EP3069027A1 - Rotor device for a vacuum pump, and vacuum pump - Google Patents

Rotor device for a vacuum pump, and vacuum pump

Info

Publication number
EP3069027A1
EP3069027A1 EP14796740.0A EP14796740A EP3069027A1 EP 3069027 A1 EP3069027 A1 EP 3069027A1 EP 14796740 A EP14796740 A EP 14796740A EP 3069027 A1 EP3069027 A1 EP 3069027A1
Authority
EP
European Patent Office
Prior art keywords
rotor
vacuum pump
shaft
rotor shaft
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14796740.0A
Other languages
German (de)
French (fr)
Other versions
EP3069027B1 (en
Inventor
Markus Henry
Jürgen BREZINA
Robert Stolle
Peter Koeppel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Leybold Vacuum GmbH
Publication of EP3069027A1 publication Critical patent/EP3069027A1/en
Application granted granted Critical
Publication of EP3069027B1 publication Critical patent/EP3069027B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/02Units comprising pumps and their driving means
    • F04D25/06Units comprising pumps and their driving means the pump being electrically driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/173Aluminium alloys, e.g. AlCuMgPb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/174Titanium alloys, e.g. TiAl
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced

Definitions

  • the invention relates to a vacuum pump rotor device and a vacuum pump.
  • Vacuum pumps such as turbomolecular pumps have a rotor shaft in a pump housing.
  • the rotor shaft which is usually driven by an electric motor, carries at least one rotor element.
  • a turbomolecular pump a plurality of rotor elements in the form of rotor disks are arranged on the rotor shaft.
  • the rotor shaft is rotatably mounted in the pump housing via bearing elements.
  • the vacuum pump has a stator element arranged in the housing.
  • a plurality of stator elements designed as stator disks are provided.
  • the stator disks and the rotor disks are arranged alternately in the longitudinal direction of the pump or in the flow direction of the medium to be pumped.
  • the individual rotor elements When constructed from individual rotor disks rotors, the individual rotor elements must be firmly connected to the rotor shaft. Corresponding fixed positionally accurate connections between the rotor shaft and the rotor elements must be ensured in all operating conditions, that is, especially in the event of strong temperature and speed fluctuations. In the case of known multi-part rotors, in particular rotors having a plurality of rotor disks, this is achieved in that the rotor disk has a great excess in relation to the rotor shaft for joining. To the Joining, it is then required to cool the rotor shaft strong and to heat the rotor elements strongly to allow pressing the rotor elements on the shaft.
  • the rotor elements in an oven such as a convection oven, to be heated to about 120 ° C.
  • the corresponding warm-up time is 1 - 2 hours.
  • the heat-up times of the assembly after joining are about 1 to 2 hours to reach room temperature. This known joining method is time consuming and costly.
  • the object of the invention is to provide a vacuum pump rotor device whose production is more cost-effective even with high reliability, preferably a joining of the components at room temperature or only a small difference in temperature of the components should be possible.
  • the vacuum pump rotor device has a rotor shaft. At least one rotor element is arranged on the rotor shaft.
  • a plurality of rotor elements designed as rotor disks are arranged on the rotor shaft in the longitudinal direction of the rotor shaft.
  • the rotor or the rotor element comprises aluminum, titanium and / or CFRP and the rotor shaft has a chromium-nickel steel (Cr-Ni). Steel).
  • Cr-Ni chromium-nickel steel
  • the use of aluminum, titanium and / or CFRP as a material for a rotor or a rotor element has the advantage that the required strength and stability can be realized in relation to the density of the material required by the high speeds and thus To be able to realize connected high forces and voltages.
  • the required properties of the shaft can be realized by a steel shaft, in particular a stainless steel shaft.
  • the shaft comprises Cr-Ni steel with a sulfur additive and is most preferably made from chromium-nickel steels with added sulfur.
