EP3060817A1 - Spreizanker mit federelement - Google Patents
Spreizanker mit federelementInfo
- Publication number
- EP3060817A1 EP3060817A1 EP14784217.3A EP14784217A EP3060817A1 EP 3060817 A1 EP3060817 A1 EP 3060817A1 EP 14784217 A EP14784217 A EP 14784217A EP 3060817 A1 EP3060817 A1 EP 3060817A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- bolt
- expansion
- spring element
- max
- anchor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 238000004873 anchoring Methods 0.000 claims abstract description 5
- 238000003825 pressing Methods 0.000 claims abstract description 3
- 239000002356 single layer Substances 0.000 claims description 5
- 238000000605 extraction Methods 0.000 abstract 1
- 238000006073 displacement reaction Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 5
- 230000006835 compression Effects 0.000 description 3
- 238000007906 compression Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B13/00—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
- F16B13/04—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front
- F16B13/06—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve
- F16B13/063—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander
- F16B13/066—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander fastened by extracting a separate expander-part, actuated by the screw, nail or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B13/00—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
- F16B13/04—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front
- F16B13/06—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve
- F16B13/063—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander
- F16B13/065—Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose with parts gripping in the hole or behind the reverse side of the wall after inserting from the front combined with expanding sleeve by the use of an expander fastened by extracting the screw, nail or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16B—DEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
- F16B43/00—Washers or equivalent devices; Other devices for supporting bolt-heads or nuts
Definitions
- the invention relates to an expansion anchor for anchoring in a borehole in a substrate according to the preamble of claim 1.
- Such an expansion anchor is equipped with a bolt with a front end and a front end opposite the rear end, a bolt arranged on the expansion sleeve, an expansion cone, which is arranged in the region of the front end of the bolt, and which urges the expansion sleeve radially outwards when the expansion cone, in particular together with the bolt, is displaced in a pull-out direction relative to the expansion sleeve, an abutment for the axial pressing of an attachment to the substrate, which is arranged in the region of the rear end of the bolt on the bolt, and a bolt, in particular in the region of the rear end of the bolt, arranged spring element for axially biasing the abutment and preferably also the bolt against the attachment.
- An expansion anchor with spring element is known for example from DE 33 31 097 A1. He has between his trained as a screw head Wderlager and the substrate in which the anchor is set, a spring element. This spring element can partially maintain the bias in the bolt of the expansion anchor when the substrate relaxes in the course of a few hours and days after the anchor has been set.
- the object of the invention is to provide a particularly reliable expansion anchor with particularly good load ratings, especially in cracked concrete, which is also designed to be particularly simple and inexpensive.
- the object is achieved according to the invention by an expansion anchor with the features of claim 1. Preferred embodiments are given in the dependent claims.
- An inventive expansion anchor is characterized in that the axial spring force F of the spring element in the range F min ⁇ F ⁇ F max with
- the invention is based on experiments carried out with expansion anchors in cracked concrete. If a concrete crack in which the expansion anchor is located extends to a typical width of, for example, 0.3 mm to 0.5 mm, the prestressing force in the bolt drops, since the expansion cone and thus the bolt typically range from 0.4 mm to 0.8 mm moved in the extension direction, and the possibly existing spring element relaxed by a corresponding distance. This drop in biasing force can result in reduced anchoring and thus can adversely affect the load characteristics of the armature and, in particular, result in undesirable displacement of the armature as the crack repeatedly opens and closes. Because with decreasing biasing force, in extreme cases to 0 kN, the Aufsp Son Schwarz Sign decreases, and the expansion tabs of the expansion sleeve can be solved in extreme cases of the borehole wall.
- the invention proposes a spring element with a special spring characteristic in the force-displacement diagram.
- the remaining residual spring force F is in a predetermined range between F min and F max , when the spring element initially reaches its maximum spring travel s max when setting the armature had, and has relaxed the spring element, especially at crack opening, then the typical for cracked concrete way of 0.4 mm to 0.8 mm.
- the invention has recognized that, with a spring element dimensioned according to the invention, sufficiently high residual prestresses can be maintained under typical conditions in cracked concrete, so that the above-described negative effect of a crack opening can be largely avoided.
- the invention has recognized that the spring element can be performed at the intended parameters usually still as a single-layer disc spring, so that the production cost and manufacturing costs for the spring element and thus for the entire anchor can be particularly low.
- the spring characteristic at the maximum spring travel s max can bend very steeply upwards.
- a relaxation of 0.4 to 0.8 mm from the maximum travel out can in particular include that the spring element is rebound to this path length of the maximum travel away, so that applies to the spring travel s:
- the axial spring force F of the spring element is at least a single position in the range 0.4 mm to 0.8 mm from the maximum travel out in the range F min ⁇ F ⁇ F max , ie if F min ⁇ F ⁇ F max for at least one spring travel s in the range (s max - 0.8 mm) ⁇ s ⁇ (s max - 0.4 mm) applies.
- the invention defines a line in the force-displacement diagram which is cut by the spring characteristic of the spring element.
- the axial spring force F of the spring element in the entire range 0.4 mm to 0.8 mm out of the maximum spring travel ie for each travel s in the range (s max - 0.8 mm) ⁇ s ⁇ (s max - 0.4 mm ), in the range F min ⁇ F ⁇ F max .
- the invention then defines a rectangle in the force-displacement diagram, in which the spring characteristic of the spring element must lie. As a result, a particularly reliable anchor in cracked concrete can be obtained.
- the spring element according to the invention is, in particular, a compression spring, that is to say a spring which generates an axial spring force during axial compression.
- a compression spring that is to say a spring which generates an axial spring force during axial compression.
- this may in particular relate to the longitudinal axis of the bolt, which may be in particular the symmetry and / or center axis of the bolt.
- the maximum diameter d max of the bolt is preferably measured perpendicular to the longitudinal axis of the bolt.
- the maximum diameter d max of the bolt preferably corresponds approximately to the nominal diameter of the expansible anchor, so in particular the diameter of the borehole, is provided for the expansible anchor.
- the expansion anchor may preferably be a force-controlled expanding expansion anchor.
- the expansion sleeve is displaceably arranged on the bolt along the bolt, in particular fastened thereto.
- the expansion sleeve and / or the bolt suitably consist of a metal material, which, for example, for selectively influencing the friction, may also be coated.
- the expansion sleeve is urged by an oblique surface of the expansion cone radially outward and pressed against the borehole wall in the substrate when the expansion cone is axially displaced relative to the expansion sleeve in the extension direction of the bolt.
- the expansion anchor is anchored in the borehole.
- the extension direction is parallel to the longitudinal axis of the bolt and / or points out of the borehole.
- the distance between the surface of the expansion cone from the longitudinal axis of the bolt against the extension direction that is, with increasing distance from the rear end of the bolt, to.
- the surface of the expansion cone can be strictly conical, but it does not have to.
- the abutment expediently forms a shoulder, in particular a ring step, on which or on which the abutment can act positively against the attachment.
- tensile forces which are directed in the extension direction, can be introduced into the bolt on the abutment.
- the Wderlager can have an external polygon, such as a hexagon, to the tool approach.
- the abutment can be axially fixed and rotatably provided on the bolt and in particular integrally formed therewith be.
- the abutment may also be a separate part of the bolt, which, for example by rotation, axially relative to the bolt can be offset.
- the abutment is preferably made of a metal material.
