EP3067564B1 - Umwälzpumpenaggregat - Google Patents
Umwälzpumpenaggregat Download PDFInfo
- Publication number
- EP3067564B1 EP3067564B1 EP15158261.6A EP15158261A EP3067564B1 EP 3067564 B1 EP3067564 B1 EP 3067564B1 EP 15158261 A EP15158261 A EP 15158261A EP 3067564 B1 EP3067564 B1 EP 3067564B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- control device
- circulation pump
- pump assembly
- fluid
- drive motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 113
- 239000007788 liquid Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 16
- 238000011156 evaluation Methods 0.000 claims description 9
- 230000002123 temporal effect Effects 0.000 claims 1
- 230000006870 function Effects 0.000 description 36
- 238000001514 detection method Methods 0.000 description 35
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005461 lubrication Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0066—Control, e.g. regulation, of pumps, pumping installations or systems by changing the speed, e.g. of the driving engine
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/021—Units comprising pumps and their driving means containing a coupling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/0088—Testing machines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D15/00—Control, e.g. regulation, of pumps, pumping installations or systems
- F04D15/02—Stopping of pumps, or operating valves, on occurrence of unwanted conditions
- F04D15/0209—Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid
- F04D15/0218—Stopping of pumps, or operating valves, on occurrence of unwanted conditions responsive to a condition of the working fluid the condition being a liquid level or a lack of liquid supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/06—Lubrication
- F04D29/061—Lubrication especially adapted for liquid pumps
Definitions
- the invention relates to a circulating pump unit and in particular a heating circulating pump unit.
- Umisselzpumpenaggregate are usually formed with wet-running electric drive motors, in which the plain bearings for the rotor by the pumped liquid, usually water, are lubricated. Therefore, prolonged dry running of the bearings can lead to damage and should therefore be avoided.
- the circulating pump unit has an electric drive motor, which is connected to at least one impeller, so that it can be driven in rotation by the electric drive motor.
- the electric drive motor is preferably designed as a canned motor, that is, as a wet-running electric drive motor. More preferably, the drive motor to a rotor which is mounted in plain bearings, which are lubricated by a pumped by the circulation pumping liquid.
- the circulation pump unit is designed to convey water, so that the bearings are lubricated with water.
- the circulating pump unit also has an electronic control device, which controls or regulates the drive motor.
- Such a control device may in particular include a frequency converter, via which the rotational speed and preferably the direction of rotation of the drive motor can be adjusted or regulated.
- the electronic control device is preferably arranged in an electronics housing directly on the drive motor or a stator housing of the drive motor.
- the control device has at least one first fluid-detection function, which serves to detect at least one property of the fluid which is located in the impeller or is conveyed by the impeller.
- the control device controls the drive motor in such a way that it rotates successively with two different rotational speeds predetermined by the control device or in different rotational directions.
- the electrical power consumption is detected by the control device.
- an evaluation is carried out in order to detect the at least one property of the fluid in the impeller.
- the power consumption may be different for different fluids, so that it can be concluded by evaluating the power consumption on certain properties or certain fluids.
- the use of at least two different speeds or directions of rotation has the advantage that a more reliable detection of the property of the fluid to be determined is possible.
- the plurality of different speeds that is, the at least two different speeds, or the different directions of rotation are preferably applied according to the first fluid detection function immediately after one another, since it can be assumed that the hydraulic state of the system, in which the Ummélzpumpenaggregat is integrated , has not changed in essence.
- the dry running can not be detected reliably when taking into account the power consumption with only one rotational speed or direction of rotation.
- the power inputs are detected at different speeds or directions of rotation, further information may be obtained which is sufficient, different characteristics, especially with regard to the viscosity of the fluid.
- different viscosities or different fluids for example, there are different developments of the friction during the acceleration, and thus the power consumption, which can be detected and distinguished by the control device. So it is possible to consider not only two different speeds, but to select a defined speed curve, for example, a ramp-shaped acceleration and during this continuously or in several steps to record the power consumption and evaluate. For this purpose, the control device can be designed accordingly.
- the control device is therefore further preferably designed such that the first fluid-detection function at a start-up of Ummélzpumpenaggregates after a standstill, especially during the initial startup of Ummélzpumpenaggregates is executed. Also, a state in which, as described, the bearings are not yet lubricated with the liquid promoted in operation, but optionally with another substance, such as glycerol, can be detected by applying the inventive first fluid detection function of the control device.
- the control device is designed such that it compares the detected electrical power consumption at the different rotational speeds or in the different directions of rotation and a condition of the fluid in the impeller at a ratio of the detected power consumption, that is, a ratio of the power consumption to each other recognizes. Furthermore, the control device is designed such that it by evaluating the detected electrical power consumption and in particular to the ratio of Power consumption detects if a liquid is in the impeller. So can the normal operating condition be distinguished from dry running. In particular, as stated above, a dry run can be reliably detected even at initial startup of the circulating pump unit.
- the power consumption will be substantially equal in both directions of rotation, so that the ratio of the power consumptions to one another is substantially equal to one.
- the impeller is running in a liquid, for example water
- the power consumption will be higher in one direction of rotation because it has a higher efficiency in a preferred direction of rotation used in normal operation.
- the ratio of the detected power consumptions to each other is substantially unequal to 1, whereby it can be seen that the fluid in the impeller is a liquid and not a gas.
- different properties of the fluid can be distinguished, and particularly preferably the dry run can be recognized by the control device.
- the temperature of the fluid can also be detected by the control device via a sensor and used for the evaluation.
- control device is designed such that the first fluid detection function is used for a first commissioning of a circulating pump unit until the first time a liquid is detected in the impeller by the evaluation of the detected electrical power consumption.
- control device may be designed such that the fluid detection function is used only during the initial startup until the first time a liquid is detected in the circulating pump unit. The control device can then be designed so that it no longer applies the first fluid detection function thereafter.
- control device may be configured such that the first fluid recognition function is again used, for example, even after a longer standstill of the pump unit, which is longer than a predetermined period of time.
- the control device is designed such that, if the recorded power consumption are the same in both directions of rotation or both speeds, it outputs an error message and / or blocks further operation of the circulating pump unit.
- substantially equal power inputs in both directions of rotation are indicative of dry running. Therefore, it is preferable that, when such a condition is detected by the control means, the control means prohibits the operation of the circulation pump assembly to prevent damage to the bearings.
- an error message for example on a display of the control device, is preferably output in order to signal the operator to this state, so that the operator can remedy the situation.
- the control device is designed such that the first fluid detection function described repeatedly executed is, as long as the evaluation of the detected electrical power consumption shows that there is no liquid in the impeller, that is, a dry run is present. If such a condition is detected, for example, after a predetermined pause, the fluid detection function can be restarted to automatically check whether liquid has since entered the circulation pump unit.
- the control device simplifies the commissioning of the circulating pump unit since the circulating pump unit does not have to be restarted, but automatically recognizes the condition in which it can start its normal operation.
- the control device may have a second fluid-detection function, in which the control device during operation, that is, in particular during normal operation of the Umisselzpumpenaggregates, detects the power consumption of the drive motor and compared with at least one predetermined lower limit.
- this second fluid-detection function thus preferably takes place at the operating speed of the drive motor, which results from the demands placed on the circulating pump unit in the respective operating state, in particular hydraulic requirements. That is, the controller preferably does not select a specific speed for the second fluid detection function, but performs this second fluid detection function during operation at the normal operating speed of the circulating pump unit. This takes place during operation continuously or at intervals.
- the second fluid detection function may also preferably serve to detect a dry run. If the impeller promotes air instead of a liquid, the hydraulic resistance is lower, so that the power consumption of the drive motor decreases, so this preferably falls below the predetermined lower limit. If this is the case, then a dry run can be detected by the control device.
- the control device is preferably further configured such that the second fluid recognition function is used after a predetermined property of the fluid in the impeller and in particular a presence of a fluid in the impeller has been detected by means of the first fluid recognition function.
- the first fluid detection function serve to avoid dry running during startup and in particular the initial startup of Umisselzpumpenaggregates, while after successful initial startup then the second fluid detection function is used in further operation, in particular then later recognize a dry run and the pump unit can be switched off if necessary.
- the first fluid detection function is preferably used only to detect a liquid in the impeller for the first time.
- the lower limit in the second fluid recognition function is more preferably a limit curve having a function of the rotational speed of the drive motor. That is, for each speed of the drive motor, there is a corresponding lower limit, so that during operation of the Ummélzpumpenaggregates at each operating speed, a comparison with the lower limit is possible.
- This lower limit is stored in the control device.
- the control device is further preferably designed such that when the lower limit for the power consumption falls below the control device outputs an error message and / or stops the drive motor. Since a dry run is detected in particular when falling below the lower limit, it is desirable to suspend the operation of the drive motor in this state to damage to avoid the bearings.
- an error message is simultaneously output, for example via a display, to the control device in order to signal an error to an operator.
- the control device can also be designed such that it increases the speed and / or the power of the drive motor for the second fluid detection function at least at intervals, in particular increases the power and / or the rotational speed to a possible maximum value , This can be done either at fixed time intervals or else the control device can make such a speed or power increase only in certain operating states of the circulating pump unit in order to reliably detect a fluid and in particular dry running.
- the described lower limit, below which the power consumption suggests dry running is very close to the power consumption occurring during normal operation, so that dry running in this operating state may not be reliably detected.
- control device can be designed such that, upon detection of such an operating state, in which the power consumption is close to the lower limit, it causes a speed increase or increase of power, and then make another check for a possible dry run.
- the lower limit is farther away from the power consumption occurring during normal operation.
- the controller can increase the speed for such a review in a short time.
- control device is designed such that it stops the drive motor falls below the lower limit and after a predetermined period of time, the second fluid detection function under commissioning the drive motor performs again.
- the control device can automatically check whether liquid is again in the impeller. If this is detected, the control device will resume normal operation of the circulating pump unit.
- the predetermined period of time may be a predetermined period of time. During this period, the drive motor is preferably out of operation.
- the control device is further preferably designed such that it switches to a standby state after a predetermined number of startup attempts or after a predetermined period of time in which a startup is not successful, and preferably outputs an error message. If a dry run has been detected with the first fluid detection function or with the second fluid detection function, that is, a power consumption or a ratio of power consumption has been determined, which indicates that there is no liquid in the impeller, are preferably the Fluid recognition functions, as described above, performed repeatedly over a period of time to detect whether there is liquid in the impeller again. If the control device detects liquid in the impeller, it switches the circulating pump unit into normal operation.
- the Umisselzpumpenaggregat can turn off completely or switch to an idle state and further runs refrain from the fluid detection functions. In such a state, an error message is then preferably issued, which signals to the operator that he must check the circulating pump unit and, for example, must manually restart after venting.
