EP3061109A1 - Disjoncteur électrique - Google Patents

Disjoncteur électrique

Info

Publication number
EP3061109A1
EP3061109A1 EP14808929.5A EP14808929A EP3061109A1 EP 3061109 A1 EP3061109 A1 EP 3061109A1 EP 14808929 A EP14808929 A EP 14808929A EP 3061109 A1 EP3061109 A1 EP 3061109A1
Authority
EP
European Patent Office
Prior art keywords
latching
spring
circuit breaker
pawl
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP14808929.5A
Other languages
German (de)
English (en)
Other versions
EP3061109B1 (fr
Inventor
Fabian RÖHRIG
Ralf STUDT
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP3061109A1 publication Critical patent/EP3061109A1/fr
Application granted granted Critical
Publication of EP3061109B1 publication Critical patent/EP3061109B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H3/3005Charging means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H3/3005Charging means
    • H01H3/3021Charging means using unidirectional coupling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H2235/00Springs
    • H01H2235/01Spiral spring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H3/00Mechanisms for operating contacts
    • H01H3/22Power arrangements internal to the switch for operating the driving mechanism
    • H01H3/30Power arrangements internal to the switch for operating the driving mechanism using spring motor
    • H01H3/3031Means for locking the spring in a charged state

Definitions

  • the invention relates to electrical circuit breakers having the features according to the preamble of patent claim 1.
  • circuit breakers are sold by Siemens AG under the product names Siemens 3AH and 3AE circuit-breakers.
  • the previously known circuit breaker have a spring-loaded drive and a manual-winding device with which the spring-loaded drive can be tensioned.
  • the manual winding device comprises in these prior art power switches a hand crank and a two-stage worm gear.
  • the invention has for its object to provide an electric circuit breaker with a manually tensioned spring drive, which has a particularly simple structural design, but still precludes a hazard to operators in the event of malfunction or incorrect operation of the circuit breaker.
  • This object is achieved by an electrical circuit breaker with the features of claim 1.
  • Advantageous embodiments of the circuit breaker according to the invention are specified in subclaims.
  • the manual winding device comprises a rotatable locking disk, a next to the locking disc, in particular on the end face of the locking disc, arranged latch and a standing with the latch in connection manual actuating device for moving the latch
  • the latch is controlled in a locking toothing of the locking disc or einêtbar and move by actuation of the actuating device, the latching pawl and thereby the locking disk along a predetermined NEN desired direction of rotation for tensioning the spring can rotate
  • the locking teeth is asymmetrical so that a power transmission from the latch to the locking disc only along the desired direction of rotation is possible and slipping of the locking disc on the latch takes place when the locking disc along the set direction faster than the pawl turns.
  • a significant advantage of the power switch according to the invention is to be seen in the fact that in this a feedback or feedback on the manual winding device and thus on a hand-lifting device operator is excluded, even if it should come to a malfunction or malfunction of the circuit breaker. Due to the asymmetry of the latching toothing provided according to the invention, it is ensured that the latching disc can ratchet along the latching latch when, in the event of a malfunction or malfunction of the circuit breaker, the latching disc rotates faster along the desired rotational direction than the latching pawl.
  • a force transmission from the latching pawl to the locking disk is thus possible only along the desired direction of rotation, and only if the latching pawl moves faster than the latching disk when actuated by the manual winding device, ie during a user-side clamping or clamping action of the user
  • the latching toothing of the locking disk is a circular arc-shaped external toothing.
  • the locking disk can be achieved that the locking disk only cooperates with the latch when the spring of the spring drive by turning the locking disc along the Sollcardrich- tense. During the relaxation phase of the spring can - be ensured due to the circular arc of the external teeth - that the locking disc is mechanically separated from the latch and a power transmission between see see these two components omitted.
  • the circular arc angle has an angle value between (inclusive) 160 ° and (including) 200 °.
  • the spring of the spring drive is a closing spring and a first rotation angle range of the switching shaft - when turning along the desired direction of rotation - for tensioning the spring and a second rotation angle range of the switching shaft - when turning along the desired direction of rotation - to relax the spring and to turn on the circuit breaker is used.
  • the circular arc-shaped external toothing of the locking disc and the latching pawl are arranged to each other such that the latching pawl engages or can engage in the circular arc-shaped external toothing, when the switching shaft is in the first rotation angle range.
  • the circular arc-shaped external toothing of the locking disc and the latch are arranged to each other such that the latching pawl is out of engagement with the circular arc-shaped external toothing, when the switching shaft is in the second rotation angle range.
  • Pivot axis is parallel to the rocker axis and in the case of nes pivoting of the rocker about the rocker axis, the pivot axis of the latch is also rotated about the rocker axis.
  • the pivoting range of the latching pawl is limited in the direction of the latching disc (or in the direction of the switching shaft) by means of a stop.
  • the manual lifting device comprises a positioning spring which generates a spring force on the latch in the direction of the locking disc.
  • the spring of the spring-loaded drive can be tensioned particularly simply and thus advantageously during rotation of the selector shaft if a spring end of the spring of the spring-loaded drive is mounted eccentrically on the selector shaft relative to the shaft axis and the axis of rotation of the detent disk and the axis of the selector shaft are identical ,
