EP3059828B1 - Dispositif et procede de detection de courant differentiel - Google Patents

Dispositif et procede de detection de courant differentiel Download PDF

Info

Publication number
EP3059828B1
EP3059828B1 EP15182875.3A EP15182875A EP3059828B1 EP 3059828 B1 EP3059828 B1 EP 3059828B1 EP 15182875 A EP15182875 A EP 15182875A EP 3059828 B1 EP3059828 B1 EP 3059828B1
Authority
EP
European Patent Office
Prior art keywords
signals
current
signal
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP15182875.3A
Other languages
German (de)
English (en)
Other versions
EP3059828A1 (fr
Inventor
Günter Haas
Helmut Lipp
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebm Papst Mulfingen GmbH and Co KG
Original Assignee
Ebm Papst Mulfingen GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebm Papst Mulfingen GmbH and Co KG filed Critical Ebm Papst Mulfingen GmbH and Co KG
Publication of EP3059828A1 publication Critical patent/EP3059828A1/fr
Application granted granted Critical
Publication of EP3059828B1 publication Critical patent/EP3059828B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/332Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means responsive to dc component in the fault current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/334Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/12Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to undesired approach to, or touching of, live parts by living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters

Definitions

  • the present invention relates to an EC motor according to the features of claim 1 and to a method for detecting fault currents according to claim 8.
  • a fault current is an electrical current that flows through a given fault location due to an insulation fault.
  • the resistance of the transformer, the conductor resistance, grounding resistance, body resistance, the resistance of the person touching the fault location and, if necessary, other contact resistances must be taken into account.
  • the risk potential from an electrical system is assessed on the basis of instantaneous values of the currents to be monitored in the alternating current network. This applies both to absolute values and to relative and / or differential values of the currents to be monitored, these current values also being referred to as fault current.
  • This type of hazard detection is used in the form of residual current circuit breakers, which are also referred to as FI switches and which measure the differential current between a forward and a return conductor.
  • the patent specification DE 196 34 438 A1 describes, for example, a residual current protective device or residual current protective device for protection against dangerous body currents.
  • the protective device for protection against residual currents should be based on triggering values with a variable frequency in terms of a frequency factor F as the quotient of the permissible body current for humans at a variable frequency of the fault current and the permissible body current at 50 Hz or 60 Hz and with regard to the frequency f of the fault current below be matched to a limit curve according to a given diagram.
  • a charging device for charging a battery which is designed with an FI switch.
  • a circuit arrangement for direct current and / or alternating current sensitive FI protection circuit provided with an amplifier is known.
  • a device for detecting fault currents in electrical circuits in machines is known, at least one electrical circuit in the machine having an electromagnetic filter and wherein the electromagnetic filter is connected to a measuring device for detecting a fault current.
  • the question of using the right residual current circuit breaker arises.
  • the selection of the residual current circuit breaker essentially depends on the current form of any fault current that may occur.
  • Type AC residual current circuit breakers only detect purely sinusoidal residual currents and are no longer approved as residual current devices in accordance with the currently valid VDE 0100-530 in Germany.
  • Type A residual current circuit breakers include the commercially available, pulsed current sensitive residual current protective devices. With this type, both purely sinusoidal alternating currents and pulsating direct fault currents can be detected. The required sensitivity is achieved through special magnetic materials for the toroidal cores used and resonance circuits to influence the frequency response. Pulse current sensitive residual current protective devices work independently of the mains voltage.