- the Wderlager axially acts against the spring element when the anchor is set, so that the spring element is clamped between the abutment and the attachment.
- the spring element is preferably on the one hand on Wderlager and on the other hand on the attachment, in each case at least indirectly.
- the spring element can rotate around the pin.
- the spring element is preferably made of a metal material.
- the spring element may be a single-layer disk spring.
- a spring element for axially biasing the abutment against the attachment which is designed as a single-layer disc spring.
- the diaphragm spring may preferably surround the bolt like a ring.
- the diaphragm spring may be configured to be flat upon reaching the maximum spring travel. But it can also have one or more support elements, so that it is not completely flat on block, that is, when reaching the maximum spring travel.
- the expansion anchor has a washer which surrounds the bolt, and / or which is preferably arranged between the spring element and the Wderlager.
- the washer is provided on the rear end of the bolt facing side of the spring element.
- Such a washer can further increase the reliability of the system, in particular by providing a particularly accurate spring characteristic, for example by decoupling torsional forces on the abutment from the spring element.
- a washer between the attachment and the spring element can be provided, ie on the front end of the bolt facing side of the spring element. It can also be provided several washers. But for a particularly cost-effective design, the washer can also be omitted.
- the spring element can rest directly on the attachment and / or Wderlager.
- the expansion cone In a so-called bolt anchor, the expansion cone can be arranged axially fixed on the bolt. When setting the anchor of the expansion cone is then drawn by a common axial movement of the bolt and the expansion cone relative to the expansion sleeve in the expansion sleeve.
- the expansion cone is preferably formed integrally with the bolt.
- the expansion cone may be a part which is separate from the bolt and may preferably be connected to the bolt via corresponding threads.
- the drawing of the expansion cone in the expansion sleeve when setting the anchor can then be preferably at least partially effected by rotation of the bolt relative to the expansion cone, which is converted by a spindle drive, which is formed by the corresponding threads in an axial movement of the expansion cone relative to the bolt.
- the bolt has an external thread in the region of its rear end, and that the abutment is a nut which is screwed onto the external thread.
- the mother thus has an internal thread corresponding to the external thread of the bolt.
- the invention can be used in anchor bolts, in which the expansion sleeve does not reach to the borehole mouth.
- the bolt may have a stop which limits a displacement of the expansion sleeve from the expansion cone, that is, a displacement in the extension direction.
- a stop can ensure in a particularly simple manner that the expansion sleeve reliably penetrates into the borehole together with the bolt.
- the stop is formed by a collar, which can be advantageous in terms of manufacturing technology and in terms of reliability.
- the stop can be arranged axially between the expansion cone and the abutment.
- the maximum diameter d max of the bolt between the expansion cone and the abutment so offset from the expansion cone and offset to the Wderlager determined.
- the maximum diameter d max of the bolt between the expansion cone and the abutment may preferably be a global maximum.
- the maximum diameter d max of the bolt between the expansion cone and the Wderlager can occur in particular on the thread or on the annular collar of the bolt. It is thus particularly preferred that the maximum diameter d max of the bolt between the expansion cone and the abutment of the thread outer diameter of the thread of the bolt is.
- the expansion sleeve has at least one expansion slot.
- the expansion slot can separate two adjacent expansion segments of the expansion sleeve.
- the expansion slot extends from the front end of the expansion sleeve and can facilitate the deformation of the expansion sleeve.
- the invention is used in particular for such bolts in which d max > 4 mm, since in this case F min > 0 kN.
- the invention also relates to a set expansion anchor, wherein the expansion anchor is anchored in the borehole, wherein the spring element biases the abutment of the bolt against the attachment.
- the spring element is in this case at least indirectly, preferably directly on the attachment.
- the spring element is suitably axially between substrate and abutment and / or at least partially, preferably completely, outside the borehole.
- the set anchor is conveniently inserted through a recess, preferably a hole, in the fixture into the wellbore in the substrate.
- Figure 1 is a partially longitudinal sectional view of a set in a concrete substrate inventive expansion anchor
- Figure 2 a force-displacement diagram with an inventive spring characteristic for a
- FIG. 3 is a graph showing with dashed lines the relations according to the invention for F min and
- FIG. 4 shows a partially longitudinally sectioned view of an expansion anchor according to the invention set in a concrete substrate according to a second embodiment
- Figure 5 a partially longitudinal sectional view of a set in a concrete substrate inventive expansion anchor similar to Figure 1, but without a washer.
- the expansion anchor 1 shown has a bolt 10 and an expansion sleeve 20, wherein the expansion sleeve 20 surrounds the bolt 10 in an annular manner.
- the bolt 10 In the region of its front end 51, the bolt 10 has an expansion cone 12 for the expansion sleeve 20, to which a neck region 1 1 adjoins at the rear.
- the bolt 10 has a substantially constant cylindrical cross-section.
- the surface of the bolt 10 is formed as an inclined surface 13, and the diameter of the bolt 10 increases there towards the first end 51, that is, the bolt 10 expands on the expansion cone 12, starting from the neck portion 1 1 to its front first At the end of 51.
- the inclined surface 13 on the expansion cone 12 may be conical in the strict mathematical sense, but this is often not.
- the bolt 10 On the side facing away from the expansion cone 12 of the neck portion 11, the bolt 10 has a trained example as an annular collar stop 17 for the expansion sleeve 20. In the region of its rear end 52, the bolt 10 has an external thread 18 for introducing tensile forces into the bolt 10. On this external thread 18 sits a nut 80, which forms an axial Wderlager 8.
- the nut 80 is provided with an external polygon, in particular an external hexagon, and an internal thread which corresponds to the external thread 18 of the bolt 10.
- the expansion anchor 1 of Figure 1 also has a spring element 7, which surrounds the pin 10 like a ring, and which is exemplified in Figure 1 as a single-layer disc spring.
- the spring element 7 designed as a compression spring is located axially between substrate 5 and Wderlager 8, in particular axially between attachment 6 and abutment 8, and thus can bias the Wderlager 8 and thus the bolt 10 axially relative to the substrate 5 and the attachment 6 with anchor set.
- the spring element 7 is thus arranged on the front end 51 of the bolt 10 facing side of the abutment 8. Between spring element 7 and abutment 8, a washer 78 is still provided according to Figure 1.
- the bolt 10 When setting the expansion anchor 1, the bolt 10 is pushed with its first end 51 first through a recess in the attachment 6 in the direction of the longitudinal axis 100 of the bolt 10 in a borehole 99 in the substrate 5 of Figure 1. Due to the stop 17, which limits a displacement of the expansion sleeve 20 from the expansion cone 12 of time, while the expansion sleeve 20 is introduced into the borehole 99. Then, the bolt 10 is again pulled out of the borehole 99 by pulling the nut 80 forming the wound bearing 8 a little way in the direction of extension 101 running parallel to the longitudinal axis 100.
- the expansion sleeve 20 Due to their friction on the substantially cylindrical wall 98 of the borehole 99, the expansion sleeve 20 thereby remains in the borehole 99 and, as a result, a displacement of the bolt 10 relative to the expansion sleeve 20 occurs. With this displacement, the inclined surface 13 of the expansion cone 12 of the bolt 10 penetrates deeper and deeper into the expansion sleeve 20 that the expansion sleeve 20 is radially expanded in the region of its front end of the inclined surface 13 and pressed against the wall 98 of the borehole 99. By this mechanism, the expansion anchor 1 is fixed in the substrate 5. The nut 80 is preferably further tightened until the spring element 7 is completely compressed, ie has reached its maximum spring travel s max . This is accompanied by an axial nominal prestress in the bolt 10.