  • the rotor or the rotor element is made in a preferred embodiment of aluminum, an aluminum alloy and / or high-strength aluminum.
  • high-strength aluminum with a high tensile strength value of in particular at least 250 N / mm.
  • High-strength aluminum also has the advantage that it has a high fatigue strength even at use temperatures of 100-120 ° C.
  • Particularly preferred is the use of AW-Al Cu 2Mg 1.5 Ni.
  • the at least one rotor element is made of titanium or a titanium alloy and / or of CFRP.
  • a significant reduction in assembly costs can be realized according to the invention in that the coefficient of thermal expansion of the rotor shaft differs as little as possible from the thermal expansion coefficient of the at least one rotor element.
  • Thermal expansion coefficient ensures that even at high temperature and speed fluctuations, the reliability is guaranteed. It is particularly preferred to provide a pairing of material, in particular high-strength aluminum and stainless steel, as the material pairing. It is preferred that the at least one rotor element made of aluminum and the Rotor shaft made of stainless steel, in particular Cr-Ni steel with sulfur additive, are produced.
  • the at least one rotor element with respect to the rotor shaft has an excess, can occur in the expansions in the circumferential direction of 0.25% to 0.35%. Due to this excess reliability can be ensured despite the high temperature fluctuations, while still allowing joining of the components at room temperature.
  • a plurality of rotor elements are arranged in particular in the longitudinal direction on the rotor shaft, in particular pressed.
  • a corresponding rotor element may, for example, also be a disc-shaped carrier of a Holweck stage. This carrier carries the tubular elements of the Holweck stage, or is integrally formed therewith.
  • Such a rotor element or such a rotor element carrier according to the invention from the above material, in particular aluminum, prepared and joined to a stainless steel shaft by pressing.
  • the rotor elements may be rotor disks, spacer elements optionally additionally being provided between rotor elements or rotor disks. These elements can be used in particular for forming an intermediate inlet in a multi-inlet pump.
  • the invention relates to a vacuum pump which is in particular a turbomolecular pump.
  • the vacuum pump according to the invention has a rotor device according to the invention, as described above, in particular in one of the preferred developments.
  • the vacuum pump has a pump housing in which the rotor shaft is mounted via bearing elements.
  • a drive device is provided which drives the rotor shaft.
  • at least one stator element is arranged in the pump housing, it being possible for the stator element to be a stator disk.
  • a turbomolecular pump a plurality of stator disks are then arranged alternately in connection with a plurality of rotor disks.
  • the figure shows a highly simplified schematic sectional view of a turbomolecular pump.
  • stator elements 16 are arranged in which it acts in the illustrated embodiment to stator 16.
  • the rotor shaft 10 is mounted in the pump housing 16 via bearing elements 18, 20 and is driven by a drive device 22.
  • a sleeve-shaped spacer element 24 is further provided between two rotor disks 12.
  • an intermediate inlet 26 is formed.
  • the vacuum pump shown schematically in the drawing thus sucks the medium to be conveyed in the direction of an arrow 28 through a main inlet. Furthermore, medium is sucked in via the intermediate inlet 26 in the direction of an arrow 30. The two sucked media are, as shown by the arrow 32 conveyed in the direction of an outlet.
  • the rotor shaft 10 is made in a preferred embodiment of stainless steel.
  • the individual rotor elements 12 and the spacer element 24 are made in a preferred embodiment of aluminum.
  • the joining of the rotor elements 12 and the spacer element 24 takes place by pressing at room temperature.
  • the individual rotor elements 12 as well as the spacer element 24 have an excessively elongated expansion in the circumferential direction of 0.07% to 0.2%.
  • the pressing force with which the components can be joined at room temperature is in a range of 5 to 50 kN.