- Umisselzpumpenaggregat object of the invention is also a method for operating a circulating pump unit, which is preferably a Um dvslzpumpenaggregat, as described above.
- a first fluid recognition algorithm is provided, which corresponds to the above-described first fluid detection function and according to which a drive motor of Umisselzpumpenaggregates is rotated in turn at two different speeds or in both directions.
- the two rotational speeds or both directions of rotation are preferably applied immediately after one another in order to ensure that the state, in particular the hydraulic resistance of the connected hydraulic system, does not substantially change in this time span.
- the electrical power consumption is detected in each case.
- the detected electrical power consumption for the different speeds or directions of rotation are evaluated to detect at least one property of the fluid and the presence of a liquid in the impeller. This is done in a manner as described above with reference to the circulating pump unit in which this method is used. In this respect, reference is made to the above description.
- the above-described features and preferred features of the circulating pump unit are preferably also the subject of the method according to the invention.
- the recorded at different speeds or in different directions of rotation electrical power consumption are compared with each other, wherein a ratio of the power consumption to each other a condition of the fluid is detected in the circulating pump unit.
- a dry run can be recognized, in particular, by the fact that the recorded power consumptions essentially have the ratio 1 to one another. This corresponds essentially to the same power consumption in both directions of rotation.
- a second fluid recognition algorithm which corresponds to the above-described second fluid recognition function of the circulating pump unit, is preferably used.
- the electric power consumption of the drive motor is compared with a lower limit and a fall below this lower limit as a feature for a particular condition of a fluid in the circulating pump unit and especially for a dry run considered .
- the power consumption for example, from the control device described above, continuously or at predetermined time intervals are detected and compared with a corresponding lower limit.
- the lower limit may also be a limit curve which depends on the rotational speed.
- the second fluid recognition algorithm is preferably used when, according to the first fluid recognition algorithm, a certain property of the fluid in the impeller and in particular for the first time a fluid in the impeller has been detected. Also in this regard, reference is made to the above description with reference to the Umisselzpumpenaggregates.
- circulating pump unit shown is a circulating pump unit, as used for example in heating systems.
- the circulating pump unit has a pump housing 2 with connections 4 for connection to a hydraulic system.
- an impeller 6 is arranged, which is connected via a shaft 8 with the rotor 10 of an electric drive motor.
- the electric drive motor is arranged in a rotor or stator housing 12, which is connected to the pump housing 2.
- the drive motor is designed as a wet-running motor and has a split tube 14 which is cup-shaped and is arranged in the interior of the rotor 10.
- the gap tube 14 surrounding the outer circumference of the stator 16 with the Stator coils arranged.
- the shaft 8 with the rotor 10 is mounted in two plain bearings 18 in the radial direction. Since the interior of the can 14 in conjunction with the interior of the pump housing 2, in which the impeller 6 rotates, is located in the interior of the can 14, a pumped from the impeller 6 liquid, especially water. The conveyed liquid is used to lubricate the bearings 18. In order to ensure adequate lubrication of the bearings 18 in this way, a dry run of the pump unit, in which no liquid is conveyed through the impeller 6, to be avoided.
- Attached to the stator housing 12 is a terminal box or electronics housing 20, in which an electronic control device 22 is arranged.
- the control device 22 controls or controls the drive motor and has in particular a frequency converter, via which the coils of the stator 16 are energized.
- the speed of the drive motor can be changed and controlled via the frequency converter.
- a display device 24 is further arranged for displaying various operating conditions.
- the control device 22 has a fluid detection system, which preferably serves to detect whether the impeller 6 is filled with liquid or runs dry.
- the fluid recognition system is particularly preferably integrated as a software module in the software of the control device 22.
- the control device 22 has corresponding electronic components, in particular a microprocessor, in order to carry out the required functions and software modules.
- the fluid recognition system has two fluid recognition functions or fluid recognition algorithms A1 and A2.
- the first fluid recognition algorithm A1 and the second fluid recognition algorithm A2 are used in different operating states of the pump set.
- step S1 a query is made as to whether a liquid has ever been detected in the circulating pump unit with the aid of the first fluid recognition algorithm A1.
- the control device 22 has a memory in which upon initial detection of liquid in the impeller 6 with the aid of the first fluid recognition algorithm A1, a value representing this state is set permanently, so that this value is maintained even if the circulating pump unit is temporarily switched off ,
- the memory is preferably designed so that it also stores the value in the de-energized state, so that it is permanently stored in the pump unit, whether the pump unit was ever filled with liquid.
- step S1 If it is determined in step S1 when interrogating the value stored in the memory that liquid has never been detected in the circulating pump unit (N), the first fluid recognition algorithm A1 is subsequently started in step S2. If, on the other hand, the question as to whether the circulating pump unit was ever filled with liquid in step S1 is answered by querying the memory of the control device 22 with yes (Y), the second fluid recognition algorithm A2 is subsequently started in step S3. If the first fluid recognition algorithm, which is started in step S2, later detects liquid in the impeller 6 in the manner described below, the second fluid recognition algorithm A2 is subsequently also started, as in FIG Fig. 2 shown.
- Fig. 3 shows the flow of the first fluid detection algorithm.
- the stator 16 is initially energized by the control device 22 in step S4 in such a way that the rotor rotates in a first direction of rotation CW, for example in a clockwise direction. While This rotation is detected by the control device 22, the electrical power consumption of the drive motor. Subsequently, we stopped the drive motor and after a break in the form of the time t 1 , for example 15 seconds, the stator 16 is energized in the following step S5 of the controller 2 such that the rotor 10 in an opposite second direction of rotation CCW, for example counter clockwise, turns. Preferably, this second direction of rotation CCW is the direction of rotation in which the drive motor rotates during normal operation. Also during this operation of the drive motor, the electric power consumption is detected by the control device 22.
- step S6 an evaluation of the electrical power consumptions detected in the two directions of rotation CW and CCW is then carried out by the control device 22. If the power consumptions are substantially equal, this indicates that there is no water in the impeller 6, as this so opposes substantially no resistance to the drive motor. The occurring resistance is thus essentially caused by the bearings 18 and is substantially the same in both directions of rotation CW and CCW.
- the question of water in the impeller is answered in the step S6 in the evaluation with no (N) and it is carried out in the following step S7, the stop of the drive motor.
- the drive motor could be stopped even before the execution of step S6 and would then only be halted in step S7.
- step S 4 After a period of time t 2 , for example 30 seconds, the step S 4 then starts again to check again whether there is liquid in the impeller 6. If different power consumptions for the two directions of rotation CW and CCW are detected in step S6, then this speaks for water in the impeller 6 and the query in step S6 is answered accordingly with yes (Y). Subsequently, in step S8, the second fluid recognition algorithm A2 is started and stored simultaneously in the control device 22, that for the first time liquid was detected in the impeller 6. On the storage of the corresponding value is when restarting the Umdozenslzpumpenaggregates, as based on Fig. 2 explained, then resorted to in step S1.
- the sequence of the second fluid recognition algorithm A2 is based on the Fig. 4-6 described.
- This in Fig. 4 The diagram shown shows the electrical power P plotted against the rotational speed N. In operation, for example, results in the power curve P1, that is, with higher speed increases the power absorbed.
- the second fluid recognition algorithm A2 takes place during normal operation of the circulating pump unit, that is, in this the speed of Ummélzpumpenaggregates is not specifically set for fluid detection, but the speed is set by the controller 22 according to the hydraulic requirements of the circulating pump unit.
- the second fluid recognition algorithm A2 starts, as in FIG Fig. 5 shown with normal operation NB.
- the Control device 22 according to the second fluid recognition algorithm A2 in step S9 running, whether the electric power approaches the limit curve 30 or below. If a reaching of the limit curve 30 is detected by the control device 22 and in particular an undershooting, an inquiry follows in step S10 as to whether a time interval t 3 has elapsed since the last dry run check. If the time period t 3 , which is permanently stored in the control device 22, has not yet expired (N), the control device 22 returns to the normal operation NB according to step S9.
- step S10 If it is determined in step S10 that the time period t 3 has elapsed (Y), the speed is increased in step S11 to the maximum speed N max for checking the dry-running.
- This has the advantage that it is changed to an operating state in which the electrical power occurring in normal operation deviates more strongly from the electrical power occurring in dry running (region 28) and thus the dry run can be better detected.
- the time period t 3 prevents the circulating pump unit changes during operation too often for no reason to the maximum speed N max or maximum power. It is assumed that not so sudden a loss of fluid in the rotor chamber, in which the bearings 18 are located, occurs that no adequate lubrication of the bearing 18 would be more.
- step S 12 If, at the maximum rotational speed N max, it is determined in step S 12 that the electrical power consumption is above the limit curve 30 and thus no dry run is given (N), normal operation NB is changed according to step S 9. If the electric power consumption is below the limit curve 30 even at maximum rotational speed N max , it is concluded that there is dry running and the query in step S 12 is answered in the same way with yes (Y), so that subsequently in step S 13 the circulating pump unit is stopped and a self-test is performed Fig. 6 is started.
- step S13 which is based on Fig. 5 was explained.
- step S14 an error message or other suitable alarm is displayed.
- step S15 a query is made as to whether, after the stop in step S13, a predetermined period of time t 4 , which is stored in the control device 22, has expired. This prevents re-checking for dry running immediately after stopping. If the time period t 4 has not yet elapsed (N), the system returns to step S13.
- step S16 After elapse of the time period t 4 (Y), the display 24 indicates in step S16 that a self-test starts and then the drive motor is started again in step S17. Again, the second fluid recognition algorithm A2 is used. If, according to this, it is determined in step S18, as explained above with reference to step S9, that the electrical power consumption is safely above the limit curve 30 and consequently no dry run is present (N), then the system returns to normal operation NB and the sequence according to FIG Fig. 5 begins again with step S9.
- step S18 If, however, it is determined in step S18 that when the circulating pump unit is started up at the speed according to normal operation NB, the electrical power consumption is at low speed in the vicinity of the limit curve 30 (Y), then in step S19 corresponding to step S11, the speed is increased again to the maximum speed N max . Subsequently, in step S20, which corresponds to step S12 described above, it is checked whether the absorbed power is above or below the limit curve 30. If it is not below the limit curve 30 and thus no dry run is detected, the query is answered in step S20 with no (N) and it is transferred to the normal operation NB according to step S9.
- step S21 a query is made in step S21 as to whether a time limit T has been reached since the beginning of step S13.
- the time limit T may be, for example, a time of 72 hours and is stored permanently in the control device 22. If the time limit T has not yet been reached (N), the described self-test starts again with step S13. However, if the time limit T is reached (Y), a permanent stop of the circulating pump unit preferably with a corresponding error message on the display device 24 takes place in step S22. This permanent stopping of the circulating pump unit means that no further self-checks as to whether liquid is again present in the impeller 6 , and the circulating pump unit must be restarted manually.