- FIG. 2 An example of an inventive spring characteristic of the spring element 7 is shown in FIG.
- Figure 3 shows a diagram with possible limits F min and F max for the residual spring force F at relaxation 0.4 mm to 0.8 mm from the maximum travel out for different d max .
- F min and F max for the residual spring force F at relaxation 0.4 mm to 0.8 mm from the maximum travel out for different d max .
- dashed lines are the inventive relationships
- Fmax d max ⁇ 0.6 kN / mm (upper dashed line in FIG. 3). With points connected by solid lines, values for F ' min (circular points, bottom) and F' max (square points, top) are given, which have been found to be particularly useful in experiments. As FIG. 3 shows, the above-mentioned relationships for F min and F max are linear approximations to these experimental points. Instead of the relationships, the points shown in FIG. 3 and their linear connecting lines F min and F max can also be defined. As shown in FIG. 1, the maximum bolt diameter d max between the expansion cone 12 and the wedge bearing 8, which forms the abscissa in FIG. 3, can be the external thread diameter of the external thread 18 of the bolt 10.
- the expansion anchor 1 is designed as a so-called anchor bolt.
- Another embodiment in which the expansion anchor 1 is designed as a so-called sleeve anchor is shown in FIG.
- the expansion cone 12 in the sleeve anchor of Figure 4 is a separate part from the bolt 10. It has an internal thread which corresponds to an external thread on the bolt 10.
- the expansion sleeve 20 which may also be multi-part, to the well mouth, and the abutment 8 at the rear end of the bolt 10 is formed as a screw head 88, rotatably and axially fixed to the bolt 10 and in particular integrally with formed the bolt 10.
- the bolt 10 is rotated about the screw head 88 about the longitudinal axis 100 in rotation.
- the corresponding threads convert this rotational movement of the bolt 10 into an axial movement of the expansion cone 12 relative to the bolt 10 and thus relative to the expansion sleeve 20, which leads to the insertion of the expansion cone 12 into the expansion sleeve 20.
- a spring element 7 is provided, which can bias the abutment 8 and thus the bolt 10 relative to the substrate 5 and / or the attachment 6.
- the characteristic of the spring element 7 of the armature of Figure 4 is suitably also as explained in connection with Figures 2 and 3 explained.
- a washer 78 is provided between spring element 7 and abutment 8 in each case. But this washer 78 can also be omitted.
- An embodiment without shim is shown in FIG. This embodiment corresponds, except for the absence of the washer, that of Figure 1.
- the washer 78 may be omitted, so that even there, the spring element 7 may abut directly on the abutment 8.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Dowels (AREA)
- Joining Of Building Structures In Genera (AREA)
- Piles And Underground Anchors (AREA)
Abstract
Die Erfindung betrifft einen Spreizanker (1) zum Verankern in einem Bohrloch (99) in einem Substrat (5), mit einem Bolzen (10) mit einem vorderen Ende (51) und einem dem vorderen Ende entgegengesetzten hinteren Ende (52), einer am Bolzen angeordneten Spreizhülse (20), einem Spreizkonus (12), welcher im Bereich des vorderen Endes des Bolzens angeordnet ist, und welcher die Spreizhülse radial nach aussen drängt, wenn der Spreizkonus in einer Auszugrichtung relativ zur Spreizhülse versetzt wird, einem Widerlager (8) zum axialen Anpressen eines Anbauteils (6) an das Substrat, welches im Bereich des hinteren Endes des Bolzens angeordnet ist, und einem am Bolzen angeordneten Federelement (7) zum axialen Vorspannen des Widerlagers gegen das Anbauteil. Erfindungsgemäss ist vorgesehen, dass die axiale Federkraft F des Federelements im Bereich Fmin < F < Fmax mit Fmin= dmax. 0.2 kN/mm - 0.8 kN Fmax= dmax. 0.6 kN/mm liegt, wenn das Federelement axial 0.4 mm bis 0.8 mm aus seinem maximalen Federweg heraus entspannt ist, wobei dmax ein maximaler Durchmesser des Bolzens zwischen dem Spreizkonus und dem Widerlager ist.
Description
Hilti Aktiengesellschaft in Schaan
Fürstentum Liechtenstein
Spreizanker mit Federelement
Die Erfindung betrifft einen Spreizanker zum Verankern in einem Bohrloch in einem Substrat gemäss dem Oberbegriff des Anspruchs 1. Ein solcher Spreizanker ist ausgestattet mit einem Bolzen mit einem vorderen Ende und einem dem vorderen Ende entgegengesetzten hinteren Ende, einer am Bolzen angeordneten Spreizhülse, einem Spreizkonus, welcher im Bereich des vorderen Endes des Bolzens angeordnet ist, und welcher die Spreizhülse radial nach aussen drängt, wenn der Spreizkonus, insbesondere zusammen mit dem Bolzen, in einer Auszugrichtung relativ zur Spreizhülse versetzt wird, einem Widerlager zum axialen Anpressen eines Anbauteils an das Substrat, welches im Bereich des hinteren Endes des Bolzens am Bolzen angeordnet ist, und einem am Bolzen, insbesondere im Bereich des hinteren Endes des Bolzens, angeordneten Federelement zum axialen Vorspannen des Widerlagers und vorzugsweise auch des Bolzens gegen das Anbauteil.
Ein Spreizanker mit Federelement ist beispielsweise aus der DE 33 31 097 A1 bekannt. Er weist zwischen seinem als Schraubenkopf ausgebildeten Wderlager und dem Substrat, in welchem der Anker gesetzt ist, ein Federelement auf. Dieses Federelement kann die Vorspannung im Bolzen des Spreizankers teilweise aufrechterhalten, wenn das Substrat im Verlauf einiger Stunden und Tage nach dem Setzen des Ankers relaxiert.
Weitere Spreizanker mit Federelementen sind aus der DE 30 22 01 1 A1 bekannt. Diese Schrift lehrt, das Federelement so zu dimensionieren, dass es bei Erreichen der vorgeschriebenen Setzkraft des Ankers oder eines vorgegebenen Bruchteils hiervon vollständig eingefedert ist, das heisst in seinem Verformungsweg erschöpft ist. Das Federelement kann damit als visueller Setzkraftanzeiger dienen.
Aufgabe der Erfindung ist es, einen besonders zuverlässigen Spreizanker mit besonders guten Lastwerten, insbesondere in gerissenem Beton, anzugeben, der zugleich besonders einfach und kostengünstig konzeptioniert ist.
Die Aufgabe wird erfindungsgemäss durch einen Spreizanker mit den Merkmalen des Anspruchs 1 gelöst. Bevorzugte Ausführungsformen sind in den abhängigen Ansprüchen angegeben.
Ein erfindungsgemässer Spreizanker ist dadurch gekennzeichnet, dass die axiale Federkraft F des Federelements im Bereich Fmin < F < Fmax mit
Fmin= dmax · 0.2 kN/mm - 0.8 kN
liegt, wenn das Federelement axial 0.4 mm bis 0.8 mm aus seinem maximalen Federweg heraus entspannt ist, wenn also für den Federweg s des Federelements gilt:
(smax - 0.8 mm) < s < (smax - 0.4 mm), wobei dmax ein maximaler Durchmesser des Bolzens zwischen dem Spreizkonus und dem Widerlager und smax der maximale Federweg ist. Die Einheitsbezeichnung„kN" soll dabei in üblicher Weise für die Einheit Kilonewton und die Einheitsbezeichnung„mm" für Millimeter stehen.