Abstract

A rotor device for a vacuum pump comprises a rotor shaft (10) and at least one rotor element (12) on the rotor shaft (10). According to the invention, the at least one rotor element (12) contains aluminum, titanium and/or CFRP, while the rotor shaft (10) contains a chromium-nickel steel. This makes it in particular possible to join the at least one rotor element (12) to the rotor shaft (10) at room temperature using a pressing process.

Description

Vakuumpumpen-Rotoreinrichtunq sowie Vakuumpumpe  Vacuum pump rotor device and vacuum pump
Die Erfindung betrifft eine Vakuumpumpen-Rotoreinrichtung sowie eine Vakuumpumpe. The invention relates to a vacuum pump rotor device and a vacuum pump.
Vakuumpumpen wie beispielsweise Turbomolekularpumpen weisen in einem Pumpengehäuse eine Rotorwelle auf. Die Rotorwelle, die üblicherweise von einem Elektromotor angetrieben wird, trägt mindestens ein Rotorelement. Bei einer Turbomolekularpumpe sind auf der Rotorwelle mehrere Rotorelemente in Form von Rotorscheiben angeordnet. Die Rotorwelle ist in dem Pumpengehäuse über Lagerelemente drehbar gelagert. Ferner weist die Vakuumpumpe ein in dem Gehäuse angeordnetes Statorelement auf. Bei einer Turbomolekularpumpe sind mehrere als Statorscheiben ausgebildete Statorelemente vorgesehen. Hierbei sind die Statorscheiben und die Rotorscheiben in Längsrichtung der Pumpe bzw. in Strömungsrichtung des zu pumpenden Mediums abgewechselt angeordnet. Vacuum pumps such as turbomolecular pumps have a rotor shaft in a pump housing. The rotor shaft, which is usually driven by an electric motor, carries at least one rotor element. In a turbomolecular pump, a plurality of rotor elements in the form of rotor disks are arranged on the rotor shaft. The rotor shaft is rotatably mounted in the pump housing via bearing elements. Furthermore, the vacuum pump has a stator element arranged in the housing. In a turbomolecular pump, a plurality of stator elements designed as stator disks are provided. Here, the stator disks and the rotor disks are arranged alternately in the longitudinal direction of the pump or in the flow direction of the medium to be pumped.
Bei aus einzelnen Rotorscheiben aufgebauten Rotoren müssen die einzelnen Rotorelemente fest mit der Rotorwelle verbunden werden. Entsprechend feste lagegenaue Verbindungen zwischen der Rotorwelle und den Rotorelementen müssen in allen Betriebszuständen, dass heißt insbesondere bei den auftretenden starken Temperatur- und Drehzahlschwankungen gewährleistet sein. Dies ist bei bekannten mehrteiligen Rotoren, insbesondere mehrere Rotorscheiben aufweisende Rotoren, dadurch gelöst, dass die Rotorscheibe gegenüber der Rotorwelle ein starkes Übermaß zum Fügen aufweist. Zum Fügen ist es sodann erforderlich die Rotorwelle stark zu kühlen und die Rotorelemente stark zu erwärmen, um ein Aufpressen der Rotorelemente auf die Welle zu ermöglichen. Hierbei ist es insbesondere erforderlich, die Rotorwelle auf Temperaturen im Bereich von flüssigem Stickstoff abzukühlen und gleichzeitig die Rotorscheiben in einem Ofen beispielsweise durch Induktion stark zu erwärmen. Nach dem Fügen muss eine Lagerung bei Raumtemperatur erfolgen bis die beiden Teile Raumtemperatur abweisen. Hierzu ist ein relativ langer Zeitraum erforderlich. Nur durch dieses hohe Übermaß und einen entsprechend aufwendigen Fügeprozess kann die erforderliche Betriebssicherheit trotz der stark schwankenden Temperaturen und Drehzahlen gewährleistet werden. Die Temperatur der Rotorelemente sowie der Rotorwelle erreichen im Betrieb bis zu ca. 120° C. Die maximalen Drehzahlen liegen bei ca. 1500 U/sec. Zum Fügen der Rotorelemente auf der Rotorwelle ist es daher erforderlich, die Rotorwelle in flüssigem Stickstoff auf ca. -190 °C abzukühlen. Je nach Baugröße beträgt die Abkühlzeit ca. 5 Minuten. Gleichzeitig müssen die Rotorelemente in einem Ofen, wie einem Umluftofen, auf ca. 120 °C erwärmt werden. Die entsprechende Aufwärmzeit beträgt 1 - 2 Stunden. Die Durchwärmungszeiten der Baugruppe nach dem Fügen betragen etwa 1 - 2 Stunden zur Erzielung von Raumtemperatur. Dieses bekannte Fügeverfahren ist zeitaufwändig und kostenintensiv. When constructed from individual rotor disks rotors, the individual rotor elements must be firmly connected to the rotor shaft. Corresponding fixed positionally accurate connections between the rotor shaft and the rotor elements must be ensured in all operating conditions, that is, especially in the event of strong temperature and speed fluctuations. In the case of known multi-part rotors, in particular rotors having a plurality of rotor disks, this is achieved in that the rotor disk has a great excess in relation to the rotor shaft for joining. To the Joining, it is then required to cool the rotor shaft strong and to heat the rotor elements strongly to allow pressing the rotor elements on the shaft. In this case, it is particularly necessary to cool the rotor shaft to temperatures in the range of liquid nitrogen and at the same time to strongly heat the rotor disks in an oven, for example by induction. After joining, store at room temperature until the two parts show room temperature. This requires a relatively long period of time. Only by this high excess and a correspondingly complex joining process, the required reliability can be guaranteed despite the strongly fluctuating temperatures and speeds. The temperature of the rotor elements and the rotor shaft reach in operation up to about 120 ° C. The maximum speeds are about 1500 U / sec. For joining the rotor elements on the rotor shaft, it is therefore necessary to cool the rotor shaft in liquid nitrogen to about -190 ° C. Depending on the size, the cooling time is approx. 5 minutes. At the same time, the rotor elements in an oven, such as a convection oven, to be heated to about 120 ° C. The corresponding warm-up time is 1 - 2 hours. The heat-up times of the assembly after joining are about 1 to 2 hours to reach room temperature. This known joining method is time consuming and costly.