- step S23 This can be done in step S23, for example by pressing a corresponding control element 32 on the electronics housing 20, where appropriate, several of the controls 32 must be pressed simultaneously or sequentially to take the circulating pump unit back into operation. Thereafter, the self-test starts again in step S13. Alternatively, the circulating pump unit can be disconnected from the mains. Thereafter, at startup, the procedure would revert to step S1 Fig. 2 start.
- the use of the first fluid recognition algorithm A1 and the second fluid recognition algorithm A2 forms a two-stage process, which ensures that a state can be detected in which the bearings 18 are lubricated not with the liquid to be conveyed but with a previously introduced lubricant, such as glycerol, which has a higher viscosity.
- a previously introduced lubricant such as glycerol
- the higher viscosity leads to a higher friction, which could lead to a power consumption in operation, which above the in Fig. 4 shown limit curve 30, so that with the second fluid detection algorithm A2 this state could not be reliably detected. Therefore, during initial startup, the first fluid recognition algorithm A1 is used in order to be able to recognize this condition as well.
- the first fluid recognition algorithm A1 could also be used later, that is to say after initial startup, in contrast to the example shown, for example in order to be able to recognize different liquids, for example liquids of different viscosity , Therefore, it is assumed that upon rotation of the impeller 6, in the intended direction of rotation, the hydraulic resistance is different than in the opposite direction of rotation. Also by changing the rotational speed, different fluids can be differentiated from the control device 22 in accordance with the second fluid recognition algorithm A2 due to the resulting different performance curves.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Non-Positive-Displacement Pumps (AREA)
Description
- Die Erfindung betrifft ein Umwälzpumpenaggregat und insbesondere ein Heizungs-Umwälzpumpenaggregat.
- Derartige Umwälzpumpenaggregate sind üblicherweise mit nasslaufenden elektrischen Antriebsmotoren ausgebildet, in welchen die Gleitlager für den Rotor durch die geförderte Flüssigkeit, in der Regel Wasser, geschmiert werden. Daher kann ein längerer Trockenlauf der Lager zu einer Beschädigung führen und soll daher vermieden werden.
- Es ist dazu im Stand der Technik bekannt, die Steuerelektronik derartiger Umwälzpumpenaggregate so zu gestalten, dass sie einen Trockenlauf erkennen kann und das Pumpenaggregat rechtzeitig abschalten kann. Zusätzliche Sensoren sollen aus Kostengründen dabei nach Möglichkeit vermieden werden.
- Aus
EP 0 967 475 A1 ist ein Verfahren zur Bestimmung der Viskosität einer von einer Pumpe wie einer Blutpumpe geförderten Flüssigkeit bekannt. Dabei wird die Viskosität aus Messgrößen der Pumpe bestimmt. - Es ist Aufgabe der Erfindung, ein Umwälzpumpenaggregat in der Weise zu verbessern, dass auf einfache Weise ohne zusätzliche Sensoren ein Trockenlauf erkannt werden kann.
- Diese Aufgabe wird durch ein Umwälzpumpenaggregat mit den in Anspruch 1 angegebenen Merkmalen sowie ein Verfahren zum Betrieb eines Umwälzpumpenaggregates mit den in Anspruch 14 angegebenen Merkmalen gelöst. Bevorzugte Ausführungsformen ergeben sich aus den zugehörigen Unteransprüchen, der nachfolgenden Beschreibung sowie den beigefügten Figuren.
- Das erfindungsgemäße Umwälzpumpenaggregat weist einen elektrischen Antriebsmotor auf, welcher mit zumindest einem Laufrad verbunden ist, so dass dieses von dem elektrischen Antriebsmotor drehend angetrieben werden kann. Der elektrische Antriebsmotor ist vorzugsweise als Spaltrohrmotor, das heißt als nasslaufender elektrischer Antriebsmotor, ausgebildet. Weiter bevorzugt weist der Antriebsmotor einen Rotor auf, welcher in Gleitlagern gelagert ist, welche von einer von dem Umwälzpumpenaggregat geförderten Flüssigkeit geschmiert werden. Bevorzugt ist das Umwälzpumpenaggregat zum Fördern von Wasser ausgebildet, so dass die Lager mit Wasser geschmiert werden. Das Umwälzpumpenaggregat weist darüber hinaus eine elektronische Steuereinrichtung auf, weiche den Antriebsmotor steuert bzw. regelt. Eine solche Steuereinrichtung kann insbesondere einen Frequenzumrichter beinhalten, über welchen die Drehzahl und bevorzugt die Drehrichtung des Antriebsmotors einstell- bzw. regelbar ist. Die elektronische Steuereinrichtung ist vorzugsweise in einem Elektronikgehäuse direkt am Antriebsmotor bzw. einem Statorgehäuse des Antriebsmotors angeordnet.
- Erfindungsgemäß weist die Steuereinrichtung zumindest eine erste Fluid-Erkennungsfunktion auf, welche dazu dient, zumindest eine Eigenschaft des Fluids, welches sich in dem Laufrad befindet bzw. von dem Laufrad gefördert wird, zu erkennen. Gemäß dieser ersten Fluid-Erkennungsfunktion steuert die Steuereinrichtung den Antriebsmotor derart an, dass er nacheinander mit zwei unterschiedlichen, von der Steuereinrichtung vorbestimmten Drehzahlen oder in unterschiedlichen Drehrichtungen dreht. Dabei wird von der Steuereinrichtung jeweils die elektrische Leistungsaufnahme erfasst. Im Anschluss erfolgt auf Grundlage der erfassten Leistungsaufnahmen bei den unterschiedlichen Drehzahlen oder Drehrichtungen durch die Steuereinrichtung eine Auswertung, um die zumindest eine Eigenschaft des Fluids in dem Laufrad zu erkennen. Die Leistungsaufnahme und insbesondere eine Entwicklung der Leistungsaufnahme kann bei unterschiedlichen Fluiden unterschiedlich sein, so dass durch Auswertung der Leistungsaufnahmen auf bestimmte Eigenschaften oder bestimmte Fluide geschlossen werden kann. Insbesondere kann so unterschieden werden, ob sich eine Flüssigkeit oder eine Gas, wie beispielsweise Luft, in dem Laufrad befindet. Die Verwendung zumindest zweier unterschiedlicher Drehzahlen oder Drehrichtungen hat den Vorteil, dass eine zuverlässigere Erkennung der zu ermittelnden Eigenschaft des Fluids möglich ist.
- Die mehreren unterschiedlichen Drehzahlen, das heißt die zumindest zwei verschiedenen Drehzahlen, oder die unterschiedlichen Drehrichtungen werden gemäß der ersten Fluid-Erkennungsfunktion bevorzugt unmittelbar nacheinander angewendet, da so davon ausgegangen werden kann, dass sich der hydraulische Zustand der Anlage, in welche das Umwälzpumpenaggregat integriert ist, sich im Wesentlichen nicht geändert hat.
- Wenn lediglich eine Leistungsaufnahme bei einem Betriebszustand berücksichtigt würde, wie das zum Beispiel in der
DE 101 01 099 A1 offenbart ist, bestünde das Risiko einer Fehlinterpretation. Beispielsweise bei der Erstinbetriebnahme derartiger Umwälzpumpenaggregate mit Gleitlagern können diese Gleitlager für die Erstinbetriebnahme mit einem höherviskosen Stoff wie z.B. Glycerin geschmiert sein, so dass bei der Erstinbetriebnahme eine höhere Reibung und damit auch eine höhere Leistungsaufnahme als im Normalbetrieb aufritt. Umgekehrt ist jedoch bei einem Trockenlauf, solange die Lager normal geschmiert sind, die Leistungsaufnahme beispielsweise geringer, als wenn das Laufrad eine Flüssigkeit fördert. Daher kann bei der Erstinbetriebnahme der Trockenlauf bei Berücksichtigung der Leistungsaufnahme bei lediglich einer Drehzahl oder Drehrichtung nicht zuverlässig erkannt werden. Wenn jedoch die Leistungsaufnahmen bei unterschiedlichen Drehzahlen oder Drehrichtungen erfasst werden, können weitere Informationen erlangt werden, welche ausreichen, verschieden Eigenschaften, insbesondere hinsichtlich der Viskosität des Fluids, zu erkennen. Bei unterschiedlichen Viskositäten oder unterschiedlichen Fluiden gibt es beispielsweise bei der Beschleunigung unterschiedliche Entwicklungen der Reibung und damit der Leistungsaufnahme, welche von der Steuereinrichtung erkannt und unterschieden werden können. So ist es möglich, nicht nur zwei unterschiedliche Drehzahlen zu betrachten, sondern einen definierten Drehzahlverlauf, beispielsweise eine rampenförmige Beschleunigung zu wählen und während dieser kontinuierlich oder in mehreren Schritten die Leistungsaufnahme zu erfassen und auszuwerten. Dazu kann die Steuereinrichtung entsprechend ausgebildet sein. - Die Steuereinrichtung ist daher weiter bevorzugt derart ausgebildet, dass die erste Fluid-Erkennungsfunktion bei einer Inbetriebnahme des Umwälzpumpenaggregates nach einem Stillstand, insbesondere bei der Erstinbetriebnahme des Umwälzpumpenaggregates, ausgeführt wird. Auch ein Zustand, in dem, wie beschrieben, die Lager noch nicht mit der im Betrieb geförderten Flüssigkeit geschmiert sind, sondern gegebenenfalls mit einem anderen Stoff, wie beispielsweise Glycerin, kann durch Anwendung der erfindungsgemäßen ersten Fluid-Erkennungsfunktion von der Steuereinrichtung erkannt werden.
