bearing elements 18, 20 and is driven by a drive device 22.

Im dargestellten Ausführungsbeispiel ist ferner ein hülsenförmiges Distanzelement 24 zwischen zwei Rotorscheiben 12 vorgesehen. Hierdurch wird ein Zwischeneinlass 26 ausgebildet.In the illustrated embodiment, a sleeve-shaped spacer element 24 is also provided between two rotor disks 12. An intermediate inlet 26 is thereby formed.

Die in der Zeichnung schematisch dargestellte Vakuumpumpe saugt somit das zu fördernde Medium in Richtung eines Pfeils 28 durch einen Haupteinlass an. Ferner wird Medium über den Zwischeneinlass 26 in Richtung eines Pfeils 30 angesaugt. Die beiden angesaugten Medien werden, wie mit dem Pfeil 32 dargestellt in Richtung eines Auslasses gefördert.The vacuum pump shown schematically in the drawing thus sucks in the medium to be conveyed in the direction of an arrow 28 through a main inlet. Furthermore, medium is sucked in via the intermediate inlet 26 in the direction of an arrow 30. The two media sucked in are conveyed in the direction of an outlet, as shown by arrow 32.

Erfindungsgemäß ist die Rotorwelle 10 aus Edelstahl hergestellt. Die einzelnen Rotorelemente 12 sowie das Distanzelement 24 sind in bevorzugter Ausführungsform aus Aluminium hergestellt. Das Fügen der Rotorelemente 12 sowie des Distanzelements 24 erfolgt durch Aufpressen bei Raumtemperatur. Insbesondere weisen die einzelnen Rotorelemente 12 sowie auch das Distanzelement 24 eine übermaßbedingte Dehnung in Umfangsrichtung von 0,07 % bis 0,2 % auf. Die Presskraft mit der ein Fügen der Bauteile bei Raumtemperatur möglich ist liegt in einem Bereich von 5 bis 50 kN.According to the invention, the rotor shaft 10 is made of stainless steel. The individual rotor elements 12 and the spacer element 24 are made from aluminum in a preferred embodiment. The rotor elements 12 and the spacer element 24 are joined by pressing on at room temperature. In particular, the individual rotor elements 12 and also the spacer element 24 have an elongation due to oversize in the circumferential direction of 0.07% to 0.2%. The pressing force with which the components can be joined at room temperature is in a range from 5 to 50 kN.

Claims (9)

  1. A rotor device for a vacuum pump, comprising
    a rotor shaft (10), and
    a plurality of rotor elements (12) arranged in longitudinal direction on the rotor shaft (10),
    wherein the rotor elements (12) contain aluminum, titanium and/or CFRP,
    characterized in that
    the rotor shaft (10) contains a chromium-nickel steel with added sulfur and is particularly made of a chromium-nickel steel with added sulfur.
  2. The rotor device for a vacuum pump of claim 1, characterized in that the rotor elements (12) are made of aluminum, an aluminum alloy and/or high-strength aluminum.
  3. The rotor device for a vacuum pump of claim 1, characterized in that the rotor elements (12) are made of titanium and/or a titanium alloy.
  4. The rotor device for a vacuum pump of claim 1, characterized in that the rotor elements (12) are made of CFRP.
  5. The rotor device for a vacuum pump of one of claims 1-4, characterized in that the rotor shaft (10) contains a stainless steel alloy with added sulfur, which in particular is stainless steel X8CrNiS18-9.
  6. The rotor device for a vacuum pump of one of claims 1-5, characterized in that the material pair is selected such that the rotor elements (12) are joinable onto the rotor shaft (10) by pressing them on at room temperature.
  7. The rotor device for a vacuum pump of one of claims 1-6, characterized in that the rotor elements are formed as rotor discs (12).
  8. The rotor device for a vacuum pump of one of claims 1-7, characterized in that at least one spacer element (24) is arranged between two of the rotor elements (12).
  9. A vacuum pump, in particular a turbomolecular pump, comprising
    a rotor device for a vacuum pump of one of claims 1-8,
    wherein the rotor shaft (10) is supported in a pump housing (14) by bearing elements (28),
    a driving means (22) connected to the rotor shaft (10), and
    at least one stator element (16) arranged in the pump housing (14).
EP14796740.0A 2013-11-12 2014-11-05 Rotor device for a vacuum pump, and vacuum pump Active EP3069027B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202013010195.4U DE202013010195U1 (en) 2013-11-12 2013-11-12 Vacuum pump rotor device and vacuum pump
PCT/EP2014/073771 WO2015071143A1 (en) 2013-11-12 2014-11-05 Rotor device for a vacuum pump, and vacuum pump