  • the circuit breaker on a backstop which prevents rotation of the locking disc against the desired direction of rotation.
  • the backstop preferably comprises a toothed wheel which is arranged coaxially with the latching disk in a manner fixed against rotation on the switching shaft of the circuit breaker.
  • Figure 1 shows an embodiment of an electrical
  • FIG. 1 shows the relaxed state of the spring
  • FIGS. 2-3 show the tensioning of the spring according to FIG. 1 on the basis of different spring tension states
  • Figure 4 shows the tensioned state of the spring according to Figure 1
  • Figure 5 shows the circuit breaker according to Figure 4, ie in the tensioned state of the spring, in a different view.
  • FIG. 1 shows a manual winding device 10 which is intended for
  • the spring-loaded drive 20 comprises a spring 21 whose bottom end 21a in FIG. 1 is fastened eccentrically to a switching shaft 30 of the circuit breaker by means of a fastening bolt 22 and an eccentric element 23.
  • the upper end of the spring 21b in FIG. 1 is immovable or
  • the spring 21 may be, for example, a switch-on spring whose spring energy is used to switch on the circuit breaker.
  • the lower spring end 21a is pivoted downward from the position shown in FIG. 1 along a desired rotational direction S, by rotating the switching shaft 30 along the desired rotational direction S.
  • the operating Generating device 11 is attached to a first rocker end of a rocker 12 which is pivotable about a rocker axis 13.
  • a pivot axis 14 is arranged, which holds a latch 15 pivotally.
  • the detent pawl 15 is pressed by means of a positioning spring 16 on a circular arc-shaped external toothing 17 of a locking disk 18.
  • a torsion spring 13a serves to rotate the rocker 12 to a predetermined starting position when no manual operation is performed.
  • the pivot axis 14 is preferably parallel to the rocker axis 13, so that in the case of pivoting the rocker 12 about the rocker axis 13, the pivot axis 14, which holds the latch 15 is also rotated about the rocker axis 13.
  • the circular arc-shaped external toothing 17 is asymmetrical, so that a power transmission from the detent pawl 15 to the locking disc 18 only along the desired direction of rotation S is possible and slipping of the locking disc 18 takes place on the latch 15, when the locking disc 18 along the desired direction of rotation S faster than the Locking pawl 15 turns.
  • Such a "faster" rotation of the locking disc 18 relative to the latch 15 may occur, for example, when a not shown in the figure 1 motor drive of the power switch is activated and the spring 21 of the spring drive 20 is additionally tensioned by the motor drive.
  • the circular arc angle of the circular arc-shaped external toothing 17 has a value of approximately 180 °.
  • Such a circular arc angle ensures that the detent pawl 15 is engaged with the locking disc 18 only when a tensioning of the spring 21 from the untensioned state shown in Figure 1 by rotation of the switching shaft 30 along the target rotational direction S should take place.
  • the spring 21 in its tensioned state they - starting from the representation of Figure 1 - by turning the switching shaft 30 and by turning the Detent disc 18 is reached by 180 °, the detent pawl 15 loses its engagement with the external toothing 17 or with the locking disc 18, so that the manual winding device 10 is automatically separated from the spring-loaded drive 20.
  • the manual winding device 10 is operated to tension the spring 21 as follows:
  • the manual actuating device 11 is set into an oscillating movement, by means of which the rocker 12 is pivoted about the rocker axis 13.
  • the pivoting of the rocker 12 about the rocker axis 13 leads to a pivoting of the pivot axis 14 and thus to a movement of the detent pawl 15 tangentially along the external teeth 17 of the locking disk 18.
  • the latching pawl 15 is moved along the desired direction of rotation S is engage the detent pawl 15 in the outer toothing 17 force-transmitting and rotate the locking disc 18 along the desired direction of rotation S, whereby the shift shaft 30 is rotated about the desired direction of rotation S and the spring 21 is tensioned.
  • the circuit breaker according to FIG. 1 is equipped with a backstop 40 which comprises a gearwheel 41.
  • the gear 41 is in communication with a not shown latch mechanism, which is a rotation of the gear 41 and thus a rotation of the
  • FIG. 2 shows the rotation of the detent disk 18 along the desired direction of rotation S as soon as the manual actuating device 11 is actuated and with this, the detent pawl 15 is pushed forward by pivoting the rocker 12. It can be seen that the spring end 21a has already been moved slightly downwards due to the eccentric attachment to the control shaft 30 by the rotation of the control shaft 30.
  • FIG. 3 shows a further state of the spring-loaded drive 20 during the clamping operation in greater detail. It can be seen that the latching pawl 15 engages in a middle region of the external toothing 17 of the latching disc 18 and that the spring 21 of the spring latching device 20 is already partially tensioned by approximately half.
  • FIG. 4 shows the spring 21 or the spring-loaded drive
  • the first rotation angle range is defined in the exemplary embodiment according to FIGS. 1 to 4 by the upper position of the spring end 21a of the spring 21 according to FIG. 1 and the lower position of the spring end 21a of the spring 21 according to FIG.
  • the second rotational angle range of the switching shaft 30 lies between the state according to FIG. 4 and the state according to FIG. 1, when the switching shaft 30 is further rotated along the desired rotational direction S.
  • the manual winding device 10 is preferably equipped with a stop 19 which limits the pivotability of the latching pawl 15 about the pivot axis 14.
  • the stop 19 may be formed, for example, by a slot 19a and a bolt 19b (cf., FIG. 1).
  • 5 shows the circuit breaker according to Figures 1 and 4 again in a different view in the tensioned state of the spring 21. The figure 5 thus shows the same state of the spring 21 and the spring drive 20 as the figure 4.