Die Erfindung basiert auf Experimenten, die mit Spreizankern in gerissenem Beton durchgeführt wurden. Öffnet sich ein Betonriss, in welchem sich der Spreizanker befindet, auf eine für ein Bauwerk typische Weite von beispielsweise 0.3 mm bis 0.5 mm, so fällt die Vorspannkraft im Bolzen ab, da sich der Spreizkonus und somit der Bolzen typischerweise um 0.4 mm bis 0.8 mm in Auszugrichtung bewegt, und sich das gegebenenfalls vorhandene Federelement um eine entsprechende Wegstrecke entspannt. Dieser Abfall der Vorspannkraft kann zu einer reduzierten Verankerung führen und kann somit negative Folgen für die Lasteigenschaften des Ankers haben und insbesondere zu einer unerwünschten Verschiebung des Ankers führen, wenn sich der Riss wiederholt öffnet und wieder schliesst. Denn mit abnehmender Vorspannkraft, im Extremfall auf 0 kN, nimmt die Aufspreizwirkung ab, und die Spreizlappen der Spreizhülse können sich im Extremfall von der Bohrlochwand lösen.
Hierauf aufbauend schlägt die Erfindung ein Federelement mit einer speziellen Federkennlinie im Kraft-Weg-Diagramm vor. Bei dieser speziellen Federkennlinie liegt die verbleibende Rest-Federkraft F in einem vorgegebenen Bereich zwischen Fmin und Fmax, wenn das Federelement beim Setzen des Ankers zunächst seinen maximalen Federweg smax erreicht
hatte, und sich das Federelement, insbesondere bei Rissöffnung, anschliessend um den für gerissenen Beton typischen Weg von 0.4 mm bis 0.8 mm entspannt hat.
Die Erfindung hat erkannt, dass mit einem erfindungsgemäss dimensionierten Federelement zum einen hinreichend hohe Restvorspannungen bei typischen Bedingungen in gerissenem Beton aufrecht erhalten werden können, so dass der oben beschriebene negative Effekt einer Rissöffnung weitestgehend vermieden werden kann. Insbesondere wurde experimentell beobachtet, dass mit einem solchen Federelement bestehende federfreie Ankersysteme in gerissenem Beton um ca. eine Lastklasse verbessert werden können und/oder eine Laststeigerung von ca. 25% erzielt werden kann. Zum anderen hat die Erfindung erkannt, dass das Federelement bei den vorgesehenen Parametern in der Regel noch als einlagige Tellerfeder ausgeführt werden kann, so dass der Herstellungsaufwand und die Herstellungskosten für das Federelement und somit für den gesamten Anker besonders gering sein können. Insbesondere werden in der Regel keine aufwändigen Federpakete entsprechend DE 33 31 097 A1 benötigt, und es können trotzdem sehr gute Lastwerte in gerissenem Beton erhalten werden. Auch können erfindungsgemäss bei relativ grossen Rissen, wie sie beispielsweise in Seismik-Situationen auftreten können, ausreichende Restvorspannungen erzielt werden.
Wenn das Federelement seinen maximalen Federweg eingenommen hat, das heisst wenn für den Federweg s somit s = smax gilt, ist das Federelement auf Block eingefedert und/oder sein Verformungsweg ist erschöpft. Insbesondere kann die Federkennlinie am maximalen Federweg smax sehr steil nach oben abknicken. Eine Entspannung von 0.4 bis 0.8 mm aus dem maximalen Federweg heraus kann insbesondere beinhalten, dass das Federelement um diese Weglänge vom maximalen Federweg hinweg ausgefedert ist, dass für den Federweg s also gilt:
(smax - 0.8 mm) < s < (smax - 0.4 mm).
Grundsätzlich kann es ausreichen, wenn die axiale Federkraft F des Federelements an zumindest einer einzigen Position im Bereich 0.4 mm bis 0.8 mm aus dem maximalen Federweg heraus im Bereich Fmin < F < Fmax liegt, wenn also Fmin < F < Fmax für zumindest einen Federweg s im Bereich (smax - 0.8 mm) < s < (smax - 0.4 mm) gilt. In diesem Fall definiert die Erfindung eine Linie im Kraft-Weg Diagramm, welche von der Federkennlinie des Federelements geschnitten wird. Besonders bevorzugt ist es aber, wenn die axiale Federkraft F des Federelements im gesamten Bereich 0.4 mm bis 0.8 mm aus dem maximalen Federweg heraus, also für jeden Federweg s im Bereich (smax - 0.8 mm) < s < (smax - 0.4 mm), im Bereich Fmin < F < Fmax liegt. Die Erfindung definiert dann ein Rechteck im Kraft-Weg Diagramm,
in welchem die Federkennlinie des Federelements liegen muss. Hierdurch kann ein im gerissenen Beton besonders zuverlässiger Anker erhalten werden.
Beim erfindungsgemässen Federelement handelt es sich insbesondere um eine Druckfeder, also eine Feder, die bei axialer Kompression eine axiale Federkraft erzeugt. Soweit in dieser Beschreibung von„radial",„axial" und„Umfangsrichtung" die Rede ist, kann sich dies insbesondere auf die Längsachse des Bolzens beziehen, die insbesondere die Symmetrie- und/oder Mittelachse des Bolzens sein kann. Der Durchmesser des Bolzens, insbesondere der maximale Durchmesser dmax des Bolzens, wird vorzugsweise senkrecht zur Längsachse des Bolzens gemessen. Der maximale Durchmesser dmax des Bolzens entspricht vorzugsweise etwa dem Nenndurchmesser des Spreizankers, also insbesondere dem Durchmesser des Bohrlochs, für das der Spreizanker vorgesehen ist.
Der Spreizanker kann bevorzugt ein kraftkontrolliert spreizender Spreizanker sein. Die Spreizhülse ist erfindungsgemäss längs des Bolzens verschiebbar am Bolzen angeordnet, insbesondere befestigt. Die Spreizhülse und/oder der Bolzen bestehen geeigneterweise aus einem Metallmaterial, welches, beispielsweise zur gezielten Beeinflussung der Reibung, auch beschichtet sein kann.
Erfindungsgemäss wird die Spreizhülse von einer schrägen Oberfläche des Spreizkonus radial nach aussen gedrängt und dabei gegen die Bohrlochwand im Substrat gepresst, wenn der Spreizkonus relativ zur Spreizhülse in Auszugrichtung des Bolzens axial versetzt wird. Hierdurch wird der Spreizanker im Bohrloch verankert. Vorzugsweise verläuft die Auszugsrichtung parallel zur Längsachse des Bolzens und/oder zeigt aus dem Bohrloch heraus. Zweckmässigerweise nimmt der Abstand der Oberfläche des Spreizkonus von der Längsachse des Bolzens entgegen der Auszugrichtung, das heisst mit zunehmendem Abstand vom hinteren Ende des Bolzens, zu. Die Oberfläche des Spreizkonus kann streng konisch sein, sie muss dies aber nicht.