Publications (2)

Publication Number Publication Date
EP3069027A1 EP3069027A1 (en) 2016-09-21
EP3069027B1 true EP3069027B1 (en) 2020-09-09

Family

ID=51897252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14796740.0A Active EP3069027B1 (en) 2013-11-12 2014-11-05 Rotor device for a vacuum pump, and vacuum pump

Country Status (7)

Country Link
US (1) US20160290343A1 (en)
EP (1) EP3069027B1 (en)
JP (1) JP6532461B2 (en)
KR (1) KR102202936B1 (en)
CN (1) CN105765231B (en)
DE (1) DE202013010195U1 (en)
WO (1) WO2015071143A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762713B (en) * 2017-03-09 2018-12-14 苏州摩星真空科技有限公司 Vertical compound runoff molecular pump
US11519419B2 (en) 2020-04-15 2022-12-06 Kin-Chung Ray Chiu Non-sealed vacuum pump with supersonically rotatable bladeless gas impingement surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018018A1 (en) * 2000-02-24 2001-08-30 Armin Conrad Gas friction pump
US20090246038A1 (en) * 2008-03-26 2009-10-01 Ebara Corporation Turbo vacuum pump

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2654055B2 (en) * 1976-11-29 1979-11-08 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Rotor and stator disks for turbo molecular pumps
JPS59113990A (en) * 1982-12-22 1984-06-30 Hitachi Ltd Production of rotor for turbo molecular pump
JP3486000B2 (en) * 1995-03-31 2004-01-13 日本原子力研究所 Screw groove vacuum pump
JP3792318B2 (en) * 1996-10-18 2006-07-05 株式会社大阪真空機器製作所 Vacuum pump
US6095754A (en) * 1998-05-06 2000-08-01 Applied Materials, Inc. Turbo-Molecular pump with metal matrix composite rotor and stator
DE19915307A1 (en) * 1999-04-03 2000-10-05 Leybold Vakuum Gmbh Turbomolecular friction vacuum pump, with annular groove in region of at least one endface of rotor
DE10039006A1 (en) * 2000-08-10 2002-02-21 Leybold Vakuum Gmbh Two-shaft vacuum pump
DE10053663A1 (en) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanical kinetic vacuum pump with rotor and shaft
GB0412667D0 (en) * 2004-06-07 2004-07-07 Boc Group Plc Vacuum pump impeller
GB2420379A (en) * 2004-11-18 2006-05-24 Boc Group Plc Vacuum pump having a motor combined with an impeller
DE102005008643A1 (en) * 2005-02-25 2006-08-31 Leybold Vacuum Gmbh Holweck vacuum pump has shoulders on rotor side of vanes of vane disc to support supporting ring
EP1978582A1 (en) * 2007-04-05 2008-10-08 Atotech Deutschland Gmbh Process for the preparation of electrodes for use in a fuel cell
US20090095436A1 (en) * 2007-10-11 2009-04-16 Jean-Louis Pessin Composite Casting Method of Wear-Resistant Abrasive Fluid Handling Components
EP2096317B1 (en) * 2008-02-27 2012-08-15 Agilent Technologies, Inc. Method for manufacturing the rotor assembly of a rotating vacuum pump
DE102008063131A1 (en) * 2008-12-24 2010-07-01 Oerlikon Leybold Vacuum Gmbh vacuum pump
WO2012105116A1 (en) * 2011-02-04 2012-08-09 エドワーズ株式会社 Rotating body of vacuum pump, fixed member placed to be opposed to same, and vacuum pump provided with them