- Erfindungsgemäß ist die Steuereinrichtung derart ausgebildet, dass sie die erfassten elektrischen Leistungsaufnahmen bei den verschiedenen Drehzahlen oder in den verschiedenen Drehrichtungen miteinander vergleicht und eine Beschaffenheit des Fluids in dem Laufrad an einem Verhältnis der erfassten Leistungsaufnahmen, das heißt an einem Verhältnis der Leistungsaufnahmen zueinander, erkennt. Ferner ist die Steuereinrichtung derart ausgebildet, dass sie durch Auswertung der erfassten elektrischen Leistungsaufnahmen und insbesondere an dem Verhältnis der Leistungsaufnahmen erkennt, ob sich eine Flüssigkeit in dem Laufrad befindet. So kann der normale Betriebszustand vom Trockenlauf unterschieden werden. Insbesondere kann, wie oben dargelegt, auch bei Erstinbetriebnahme des Umwälzpumpenaggregates ein Trockenlauf sicher erkannt werden. Wenn beispielsweise das Laufrad in zwei Drehrichtungen angetrieben wird und ein Trockenlauf vorliegt, das heißt das Laufrad in Luft dreht, wird die Leistungsaufnahme in beiden Drehrichtungen im Wesentlichen gleich sein, so dass das Verhältnis der Leistungsaufnahmen zueinander im Wesentlichen gleich 1 ist. Wenn jedoch das Laufrad in einer Flüssigkeit, beispielsweise Wasser läuft, wird in einer Drehrichtung die Leistungsaufnahme höher sein, da es in einer bevorzugten Drehrichtung, welche im Normalbetrieb zum Einsatz kommt, einen höheren Wirkungsgrad hat. Somit ist das Verhältnis der erfassten Leistungsaufnahmen zueinander im Wesentlichen ungleich 1, woran erkannt werden kann, dass das Fluid in dem Laufrad eine Flüssigkeit und kein Gas ist. Insofern können unterschiedliche Eigenschaften des Fluids unterschieden werden und besonders bevorzugt kann so der Trockentauf von der Steuereinrichtung erkannt werden. Es ist jedoch auch möglich, andere Fluide bzw. Flüssigkeiten beispielsweise hinsichtlich der Viskosität voneinander zu unterscheiden. Dazu kann gegebenenfalls von der Steuereinrichtung auch noch die Temperatur des Fluids über einen Sensor erfasst werden und zur Auswertung mit herangezogen werden.
- Wenn die Leistungsaufnahmen zu zwei oder mehr unterschiedlichen Drehzahlen erfasst wird, kann sich aufgrund unterschiedlicher Drehzahlentwicklungen ebenfalls ein unterschiedliches Verhältnis der Leistungsaufnahmen in Abhängigkeit der geförderten Fluide, und insbesondere in Abhängigkeit deren Viskositäten einstellen, so dass an dem Verhältnis der Leistungsaufnahmen zueinander Unterschiede der Fluide erkannt werden können.
- Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung ist die Steuereinrichtung derart ausgebildet, dass die erste Fluid-Erkennungsfunktion bei einer Erstinbetriebnahme eines Umwälzpumpenaggregates zur Anwendung kommt, bis durch die Auswertung der erfassten elektrischen Leistungsaufnahmen erstmalig eine Flüssigkeit in dem Laufrad erkannt wird.
- Gemäß einer besonderen Ausführungsform der Erfindung kann die Steuereinrichtung derart ausgebildet sein, dass die Fluid-Erkennungsfunktion lediglich bei der Erstinbetriebnahme zur Anwendung kommt bis erstmalig eine Flüssigkeit in dem Umwälzpumpenaggregat erfasst wird. Die Steuereinrichtung kann dann so ausgebildet sein, dass sie danach die erste Fluid-Erkennungsfunktion nicht mehr anwendet. Alternativ kann die Steuereinrichtung derart ausgebildet sein, dass die erste Fluid-Erkennungsfunktion beispielsweise auch nach einem längeren Stillstand des Pumpenaggregates, welcher länger als eine vorbestimmte Zeitspanne ist, wieder zur Anwendung kommt.
- Besonders bevorzugt ist die Steuereinrichtung derart ausgebildet, dass sie, wenn die erfassten Leistungsaufnahmen bei beiden Drehrichtungen oder beiden Drehzahlen gleich sind, eine Fehlermeldung ausgibt und/oder einen weiteren Betrieb des Umwälzpumpenaggregates blockiert. Wie oben beschrieben sind im Wesentlichen gleiche Leistungsaufnahmen bei beiden Drehrichtungen ein Anzeichen für einen Trockenlauf. Daher ist es bevorzugt, dass, wenn von der Steuereinrichtung ein derartiger Zustand detektiert wird, die Steuereinrichtung den Betrieb des Umwälzpumpenaggregates unterbindet, um eine Schädigung der Lager zu verhindern. Alternativ oder gleichzeitig wird vorzugsweise eine Fehlermeldung, beispielsweise an einem Display der Steuereinrichtung, ausgegeben, um dem Bediener diesen Zustand zu signalisieren, so dass der Bediener Abhilfe schaffen kann.
- Weiter bevorzugt ist die Steuereinrichtung derart ausgebildet, dass die beschriebene erste Fluid-Erkennungsfunktion wiederholt ausgeführt wird, solange die Auswertung der erfassten elektrischen Leistungsaufnahmen ergibt, dass sich keine Flüssigkeit in dem Laufrad befindet, das heißt ein Trockenlauf vorliegt. Wenn ein solcher Zustand erfasst wird, kann beispielsweise nach einer vorbestimmten Pause die Fluid-Erkennungsfunktion erneut gestartet werden, um automatisch zu überprüfen, ob zwischenzeitlich Flüssigkeit in das Umwälzpumpenaggregat gelangt ist. Durch eine solche Ausgestaltung der Steuereinrichtung wird die Inbetriebnahme des Umwälzpumpenaggregates vereinfacht, da das Umwälzpumpenaggregat nicht neu gestartet werden muss, sondern automatisch den Zustand erkennt, in welchem es seinen Normalbetrieb aufnehmen kann.
- Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung kann die Steuereinrichtung eine zweite Fluid-Erkennungsfunktion aufweisen, bei welcher die Steuereinrichtung im Betrieb, das heißt insbesondere im normalen Betrieb des Umwälzpumpenaggregates, die Leistungsaufnahme des Antriebsmotors erfasst und mit zumindest einer vorbestimmten Untergrenze vergleicht. Im normalen Betrieb erfolgt diese zweite Fluid-Erkennungsfunktion somit vorzugsweise mit der Betriebsdrehzahl des Antriebsmotors, welche sich aus den im jeweiligen Betriebszustand an das Umwälzpumpenaggregat gestellten Anforderungen, insbesondere hydraulischen Anforderungen, ergibt. Das heißt die Steuereinrichtung wählt für die zweite Fluid-Erkennungsfunktion vorzugsweise keine spezielle Drehzahl, sondern führt diese zweite Fluid-Erkennungsfunktion im laufenden Betrieb bei der normalen Betriebsdrehzahl des Umwälzpumpenaggregates durch. Dies erfolgt im laufenden Betrieb kontinuierlich oder in zeitlichen Abständen. Die zweite Fluid-Erkennungsfunktion kann bevorzugt ebenfalls dazu dienen, einen Trockenlauf zu erkennen. Wenn das Laufrad Luft anstatt einer Flüssigkeit fördert, ist der hydraulische Widerstand geringer, so dass die Leistungsaufnahme des Antriebsmotors abnimmt, so dass diese vorzugsweise unter die vorbestimmte Untergrenze fällt. Ist dies der Fall, kann so von der Steuereinrichtung ein Trockenlauf erkannt werden.
- Die Steuereinrichtung ist vorzugsweise ferner so ausgebildet, dass die zweite Fluid-Erkennungsfunktion zur Anwendung kommt, nachdem mit Hilfe der ersten Fluid-Erkennungsfunktion eine vorbestimmte Eigenschaft des Fluids in dem Laufrad und insbesondere ein Vorhandensein einer Flüssigkeit in dem Laufrad erkannt worden ist. So kann die erste Fluid-Erkennungsfunktion, wie oben beschrieben, beispielsweise dazu dienen, bei der Inbetriebnahme und insbesondere der Erstinbetriebnahme des Umwälzpumpenaggregates einen Trockenlauf zu vermeiden, während nach erfolgreicher erster Inbetriebnahme dann im weiteren Betrieb die zweite Fluid-Erkennungsfunktion zur Anwendung kommt, insbesondere um dann später einen Trockenlauf zu erkennen und das Pumpenaggregat notfalls abschalten zu können. So wird die erste Fluid-Erkennungsfunktion vorzugsweise nur genutzt, um erstmalig eine Flüssigkeit in dem Laufrad zu detektieren.
- Die Untergrenze bei der zweiten Fluid-Erkennungsfunktion ist weiter bevorzugt eine Grenzkurve mit einer Abhängigkeit von der Drehzahl des Antriebsmotors. Das heißt für jede Drehzahl des Antriebsmotors gibt es eine entsprechende Untergrenze, so dass im laufenden Betrieb des Umwälzpumpenaggregates bei jeder Betriebsdrehzahl ein Vergleich mit der Untergrenze möglich ist. Diese Untergrenze ist in der Steuereinrichtung hinterlegt.
- Die Steuereinrichtung ist weiter bevorzugt derart ausgebildet, dass bei einem Unterschreiten der Untergrenze für die Leistungsaufnahme die Steuereinrichtung eine Fehlermeldung ausgibt und/oder den Antriebsmotor anhält. Da bei Unterschreiten der Untergrenze insbesondere ein Trockenlauf detektiert wird, ist es erstrebenswert, in diesem Zustand den Betrieb des Antriebsmotors auszusetzen, um eine Schädigung der Lager zu vermeiden. Vorzugsweise wird gleichzeitig, beispielsweise über ein Display, an der Steuereinrichtung eine Fehlermeldung ausgegeben, um einem Bediener diesen Fehler zu signalisieren.
- Gemäß einer besonderen Ausführungsform der Erfindung kann die Steuereinrichtung ferner derart ausgebildet sein, dass sie für die zweite Fluid-Erkennungsfunktion zumindest in zeitlichen Abständen die Drehzahl und/oder die Leistung des Antriebsmotors erhöht, insbesondere die Leistung und/oder die Drehzahl auf einen möglichen Maximalwert erhöht. Dies kann entweder in festgelegten zeitlichen Abständen erfolgen oder aber die Steuereinrichtung kann eine solche Drehzahl- oder Leistungserhöhung lediglich in bestimmten Betriebszuständen des Umwälzpumpenaggregates vornehmen, um ein Fluid und insbesondere den Trockenlauf zuverlässig erkennen zu können. Insbesondere bei niedrigen Drehzahlen liegt die beschriebene Untergrenze, bei deren Unterschreiten die Leistungsaufnahme auf einen Trockenlauf schließen lässt, sehr nahe bei der im Normalbetrieb auftretenden Leistungsaufnahme, so dass ein Trockenlauf in diesem Betriebszustand möglicherweise nicht zuverlässig erkannt werden kann. Daher kann die Steuereinrichtung derart ausgebildet sein, dass sie bei Erkennen eines solchen Betriebszustandes, bei welchem die Leistungsaufnahme nahe an der Untergrenze ist, eine Drehzahlerhöhung oder Erhöhung der Leistung veranlasst, um dann eine nochmalige Überprüfung auf einen möglichen Trockenlauf vorzunehmen. In hohen Drehzahlbereichen liegt die Untergrenze weiter entfernt von der im normalen Betriebszustand auftretenden Leistungsaufnahme. So kann die Steuereinrichtung die Drehzahl für eine solche Überprüfung kurzeitig erhöhen.