  • Type F residual current circuit breakers are mixed frequency-sensitive residual current protective devices and therefore also detect all types of residual current as with type A. In addition, they can be used to detect residual currents consisting of a frequency mixture of frequencies. Consequently it is possible to record the fault current forms on the output side of single-phase connected frequency converters.
  • Type B residual current circuit breakers are all-current sensitive residual current circuit breakers, which can detect both AC residual currents and smooth DC residual currents. These residual current devices contain a second summation current transformer and an integrated electronics unit. Monitoring with a type B residual current circuit breaker for DC residual currents, however, requires its own power supply. Operation and use are therefore dependent on the mains voltage. The AC or pulsed current sensitive part of the switch is independent of this and, as with type A, works independently of the mains voltage.
  • type B is particularly common with inverters and frequency converters that work with rectifiers in the area of the intermediate circuit.
  • An essential element of a residual current circuit breaker is the so-called summation current transformer through which all current-carrying conductors, including the neutral conductor, are routed in the same direction and with one another. Normal and intended operating currents have no effect on this summation current transformer, since the sum does not result in a differential current.
  • Type A residual current circuit breakers thus measure the alternating current component of the residual current, whereby the direct current component of the residual current is not recorded and therefore cannot be evaluated
  • Type B residual current circuit breakers are known when using electronically commutated devices.
  • devices with an active PFC level have only recently spread on the market.
  • Type A residual current circuit breakers are predominantly installed in building installations. The fact that these FI circuit breakers may not detect fault currents in devices with active PFC control and are therefore unlikely to trigger is disadvantageous and dangerous.
  • the disadvantage is that it is not possible to use the conventional and much cheaper type A FI circuit breakers, but the type B FI circuit breakers, which are many times more expensive.
  • the object of the present invention is to overcome the aforementioned disadvantage and to provide a solution for intermediate circuits with active PFC control and boosted voltage, the fault currents of which can nevertheless be operated reliably and safely with a type A FI circuit breaker.
  • Another object of the present invention is to provide a solution that ensures a maximum permissible disconnection time for triggering the FI switch in accordance with the relevant VDE installation standards and installation regulations.
  • the basic idea of the present invention is to generate a switch-off condition for the active power factor correction from the current signals in the forward and return lines (ie the current-carrying conductors) to the commutation circuit when the magnitude of a difference signal proportional to the current signals shows that a fault current above a maximum permissible limit is present in the system.
  • the intermediate circuit voltage is lowered by switching off the active power factor correction.
  • the intermediate circuit voltage between U ZWK + and the ground potential (or the protective conductor connection) and the shape of the fault current curve changes into a curve shape that can be recorded by FI type A, which is the shape of a fault current curve corresponding to commutation electronics with passive power factor correction.
  • FI type A is the shape of a fault current curve corresponding to commutation electronics with passive power factor correction.
  • DH due to the change in the voltage curve, the curve of the fault current also changes accordingly, which can then be detected by a type A FI circuit breaker and the fault current can be safely switched off.
  • the detection device has an electrical component in each of the two current-carrying conductors for tapping signals, in particular current signals (I to , I back ).
  • An embodiment is particularly preferred in which the two electrical components (3a, 3b) represent in pairs either resistors, inductivities or magnetic field sensors.
  • differential amplifier z. B. a signal conditioning module comprises the formed is to process the difference signal S DIFF so that it can be processed further by a micro-controller, an ASIC, an integrated circuit or the like.
  • a micro-controller, an ASIC or an integrated circuit for processing the signal S DIFF it is advantageous if the circuit arrangement has a micro-controller, an ASIC or an integrated circuit for processing the signal S DIFF .