Landscapes

  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)
  • Transmission Devices (AREA)
  • Breakers (AREA)

Abstract

L'invention concerne un disjoncteur électrique pourvu d'un entraînement à ressort accumulateur (20) comportant un ressort (21) et d'un dispositif de remontage manuel (11), lequel est adapté pour tendre manuellement le ressort (21). Selon l'invention, le dispositif à remontage manuel (11) comporte un disque d'arrêt rotatif (18), un cliquet d'arrêt (15) disposé à côté du disque d'arrêt (18), en particulier au niveau de la face frontale du disque d'arrêt (18), et un dispositif d'actionnement (11) manuel relié au cliquet d'arrêt (15) et destiné à déplacer le cliquet d'arrêt (15). Le cliquet d'arrêt (15) est placé ou peut être placé de manière commandée dans une denture d'encliquetage du disque d'arrêt (18) et peut se déplacer par un actionnement du dispositif d'actionnement (11), ce qui permet ainsi d'amener le disque d'arrêt (18)en rotation le long d'une direction de rotation théorique (S) prédéfinie pour tendre le ressort (21). La denture d'encliquetage est asymétrique de telle manière qu'une transmission de force du cliquet d'arrêt (15) au disque d'arrêt (18) n'est possible que le long de la direction de rotation théorique (S), et un glissement du disque d'arrêt (18) le long du cliquet d'arrêt (15) a lieu lorsque le disque d'arrêt (18), le long de la direction de rotation théorique (S), tourne plus rapidement que le cliquet d'arrêt (15).
EP14808929.5A 2013-12-20 2014-12-02 Disjoncteur électrique Active EP3061109B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013227004.6A DE102013227004B4 (de) 2013-12-20 2013-12-20 Elektrischer Leistungsschalter
PCT/EP2014/076199 WO2015090934A1 (fr) 2013-12-20 2014-12-02 Disjoncteur électrique

Publications (2)

Publication Number Publication Date
EP3061109A1 true EP3061109A1 (fr) 2016-08-31
EP3061109B1 EP3061109B1 (fr) 2018-02-28

Family

ID=52014058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14808929.5A Active EP3061109B1 (fr) 2013-12-20 2014-12-02 Disjoncteur électrique

Country Status (8)

Country Link
US (1) US9953788B2 (fr)
EP (1) EP3061109B1 (fr)
CN (1) CN105830186B (fr)
CA (1) CA2934372C (fr)
DE (1) DE102013227004B4 (fr)
ES (1) ES2671469T3 (fr)
MX (1) MX2016008032A (fr)
WO (1) WO2015090934A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4386798A3 (fr) * 2015-07-03 2024-08-28 General Electric Technology GmbH Unité d'entraînement pour un disjoncteur moyenne ou haute tension