- Gemäß einer weiteren bevorzugten Ausführungsform ist die Steuereinrichtung derart ausgestaltet, dass sie bei Unterschreiten der Untergrenze den Antriebsmotor anhält und nach einer vorbestimmten Zeitspanne die zweite Fluid-Erkennungsfunktion unter Inbetriebnahme des Antriebsmotors erneut durchführt. So kann die Steuereinrichtung automatisch überprüfen, ob wieder Flüssigkeit in dem Laufrad ist. Sofern dies erkannt wird, wird die Steuereinrichtung den Normalbetrieb des Umwälzpumpenaggregates wieder aufnehmen. Die vorbestimmte Zeitspanne kann eine festgelegte Zeitspanne sein. Während dieser Zeitspanne ist der Antriebsmotor vorzugsweise außer Betrieb.
- Die Steuereinrichtung ist weiter bevorzugt derart ausgebildet, dass sie nach einer vorbestimmten Anzahl von Inbetriebnahmeversuchen oder nach einer vorbestimmten Zeitspanne, in welcher eine Inbetriebnahme nicht gelungen ist, in einen Ruhezustand schaltet und vorzugsweise eine Fehlermeldung ausgibt. Wenn mit der ersten Fluid-Erkennungsfunktion oder mit der zweiten Fluid-Erkennungsfunktion ein Trockenlauf detektiert wurde, das heißt dass eine Leistungsaufnahme bzw. ein Verhältnis von Leistungsaufnahmen ermittelt wurden, welche darauf schließen lassen, dass sich keine Flüssigkeit in dem Laufrad befindet, werden vorzugsweise die Fluid-Erkennungsfunktionen, wie oben beschrieben, über einen gewisse Zeit wiederholt ausgeführt, um zu erkennen, ob sich wieder Flüssigkeit in dem Laufrad befindet. Detektiert die Steuereinrichtung Flüssigkeit in dem Laufrad, schaltet sie das Umwälzpumpenaggregat in den Normalbetrieb. Wenn jedoch über einen vorbestimmten Zeitraum oder eine vorbestimmte Anzahl von Durchläufen der Fluid-Erkennungsfunktionen, das heißt einer vorbestimmten Anzahl von Inbetriebnahmeversuchen, immer noch keine Flüssigkeit in dem Laufrad erkannt wird, kann sich das Umwälzpumpenaggregat ganz ausschalten bzw. in einen Ruhezustand schalten und weitere Durchläufe der Fluid-Erkennungsfunktionen unterlassen. In einem solchen Zustand wird dann vorzugsweise eine Fehlermeldung ausgegeben, welche dem Bediener signalisiert, dass er das Umwälzpumpenaggregat überprüfen muss und z.B. nach Entlüftung gegebenenfalls manuell wieder in Betrieb nehmen muss.
- Neben dem beschriebenen Umwälzpumpenaggregat ist Gegenstand der Erfindung auch ein Verfahren zum Betrieb eines Umwälzpumpenaggregates, wobei es sich vorzugsweise um ein Umwälzpumpenaggregat handelt, wie es vorangehend beschrieben wurde. Gemäß dem erfindungsgemäßen Verfahren ist ein erster Fluid-Erkennungs-Algorithmus vorgesehen, welcher der oben beschriebenen ersten Fluid-Erkennungsfunktion entspricht und gemäß welchem ein Antriebsmotor des Umwälzpumpenaggregates nacheinander mit zwei unterschiedlichen Drehzahlen oder in beiden Drehrichtungen gedreht wird. Die beiden Drehzahlen bzw. beiden Drehrichtungen werden dabei bevorzugt unmittelbar nacheinander zur Anwendung gebracht, um sicherzustellen, dass sich der Zustand, insbesondere der hydraulische Widerstand des angeschlossenen hydraulischen Systems in dieser Zeitspanne im Wesentlichen nicht ändert. Während des Betriebs des Antriebsmotors mit den unterschiedlichen Drehzahlen bzw. in den unterschiedlichen Drehrichtungen wird jeweils die elektrische Leistungsaufnahme erfasst. Im Anschluss werden die erfassten elektrischen Leistungsaufnahmen für die unterschiedlichen Drehzahlen oder Drehrichtungen ausgewertet, um zumindest eine Eigenschaft des Fluids und ein Vorhandensein einer Flüssigkeit in dem Laufrad zu erkennen. Dies erfolgt in einer Weise, wie sie oben anhand des Umwälzpumpenaggregates, in welchem dieses Verfahren zur Anwendung kommt, beschrieben wurde. Insofern wird auf die obige Beschreibung verwiesen. Die oben beschriebenen Merkmale und bevorzugten Merkmale des Umwälzpumpenaggregates sind bevorzugt ebenfalls Gegenstand des erfindungsgemäßen Verfahrens.
- Bevorzugt werden die bei unterschiedlichen Drehzahlen oder in unterschiedlichen Drehrichtungen erfassten elektrischen Leistungsaufnahmen miteinander verglichen, wobei an einem Verhältnis des Leistungsaufnahmen zueinander eine Beschaffenheit des Fluids in dem Umwälzpumpenaggregat erkannt wird. Auch diesbezüglich wird auf die obige Beschreibung bezüglich des Umwälzpumpenaggregates verwiesen. Bei unterschiedlichen Drehrichtungen kann ein Trockenlauf insbesondere daran erkannt werden, dass die erfassten Leistungsaufnahmen im Wesentlichen das Verhältnis 1 zueinander haben. Dies entspricht im Wesentlichen gleichen Leistungsaufnahmen in beiden Drehrichtungen.
- Bei dem Verfahren kommt vorzugsweise ein zweiter Fluid-Erkennungs-Algorithmus, welcher der oben beschriebenen zweiten Fluid-Erkennungsfunktion des Umwälzpumpenaggregates entspricht, zur Anwendung. Gemäß dem zweiten Fluid-Erkennungs-Algorithmus wird im Betrieb, das heißt im Normalbetrieb des Umwälzpumpenaggregates, die elektrische Leistungsaufnahme des Antriebsmotors mit einer Untergrenze verglichen und ein Unterschreiten dieser Untergrenze als Merkmal für eine bestimmte Beschaffenheit eines Fluids in dem Umwälzpumpenaggregat und insbesondere für einen Trockenlauf angesehen. Dazu kann die Leistungsaufnahme, beispielsweise von der oben beschriebenen Steuereinrichtung, kontinuierlich oder in vorbestimmten zeitlichen Abständen erfasst und mit einer entsprechenden Untergrenze verglichen werden. Wie oben beschrieben kann die Untergrenze auch eine Grenzkurve sein, welche von der Drehzahl abhängt.
- Der zweite Fluid-Erkennungs-Algorithmus kommt vorzugsweise dann zur Anwendung, wenn gemäß dem ersten Fluid-Erkennungs-Algorithmus eine bestimmte Eigenschaft des Fluids in dem Laufrad und insbesondere erstmalig eine Flüssigkeit in dem Laufrad erfasst wurde. Auch diesbezüglich wird auf die obige Beschreibung anhand des Umwälzpumpenaggregates verwiesen.
- Nachfolgend wird die Erfindung beispielhaft anhand der beigefügten Figuren beschrieben. In diesen zeigt:
- Fig. 1
- eine teilweise geschnittene perspektivische Ansicht eines erfindungsgemäßen Umwälzpumpenaggregates,
- Fig. 2
- in einem Ablaufdiagramm den Start einer Trockenlauf-Prüfung bei Inbetriebnahme des Umwälzpumpenaggregates,
- Fig. 3
- in einem Ablaufdiagramm einen ersten Fluid-Erkennungs-Algorithmus,
- Fig. 4
- schematisch die Leistungsaufnahme des Pumpenaggregates bei verschiedenen Drehzahlen,
- Fig. 5
- in einem Ablaufdiagramm einen zweiten Fluid-Erkennungs-Algorithmus und
- Fig. 6
- ein Ablaufdiagramm eines Selbsttest bei Anwendung des zweiten Fluid-Erkennungs-Algorithmus.
- Bei dem in
Fig. 1 gezeigten Umwälzpumpenaggregat handelt es sich um ein Umwälzpumpenaggregat, wie es beispielsweise in Heizungsanlagen eingesetzt wird. Das Umwälzpumpenaggregat weist ein Pumpengehäuse 2 mit Anschlüssen 4 zur Verbindung mit einem hydraulischen System auf. Im Inneren des Pumpengehäuses 2 ist ein Laufrad 6 angeordnet, welches über eine Welle 8 mit dem Rotor 10 eines elektrischen Antriebsmotors verbunden ist. Der elektrische Antriebsmotor ist in einem Rotor- bzw. Statorgehäuse 12 angeordnet, welches mit dem Pumpengehäuse 2 verbunden ist. Der Antriebsmotor ist als nasslaufender Motor ausgebildet und weist ein Spaltrohr 14 auf, welches topfförmig ausgebildet ist und in dessem Inneren der Rotor 10 angeordnet ist. Das Spaltrohr 14 am Außenumfang umgebend ist der Stator 16 mit den Statorspulen angeordnet. Die Welle 8 mit dem Rotor 10 ist in zwei Gleitlagern 18 in radialer Richtung gelagert. Da der Innenraum des Spaltrohres 14 in Verbindung mit dem Innenraum des Pumpengehäuses 2, in welchem das Laufrad 6 rotiert, steht, befindet sich im Inneren des Spaltrohres 14 eine von dem Laufrad 6 geförderte Flüssigkeit, insbesondere Wasser. Die geförderte Flüssigkeit dient der Schmierung der Lager 18. Um eine ausreichende Schmierung der Lager 18 in dieser Weise zu gewährleisten, soll ein Trockenlauf des Pumpenaggregates, bei welchem keine Flüssigkeit durch das Laufrad 6 gefördert wird, vermieden werden. - An das Statorgehäuse 12 angesetzt ist ein Klemmenkasten bzw. Elektronikgehäuse 20, in welchem eine elektronische Steuereinrichtung 22 angeordnet ist. Die Steuereinrichtung 22 regelt bzw. steuert den Antriebsmotor und weist insbesondere einen Frequenzumrichter auf, über welchen die Spulen des Stators 16 bestromt werden. Über den Frequenzumrichter kann die Drehzahl des Antriebsmotors geändert und geregelt werden. An der Außenseite des Elektronikgehäuses 20 ist ferner eine Anzeigeeinrichtung 24 zum Anzeigen verschiedener Betriebszustände angeordnet.