  • An embodiment of the method is particularly advantageous if, by means of the active lowering of the intermediate circuit voltage, the voltage profile between the intermediate circuit voltage and the ground potential takes place in such a way that the PFC is switched off. This can advantageously take place in that the intermediate circuit voltage is lowered by switching off the active power factor correction.
  • the fault current is above a defined threshold value. Accordingly, if the difference signal shows an amount above a threshold value, the active power factor correction is switched off or bridged.
  • the Figure 1 shows the basic circuit diagram of a commutation electronics with passive PFC 21 for a three-strand EC motor 20, which is connected on the input side to an AC voltage source 23 via an EMC filter 24, consisting of an LC combination.
  • the passive power factor correction 21 here only consists of an intermediate circuit choke 25.
  • a commutation electronics with an active power factor correction 22 is shown.
  • the voltage across the capacitor C 1 can be set to values of U ZWK > ⁇ 2 * U ac, rms .
  • Typical values that are used in EC devices are voltages in the range from 380VDC to 440VDC.
  • the Fig. 3 shows the voltage curve between the intermediate circuit voltage and the protective conductor potential for an inverter with passive PFC and the Fig. 4 the voltage curve between the intermediate circuit voltage and the protective conductor potential for an inverter with active PFC.
  • the sinusoidal input voltage of the AC voltage source is shown in the lower curve on channel Ch2.
  • the voltage curve between the intermediate circuit voltage and the protective conductor potential is shown in channel Ch4 for an inverter with passive PFC. It can be clearly seen that the potential between the intermediate circuit voltage and the protective conductor potential, ie the voltage U ZWK + compared to the protective conductor potential (PE potential), changes between the values 0V and U max ac, rms .
  • the Fig. 4 the voltage curve between the intermediate circuit voltage and the protective conductor potential for an inverter with active PFC.
  • the voltage potential between the anode of the capacitor and the protective conductor potential is always greater than OV.
  • the Fig. 5 represents the measurement results for commutation electronics with passive PFC.
  • the voltage drop across the fault resistance R Fehier is plotted in the upper curve (CH4).
  • the lower curve (CH3) shows the corresponding fault current that flows through the resistor to the housing.
  • Fig. 6 the measurement curves of a corresponding measurement for the case when using commutation electronics with active PFC are shown.
  • the middle sinusoidal measurement curve (channel Ch2) represents the sinusoidal input voltage.
  • the voltage between U ZWK + and the protective conductor potential is shown by the upper curve (Ch4) and the measured fault current through the resistor Rcola is shown by the middle curve shape.
  • the Figure 7 shows a basic circuit diagram of an embodiment of the invention of commutation electronics for an EC motor with an active PFC. Shown is a device 1 for detecting fault currents in a regulated DC voltage intermediate circuit 2 with an active power factor correction 22 and with a detection device 3 for detecting current signals S1, S2 that flow through the two input-side current-carrying conductors 4a, 4b.
  • the acquired current value from the forward and return lines is converted into a corresponding analog voltage signal.
  • These voltage signals are preferably fed to a differential amplifier 6 as input signals.
  • a converter 5 is provided for generating an analog signal S1 ', S2' from the respectively detected signals S1, S2, and a differential amplifier 6 is provided for processing a signal S DIFF as a difference signal between the signals S1 ', S2' corresponding to a detected fault current , in particular in the event that the fault current is above a maximum permissible threshold value of the signal S DIFF .
  • a circuit arrangement 7 is provided for lowering the intermediate circuit voltage, so that a shutdown process can be initiated by means of the signal S DIFF.
  • the circuit arrangement 7 is designed in such a way that the intermediate circuit voltage is lowered by switching off the active power factor correction.
  • the implementation of the invention is not restricted to the preferred exemplary embodiments specified above. Rather, a number of variants are conceivable which make use of the solution shown even in the case of fundamentally different designs.
  • the detection device 3, the converter 4 and / or the circuit arrangement 7 can thus also be designed as a common circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Rectifiers (AREA)