Untersuchungen haben gezeigt, dass ein Fügen eines Rotors oder auch eines scheibenförmigen Rotorelements aus Aluminium auf einer Rotorwelle aus Aluminium auf Grund des erforderlichen Übermaßes bei Raumtemperatur nicht möglich ist. Wenngleich das Übermaß deutlich geringer gewählt werden kann, da keine unterschiedlichen Wärmeausdehnungskoeffizienten von Rotorelement und Welle gegeben sind, ist ein Aufpressen bei Raumtemperatur dennoch nicht möglich. Hierbei tritt ein Fressen, bzw. Verschweißen der zu fügenden Bauteile auf. Eine lagegenaue Positionierung eines Rotorelements auf der Rotorwelle ist somit nicht möglich. Aufgabe der Erfindung ist es eine Vakuumpumpen-Rotoreinrichtung zu schaffen, deren Herstellung auch bei hoher Betriebssicherheit kostengünstiger ist, wobei vorzugsweise ein Fügen der Bauteile bei Raumtemperatur oder nur geringem Temperaturunterschied der Bauteile möglich sein soll. Investigations have shown that it is not possible to join a rotor or even a disk-shaped rotor element made of aluminum on a rotor shaft made of aluminum due to the required excess at room temperature. Although the excess can be chosen to be much lower, since there are no different coefficients of thermal expansion of the rotor element and the shaft, pressing on at room temperature is nevertheless not possible. Here, a seizure, or welding of the components to be joined occurs. A positionally accurate positioning of a rotor element on the rotor shaft is thus not possible. The object of the invention is to provide a vacuum pump rotor device whose production is more cost-effective even with high reliability, preferably a joining of the components at room temperature or only a small difference in temperature of the components should be possible.
Die Lösung der Aufgabe erfolgt erfindungsgemäß durch die Merkmale des Anspruchs 1. The object is achieved according to the invention by the features of claim 1.
Die erfindungsgemäße Vakuumpumpen-Rotoreinrichtung weist eine Rotorwelle auf. Auf der Rotorwelle ist mindestens ein Rotorelement angeordnet. Insbesondere wenn es sich um eine Rotoreinrichtung einer Turbomolekularpumpe handelt sind auf der Rotorwelle mehrere als Rotorscheiben ausgebildete Rotorelemente in Längsrichtung der Rotorwelle angeordnet. The vacuum pump rotor device according to the invention has a rotor shaft. At least one rotor element is arranged on the rotor shaft. In particular, when it is a rotor device of a turbomolecular pump, a plurality of rotor elements designed as rotor disks are arranged on the rotor shaft in the longitudinal direction of the rotor shaft.
Untersuchungen haben gezeigt, dass ein Fügen von Rotoren bzw. Rotorelementen bei Raumtemperatur und gleichzeitig hoher Betriebssicherheit möglich ist, wenn der Rotor bzw. das Rotorelement Aluminium, Titan und/ oder CFK aufweist und die Rotorwelle einen Chrom-Nickel-Stahl (Cr-Ni-Stahl) aufweist. Die Verwendung von Aluminium, Titan und/ oder CFK als Werkstoff für einen Rotor oder ein Rotorelement weist den Vorteil auf, dass die erforderliche Festigkeit und Stabilität im Verhältnis zu der Dichte des Werkstoffs realisiert werden kann, die gefordert ist um die hohen Drehzahlen und die damit verbundenen hohen Kräfte und Spannungen realisieren zu können. Die geforderten Eigenschaften der Welle können durch eine Stahlwelle, insbesondere eine Edelstahlwelle realisiert werden. Insbesondere weist die Welle Cr-Ni-Stahl mit einem Schwefelzusatz auf und ist besonders bevorzugt aus Chrom-Nickel-Stählen mit Schwefelzusatz hergestellt. Investigations have shown that joining of rotors or rotor elements at room temperature and simultaneously high operational reliability is possible if the rotor or the rotor element comprises aluminum, titanium and / or CFRP and the rotor shaft has a chromium-nickel steel (Cr-Ni). Steel). The use of aluminum, titanium and / or CFRP as a material for a rotor or a rotor element has the advantage that the required strength and stability can be realized in relation to the density of the material required by the high speeds and thus To be able to realize connected high forces and voltages. The required properties of the shaft can be realized by a steel shaft, in particular a stainless steel shaft. In particular, the shaft comprises Cr-Ni steel with a sulfur additive and is most preferably made from chromium-nickel steels with added sulfur.
Der Rotor bzw. das eine Rotorelement ist in bevorzugter Ausführungsform aus Aluminium, einer Aluminiumlegierung und/ oder hochfestem Aluminium hergestellt. Besonders bevorzugt ist die Verwendung von hochfestem Aluminium mit einem hohen Zugfestigkeitswert von insbesondere mindestens 250 N/mm. Hochfestes Aluminium weist ferner den Vorteil auf, dass es auch bei Einsatztemperaturen von 100 - 120 °C eine hohe Dauerfestigkeit aufweist. Besonders bevorzugt ist die Verwendung von AW-AI Cu 2Mg 1,5 Ni. The rotor or the rotor element is made in a preferred embodiment of aluminum, an aluminum alloy and / or high-strength aluminum. Particularly preferred is the use of high-strength aluminum with a high tensile strength value of in particular at least 250 N / mm. High-strength aluminum also has the advantage that it has a high fatigue strength even at use temperatures of 100-120 ° C. Particularly preferred is the use of AW-Al Cu 2Mg 1.5 Ni.