Das Widerlager bildet zweckmässigerweise einen Absatz, insbesondere eine Ringstufe, an dem beziehungsweise an der das Widerlager formschlüssig gegen das Anbauteil wirken kann. Insbesondere können am Widerlager Zugkräften, die in Auszugrichtung gerichtet sind, in den Bolzen eingeleitet werden. Das Wderlager kann einen Aussenmehrkant, beispielsweise einen Aussensechskant, zum Werkzeugansatz aufweisen. Insbesondere wenn der Spreizanker als sogenannter Hülsenanker ausgebildet ist, kann das Widerlager axial fest und drehfest am Bolzen vorgesehen sein und insbesondere einstückig mit diesem ausgebildet
sein. Insbesondere wenn der Spreizanker hingegen als sogenannter Bolzenanker ausgebildet ist, kann es sich beim Widerlager auch um ein vom Bolzen ein separates Teil handeln, welches, beispielsweise durch Drehung, axial relativ zum Bolzen versetzt werden kann. Das Widerlager besteht vorzugsweise aus einem Metallmaterial.
Erfindungsgemäss wirkt das Wderlager bei gesetztem Anker axial gegen das Federelement, so dass das Federelement zwischen Widerlager und Anbauteil eingespannt wird. Das Federelement liegt vorzugsweise einerseits am Wderlager und andererseits am Anbauteil an, jeweils zumindest mittelbar. Insbesondere kann das Federelement den Bolzen umlaufen. Das Federelement besteht vorzugsweise aus einem Metallmaterial. Insbesondere kann die Rest-Federkraft F nach axialer Entspannung von 0.4 mm bis 0.8 mm aus dem maximalen Federweg heraus im Bereich zwischen 2.5 kN und 7 KN liegen.
Wie bereits weiter oben erwähnt kann es besonders vorteilhaft sein, dass das Federelement eine einlagige Tellerfeder ist. Insbesondere kann nach der Erfindung genau ein Federelement zum axialen Vorspannen des Widerlagers gegen das Anbauteil vorgesehen sein, welches als einlagige Tellerfeder ausgebildet ist. Die Tellerfeder kann den Bolzen vorzugsweise ringartig umgeben. Die Tellerfeder kann so konfiguriert sein, dass sie bei Erreichen des maximalen Federweges flach ist. Sie kann aber auch ein oder mehrere Stützelemente aufweisen, so dass sie auf Block, das heisst bei Erreichen des maximalen Federweges, nicht völlig flach ist.
Es kann vorgesehen sein, dass der Spreizanker eine Unterlegscheibe aufweist, die den Bolzen umgibt, und/oder die vorzugsweise zwischen dem Federelement und dem Wderlager angeordnet ist. Vorzugsweise ist also die Unterlegscheibe auf der dem hinteren Ende des Bolzens zugewandten Seite des Federelements vorgesehen. Eine solche Unterlegscheibe kann die Zuverlässigkeit des Systems noch weiter erhöhen, insbesondere indem sie für eine besonders genaue Federkennlinie sorgt, beispielsweise indem sie Torsionskräfte am Widerlager vom Federelement entkoppelt. Alternativ oder zusätzlich kann eine Unterlegscheibe zwischen dem Anbauteil und dem Federelement vorgesehen werden, also auf der dem vorderen Ende des Bolzens zugewandten Seite des Federelements. Es können auch mehrere Unterlegscheiben vorgesehen sein. Für eine besonders kostengünstige Ausführung kann die Unterlegscheibe aber auch entfallen. Insbesondere kann das Federelement unmittelbar am Anbauteil und/oder Wderlager anliegen.
Bei einem sogenannten Bolzenanker kann der Spreizkonus axial fest am Bolzen angeordnet sein. Beim Setzen des Ankers wird der Spreizkonus dann durch eine gemeinsame axiale Bewegung des Bolzens und des Spreizkonus relativ zur Spreizhülse in die Spreizhülse eingezogen. Der Spreizkonus ist dabei vorzugsweise einstückig mit dem Bolzen ausgebildet. Alternativ kann bei einem sogenannten Hülsenanker der Spreizkonus ein vom Bolzen separates Teil sein und vorzugsweise über korrespondierende Gewinde mit dem Bolzen verbunden sein. Das Einziehen des Spreizkonus in die Spreizhülse beim Setzen des Ankers kann dann vorzugsweise zumindest teilweise durch Rotation des Bolzens relativ zum Spreizkonus bewirkt werden, welche von einem Spindeltrieb, der von den korrespondierenden Gewinden gebildet wird, in eine Axialbewegung des Spreizkonus relativ zum Bolzen umgesetzt wird.
Besonders bevorzugt ist es, insbesondere bei einem Bolzenanker, dass der Bolzen im Bereich seines hinteren Endes ein Aussengewinde aufweist, und dass das Widerlager eine Mutter ist, die auf das Aussengewinde aufgeschraubt ist. Die Mutter weist also ein zum Aussengewinde des Bolzens korrespondierendes Innengewinde auf. Durch eine solche Anordnung kann ein Bolzenanker besonders einfach durch Aufbringen eines Drehmoments an der Mutter gesetzt und vorgespannt werden.
Vorzugsweise kann die Erfindung bei Bolzenankern zum Einsatz kommen, bei denen die Spreizhülse nicht bis zum Bohrlochmund reicht. Insbesondere in diesem Fall kann der Bolzen einen Anschlag aufweisen, der eine Verschiebung der Spreizhülse vom Spreizkonus hinweg begrenzt, das heisst eine Verschiebung in Auszugrichtung. Ein solcher Anschlag kann in besonders einfacher Weise gewährleisten, dass die Spreizhülse zuverlässig zusammen mit dem Bolzen in das Bohrloch eindringt. Vorzugsweise ist der Anschlag durch einen Ringbund gebildet, was fertigungstechnisch und im Hinblick auf die Zuverlässigkeit vorteilhaft sein kann. Insbesondere kann der Anschlag axial zwischen dem Spreizkonus und dem Widerlager angeordnet sein.
Erfindungsgemäss wird der maximale Durchmesser dmax des Bolzens zwischen dem Spreizkonus und dem Widerlager, also versetzt zum Spreizkonus und versetzt zum Wderlager, bestimmt. Bei dem maximalen Durchmesser dmax des Bolzens zwischen dem Spreizkonus und dem Widerlager kann es sich vorzugsweise um ein globales Maximum handeln. Der maximale Durchmesser dmax des Bolzens zwischen dem Spreizkonus und dem Wderlager kann insbesondere am Gewinde oder am Ringbund des Bolzens auftreten. Besonders bevorzugt ist es also, dass der maximale Durchmesser dmax des Bolzens zwischen dem Spreizkonus und dem Widerlager der Gewindeaussendurchmesser des Gewindes des Bolzens ist.
Zweckmässigerweise kann vorgesehen sein, dass die Spreizhülse zumindest einen Spreizschlitz aufweist. Der Spreizschlitz kann zwei benachbarte Spreizsegmente der Spreizhülse trennen. Der Spreizschlitz geht vom vorderen Ende der Spreizhülse aus und kann die Deformation der Spreizhülse erleichtern.
Die Erfindung kommt insbesondere bei solchen Bolzen zum Einsatz, bei denen dmax > 4mm ist, da in diesem Fall Fmin > 0 kN ist.