Claims (10)

  1. Moteur à commutation électronique (EC) (20), comprenant un circuit intermédiaire à tension continue régulée (2) composé d'un redresseur, d'un condensateur de circuit intermédiaire et d'un onduleur et d'une électronique de commutation dotée d'un dispositif de correction de facteur de puissance active (22) destiné à identifier des courants de défaut dans le circuit intermédiaire à tension continue (2), le circuit intermédiaire à tension continue (2) présentant deux fils conducteurs côté entrée (4a, 4b), comprenant :
    a. un dispositif d'identification (3) pour identifier des signaux (S1, S2) qui sont respectivement proportionnels aux courants passant par les deux fils conducteurs côté entrée (4a, 4b),
    b. un convertisseur (5) pour générer respectivement un signal analogique S2') à partir des signaux (S1, S2) respectivement identifiés,
    c. un amplificateur différentiel (6) qui est relié au dispositif d'identification (3) de telle sorte que les signaux analogiques (S1', S2') sont amenés à l'amplificateur différentiel (6) sous forme de signaux d'entrée afin de mettre en forme un signal SDIFF comme signal différentiel entre les signaux (S1', S2') en correspondance avec un courant de défaut identifié dans l'électronique de commutation,
    d. caractérisé en ce qu'un agencement de circuit (7) est disposé entre le dispositif de correction de facteur de puissance active (22) et le dispositif d'identification (3) pour baisser la tension de circuit intermédiaire de sorte que le signal SDIFF peut être identifié par un disjoncteur différentiel FI (8) de type A pour la déconnexion.
  2. Moteur EC (20) selon la revendication 1, caractérisé en ce que l'agencement de circuit (7) est réalisé de telle sorte que la baisse de la tension de circuit intermédiaire est effectuée par la déconnexion du dispositif de correction de facteur de puissance active.
  3. Moteur EC (20) selon la revendication 1 ou 2, caractérisé en ce que le circuit intermédiaire à tension continue (2) est réalisé pour générer une tension de circuit intermédiaire survoltée.
  4. Moteur EC (20) selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif d'identification (3) présente respectivement un composant électrique (3a, 3b) dans chacun des deux fils conducteurs (4a, 4b) pour prélever des signaux de courant (Izu, Irück).
  5. Moteur EC (20) selon la revendication 4, caractérisé en ce que les deux composants électriques (3a, 3b) représentent par paires des résistances, des inductances ou des capteurs de champ magnétique.
  6. Moteur EC (20) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'amplificateur différentiel (6) comprend un module de mise en forme de signal pour mettre en forme le signal SDIFF de telle sorte qu'il peut être traité ultérieurement par un microcontrôleur, un ASIC ou un circuit intégré.
  7. Moteur EC (20) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'agencement de circuit (7) présente un microcontrôleur, un ASIC ou un circuit intégré pour le traitement du signal SDIFF.
  8. Procédé d'identification de courants de défaut par un moteur EC (20) selon l'une quelconque des revendications 1 à 7, comprenant les étapes consistant à
    a. identifier deux signaux (S1, S2) qui sont respectivement proportionnels aux courants passant par les deux fils conducteurs côté entrée (4a, 4b) en cours de fonctionnement du dispositif,
    b. générer respectivement un signal analogique (S1', S2') à partir des signaux (S1, S2) identifiés,
    c. amener les signaux analogiques (S1', S2') à l'amplificateur différentiel (6) qui est relié au dispositif d'identification (3) de telle sorte que les signaux analogiques (S1', S2') sont amenés à l'amplificateur différentiel (6) sous forme de signaux d'entrée pour mettre en forme un signal SDIFF comme signal différentiel entre les signaux (S1', S2') en correspondance avec un courant de défaut détecté dans l'électronique de commutation,
    caractérisé en ce qu'ensuite l'étape suivante est effectuée :
    d. baisser la tension de circuit intermédiaire de sorte que le signal SDIFF adopte une forme de courbe qui peut être ou est identifiée par un disjoncteur différentiel FI (8) de type A comme un courant de défaut dans la mesure où le courant de défaut se situe au-dessus d'une valeur seuil admissible au maximum.
  9. Procédé selon la revendication 8, caractérisé en ce que la tension de circuit intermédiaire est baissée par la désactivation du dispositif de correction de facteur de puissance active de sorte que le signal SDIFF déclenche un processus de désactivation ou peut être détecté par un disjoncteur différentiel FI (8) de type A.
  10. Procédé selon la revendication 8 ou 9, dans lequel le fait de baisser activement la tension de circuit intermédiaire confère à la courbe de tension entre la tension de circuit intermédiaire et le potentiel de masse une forme de courbe qui génère une courbe de courant de défaut qui peut être ou est identifiée par un disjoncteur différentiel FI (8) de type A.
EP15182875.3A 2015-02-20 2015-08-28 Dispositif et procede de detection de courant differentiel Active EP3059828B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015102485.3A DE102015102485A1 (de) 2015-02-20 2015-02-20 Vorrichtung und Verfahren zur Fehlerstromdetektion