Desweiteren ist es bevorzugt, dass das mindestens eine Rotorelement aus Titan oder einer Titanlegierung und/ oder aus CFK hergestellt ist. Furthermore, it is preferred that the at least one rotor element is made of titanium or a titanium alloy and / or of CFRP.
Durch die erfindungsgemäße vorstehend beschriebene Kombination der beiden Bauteile ist es möglich, das mindestens eine Rotorelement bei Raumtemperatur auf die Rotorwelle zu Fügen ohne dass hierbei ein Fressen oder Verschweißen auftritt. Hierdurch kann die Fertigungszeit erheblich verkürzt werden. As a result of the combination of the two components described above according to the invention, it is possible to join the at least one rotor element at room temperature to the rotor shaft without causing seizure or welding. As a result, the production time can be shortened considerably.
Eine deutliche Verringerung der Montagekosten kann erfindungsgemäß dadurch realisiert werden, dass sich der Wärmeausdehnungskoeffizient der Rotorwelle vom Wärmeausdehnungskoeffizient des mindestens einen Rotorelements möglichst wenig unterscheidet. Erfindungsgemäß erfolgt somit die Verwendung einer Materialpaarung, die nicht zum Fressen neigt, und deren Wärmeausdehnungskoeffizienten eine geringe Differenz aufweisen, so dass zum Fügen ein geringeres Übermaß als im Stand der Technik erforderlich ist. Dies hat zur Folge, dass ein Fügen bei Raumtemperatur aufgrund des geringen erforderlichen Übermaßes möglich ist oder die Bauteile zumindest nur eine geringe Temperaturdifferenz aufweisen müssen. Bei einer derartigen Materialpaarung mit sich geringfügig unterscheidendenA significant reduction in assembly costs can be realized according to the invention in that the coefficient of thermal expansion of the rotor shaft differs as little as possible from the thermal expansion coefficient of the at least one rotor element. Thus, according to the invention, the use of a combination of materials which does not tend to seize and whose thermal expansion coefficients have a small difference, so that a smaller excess than that required in the prior art, is required for joining. This has the consequence that a joining at room temperature due to the small required oversize is possible or the components must have at least only a small temperature difference. In such a material pairing with slightly different
Wärmeausdehnungskoeffizienten ist sichergestellt, dass auch bei hohen Temperatur- und Drehzahlschwankungen die Betriebssicherheit gewährleistet ist. Besonders bevorzugt ist es, als Materialpaarung eine Materialpaarung aus insbesondere hochfestem Aluminium und Edelstahl vorzusehen. Hierbei ist es bevorzugt, dass das mindestens eine Rotorelement aus Aluminium und die Rotorwelle aus Edelstahl, insbesondere Cr-Ni-Stahl mit Schwefelzusatz, hergestellt sind. Thermal expansion coefficient ensures that even at high temperature and speed fluctuations, the reliability is guaranteed. It is particularly preferred to provide a pairing of material, in particular high-strength aluminum and stainless steel, as the material pairing. It is preferred that the at least one rotor element made of aluminum and the Rotor shaft made of stainless steel, in particular Cr-Ni steel with sulfur additive, are produced.
Besonders geeignet ist die Verwendung von Edelstahl X8CrNiS18-9, mit der Werkstoffnummer 1.4305 für die Rotorwelle. Particularly suitable is the use of stainless steel X8CrNiS18-9, with the material number 1.4305 for the rotor shaft.
Insbesondere bei der Verwendung von Edelstahl X8CrNiS18-9 und Aluminium AI ist es möglich die beiden Bauteile bei Raumtemperatur zu fügen, insbesondere zu verpressen. Dies ist auch möglich, wenn in besonders bevorzugter Ausführungsform das mindestens eine Rotorelement gegenüber der Rotorwelle ein Übermaß aufweist, bei der Dehnungen in Umfangsrichtung von 0,25 % bis 0,35 % auftreten können. Durch dieses Übermaß kann die Betriebssicherheit trotz der hohen Temperaturschwankungen sichergestellt werden, wobei gleichzeitig dennoch ein Fügen der Bauteile bei Raumtemperatur möglich ist. In particular, when using stainless steel X8CrNiS18-9 and aluminum AI, it is possible to add the two components at room temperature, in particular to press. This is also possible if, in a particularly preferred embodiment, the at least one rotor element with respect to the rotor shaft has an excess, can occur in the expansions in the circumferential direction of 0.25% to 0.35%. Due to this excess reliability can be ensured despite the high temperature fluctuations, while still allowing joining of the components at room temperature.
Bei einer bevorzugten Ausführungsform bei der die Rotoreinrichtung insbesondere für eine Turbomolekularpumpe geeignet ist, sind mehrere Rotorelemente insbesondere in Längsrichtung auf der Rotorwelle angeordnet, insbesondere aufgepresst. Bei einem entsprechenden Rotorelement kann es sich beispielsweise aber auch um einen scheibenförmigen Träger einer Holweckstufe handeln. Dieser Träger trägt die rohrförmigen Elemente der Holweckstufe, oder ist einstückig mit diesen ausgebildet. Auch ein derartiges Rotorelement bzw. ein derartiger Rotorelement-Träger ist erfindungsgemäß aus dem vorstehenden Material, insbesondere Aluminium, hergestellt und auf eine Edelstahlwelle durch Aufpressen gefügt. In a preferred embodiment in which the rotor device is particularly suitable for a turbomolecular pump, a plurality of rotor elements are arranged in particular in the longitudinal direction on the rotor shaft, in particular pressed. However, a corresponding rotor element may, for example, also be a disc-shaped carrier of a Holweck stage. This carrier carries the tubular elements of the Holweck stage, or is integrally formed therewith. Such a rotor element or such a rotor element carrier according to the invention from the above material, in particular aluminum, prepared and joined to a stainless steel shaft by pressing.