Die Erfindung betrifft auch einen gesetzten Spreizanker, bei dem der Spreizanker im Bohrloch verankert ist, wobei das Federelement das Widerlager des Bolzens gegen das Anbauteil vorspannt. Das Federelement liegt hierbei zumindest mittelbar, vorzugsweise unmittelbar am Anbauteil an. Das Federelement befindet sich geeigneterweise axial zwischen Substrat und Widerlager und/oder zumindest bereichsweise, vorzugsweise vollständig, ausserhalb des Bohrlochs. Der gesetzte Anker ist zweckmässigerweise durch eine Ausnehmung, vorzugsweise ein Loch, im Anbauteil hindurch in das Bohrloch im Substrat eingeführt.
Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele näher erläutert, die schematisch in den beiliegenden Figuren dargestellt sind, wobei einzelne Merkmale der nachfolgend gezeigten Ausführungsbeispiele im Rahmen der Erfindung grundsätzlich einzeln oder in beliebiger Kombination realisiert werden können. In den Figuren zeigen schematisch:
Figur 1 : eine teilweise längsgeschnittene Ansicht eines in einem Betonsubstrat gesetzten erfindungsgemässen Spreizankers;
Figur 2: ein Kraft-Weg-Diagramm mit einer erfindungsgemässen Federkennlinie für einen
Spreizanker gemäss Figur 1 mit dmax = 12 mm, wobei zusätzlich schematisch der geometrische Zustand des Federelements (komplett entspannt, teilentspannt oder flach) gezeigt ist;
Figur 3: einen Graph, der mit Strichlinien die erfindungsgemässen Relationen für Fmin und
Fmax und mit durchgehend verbundenen Punkten experimentell ermittelte besonders vorteilhafte Grenzwerte für Fmin und Fmax zeigt;
Figur 4: eine teilweise längsgeschnittene Ansicht eines in einem Betonsubstrat gesetzten erfindungsgemässen Spreizankers gemäss einer zweiten Ausführungsform; und
Figur 5: eine teilweise längsgeschnittene Ansicht eines in einem Betonsubstrat gesetzten erfindungsgemässen Spreizankers ähnlich Figur 1 , jedoch ohne Unterlegscheibe.
Gleich wirkende Elemente sind in den Figuren mit denselben Bezugszeichen gekennzeichnet.
Die Figur 1 zeigt ein Ausführungsbeispiel eines erfindungsgemässen Spreizankers 1. Der gezeigte Spreizanker 1 weist einen Bolzen 10 und eine Spreizhülse 20 auf, wobei die Spreizhülse 20 den Bolzen 10 ringförmig umgibt. Im Bereich seines vorderen Endes 51 weist der Bolzen 10 einen Spreizkonus 12 für die Spreizhülse 20 auf, an den sich rückwärtig ein Halsbereich 1 1 stetig anschliesst.
Im Halsbereich 11 weist der Bolzen 10 einen im Wesentlichen konstanten zylindrischen Querschnitt auf. Am hieran anschliessenden Spreizkonus 12 ist die Oberfläche des Bolzens 10 als Schrägfläche 13 ausgebildet, und der Durchmesser des Bolzens 10 nimmt dort zum ersten Ende 51 hin zu, das heisst der Bolzen 10 weitet sich am Spreizkonus 12 ausgehend vom Halsbereich 1 1 zu seinem vorderen ersten Ende 51 hin auf. Die Schrägfläche 13 am Spreizkonus 12 kann konisch im streng mathematischen Sinne sein, muss dies aber häufig nicht.
Auf der dem Spreizkonus 12 abgewandten Seite des Halsbereichs 11 weist der Bolzen 10 einen beispielsweise als Ringbund ausgebildeten Anschlag 17 für die Spreizhülse 20 auf. Im Bereich seines hinteren Endes 52 weist der Bolzen 10 ein Aussengewinde 18 zur Einleitung von Zugkräften in den Bolzen 10 auf. Auf diesem Aussengewinde 18 sitzt eine Mutter 80, die ein axiales Wderlager 8 bildet. Die Mutter 80 ist mit einem Aussenmehrkant, insbesondere einem Aussensechskant, und einem Innengewinde versehen, welches mit dem Aussengewinde 18 des Bolzens 10 korrespondiert.
Der Spreizanker 1 der Figur 1 weist darüber hinaus ein Federelement 7 auf, welches den Bolzen 10 ringartig umgibt, und welches in Figur 1 beispielhaft als einlagige Tellerfeder dargestellt ist. Das als Druckfeder ausgebildete Federelement 7 befindet sich bei gesetztem Anker axial zwischen Substrat 5 und Wderlager 8, insbesondere axial zwischen Anbauteil 6 und Widerlager 8, und kann somit das Wderlager 8 und damit den Bolzen 10 axial gegenüber dem Substrat 5 und dem Anbauteil 6 vorspannen. Das Federelement 7 ist also auf der dem vorderen Ende 51 des Bolzens 10 zugewandten Seite des Widerlagers 8 angeordnet.
Zwischen Federelement 7 und Widerlager 8 ist gemäss Figur 1 noch eine Unterlegscheibe 78 vorgesehen.
Beim Setzen des Spreizankers 1 wird der Bolzen 10 mit seinem ersten Ende 51 voran durch eine Ausnehmung im Anbauteil 6 hindurch in Richtung der Längsachse 100 des Bolzens 10 in ein Bohrloch 99 im Substrat 5 aus Figur 1 geschoben. Aufgrund des Anschlags 17, der eine Verschiebung der Spreizhülse 20 vom Spreizkonus 12 hinweg begrenzt, wird dabei auch die Spreizhülse 20 in das Bohrloch 99 eingebracht. Sodann wird der Bolzen 10 durch Anziehen der das Wderlager 8 bildenden Mutter 80 wieder ein Stück weit in der parallel zur Längsachse 100 verlaufenden Auszugrichtung 101 aus dem Bohrloch 99 herausgezogen. Aufgrund ihrer Reibung an der im Wesentlichen zylindrischen Wand 98 des Bohrlochs 99 bleibt die Spreizhülse 20 dabei im Bohrloch 99 zurück und es kommt infolgedessen zu einer Verschiebung des Bolzens 10 relativ zur Spreizhülse 20. Bei dieser Verschiebung dringt die Schrägfläche 13 des Spreizkonus 12 des Bolzens 10 immer tiefer so in die Spreizhülse 20 ein, dass die Spreizhülse 20 im Bereich ihres vorderen Endes von der Schrägfläche 13 radial aufgeweitet und mit der Wand 98 des Bohrlochs 99 verpresst wird. Durch diesen Mechanismus wird der Spreizanker 1 im Substrat 5 fixiert. Die Mutter 80 wird vorzugsweise so lange weiter angezogen, bis das Federelement 7 vollständig eingefedert ist, also seinen maximalen Federweg smax erreicht hat. Damit geht eine axiale Sollvorspannung im Bolzen 10 einher.
Öffnet sich nach dem Setzen in einem Substrat 5 aus gerissenem Beton ein Riss in der Umgebung des Spreizankers 1 , so kann sich der Spreizkonus 12 und damit der Bolzen 10 unter Umständen ein Stück weit in Auszugrichtung 101 relativ zum Substrat 5 mit der Spreizhülse 20 bewegen. Das Federelement 7 kann in diesem Fall dafür sorgen dass die Vorspannung im Bolzen 10 zu einem hinreichenden Teil aufrechterhalten wird.