Publications (2)

Publication Number Publication Date
EP3059828A1 EP3059828A1 (fr) 2016-08-24
EP3059828B1 true EP3059828B1 (fr) 2021-08-04

Family

ID=54014557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP15182875.3A Active EP3059828B1 (fr) 2015-02-20 2015-08-28 Dispositif et procede de detection de courant differentiel

Country Status (4)

Country Link
US (1) US10345347B2 (fr)
EP (1) EP3059828B1 (fr)
CN (2) CN113161995A (fr)
DE (1) DE102015102485A1 (fr)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3072462B1 (fr) * 2017-10-16 2020-05-22 Schneider Electric Industries Sas Dispositif de mesure de courant, procede de fabrication, module de protection et disjoncteur differentiel utilisant un tel dispositif de mesure de courant
JP6895921B2 (ja) * 2018-04-23 2021-06-30 株式会社日立製作所 電力変換装置、及び異常検出方法
WO2020011329A1 (fr) 2018-07-09 2020-01-16 Diehl Ako Stiftung & Co. Kg Circuit d'entraînement et procédé pour faire fonctionner un circuit d'entraînement
FR3084932B1 (fr) * 2018-08-09 2020-10-09 Schneider Electric Ind Sas Dispositif de detection d'un courant electrique continu ou alternatif, module et appareil de protection comportant un tel dispositif
DE102018006355B4 (de) * 2018-08-11 2020-06-10 Diehl Ako Stiftung & Co. Kg Verfahren zum Erkennen eines Motorphasenfehlers an einer Motoranordnung und Antriebsschaltung zum Antreiben eines elektronisch kommutierten Motors
DE102019002137B4 (de) 2018-12-13 2020-10-01 Diehl Ako Stiftung & Co. Kg Antriebsschaltung und Verfahren zum Betreiben einer Antriebsschaltung
CN111337815A (zh) * 2018-12-19 2020-06-26 比亚迪股份有限公司 电动汽车、车载充电器及其故障检测方法、装置
DE102019124213A1 (de) * 2019-09-10 2021-03-11 Audi Ag Galvanisch verbundenes AC-Ladegerät mit Überwachungs- und Diagnosesystem
JP7341836B2 (ja) * 2019-10-09 2023-09-11 株式会社マキタ 電動作業機
CN112230161B (zh) * 2020-09-28 2022-02-25 国网湖北省电力有限公司电力科学研究院 一种单相接地故障选线功能的检测方法
CN112578310B (zh) * 2020-11-12 2022-02-25 国网湖北省电力有限公司电力科学研究院 一种单相接地选线跳闸功能的检测方法
CN113007084B (zh) * 2021-02-26 2023-04-25 青岛海尔空调电子有限公司 压缩机故障预警方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024068A1 (fr) * 2006-08-25 2008-02-28 Abb Research Ltd. Système d'entraînement pour un changeur de prise
US20120112757A1 (en) * 2010-11-10 2012-05-10 Vrankovic Zoran V Ground Fault Detection and Location System and Method for Motor Drives
CN103779833A (zh) * 2014-02-21 2014-05-07 朱志伟 直流漏电流检测与保护电路及检测与保护方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2819204C2 (de) * 1978-05-02 1983-03-24 Felten & Guilleaume Energietechnik GmbH, 5000 Köln Schaltungsanordnung für eine gleich- und/oder wechselstromsensitive mit Verstärker versehene Fehlerstrom-Schutzschaltung