Bei den Rotorelementen kann es sich um Rotorscheiben handeln, wobei gegebenenfalls zusätzlich Distanzelemente zwischen Rotorelementen bzw. Rotorscheiben vorgesehen sind. Diese Elemente können insbesondere zur Ausbildung eines Zwischeneinlasses bei einer Multi-Inlet-Pumpe dienen. Ferner betrifft die Erfindung eine Vakuumpumpe bei der es sich insbesondere um eine Turbomolekularpumpe handelt. Die erfindungsgemäße Vakuumpumpe weist eine erfindungsgemäße Rotoreinrichtung, wie vorstehend beschrieben, insbesondere in einer der bevorzugten Weiterbildungen auf. Ferner weist die Vakuumpumpe ein Pumpengehäuse auf, in dem die Rotorwelle über Lagerelemente gelagert ist. Desweiteren ist eine Antriebseinrichtung vorgesehen, die die Rotorwelle antreibt. Ferner ist in dem Pumpengehäuse mindestens ein Statorelement angeordnet, wobei es sich bei dem Statorelement um eine Statorscheibe handeln kann. Bei einer Turbomolekularpumpe sind sodann in Verbindung mit mehreren Rotorscheiben mehrere Statorscheiben abwechselnd angeordnet. The rotor elements may be rotor disks, spacer elements optionally additionally being provided between rotor elements or rotor disks. These elements can be used in particular for forming an intermediate inlet in a multi-inlet pump. Furthermore, the invention relates to a vacuum pump which is in particular a turbomolecular pump. The vacuum pump according to the invention has a rotor device according to the invention, as described above, in particular in one of the preferred developments. Furthermore, the vacuum pump has a pump housing in which the rotor shaft is mounted via bearing elements. Furthermore, a drive device is provided which drives the rotor shaft. Furthermore, at least one stator element is arranged in the pump housing, it being possible for the stator element to be a stator disk. In a turbomolecular pump, a plurality of stator disks are then arranged alternately in connection with a plurality of rotor disks.
Nachfolgend wird die Erfindung anhand einer bevorzugten Ausführungsform unter Bezugnahme auf die anliegende Zeichnung näher erläutert. The invention will be explained in more detail with reference to a preferred embodiment with reference to the accompanying drawings.
Die Figur zeigt eine stark vereinfachte schematische Schnittansicht einer Turbomolekularpumpe. The figure shows a highly simplified schematic sectional view of a turbomolecular pump.
In der stark vereinfachten Darstellung einer Turbomolekularpumpe sind auf einer Rotorwelle 10 mehrere Rotorelemente 12 in Form von Rotorscheiben durch Aufpressen angeordnet. In einem Pumpengehäuse 14 sind Statorelemente 16 angeordnet bei denen es ich im dargestellten Ausführungsbeispiel um Statorscheiben 16 handelt. In the highly simplified representation of a turbomolecular pump 10, a plurality of rotor elements 12 are arranged in the form of rotor disks by pressing on a rotor shaft. In a pump housing 14 stator elements 16 are arranged in which it acts in the illustrated embodiment to stator 16.
Ferner ist die Rotorwelle 10 über Lagerelemente 18, 20 in dem Pumpengehäuse 16 gelagert und wird von einer Antriebseinrichtung 22 angetrieben. Furthermore, the rotor shaft 10 is mounted in the pump housing 16 via bearing elements 18, 20 and is driven by a drive device 22.
Im dargestellten Ausführungsbeispiel ist ferner ein hülsenförmiges Distanzelement 24 zwischen zwei Rotorscheiben 12 vorgesehen. Hierdurch wird ein Zwischeneinlass 26 ausgebildet. Die in der Zeichnung schematisch dargestellte Vakuumpumpe saugt somit das zu fördernde Medium in Richtung eines Pfeils 28 durch einen Haupteinlass an. Ferner wird Medium über den Zwischeneinlass 26 in Richtung eines Pfeils 30 angesaugt. Die beiden angesaugten Medien werden, wie mit dem Pfeil 32 dargestellt in Richtung eines Auslasses gefördert. In the illustrated embodiment, a sleeve-shaped spacer element 24 is further provided between two rotor disks 12. As a result, an intermediate inlet 26 is formed. The vacuum pump shown schematically in the drawing thus sucks the medium to be conveyed in the direction of an arrow 28 through a main inlet. Furthermore, medium is sucked in via the intermediate inlet 26 in the direction of an arrow 30. The two sucked media are, as shown by the arrow 32 conveyed in the direction of an outlet.
Erfindungsgemäß ist die Rotorwelle 10 in bevorzugter Ausführungsform aus Edelstahl hergestellt. Die einzelnen Rotorelemente 12 sowie das Distanzelement 24 sind in bevorzugter Ausführungsform aus Aluminium hergestellt. Das Fügen der Rotorelemente 12 sowie des Distanzelements 24 erfolgt durch Aufpressen bei Raumtemperatur. Insbesondere weisen die einzelnen Rotorelemente 12 sowie auch das Distanzelement 24 eine übermaßbedingte Dehnung in Umfangsrichtung von 0,07 % bis 0,2 % auf. Die Presskraft mit der ein Fügen der Bauteile bei Raumtemperatur möglich ist liegt in einem Bereich von 5 bis 50 kN. According to the invention, the rotor shaft 10 is made in a preferred embodiment of stainless steel. The individual rotor elements 12 and the spacer element 24 are made in a preferred embodiment of aluminum. The joining of the rotor elements 12 and the spacer element 24 takes place by pressing at room temperature. In particular, the individual rotor elements 12 as well as the spacer element 24 have an excessively elongated expansion in the circumferential direction of 0.07% to 0.2%. The pressing force with which the components can be joined at room temperature is in a range of 5 to 50 kN.