Ein Beispiel für eine erfindungsgemässe Federkennlinie des Federelements 7 ist in Figur 2 gezeigt. Wie Figur 2 zeigt, kann die Erfindung einen in Figur 2 für das Beispiel dmax = 12 mm schraffiert gezeigten Bereich vorgeben, in welchem die Federkennlinie liegen muss, wenn das Federelement axial 0.4 - 0.8 mm von seinem maximalen Federweg smax hinweg entspannt ist, was einem Weg entspricht, der bei Rissöffnung in gerissenem Beton typischerweise auftritt. Liegt die Federkennlinie im besagten schraffierten Bereich, so kann sie einerseits bei einer typischen Rissöffnung in gerissenem Beton noch eine hinreichend grosse Restvorspannung zur Verfügung stellen, um ein unerwünschtes Lösen der Verankerung und damit eine unerwünschte Axialbewegung des Bolzens 10 in Auszugrichtung 101 zu verhin-
dern. Andererseits kann das Federelement 7 noch als Einzelfeder konzipiert werden, so dass der Materialaufwand gering ist.
Figur 3 zeigt ein Diagramm mit möglichen Grenzwerten Fmin und Fmax für die Restfederkraft F bei Entspannung 0.4 mm bis 0.8 mm aus dem maximalen Federweg heraus für verschiedene dmax. Mit Strichlinien sind dabei die erfindungsgemässen Zusammenhänge
Fmin = dmax ■ 0.2 kN/mm - 0.8 kN (untere Strichlinie in Figur 3) und
Fmax = dmax ■ 0.6 kN/mm (obere Strichlinie in Figur 3) gezeigt. Mit Punkten, welche durch durchgehende Linien verbunden sind, sind Werte für F'min (kreisförmige Punkte, unten) und F'max (quadratische Punkte, oben) angegeben, die sich in Experimenten als besonders brauchbar herausgestellt haben. Wie Figur 3 zeigt, sind die oben genannten Zusammenhänge für Fmin und Fmax lineare Annäherungen an diese experimentellen Punkte. Anstelle der Zusammenhänge können auch die in Figur 3 gezeigten Punkte und deren lineare Verbindungslinien Fmin und Fmax definieren. We in Figur 1 gezeigt ist, kann der maximale Bolzendurchmesser dmax zwischen Spreizkonus 12 und Wderlager 8, der in Figur 3 die Abszisse bildet, insbesondere der Gewindeaussendurchmesser des Aussengewindes 18 des Bolzens 10 sein.
Beim Ausführungsbeispiel der Figur 1 ist der Spreizanker 1 als sogenannter Bolzenanker ausgeführt. Ein weiteres Ausführungsbeispiel, bei dem der Spreizanker 1 als sogenannter Hülsenanker ausgebildet ist, ist in Figur 4 gezeigt. Im Gegensatz zum Bolzenanker aus Figur 1 , bei dem der Spreizkonus 12 axial fest am Bolzen 10 vorgesehen ist und insbesondere einstückig mit dem Bolzen 10 ausgebildet ist, ist der Spreizkonus 12 beim Hülsenanker der Figur 4 ein vom Bolzen 10 separates Teil. Er weist ein Innengewinde auf, welches mit einem Aussengewinde am Bolzen 10 korrespondiert. Darüber hinaus reicht beim Hülsenanker der Figur 4 die Spreizhülse 20, die auch mehrteilig sein kann, bis zum Bohrlochmund, und das Widerlager 8 am rückwärtigen Ende des Bolzens 10 ist als Schraubenkopf 88 ausgebildet, drehfest und axial fest am Bolzen 10 angeordnet und insbesondere einstückig mit dem Bolzen 10 ausgebildet.
Zum Setzen des Ankers der Figur 4 wird der Bolzen 10 über den Schraubenkopf 88 um die Längsachse 100 in Drehung versetzt. Die korrespondierenden Gewinde wandeln diese Drehbewegung des Bolzens 10 in eine Axialbewegung des Spreizkonus 12 relativ zum Bolzen 10 und damit relativ zur Spreizhülse 20 um, was zum Einziehen des Spreizkonus 12 in die Spreizhülse 20 führt.
Auch beim Ausführungsbeispiel der Figur 4 ist ein Federelement 7 vorgesehen, welches das Widerlager 8 und damit den Bolzen 10 gegenüber dem Substrat 5 und/oder dem Anbauteil 6 vorspannen kann. Die Kennlinie des Federelements 7 des Ankers aus Figur 4 ist geeigneterweise ebenfalls wie im Zusammenhang mit den Figuren 2 und 3 erläutert ausgeführt.
In den Ausführungsbeispielen der Figuren 1 und 4 ist zwischen Federelement 7 und Widerlager 8 jeweils eine Unterlegscheibe 78 vorgesehen. Diese Unterlegscheibe 78 kann aber auch entfallen. Ein Ausführungsbeispiel ohne Unterlegescheibe ist in Figur 5 gezeigt. Dieses Ausführungsbeispiel entspricht, bis auf das Fehlen der Unterlegscheibe, dem der Figur 1.
Da beim Ausführungsbeispiel der Figur 5 die Unterlegscheibe fehlt, liegt dort das Federelement 7 unmittelbar am Widerlager 8 an. Die Kennlinie des Federelements 7 des Ankers aus Figur 5 ist geeigneterweise ebenfalls wie im Zusammenhang mit den Figuren 2 und 3 erläutert ausgeführt. Der Setzvorgang des Ankers aus Figur 5 kann wie im Zusammenhang mit Figur 1 erläutert erfolgen.
Auch beim Ausführungsbeispiel der Figur 4 kann die Unterlegscheibe 78 gegebenenfalls entfallen, so dass auch dort das Federelement 7 unmittelbar am Widerlager 8 anliegen kann.
Claims
1. Spreizanker (1) zum Verankern in einem Bohrloch (99) in einem Substrat (5), mit
- einem Bolzen (10) mit einem vorderen Ende (51) und einem dem vorderen Ende entgegengesetzten hinteren Ende (52),
- einer am Bolzen (10) angeordneten Spreizhülse (20),
- einem Spreizkonus (12), welcher im Bereich des vorderen Endes (51) des Bolzens angeordnet ist, und welcher die Spreizhülse (20) radial nach aussen drängt, wenn der Spreizkonus (12) in einer Auszugrichtung (101) relativ zur Spreizhülse (20) versetzt wird,
- einem Widerlager zum axialen Anpressen eines Anbauteils (6) an das Substrat (5), welches im Bereich des hinteren Endes (52) des Bolzens (10) am Bolzen (10) angeordnet ist, und
- einem am Bolzen (10) angeordneten Federelement (7) zum axialen Vorspannen des Widerlagers (8) gegen das Anbauteil (6),
dadurch g e ke n n z e i ch n e t,
dass die axiale Federkraft F des Federelements (7) im Bereich Fmin < F < Fmax mit Fmin = dmax ■ 0.2 kN/mm - 0.8 kN und
liegt, wenn das Federelement (7) axial 0.4 mm bis 0.8 mm aus seinem maximalen Federweg heraus entspannt ist, wobei dmax ein maximaler Durchmesser des Bolzens (10) zwischen dem Spreizkonus (12) und dem Widerlager (8) ist.
2. Spreizanker (1) nach Anspruch 1 ,
dadurch g e ke n n z e i ch n e t,
dass das Federelement (7) eine einlagige Tellerfeder ist.
3. Spreizanker (1) nach einem der vorstehenden Ansprüche,
dadurch g e ke n n z e i ch n e t,
dass er eine Unterlegscheibe (78) aufweist, die den Bolzen (10) umgibt, und die zwischen dem Federelement (7) und dem Widerlager (8) angeordnet ist.