US5539602A (en) * 1994-10-19 1996-07-23 Gte Airfone Incorporated Ground fault interrupter
DE19611401C2 (de) * 1996-03-22 2000-05-31 Danfoss As Frequenzumrichter für einen Elektromotor
DE19634438A1 (de) 1996-08-26 1998-03-05 Siemens Ag Fehlerstromschutzeinrichtung oder Differenzstromschutzeinrichtung
GB2412511B (en) * 2001-06-08 2005-11-30 Eaton Electric Ltd Measuring devices
US6906933B2 (en) * 2002-11-01 2005-06-14 Powerware Corporation Power supply apparatus and methods with power-factor correcting bypass mode
DE102004057694A1 (de) * 2004-11-30 2006-06-01 Robert Bosch Gmbh Bordnetz mit höherer Spannung
DE102007027727A1 (de) 2006-07-17 2008-01-24 Heidelberger Druckmaschinen Ag Fehlerstromanalyse in Maschinen
DE102011016539A1 (de) * 2011-04-08 2012-10-11 Volkswagen Ag Ladeeinrichtung für eine Hochspannungsbatterie eines Kraftfahrzeugs, Ladeanordnung und Verfahren zum Betrieb einer Ladeanordnung
DE102011016537A1 (de) * 2011-04-08 2012-10-11 Audi Ag Ladeeinrichtung für eine Hochspannungsbatterie eines Kraftfahrzeugs, Ladeanordnung und Verfahren zum Betrieb einer Ladeanordnung
DE102011082941A1 (de) * 2011-09-19 2013-03-21 Bender Gmbh & Co. Kg Elektrische Überwachungseinrichtung und Verfahren zur Sicherstellung der Schutzfunktion einer Fehlerstrom-Schutzeinrichtung (RCD) Typ A
GB201120295D0 (en) * 2011-11-24 2012-01-04 Metroic Ltd Current measurement apparatus
CN102761097A (zh) * 2012-07-11 2012-10-31 合肥华耀电子工业有限公司 直流漏电保护电路
DE102012218504A1 (de) * 2012-10-11 2014-04-17 Bender Gmbh & Co. Kg Differenzstrom-Überwachungseinrichtung mit Lichtbogenerkennung
CN105683768B (zh) * 2013-09-06 2019-10-01 特灵国际有限公司 针对包括可变频率电动机驱动器的系统的诊断
US9604543B2 (en) * 2014-06-05 2017-03-28 Rockwell Automation Technologies, Inc. Apparatus and method for automatic ground fault location determination in high resistance grounded motor drive system
KR101800644B1 (ko) * 2013-11-08 2017-11-23 엘지전자 주식회사 모터 구동장치 및 이를 구비하는 세탁물 처리기기
ITTO20131079A1 (it) * 2013-12-30 2015-07-01 Indesit Co Spa Filtro per la soppressione di disturbi elettrici ed elettrodomestico comprendente detto filtro
CN203850818U (zh) * 2014-03-13 2014-09-24 温州职业技术学院 一种剩余电流保护的墙壁开关的电路组成
DE102014217928A1 (de) * 2014-09-08 2016-03-10 Robert Bosch Gmbh Verfahren und Vorrichtung zum Erkennen eines Gleichstrom-Fehlerstroms

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024068A1 (fr) * 2006-08-25 2008-02-28 Abb Research Ltd. Système d'entraînement pour un changeur de prise
US20120112757A1 (en) * 2010-11-10 2012-05-10 Vrankovic Zoran V Ground Fault Detection and Location System and Method for Motor Drives
CN103779833A (zh) * 2014-02-21 2014-05-07 朱志伟 直流漏电流检测与保护电路及检测与保护方法