Claims

Ansprüche claims
1. Vakuumpumpen-Rotoreinrichtung, mit einer Rotorwelle (10) und mindestens einem auf der Rotorwelle (10) angeordneten Rotorelement (12) dadurch gekennzeichnet, dass das mindestens eine Rotorelement (12) Aluminium, Titan und/ oder CFK aufweist und die Rotorwelle (10) Chrom-Nickel-Stahl aufweist. Characterized in that the at least one rotor element (12) comprises aluminum, titanium and / or CFRP and the rotor shaft (10 ) Has chromium-nickel steel.
2. Vakuumpumpen-Rotoreinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine Rotorelement (12) aus Aluminium, einer Aluminiumlegierung und/ oder hochfestem Aluminium hergestellt ist. 2. Vacuum pump rotor device according to claim 1, characterized in that the at least one rotor element (12) is made of aluminum, an aluminum alloy and / or high-strength aluminum.
3. Vakuumpumpen-Rotoreinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine Rotorelement (12) aus Titan und/ oder einer Titanlegierung hergestellt ist. 3. Vacuum pump rotor device according to claim 1, characterized in that the at least one rotor element (12) is made of titanium and / or a titanium alloy.
4. Vakuumpumpen-Rotoreinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine Rotorelement (12) aus CFK hergestellt ist. 4. Vacuum pump rotor device according to claim 1, characterized in that the at least one rotor element (12) is made of CFRP.
5. Vakuumpumpen-Rotoreinrichtung nach einem der Ansprüche 1 - 4 dadurch gekennzeichnet, dass die Rotorwellen (10) einen Chrom-Nickel- Stahl mit Schwefelzusatz aufweist insbesondere aus einem Chrom- Nickel-Stahl mit Schwefelzusatz hergestellt ist. 5. Vacuum pump rotor device according to one of claims 1 - 4, characterized in that the rotor shafts (10) has a chromium-nickel steel with sulfur additive in particular made of a chromium-nickel steel with sulfur additive.
6. Vakuumpumpen-Rotoreinrichtung nach einem der Ansprüche 1 - 5, dadurch gekennzeichnet, dass die Rotorwelle (10) eine Edelstahllegierung aufweist, wobei es sich insbesondere um Edelstahl X8CrNiS18-9 handelt. 6. Vacuum pump rotor device according to one of claims 1-5, characterized in that the rotor shaft (10) has a stainless steel alloy, which is in particular X8CrNiS18-9 stainless steel.
7. Vakuumpumpen-Rotoreinrichtung nach einem der Ansprüche 1 - 6, dadurch gekennzeichnet, dass die Materialpaarung derart gewählt ist, dass das mindestens eine Rotorelement (12) bei Raumtemperatur auf die Rotorwelle (10) durch Aufpressen fügbar ist. 7. Vacuum pump rotor device according to one of claims 1-6, characterized in that the material pairing is selected such that the at least one rotor element (12) at room temperature to the rotor shaft (10) is available by pressing.
8. Vakuumpumpen-Rotoreinrichtung nach einem der Ansprüche 1 - 7, dadurch gekennzeichnet, dass mehrere Rotorelemente (12) in Längsrichtung der Rotorwelle (10) angeordnet sind . 8. Vacuum pump rotor device according to one of claims 1-7, characterized in that a plurality of rotor elements (12) in the longitudinal direction of the rotor shaft (10) are arranged.
9. Vakuumpumpen-Rotoreinrichtung nach Anspruch 8, dadurch gekennzeichnet, dass die Rotorelemente als Rotorscheiben (12) ausgebildet sind . 9. Vacuum pump rotor device according to claim 8, characterized in that the rotor elements are designed as rotor discs (12).
10. Vakuumpumpen-Rotoreinrichtung nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass zwischen zwei der Rotorelemente (12) mindestens ein Distanzelement (24) angeordnet ist. 10. Vacuum pump rotor device according to claim 8 or 9, characterized in that between two of the rotor elements (12) at least one spacer element (24) is arranged.
11. Vakuumpumpe, insbesondere Turbomolekularpumpe, mit einer Vakuumpumpen-Rotoreinrichtung nach einem der Ansprüche 1 - 10, wobei die Rotorwelle (10) in einem Pumpengehäuse (14) über Lagerelement (28) gelagert ist, einer mit der Rotorwelle (10) verbundenen Antriebseinrichtung (22) und mindestens einem in dem Pumpengehäuse (14) angeordneten Statorelement (16). 11. Vacuum pump, in particular turbomolecular pump, with a vacuum pump rotor device according to one of claims 1 - 10, wherein the rotor shaft (10) in a pump housing (14) via bearing element (28) is mounted, connected to the rotor shaft (10) drive means ( 22) and at least one stator element (16) arranged in the pump housing (14).
EP14796740.0A 2013-11-12 2014-11-05 Rotor device for a vacuum pump, and vacuum pump Active EP3069027B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE202013010195.4U DE202013010195U1 (en) 2013-11-12 2013-11-12 Vacuum pump rotor device and vacuum pump
PCT/EP2014/073771 WO2015071143A1 (en) 2013-11-12 2014-11-05 Rotor device for a vacuum pump, and vacuum pump

Publications (2)

Publication Number Publication Date
EP3069027A1 true EP3069027A1 (en) 2016-09-21
EP3069027B1 EP3069027B1 (en) 2020-09-09

Family

ID=51897252

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14796740.0A Active EP3069027B1 (en) 2013-11-12 2014-11-05 Rotor device for a vacuum pump, and vacuum pump

Country Status (7)

Country Link
US (1) US20160290343A1 (en)
EP (1) EP3069027B1 (en)
JP (1) JP6532461B2 (en)
KR (1) KR102202936B1 (en)
CN (1) CN105765231B (en)
DE (1) DE202013010195U1 (en)
WO (1) WO2015071143A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106762713B (en) * 2017-03-09 2018-12-14 苏州摩星真空科技有限公司 Vertical compound runoff molecular pump
US11519419B2 (en) 2020-04-15 2022-12-06 Kin-Chung Ray Chiu Non-sealed vacuum pump with supersonically rotatable bladeless gas impingement surface