Spreizanker (1) nach einem der vorstehenden Ansprüche,
dadurch g e ke n n z e i ch n e t,
dass der Bolzen (10) im Bereich seines hinteren Endes (52) ein Aussengewinde (18) aufweist, und dass das Widerlager (8) eine Mutter (80) ist, die auf das Aussengewinde (18) aufgeschraubt ist.
Spreizanker (1) nach Anspruch 4,
dadurch g e ke n n z e i ch n e t,
dass der maximale Durchmesser dmax des Bolzens (10) zwischen dem Spreizkonus (12) und dem Widerlager (8) der Gewindeaussendurchmesser des Aussengewindes (18) des Bolzens (10) ist.
Spreizanker (1) nach einem der vorstehenden Ansprüche,
dadurch g e ke n n z e i ch n e t,
dass er im Bohrloch (99) verankert ist, wobei
das Federelement (7) das Wderlager (8) des Bolzens (10) gegen das Anbauteil (6) vorspannt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP14784217.3A EP3060817A1 (de) | 2013-10-22 | 2014-10-14 | Spreizanker mit federelement |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP20130189656 EP2865903A1 (de) | 2013-10-22 | 2013-10-22 | Spreizanker mit Federelement |
PCT/EP2014/071962 WO2015058997A1 (de) | 2013-10-22 | 2014-10-14 | Spreizanker mit federelement |
EP14784217.3A EP3060817A1 (de) | 2013-10-22 | 2014-10-14 | Spreizanker mit federelement |
Publications (1)
Publication Number | Publication Date |
---|---|
EP3060817A1 true EP3060817A1 (de) | 2016-08-31 |
Family
ID=49447458
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20130189656 Withdrawn EP2865903A1 (de) | 2013-10-22 | 2013-10-22 | Spreizanker mit Federelement |
EP14784217.3A Withdrawn EP3060817A1 (de) | 2013-10-22 | 2014-10-14 | Spreizanker mit federelement |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20130189656 Withdrawn EP2865903A1 (de) | 2013-10-22 | 2013-10-22 | Spreizanker mit Federelement |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160252121A1 (de) |
EP (2) | EP2865903A1 (de) |
CN (1) | CN105658966A (de) |
CA (1) | CA2927957A1 (de) |
WO (1) | WO2015058997A1 (de) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3501742A1 (de) * | 2017-12-20 | 2019-06-26 | HILTI Aktiengesellschaft | Setzverfahren für spreizanker mittels schlagschrauber |
EP3636939A1 (de) * | 2018-10-09 | 2020-04-15 | Hilti Aktiengesellschaft | Spreizanker mit gerilltem ankerbolzen |
CN110206336B (zh) * | 2019-06-24 | 2021-04-27 | 重庆交通大学 | 带预压力的纤维增强复合材料锚固装置及锚固结构 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3329058A (en) * | 1964-04-14 | 1967-07-04 | Cumming James Deans | Tension indicating washer |
GB1354958A (en) * | 1970-12-28 | 1974-06-05 | Palar Curacao Nv | Anchor fastener |
DE2656832A1 (de) * | 1976-12-15 | 1978-06-22 | Hilti Ag | Sicherheitsscheibe |
DE3022011A1 (de) | 1980-06-12 | 1981-12-17 | Heinrich 6102 Pfungstadt Liebig | Duebel |
DE3110537A1 (de) * | 1981-03-18 | 1982-10-28 | Brückl-Technik, Gesellschaft für technische Erzeugnisse mbH, 7903 Laichingen | "verfahren zum einsetzen eines duebels und hierfuer vorgesehener duebel" |
DE3142432A1 (de) * | 1981-10-26 | 1983-05-11 | Heinrich 6102 Pfungstadt Liebig | "duebel mit setzkraftanzeige" |
DE3331097A1 (de) | 1983-08-29 | 1985-03-14 | Hilti Ag, Schaan | Vorspannbarer duebel |
JPH0446211A (ja) * | 1990-06-06 | 1992-02-17 | Shinjiyou Seisakusho:Yugen | ばね付きアンカーボルト |
DE10106844A1 (de) * | 2001-02-14 | 2002-09-05 | Fischer Artur Werke Gmbh | Spreizanker |
CN2549246Y (zh) * | 2002-05-28 | 2003-05-07 | 徐杰 | 膨胀螺丝 |
TWM267361U (en) * | 2002-08-02 | 2005-06-11 | Yan-Tzeng Lin | Anchor nail |
CN2621234Y (zh) * | 2003-08-28 | 2004-06-23 | 李珊 | 膨胀螺栓组件 |
-
2013
- 2013-10-22 EP EP20130189656 patent/EP2865903A1/de not_active Withdrawn
-
2014
- 2014-10-14 EP EP14784217.3A patent/EP3060817A1/de not_active Withdrawn
- 2014-10-14 US US15/030,765 patent/US20160252121A1/en not_active Abandoned
- 2014-10-14 CA CA2927957A patent/CA2927957A1/en not_active Abandoned
- 2014-10-14 WO PCT/EP2014/071962 patent/WO2015058997A1/de active Application Filing
- 2014-10-14 CN CN201480057998.7A patent/CN105658966A/zh active Pending
Non-Patent Citations (2)
Title |
---|
None * |
See also references of WO2015058997A1 * |
Also Published As
Publication number | Publication date |
---|---|
CA2927957A1 (en) | 2015-04-30 |
US20160252121A1 (en) | 2016-09-01 |
EP2865903A1 (de) | 2015-04-29 |
CN105658966A (zh) | 2016-06-08 |
WO2015058997A1 (de) | 2015-04-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3060816B1 (de) | Spreizanker mit bereichsweise hochfester spreizhülse | |
EP3084233B1 (de) | Spreizanker mit verdrehsicherung | |
EP2309138A2 (de) | Spreizdübel | |
EP3559484A2 (de) | System zum fügen oder armieren von bauteilen | |
WO2003002879A2 (de) | Selbstbohrende blindnietmutter | |
EP3396105A1 (de) | Spreizhülsenanker mit verlorener bohrkrone | |
EP3658785B1 (de) | Spreizbolzen sowie verbindungsanordnung mit einem solchen spreizbolzen | |
DE68902323T2 (de) | Blindniet. | |
EP3315799B1 (de) | Blindnietmutter | |
EP2827006A1 (de) | Blindnietsystem | |
WO2015058997A1 (de) | Spreizanker mit federelement | |
EP1200746A1 (de) | Befestigungselement aus metall | |
EP2867544B1 (de) | Spreizanker | |
CH622861A5 (de) | ||
DE3023411A1 (de) | Spreizanker | |
EP3462044A1 (de) | Befestigungselement | |
DE3006480A1 (de) | Duebel mit wegkontrollierter zwangsweiser spreizung | |
DE2613192C2 (de) | Schraubensicherung | |
DD267536A5 (de) | Duebel mit spreizhuelse | |
EP3462043A1 (de) | Distanzbefestiger | |
WO2018162267A1 (de) | Verwendung eines spreizankers mit angeschraubtem ankerkopf | |
EP2261517A1 (de) | Furchschraube | |
EP0616137B1 (de) | Spannbolzen für einen Möbelverbindungsbeschlag | |
EP0339428B1 (de) | Spreizanker | |
DE3813877A1 (de) | Verankerungsvorrichtung eines gewindebauteils in einer hinterschnittbohrung |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20160523 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20180720 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20181201 |