Also Published As

Publication number Publication date
CN113161995A (zh) 2021-07-23
DE102015102485A1 (de) 2016-08-25
US10345347B2 (en) 2019-07-09
EP3059828A1 (fr) 2016-08-24
US20160245847A1 (en) 2016-08-25
CN105914712A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
EP3059828B1 (fr) Dispositif et procede de detection de courant differentiel
DE19930122C1 (de) Verfahren zur Verhinderung des Draufschaltens auf in Abzweigen bestehende elektrische Kurzschlüsse und zugehörige Anordnung
DE602004002588T2 (de) Verfahren und sicherheitseinrichtung für eine erdfehlerschutzschaltung
EP2372857A1 (fr) Détermination de la partie de courant de fuite d'un courant différentiel
EP3625863B1 (fr) Localisation d'un défaut de terre dans un réseau it
DE112010002226T5 (de) Verfahren und Vorrichtungen zur Erdschlussüberwachung mittels Multifrequenz-Fehlerstromschutzschalter
EP3485549B1 (fr) Procédé destiné à éviter un courant de fuite à la terre dangereux de hautes fréquences pour un système d'entraînement électrique
EP3394948A1 (fr) Onduleur à point de rupture de réseau et mesure de résistance d'isolement et procédé de mesure d'une résistance d'isolement
EP3552289B1 (fr) Disjoncteur basse tension
DE102012100673A1 (de) Vorrichtung zur elektrischen Energieeinspeisung aus einer dezentralen Eigenerzeugeranlage in ein Stromnetz
EP2523296A1 (fr) Agencement de commutation pour la préparation d'une protection contre les surtensions et son procédé de fonctionnement
EP2557672B1 (fr) Elément de réseau à double isolation
DE10355086B4 (de) Verfahren zum Bestimmen des ohmschen Isolationswiderstandes eines geerdeten Wechselstromnetzes
DE102008024348A1 (de) Verfahren zur Reduktion pulsförmiger Erdströme an einem elektrischen Großgerät und Kompensationsschaltung zur Erdstromverlagerung
EP3609032B1 (fr) Procédé de détection d'une erreur de phase de moteur sur un dispositif moteur et circuit d'entraînement permettant d'entraîner un moteur à commutation électronique
EP2869072A1 (fr) Dispositif et procédé de détection de l'énergie électrique de consommateurs mono ou multiphasés
DE2731453C3 (de) Erdschlußdetektor
EP2015419B1 (fr) Procédé d'attribution d'un courant différentiel à l'une des trois conduites de phases d'un système triphasé et circuit de protection du courant différentiel
DE60001279T2 (de) Erdfehler-schutzeinrichtung für die wicklung einer elektrischen maschine
DE102017213357B3 (de) Verfahren und Vorrichtung zur Erdungswiderstanderkennung in einem Ladekabel
WO2020011329A1 (fr) Circuit d'entraînement et procédé pour faire fonctionner un circuit d'entraînement
EP3817172A1 (fr) Agencement de surveillance d'un conducteur de protection, dispositif de distribution électrique et procédé de surveillance d'un conducteur de protection
EP3824524A1 (fr) Procédé de vérification d'un point de coupure d'un onduleur photovoltaïque et onduleur photovoltaïque de ce type
EP3048685A1 (fr) Dispositif de protection de courant de fuite et procédé de commutation de contacts de commutation du dispositif de protection de courant de fuite
DE102018204039A1 (de) Brandschutzschalter für serielle Fehlerlichtbögen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20170216

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180808

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210428

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1417982

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210815

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502015015023

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211104

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502015015023

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210828

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220506

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210828

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20150828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20230823

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230831

Year of fee payment: 9

Ref country code: GB

Payment date: 20230824

Year of fee payment: 9

Ref country code: AT

Payment date: 20230818

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230822

Year of fee payment: 9

Ref country code: DE

Payment date: 20230822

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210804