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010018018A1 (en) * 2000-02-24 2001-08-30 Armin Conrad Gas friction pump
US20090246038A1 (en) * 2008-03-26 2009-10-01 Ebara Corporation Turbo vacuum pump

Also Published As

Publication number Publication date
CN105765231B (en) 2018-10-26
JP2016537552A (en) 2016-12-01
EP3069027A1 (en) 2016-09-21
CN105765231A (en) 2016-07-13
US20160290343A1 (en) 2016-10-06
WO2015071143A1 (en) 2015-05-21
KR20160081921A (en) 2016-07-08
DE202013010195U1 (en) 2015-02-18
KR102202936B1 (en) 2021-01-13
JP6532461B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
EP1698423B1 (en) Process of assembling by friction welding a rotor blade to a rotor basic body with displacement of an assembling part located between the rotor blade and the rotor basic body
EP2846439B1 (en) Electric machine with a shaft
EP3069027B1 (en) Rotor device for a vacuum pump, and vacuum pump
EP2414684A1 (en) Geared compressor rotor for cold gas applications
EP2193872A1 (en) Method of manufacturing a welded rotor for a gas turbine engine with heat treatment of the weld seam and its heat affected zone with different temperatures
DE102016118026A1 (en) Rotor, in particular rotor for an electric machine, electric machine and method for producing a rotor
EP2896837B1 (en) Method for producing a rotor assembly for a vacuum pump and rotor assembly for a vacuum pump
EP3095957A1 (en) Rotor for a thermal flow engine
DE102014009926A1 (en) Rotor with cooling channel and engine with such
EP2549630A1 (en) Short circuit rotor of an asynchronous engine and method for producing such a rotor
EP3532740B1 (en) Rotation system with axial gas bearing
EP3260662A1 (en) Storage element and turbo engine with a storage element
EP1288502B1 (en) Turbo molecular pump
EP3670951B1 (en) Method for joining a shaft with a hub, in particular for a vacuum pump
EP3587612B1 (en) Method for producing an assembly comprising an interlocking connection and an assembly with an interlocking connection with precipitation-hardenable interlocking area
EP1580435B2 (en) Turbomolecular pump
EP2870679B1 (en) Stator comprising a stator laminate stack surrounded by a jacket plate
WO2017157379A1 (en) Process for producing a heat-treated hub carrier provided with a wheel bearing
DE102015221324A1 (en) Turbine rotor for a low-pressure turbine of a gas turbine system
DE102011121223A1 (en) Turbo compressor i.e. two-stage turbo compressor, for compaction of gaseous medium, has compressor stages arranged on common shaft in force-fit and form-fit manner, and heat exchanger arranged in flow connection between compressor stages
DE102012002285B4 (en) Method of manufacturing a turbine rotor
DE102008058503A1 (en) Loading device i.e. exhaust-gas turbocharger, for motor vehicle, has shaft supporting turbine/compressor wheel, where turbine/compressor wheel has two-part bush turned toward shaft and encompassing shaft in assembled condition
DE102007004736A1 (en) Heat engine device i.e. sterling engine, has rotation units supported on common pin, and piston indirectly connected with each other over gear with shaft that drives control disk and arranged parallel with respect to pin
EP3282136A1 (en) Flange connection with screw
DE102019210346A1 (en) Rotor with a cooled rotor shaft

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BREZINA, JUERGEN

Inventor name: HENRY, MARKUS

Inventor name: KOEPPEL, PETER

Inventor name: STOLLE, ROBERT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD GMBH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190510

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200407

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1311917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014742

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014742

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1311917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 10

Ref country code: DE

Payment date: 20231129

Year of fee payment: 10