- Die Steuereinrichtung 22 weist ein Fluid-Erkennungssystem auf, welches vorzugsweise dazu dient, zu erkennen, ob das Laufrad 6 mit Flüssigkeit gefüllt ist oder trocken läuft. Das Fluid-Erkennungssystem ist besonders bevorzugt als Softwaremodul in die Software der Steuereinrichtung 22 integriert. Die Steuereinrichtung 22 weist entsprechende elektronische Bauteile, insbesondere einen Mikroprozessor auf, um die erforderlichen Funktionen und Softwaremodule auszuführen.
- Das Fluid-Erkennungssystem weist zwei Fluid-ErkennungsFunktionen bzw. Fluid-Erkennungs-Algorithmen A1 und A2 auf. Der erste Fluid-Erkennungs-Algorithmus A1 und der zweite Fluid-Erkennungs-Algorithmus A2 kommen in verschiedenen Betriebszuständen des Pumpenaggregates zur Anwendung.
- Bei Inbetriebnahme des Pumpenaggregates läuft zunächst die in
Fig. 2 gezeigte Prozedur ab. So wird im Schritt S1 eine Abfrage vorgenommen, ob in dem Umwälzpumpenaggregat mit Hilfe des ersten Fluid-Erkennungs-Algorithmus A1 jemals eine Flüssigkeit detektiert wurde. Die Steuereinrichtung 22 weist einen Speicher auf, in welchem bei erstmaliger Detektion von Flüssigkeit in dem Laufrad 6 mit Hilfe des ersten Fluid-Erkennungs-Algorithmus A1 ein diesen Zustand repräsentierender Wert dauerhaft gesetzt wird, so dass auch bei zwischenzeitlichem Ausschalten des Umwälzpumpenaggregates dieser Wert erhalten bleibt. Der Speicher ist bevorzugt so ausgebildet, dass er auch im stromlosen Zustand den Wert speichert, so dass in dem Pumpenaggregat dauerhaft hinterlegt ist, ob das Pumpenaggregat je mit Flüssigkeit gefüllt war. Wird im Schritt S1 bei der Abfrage des im Speicher hinterlegten Wertes festgestellt, dass noch nie Flüssigkeit in dem Umwälzpumpenaggregat detektiert wurde (N), wird nachfolgend im Schritt S2 der erste Fluid-Erkennungs-Algorithmus A1 gestartet. Wird hingegen im Schritt S1 die Frage, ob das Umwälzpumpenaggregat je mit Flüssigkeit gefüllt war, durch Abfrage des Speichers der Steuereinrichtung 22 mit ja (Y) beantwortet, wird nachfolgend im Schritt S3 der zweite Fluid-Erkennungs-Algorithmus A2 gestartet. Wenn der erste Fluid-Erkennungs-Algorithmus, welcher im Schritt S2 gestartet wird, später Flüssigkeit in dem Laufrad 6 in der nachfolgend beschriebenen Weise detektiert, wird anschließend ebenfalls der zweite Fluid-Erkennungs-Algorithmus A2 gestartet, wie inFig. 2 gezeigt. -
Fig. 3 zeigt den Ablauf des ersten Fluid-Erkennungs-Algorithmus. Wenn dieser gestartet wird, wird zunächst im Schritt S4 von der Steuereinrichtung 22 der Stator 16 derart bestromt, dass sich der Rotor in einer ersten Drehrichtung CW, beispielsweise im Uhrzeigersinn, dreht. Während dieser Drehung wird von der Steuereinrichtung 22 die elektrische Leistungsaufnahme des Antriebsmotors erfasst. Anschließend wir der Antriebsmotor angehalten und nach einer Pause in Form der Zeitspanne t1, zum Beispiel 15 Sekunden, wird im nachfolgenden Schritt S5 der Stator 16 von der Steuereinrichtung 2 derart bestromt, dass der Rotor 10 sich in einer entgegengesetzten zweiten Drehrichtung CCW, beispielsweise entgegen dem Uhrzeigersinn, dreht. Bevorzugt ist diese zweite Drehrichtung CCW die Drehrichtung, in welcher sich der Antriebsmotor im normalen Betrieb dreht. Auch während dieses Betriebes des Antriebsmotors wird von der Steuereinrichtung 22 die elektrische Leistungsaufnahme erfasst. - Im nachfolgenden Schritt S6 erfolgt dann durch die Steuereinrichtung 22 eine Auswertung der bei den beiden Drehrichtungen CW und CCW erfassten elektrischen Leistungsaufnahmen. Wenn die Leistungsaufnahmen im Wesentlichen gleich sind, spricht dies dafür, dass sich kein Wasser in dem Laufrad 6 befindet, da dieses so im Wesentlichen keinen Widerstand dem Antriebsmotor entgegensetzt. Der auftretende Widerstand wird so im Wesentlichen durch die Lager 18 hervorgerufen und ist in beiden Drehrichtungen CW und CCW im Wesentlichen gleich. Insofern wird im Schritt S6 bei der Auswertung die Frage nach Wasser in dem Laufrad mit nein (N) beantwortet und es erfolgt im nachfolgenden Schritt S7 der Stopp des Antriebsmotors. Der Antriebsmotor könnte jedoch vorsorglich auch vor Ausführung des Schrittes S6 schon angehalten werden und würde dann im Schritt S7 nur weiter angehalten bleiben. Nach einer Zeitspanne t2, beispielsweise 30 Sekunden, startet dann erneut der Schritt S4, um erneut zu prüfen, ob sich Flüssigkeit im Laufrad 6 befindet. Werden in dem Schritt S6 unterschiedliche Leistungsaufnahmen für die beiden Drehrichtungen CW und CCW erfasst, so spricht dies für Wasser in dem Laufrad 6 und die Abfrage im Schritt S6 wird entsprechend mit ja (Y) beantwortet. Daraufhin wird im Schritt S8 der zweite Fluid-Erkennungs-Algorithmus A2 gestartet und gleichzeitig in der Steuereinrichtung 22 gespeichert, dass erstmalig Flüssigkeit im Laufrad 6 erkannt wurde. Auf die Speicherung des entsprechenden Werts wird beim Neustart des Umwälzpumpenaggregates, wie anhand von
Fig. 2 erläutert, dann im Schritt S1 zurückgegriffen. - Der Ablauf des zweiten Fluid-Erkennungs-Algorithmus A2 wird anhand der
Fig. 4 - 6 beschrieben. Das inFig. 4 gezeigte Diagramm zeigt die elektrische Leistung P aufgetragen über der Drehzahl N. Im Betrieb ergibt sich beispielsweise die Leistungskurve P1, das heißt mit höherer Drehzahl steigt die aufgenommene Leistung. Dabei gibt es zwei Bereiche 26 und 28 wie sie inFig. 4 schematisch gezeigt sind, wobei in den der ersten Bereich 26 Flüssigkeit von dem Laufrad 6 gefördert wird, während der zweite Bereich 28 ein Trockenlaufbereich ist. Beide sind durch eine Grenzkurve 30, welche eine Untergrenze bildet, voneinander getrennt. Das heißt im Normalbetrieb des Umwälzpumpenaggregates, wenn das Laufrad 6 Flüssigkeit fördert, liegt die aufgenommene Leistung P oberhalb der Grenzkurve 30, während sie im Trockenlauf unterhalb der Grenzkurve 30 liegt. Es ist zu erkennen, dass gerade bei niedrigen Drehzahlen tatsächlich auftretende Leistungen gemäß der Leistungskurve P1 sehr nahe an der Grenzkurve 30 liegen können, so dass dort die Unterscheidung zwischen Trockenlauf und Normalbetrieb nicht immer einwandfrei möglich ist. - Der zweite Fluid-Erkennungs-Algorithmus A2 findet im Normalbetrieb des Umwälzpumpenaggregates statt, das heißt in diesem wird die Drehzahl des Umwälzpumpenaggregates nicht für die Fluid-Erkennung speziell eingestellt, sondern die Drehzahl wird von der Steuereinrichtung 22 nach den hydraulischen Anforderungen an das Umwälzpumpenaggregat vorgegeben.
- Der zweite Fluid-Erkennungs-Algorithmus A2 startet, wie in
Fig. 5 gezeigt, mit dem Normalbetrieb NB. In diesem Normalbetrieb prüft die Steuereinrichtung 22 gemäß dem zweiten Fluid-Erkennungs-Algorithmus A2 im Schritt S9 laufend, ob die elektrische Leistung sich der Grenzkurve 30 nähert bzw. diese unterschreitet. Wenn ein Erreichen der Grenzkurve 30 von der Steuereinrichtung 22 und insbesondere ein Unterschreiten erkannt wird, folgt im Schritt S10 eine Abfrage, ob seit der letzten Trockenlaufüberprüfung eine Zeitspanne t3 vergangen ist. Falls die Zeitspanne t3, welche in der Steuereinrichtung 22 fest hinterlegt ist, noch nicht abgelaufen ist (N), geht die Steuereinrichtung 22 wieder in den Normalbetrieb NB gemäß Schritt S9 über. Falls im Schritt S10 festgestellt wird, dass die Zeitspanne t3 abgelaufen ist (Y), wird im Schritt S11 die Drehzahl auf die Maximaldrehzahl Nmax zur Überprüfung des Trockenlaufes erhöht. Dies hat den Vorteil, dass in einen Betriebszustand gewechselt wird, in welchem die im Normalbetrieb auftretende elektrische Leistung stärker von der im Trockenlauf (Bereich 28) auftretenden elektrischen Leistung abweicht und so der Trockenlauf besser detektiert werden kann. Durch vorherige Abfrage der Zeitspanne t3 wird verhindert, dass das Umwälzpumpenaggregat im laufenden Betrieb zu oft grundlos auf die maximale Drehzahl Nmax bzw. maximale Leistung wechselt. Es wird dabei davon ausgegangen, dass nicht derart plötzlich ein Flüssigkeitsverlust im Rotorraum, in welchem die Lager 18 gelegen sind, auftritt, dass keine ausreichende Schmierung der Lager 18 mehr gegeben wäre. Wird nun bei der maximalen Drehzahl Nmax im Schritt S12 festgestellt, dass die elektrische Leistungsaufnahme oberhalb der Grenzkurve 30 liegt und somit kein Trockenlauf gegeben ist (N), wird in den Normalbetrieb NB gemäß Schritt S9 gewechselt. Liegt die elektrische Leistungsaufnahme auch bei maximaler Drehzahl Nmax unterhalb der Grenzkurve 30, wird daraus auf einen Trockenlauf geschlossen und die Abfrage im Schritt S12 entsprechend mit ja (Y) beantwortet, so dass nachfolgend im Schritt S13 das Umwälzpumpenaggregat angehalten wird und ein Selbsttest gemäßFig. 6 gestartet wird. - Beim Anhalten des Umwälzpumpenaggregates aufgrund eines erkannten Trockenlaufes, entweder durch den ersten Fluid-Erkennungs-Algorithmus A1 oder den zweiten Fluid-Erkennungs-Algorithmus A2, wird vorzugsweise von der Steuereinrichtung 22 gleichzeitig eine Fehlermeldung auf der Anzeigeeinrichtung 24 zur Anzeige gebracht, so dass der Nutzer oder Bediener diesen Trockenlauf als Fehler erkennen kann und Abhilfe schaffen kann.