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2654055B2 (en) * 1976-11-29 1979-11-08 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Rotor and stator disks for turbo molecular pumps
JPS59113990A (en) * 1982-12-22 1984-06-30 Hitachi Ltd Production of rotor for turbo molecular pump
JP3486000B2 (en) * 1995-03-31 2004-01-13 日本原子力研究所 Screw groove vacuum pump
JP3792318B2 (en) * 1996-10-18 2006-07-05 株式会社大阪真空機器製作所 Vacuum pump
US6095754A (en) * 1998-05-06 2000-08-01 Applied Materials, Inc. Turbo-Molecular pump with metal matrix composite rotor and stator
DE19915307A1 (en) * 1999-04-03 2000-10-05 Leybold Vakuum Gmbh Turbomolecular friction vacuum pump, with annular groove in region of at least one endface of rotor
DE10008691B4 (en) * 2000-02-24 2017-10-26 Pfeiffer Vacuum Gmbh Gas friction pump
DE10039006A1 (en) * 2000-08-10 2002-02-21 Leybold Vakuum Gmbh Two-shaft vacuum pump
DE10053663A1 (en) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanical kinetic vacuum pump with rotor and shaft
GB0412667D0 (en) * 2004-06-07 2004-07-07 Boc Group Plc Vacuum pump impeller
GB2420379A (en) * 2004-11-18 2006-05-24 Boc Group Plc Vacuum pump having a motor combined with an impeller
DE102005008643A1 (en) * 2005-02-25 2006-08-31 Leybold Vacuum Gmbh Holweck vacuum pump has shoulders on rotor side of vanes of vane disc to support supporting ring
EP1978582A1 (en) * 2007-04-05 2008-10-08 Atotech Deutschland Gmbh Process for the preparation of electrodes for use in a fuel cell
US20090095436A1 (en) * 2007-10-11 2009-04-16 Jean-Louis Pessin Composite Casting Method of Wear-Resistant Abrasive Fluid Handling Components
EP2096317B1 (en) * 2008-02-27 2012-08-15 Agilent Technologies, Inc. Method for manufacturing the rotor assembly of a rotating vacuum pump
EP2108844A3 (en) * 2008-03-26 2013-09-18 Ebara Corporation Turbo vacuum pump
DE102008063131A1 (en) * 2008-12-24 2010-07-01 Oerlikon Leybold Vacuum Gmbh vacuum pump
WO2012105116A1 (en) * 2011-02-04 2012-08-09 エドワーズ株式会社 Rotating body of vacuum pump, fixed member placed to be opposed to same, and vacuum pump provided with them

Also Published As

Publication number Publication date
US20160290343A1 (en) 2016-10-06
JP2016537552A (en) 2016-12-01
DE202013010195U1 (en) 2015-02-18
KR20160081921A (en) 2016-07-08
CN105765231A (en) 2016-07-13
CN105765231B (en) 2018-10-26
EP3069027B1 (en) 2020-09-09
WO2015071143A1 (en) 2015-05-21
KR102202936B1 (en) 2021-01-13
JP6532461B2 (en) 2019-06-19

Similar Documents

Publication Publication Date Title
EP1698423B1 (en) Process of assembling by friction welding a rotor blade to a rotor basic body with displacement of an assembling part located between the rotor blade and the rotor basic body
EP2874286A1 (en) Rotor with an insert
EP3069027B1 (en) Rotor device for a vacuum pump, and vacuum pump
DE2106208B2 (en) Hub-shaft connection
EP3260662B1 (en) Bearing element and turbo engine with a bearing element
EP3460249B1 (en) Split flow vacuum pump
EP3532740B1 (en) Rotation system with axial gas bearing
EP3507499A1 (en) Vacuum-pump rotor
EP3261224B1 (en) Electric machine with a rotor and method for producing the electric machine
DE102010064087A1 (en) Method for aligning armature shaft of e.g. window lifter drive in automotive industry, involves provoking local deformation of armature shaft in region of gearing portion or into region adjacent to gearing portion through local heating
EP2913533B1 (en) Stator disc
DE102017211037A1 (en) Device for the axial mounting of a shaft in a housing and compressor device
DE10142567A1 (en) Turbo molecular pump
EP3670951A1 (en) Method for joining a shaft with a hub, in particular for a vacuum pump
DE102011121223A1 (en) Turbo compressor i.e. two-stage turbo compressor, for compaction of gaseous medium, has compressor stages arranged on common shaft in force-fit and form-fit manner, and heat exchanger arranged in flow connection between compressor stages
WO2017157379A1 (en) Process for producing a heat-treated hub carrier provided with a wheel bearing
EP1101944A2 (en) Turbo molecular pump
DE102019219080A1 (en) compressor
EP3282136A1 (en) Flange connection with screw
DE202013008470U1 (en) vacuum pump
DE102020201922A1 (en) compressor
EP2902637A2 (en) Vacuum pump
DE102020214377A1 (en) Rotor assembly with clamping blade
DE102009045468A1 (en) Gear pump, particularly fuel pump, for fuel system of motor vehicle, is provided with two gears in housing, where gears are in mesh with each other and support suction area and pressure area
EP2868865A1 (en) Gas turbine and method for cooling it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160606

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BREZINA, JUERGEN

Inventor name: HENRY, MARKUS

Inventor name: KOEPPEL, PETER

Inventor name: STOLLE, ROBERT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD GMBH

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20190510

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200407

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1311917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200915

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014014742

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201210

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210111

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210109

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014014742

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20201130

26N No opposition filed

Effective date: 20210610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1311917

Country of ref document: AT

Kind code of ref document: T

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200909

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201130

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230423

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231124

Year of fee payment: 10

Ref country code: DE

Payment date: 20231129

Year of fee payment: 10