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3689721A (en) * 1971-09-16 1972-09-05 Westinghouse Electric Corp Circuit breaker including ratchet and pawl spring charging means and ratchet teeth damage preventing means
JPS59189519A (ja) * 1983-04-12 1984-10-27 富士電機株式会社 しや断器操作用蓄勢器の駆動装置
US4491709A (en) * 1983-05-09 1985-01-01 Square D Company Motor and blade control for high amperage molded case circuit breakers
JPS61288329A (ja) 1985-06-17 1986-12-18 三菱電機株式会社 遮断器用ばね操作装置
US5489755A (en) * 1994-03-18 1996-02-06 General Electric Company Handle operator assembly for high ampere-rated circuit breaker
DE4416106A1 (de) 1994-04-20 1995-10-26 Siemens Ag Spannvorrichtung für einen Federspeicher
US5883351A (en) 1997-05-27 1999-03-16 General Electric Company Ratcheting mechanism for industrial-rated circuit breaker
DE102006006907A1 (de) 2006-02-09 2007-08-16 Siemens Ag Anordnung insbesondere zum Betätigen einer Transportklinke und Spannvorrichtung für einen Federspeicher eines elektrischen Schalters mit einer derartigen Anordnung

Also Published As

Publication number Publication date
MX2016008032A (es) 2016-10-12
CN105830186A (zh) 2016-08-03
ES2671469T3 (es) 2018-06-06
DE102013227004A1 (de) 2015-06-25
CA2934372C (fr) 2018-07-10
CN105830186B (zh) 2018-12-21
CA2934372A1 (fr) 2015-06-25
EP3061109B1 (fr) 2018-02-28
DE102013227004B4 (de) 2021-06-02
WO2015090934A1 (fr) 2015-06-25
US9953788B2 (en) 2018-04-24
US20160300681A1 (en) 2016-10-13

Similar Documents

Publication Publication Date Title
DE69306728T2 (de) Antrieb für einen Dreistellungsschalter
DE2835879A1 (de) Antriebsverbindung zwischen einem wahlweise betaetigbaren handgriff und einem motorantrieb einerseits und einer federspannwelle andererseits im betaetigungsmechanismus eines selbstschalters
DE10149539B4 (de) Schaltmechanismus für einen Stromkreisunterbrecher mit einem Rotations-Bedienelement
DE2250738A1 (de) Loesbare stromabnehmervorrichtung fuer eine einen im wesentlichen u-foermigen querschnitt aufweisende stromschiene
DE102008004917B4 (de) Fernantrieb zur Betätigung eines elektrischen Schalters
EP3061109B1 (fr) Disjoncteur électrique
DE4128651A1 (de) Elektroschrauber
CH405369A (de) Kraftangetriebene Büromaschine, insbesondere Schreibmaschine, mit ständig umlaufender Antriebswalze
DE2737020C2 (de) Vorrichtung für stufenweisen Bewegungsablauf
DE2139702C3 (de) Elektrisch und von Hand bedienbarer Steuermechanismus zu einem in einem Gehäuse untergebrachten elektrischen Schalter
DE1076713B (de) Zeitschaltvorrichtung fuer elektrische Schreibmaschinen
DE19503679C1 (de) Aufzugsvorrichtung zum Spannen der Einschaltfeder von Antriebseinrichtungen für elektrische Leistungsschalter, insbesondere Vakuum-Leistungsschalter
DE20317950U1 (de) Elektrische Bearbeitungsmaschine
EP0707326A1 (fr) Dispositif inverseur entraîné par un moteur pour la commande d'un interrupteur électrique
DE1690037C3 (de) Federspeicherantrieb für elektrische Schalter
DE643775C (de) Einrichtung zur selbsttaetigen Wiedereinschaltung elektrischer Selbstschalter
DE2942004C2 (de) Elektromotorisch betriebene Haushalts-Küchenmaschine
WO2016155877A1 (fr) Dispositif d'actionnement pour des procédures de réglage de chaises de bureau
EP3218913A1 (fr) Dispositif d'actionnement d'un commutateur rotatif
DE305742C (fr)
DE1515563C (de) Vorrichtung zum sprunghaften Einschalten eines elektrischen Schalters
DE660695C (de) Zwei- oder mehrstufiger handbedienter, als Walzenschalter ausgebildeter Anlassschalter
AT83327B (de) Auslösevorrichtung für selbsttätige elektrische Schalter.
DE202013011544U1 (de) Spannvorrichtung für einen Einschaltenergiespeicher eines Schaltgerätes
DE598120C (de) Elektrischer Zugschalter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502014007470

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01H0003300000

Ipc: H01H0071120000

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 3/30 20060101ALI20170731BHEP

Ipc: H01H 71/12 20060101AFI20170731BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170921

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 974997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014007470

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2671469

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180606

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180228

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180528

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180529

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014007470

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20181129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141202

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180628

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 974997

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191202

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20210322

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20230223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231220

Year of fee payment: 10

Ref country code: FR

Payment date: 20231214

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240219

Year of fee payment: 10

Ref country code: GB

Payment date: 20240102

Year of fee payment: 10

Ref country code: CH

Payment date: 20240305

Year of fee payment: 10