- Um die Inbetriebnahme des Umwälzpumpenaggregates zu erleichtern, wird nach dem durch den zweiten Fluid-Erkennungs-Algorithmus A2 erkannten Trockenlauf der nachfolgend beschriebene Selbsttest gestartet. Der Ablauf gemäß
Fig. 6 beginnt mit dem Schritt S13, welcher anhand vonFig. 5 erläutert wurde. Im Schritt S14 wird eine Fehlermeldung oder ein anderer geeigneter Alarm zur Anzeige gebracht. Im Schritt S15 wird abgefragt, ob nach dem Anhalten im Schritt S13 eine vorbestimmte Zeitspanne t4, welche in der Steuereinrichtung 22 hinterlegt ist, abgelaufen ist. Dadurch wird verhindert, dass eine erneute Überprüfung auf Trockenlauf unmittelbar nach dem Anhalten erfolgt. Ist die Zeitspanne t4 noch nicht abgelaufen (N), wird zum Schritt S13 zurückgekehrt. - Nach Ablauf der Zeitspanne t4 (Y) wird im Schritt S16 in der Anzeige 24 zur Anzeige gebracht, dass ein Selbsttest startet und dann im Schritt S17 der Antriebsmotor wieder gestartet. Dabei kommt wieder der zweite Fluid-Erkennungs-Algorithmus A2 zur Anwendung. Wird gemäß diesem im Schritt S18, wie oben anhand des Schrittes S9 erläutert, festgestellt, dass die elektrische Leistungsaufnahme sicher oberhalb der Grenzkurve 30 liegt und folglich kein Trockenlauf vorhanden ist (N), so wird wieder in den Normalbetrieb NB gewechselt und der Ablauf gemäß
Fig. 5 beginnt wieder mit dem Schritt S9. Wird jedoch im Schritt S18 festgestellt, dass bei Inbetriebnahme des Umwälzpumpenaggregates mit der Drehzahl gemäß Normalbetrieb NB die elektrische Leistungsaufnahme bei geringer Drehzahl in der Nähe der Grenzkurve 30 liegt (Y), so wird im Schritt S19 entsprechend dem Schritt S11 die Drehzahl wieder auf die Maximaldrehzahl Nmax erhöht. Nachfolgend wird im Schritt S20, welcher dem oben beschriebenen Schritt S12 entspricht, geprüft, ob die aufgenommene Leistung oberhalb oder unterhalb der Grenzkurve 30 liegt. Liegt sie nicht unterhalb der Grenzkurve 30 und wird somit kein Trockenlauf festgestellt, wird die Abfrage im Schritt S20 mit nein (N) beantwortet und es wird in den Normalbetrieb NB gemäß Schritt S9 übergegangen. Wird hingegen ein Trockenlauf detektiert (Y), erfolgt im Schritt S21 eine Abfrage, ob eine zeitliche Grenze T seit Beginn des Schrittes S13 erreicht ist. Die zeitliche Grenze T kann beispielsweise eine Zeit von 72 Stunden sein und ist fest in der Steuereinrichtung 22 hinterlegt. Ist die zeitliche Grenze T noch nicht erreicht (N), startet der beschriebene Selbsttest wieder mit dem Schritt S13. Ist die zeitliche Grenze T jedoch erreicht (Y), erfolgt im Schritt S22 ein permanenter Stopp des Umwälzpumpenaggregates mit vorzugsweise einer entsprechenden Fehlermeldung an der Anzeigeeinrichtung 24. Dieses permanente Anhalten des Umwälzpumpenaggregates bedeutet, dass keine weiteren Selbstprüfungen, ob wieder Flüssigkeit im Laufrad 6 vorhanden ist, durchgeführt werden und das Umwälzpumpenaggregat manuell wieder gestartet werden muss. Dies kann im Schritt S23 beispielsweise durch Drücken eines entsprechenden Bedienelementes 32 an dem Elektronikgehäuse 20 erfolgen, wobei gegebenenfalls mehrere der Bedienelemente 32 gleichzeitig oder nacheinander gedrückt werden müssen, um das Umwälzpumpenaggregat wieder in Betrieb zu nehmen. Danach startet der Selbsttest wieder im Schritt S13. Alternativ kann das Umwälzpumpenaggregat vom Stromnetz getrennt werden. Danach würde bei Inbetriebnahme die Prozedur wieder mit dem Schritt S1 gemäßFig. 2 starten. - Die Verwendung des ersten Fluid-Erkennungs-Algorithmus A1 und des zweiten Fluid-Erkennungs-Algorithmus A2 bildet ein zweistufiges Verfahren, welches sicherstellt, dass auch ein Zustand erfasst werden kann, in welchem die Lager 18 nicht mit der zu fördernden Flüssigkeit sondern mit einem zuvor eingebrachten Schmiermittel, wie beispielsweise Glycerin, geschmiert sind, welches eine höhere Viskosität aufweist. Die höhere Viskosität führt zu einer höheren Reibung, welche im Betrieb zu einer Leistungsaufnahme führen könnte, welche oberhalb der in
Fig. 4 gezeigten Grenzkurve 30 liegt, so dass mit dem zweiten Fluid-Erkennungs-Algorithmus A2 dieser Zustand nicht sicher erkannt werden könnte. Daher wird bei der Erstinbetriebnahme der erste Fluid-Erkennungs-Algorithmus A1 angewandt, um auch diesen Zustand erkennen zu können. - Es ist zu verstehen, dass insbesondere der erste Fluid-Erkennungs-Algorithmus A1 auch später, das heißt nach der Erstinbetriebnahme, im Unterschied zu dem gezeigten Beispiel noch zur Anwendung kommen könnte, beispielsweise um unterschiedliche Flüssigkeiten, zum Beispiel Flüssigkeiten unterschiedlicher Viskosität, erkennen zu können. Daher wird davon ausgegangen, dass bei Drehung des Laufrades 6, in der vorgesehenen Drehrichtung, der hydraulische Widerstand anders ist als in entgegengesetzter Drehrichtung. Auch durch Veränderung der Drehzahl können gemäß dem zweiten Fluid-Erkennungs-Algorithmus A2 aufgrund sich ergebender unterschiedlicher Leistungsverläufe verschiedene Flüssigkeiten von der Steuereinrichtung 22 unterschieden werden.
-
- 2
- Pumpengehäuse
- 4
- Anschlüsse
- 6
- Laufrad
- 8
- Welle
- 10
- Rotor
- 12
- Statorgehäuse
- 14
- Spaltrohr
- 16
- Stator
- 18
- Lager
- 20
- Elektronikgehäuse
- 22
- Steuereinrichtung
- 24
- Anzeigeeinrichtung
- 26, 28
- Bereiche der Leistungsaufnahme
- 30
- Grenzkurve
- 32
- Bedienelemente
- A1
- erster Fluid-Erkennungs-Algorithmus (Fluid-Erkennungsfunktion)
- A2
- zweiter Fluid-Erkennungs-Algorithmus (Fluid-Erkennungsfunktion)
- N
- Drehzahl
- Nmax
- maximale Drehzahl
- P
- Leistung
- P1
- Leistungskurve
- CW
- erste Drehrichtung
- CCW
- zweite Drehrichtung
- NB-
- Normalbetrieb
- S1-S23
- Verfahrensschritte
- t1, t2, t3, t4
- Zeitspannen
- T
- zeitliche Grenze
Claims (18)
- Umwälzpumpenaggregat mit einem nasslaufenden elektrischen Antriebsmotor (10, 16), zumindest einem von dem elektrischen Antriebsmotor (10, 16) angetriebenen Laufrad (6) sowie einer elektronischen Steuereinrichtung, welche den Antriebsmotor (10, 16) steuert,
dadurch gekennzeichnet, dass
die Steuereinrichtung (22) zumindest eine erste Fluid-Erkennungsfunktion (A1) aufweist, bei welcher die Steuereinrichtung (22) den Antriebsmotor (10, 16) derart ansteuert, dass er nacheinander mit zumindest zwei unterschiedlichen Drehzahlen oder in unterschiedlichen Drehrichtungen (CW, CCW) dreht, wobei die Steuereinrichtung (22) jeweils die elektrische Leistungsaufnahme (P) erfasst und auf Grundlage einer Auswertung der erfassten elektrischen Leistungsaufnahmen (P) für die unterschiedlichen Drehzahlen oder Drehrichtungen (CW, CCW) erkennt, ob sich eine Flüssigkeit oder Luft in dem Laufrad befindet. - Umwälzpumpenaggregat nach Anspruch 1, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass sie die erfassten elektrischen Leistungsaufnahmen (P) bei den verschiedenen Drehzahlen oder in den verschiedenen Drehrichtungen (CW, CCW) miteinander vergleicht und an einem Verhältnis der erfassten Leistungsaufnahmen erkennt, ob sich eine Flüssigkeit in dem Laufrad (6) befindet.
- Umwälzpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass die erste Fluid-Erkennungsfunktion (A1) bei einer Inbetriebnahme des Umwälzpumpenaggregates nach einem Stillstand ausgeführt wird.
- Umwälzpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass sie, wenn die erfassten Leistungsaufnahmen bei beiden Drehrichtungen (CW, CCW) gleich sind, eine Fehlermeldung ausgibt und/oder einen weiteren Betrieb des Umwälzpumpenaggregates blockiert.
- Umwälzpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass die erste Fluid-Erkennungsfunktion (A1) wiederholt ausgeführt wird, solange die Auswertung der erfassten elektrischen Leistungsaufnahmen ergibt, dass sich keine Flüssigkeit in dem Laufrad (6) befindet.
- Umwälzpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass die erste Fluid-Erkennungsfunktion (A1) bei einer Erstinbetriebnahme des Umwälzpumpenaggregates zur Anwendung kommt bis durch die Auswertung der erfassten elektrischen Leistungsaufnahmen erstmalig eine Flüssigkeit in dem Laufrad (6) erkannt wird.
- Umwälzpumpenaggregat nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Steuereinrichtung (22) eine zweite Fluid-Erkennungsfunktion (A2) aufweist, bei welcher die Steuereinrichtung (22) im Betrieb des Umwälzpumpenaggregates die Leistungsaufnahme der Antriebsmotors (10, 16) erfasst und mit zumindest einer vorbestimmten Untergrenze (30) vergleicht.
- Umwälzpumpenaggregat nach Anspruch 7, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass die zweite Fluid-Erkennungsfunktion (A2) zur Anwendung kommt, nachdem mit der ersten Fluid-Erkennungsfunktion (A1) eine vorbestimmte Eigenschaft des Fluids in dem Laufrad (6) und insbesondere ein Vorhandensein einer Flüssigkeit in dem Laufrad (6) erkannt worden ist.
- Umwälzpumpenaggregat nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass die Untergrenze eine Grenzkurve (30) mit einer Abhängigkeit von der Drehzahl (N) des Antriebsmotors (10, 16) ist.
- Umwälzpumpenaggregat nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass bei einem Unterschreiten der Untergrenze (30) für die Leistungsaufnahme (P) die Steuereinrichtung (22) eine Fehlermeldung ausgibt und/oder den Antriebsmotor (10, 16) anhält.
- Umwälzpumpenaggregat nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass sie für die zweite Fluid-Erkennungsfunktion (A2) zumindest in zeitlichen Abständen die Drehzahl (N) und/oder Leistung (P) des Antriebsmotors (10, 16) erhöht.
- Umwälzpumpenaggregat nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass die Steuereinrichtung (22) derart ausgebildet ist, dass sie bei Unterschreiten der Untergrenze (30) den Antriebsmotor (10, 16) anhält und nach einer vorbestimmten Zeitspanne (t4) die zweite Fluid-Erkennungsfunktion (A2) unter Inbetriebnahme des Antriebsmotors (10, 16)erneut durchführt.
- Umwälzpumpenaggregat nach einem der vorangehenden Ansprüche, dass die Steuereinrichtung (22) derart ausgebildet ist, dass sie nach einer vorbestimmten Anzahl von Inbetriebnahmeversuchen oder nach einer vorbestimmten Zeitspanne (T), in welcher eine Inbetriebnahme nicht gelungen ist, in einen Ruhezustand schaltet und vorzugsweise eine Fehlermeldung ausgibt.
- Verfahren zum Betrieb eines Umwälzpumpenaggregates, welches insbesondere nach einem der vorangehenden Ansprüche ausgebildet ist, gekennzeichnet durch einen ersten Fluid-Erkennungs-Algorithmus (A1), gemäß welchem ein Antriebsmotor (10, 16) des Umwälzpumpenaggregates nacheinander mit zwei unterschiedlichen Drehzahlen oder in beiden Drehrichtungen (CW, CCW) gedreht wird, dabei jeweils die elektrische Leistungsaufnahme (P) erfasst wird und anschließend durch Auswertung der erfassten elektrischen Leistungsaufnahmen (P) für die unterschiedlichen Drehzahlen oder Drehrichtungen (CW, CCW) ein Vorhandensein einer Flüssigkeit in dem Laufrad (6) erkannt wird.
- Verfahren nach Anspruch 14, dadurch gekennzeichnet dass die beiden bei unterschiedlichen Drehzahlen oder in unterschiedlichen Drehrichtungen (CW, CCW) erfassten elektrischen Leistungsaufnahmen (P) miteinander verglichen werden, wobei an einem Verhältnis der Leistungsaufnahmen eine Beschaffenheit des Fluides in dem Umwälzpumpenaggregat erkannt wird.
- Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass gleiche Leistungsaufnahmen in beiden Drehrichtungen (CW, CCW) als Merkmal für einen Trockenlauf angesehen werden.
- Verfahren nach einem der Ansprüche 14 bis 16, gekennzeichnet durch einen zweiten Fluid-Erkennungs-Algorithmus (A2), gemäß dem im Betrieb des Umwälzpumpenaggregates die elektrische Leistungsaufnahme des Antriebsmotors (10, 16) mit einer Untergrenze verglichen wird und ein Unterschreiten dieser Untergrenze (30) als Merkmal für eine bestimmte Beschaffenheit eines Fluides in dem Umwälzpumpenaggregat und insbesondere für einen Trockenlauf angesehen wird.
- Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass der zweite Fluid-Erkennungs-Algorithmus (A2) zur Anwendung kommt, nachdem gemäß dem ersten Fluid-Erkennungs-Algorithmus (A1) eine bestimmte Eigenschaft des Fluids in dem Laufrad (6) und insbesondere eine Flüssigkeit in dem Laufrad (6) erfasst wurde.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15158261.6A EP3067564B1 (de) | 2015-03-09 | 2015-03-09 | Umwälzpumpenaggregat |
CN201610133121.2A CN105952653B (zh) | 2015-03-09 | 2016-03-09 | 循环泵机组 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15158261.6A EP3067564B1 (de) | 2015-03-09 | 2015-03-09 | Umwälzpumpenaggregat |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3067564A1 EP3067564A1 (de) | 2016-09-14 |
EP3067564B1 true EP3067564B1 (de) | 2019-02-06 |
Family
ID=52629462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP15158261.6A Active EP3067564B1 (de) | 2015-03-09 | 2015-03-09 | Umwälzpumpenaggregat |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP3067564B1 (de) |
CN (1) | CN105952653B (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3376040B1 (de) * | 2017-03-14 | 2019-10-30 | Grundfos Holding A/S | Pumpenaggregat |
DE102017004097A1 (de) * | 2017-04-28 | 2018-10-31 | Wilo Se | Verfahren zur Detektion eines abnormalen Betriebszustands eines Pumpenaggregats |
DE102019208148A1 (de) * | 2019-06-05 | 2020-12-10 | Robert Bosch Gmbh | Verfahren zu einem Betrieb zumindest einer Fluidfördervorrichtung |
EP3838082A1 (de) * | 2019-12-19 | 2021-06-23 | Koninklijke Philips N.V. | Strömungsbereitstellungssystem |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0967475B1 (de) * | 1998-06-22 | 2007-11-28 | Levitronix LLC | Verfahren zur Bestimmung der Viskosität einer Flüssigkeit |
DE10064717A1 (de) * | 2000-12-22 | 2002-07-11 | Grundfos As | Verfahren zum Betreiben eines Pumpenaggregats |
DE10101099B4 (de) * | 2001-01-12 | 2006-09-14 | Schmalenberger Gmbh & Co | Verfahren zum Überwachen des Trockenlaufs einer Förderpumpe und nach dem Verfahren arbeitende Förderpumpe |
EP2453558B1 (de) * | 2010-11-11 | 2022-09-14 | Grundfos Management a/s | Pumpenaggregat |
CN103104509B (zh) * | 2013-02-25 | 2015-01-21 | 天津大学 | 变频水泵全工况运行状态获取方法 |
SE1350552A1 (sv) * | 2013-05-07 | 2014-11-08 | Xylem Ip Man S R L | Metod för styrning av en del av en pumpstation |
CN103899542B (zh) * | 2014-04-15 | 2016-04-27 | 合肥华升泵阀股份有限公司 | 一种串并联离心泵 |
-
2015
- 2015-03-09 EP EP15158261.6A patent/EP3067564B1/de active Active
-
2016
- 2016-03-09 CN CN201610133121.2A patent/CN105952653B/zh active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
CN105952653A (zh) | 2016-09-21 |
EP3067564A1 (de) | 2016-09-14 |
CN105952653B (zh) | 2019-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3067564B1 (de) | Umwälzpumpenaggregat | |
DE10213598B4 (de) | Ölpumpe für eine Brennkraftmaschine und Verfahren zum Betrieb derselben | |
EP2453555B1 (de) | Pumpenaggregat | |
EP3449132B1 (de) | Verfahren zur detektion eines abnormalen betriebszustands eines pumpenaggregats | |
DE102010040481A1 (de) | Elektromotorisch angetriebene Ölpumpen-Steuervorrichtung | |
DE10355651B4 (de) | Verfahren zur Optimierung des Wirkungsgrades eines unter Last betriebenen Motors | |
DE602004012583T2 (de) | Starteinrichtung und startverfahren für einen einphasen-induktionsmotor | |
EP0887914A1 (de) | Verfahren zur Beeinflussung der Kommutierung eines kollektorlosen Gleichstrommotors, und Motor zur Durchführung eines solchen Verfahrens | |
WO2009006927A1 (de) | Verfahren zur vermeidung von trockenlauf bei einer kreiselpumpe, pumpenüberwachungsbaustein und anordnung | |
DE10116339A1 (de) | Verfahren zum Betreiben einer Zentrifugalpumpe | |
EP2122177B1 (de) | Pumpenaggregat | |
WO2020025754A1 (de) | Vakuumpumpe | |
WO2018122025A1 (de) | Verfahren zum betreiben eines elektronisch gesteuerten pumpenaggregates | |
WO2018042044A1 (de) | Verfahren und fluidpumpe zum fördern eines fluids in einem fluidkreislauf eines kraftfahrzeugs | |
EP2071186B1 (de) | Vakuumpumpe und Verfahren zum Betrieb | |
EP3652470A1 (de) | Verfahren zur leckageerkennung mittels eines aktuators | |
WO2006122963A1 (de) | Fördereinrichtung mit einer kraftstoffpumpe | |
EP3405673B1 (de) | Verfahren zur detektion eines blockierten ventils eines kältemittelkompressors und ein steuerungssystem für einen kältemittelkompressor | |
EP3759356A1 (de) | Elektrische kühlmittelpumpe | |
EP3212938B1 (de) | Vorrichtung und verfahren zum steuern einer fluidpumpe für ein kraftfahrzeug | |
EP3706308B1 (de) | Vorrichtung zur kontinuierlichen schwingungsüberwachung und verfahren | |
DE10243567B4 (de) | Verfahren zur Ermittlung der Startfähigkeit eines Antriebssystems | |
WO2022128672A1 (de) | Verfahren zum betreiben einer strömungsmaschine, steuergerät | |
EP3259463B1 (de) | Verfahren zur regelung einer kraftstoffförderpumpe | |
DE102021211175A1 (de) | Verfahren zum Betreiben eines Elektromotors, Förderpumpe, Kraftfahrzeug mit einer derartigen Förderpumpe, Computerprogramm und computerlesbares Medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20170314 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20180813 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1095087 Country of ref document: AT Kind code of ref document: T Effective date: 20190215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502015007862 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190506 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190506 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190606 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190507 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502015007862 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190309 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190331 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
26N | No opposition filed |
Effective date: 20191107 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190309 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1095087 Country of ref document: AT Kind code of ref document: T Effective date: 20200309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20150309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200309 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190206 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502015007862 Country of ref document: DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240320 Year of fee payment: 10 Ref country code: GB Payment date: 20240320 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240329 Year of fee payment: 10 Ref country code: FR Payment date: 20240328 Year of fee payment: 10 |