CN113161995A - 用于故障电流检测的装置和方法 - Google Patents

用于故障电流检测的装置和方法 Download PDF

Info

Publication number
CN113161995A
CN113161995A CN202110340783.8A CN202110340783A CN113161995A CN 113161995 A CN113161995 A CN 113161995A CN 202110340783 A CN202110340783 A CN 202110340783A CN 113161995 A CN113161995 A CN 113161995A
Authority
CN
China
Prior art keywords
signal
fault current
intermediate circuit
detected
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110340783.8A
Other languages
English (en)
Other versions
CN113161995B (zh
Inventor
G·哈斯
H·力波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebien Peter Mulfingen GmbH
Original Assignee
Ebien Peter Mulfingen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebien Peter Mulfingen GmbH filed Critical Ebien Peter Mulfingen GmbH
Publication of CN113161995A publication Critical patent/CN113161995A/zh
Application granted granted Critical
Publication of CN113161995B publication Critical patent/CN113161995B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/10Measuring sum, difference or ratio
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/16Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to fault current to earth, frame or mass
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/332Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means responsive to dc component in the fault current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/26Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents
    • H02H3/32Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors
    • H02H3/33Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers
    • H02H3/334Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to difference between voltages or between currents; responsive to phase angle between voltages or between currents involving comparison of the voltage or current values at corresponding points in different conductors of a single system, e.g. of currents in go and return conductors using summation current transformers with means to produce an artificial unbalance for other protection or monitoring reasons or remote control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H5/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection
    • H02H5/12Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal non-electric working conditions with or without subsequent reconnection responsive to undesired approach to, or touching of, live parts by living beings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/10Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
    • H02H7/12Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
    • H02H7/1216Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for AC-AC converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种用于检测具有有源功率因子校正的经调节DC中间电路中的故障电流的方法和装置。

Description

用于故障电流检测的装置和方法
(本申请是申请日为2015年9月28日、申请号为201510626920.9、发明名称为“用于故障电流检测的装置和方法”的申请的分案申请。)
描述:
本发明涉及用于根据如权利要求1所述的特征的电子换向DC机器的故障电流检测监视,且涉及根据权利要求8所述的用于检测故障电流的方法。
在电气系统中,且在EC DC机器的情况下,有必要能够可靠地检测故障电流。绝对电流和相对电流的频谱和同相检测对于评定故障电流的风险且对于评估故障电流对人类且对材料的潜在风险来说是重要的。
故障电流涉及归因于绝缘缺陷而流过给定故障位置的电流。为了计算故障电流强度,取决于故障和故障位置的类型,有必要考虑互感器电阻、导体电阻、接地电阻、主体电阻、正要与故障位置接触的人的电阻以及如果适用额外过渡电阻。在电气安装技术中,在将在AC电源网络中监视的电流的瞬时值的基础上,评定穿过电气系统的潜在风险。这适用于绝对值和相对值两者,和/或待监视电流的差值,这些电流值也称为故障电流。这种类型的风险检测以故障电流断路器的形式使用,故障电流断路器也称为FI开关,且其测量馈送导体与返回导体之间的差分电流。
如果将此故障电流断路器(简称:FC断路器)安装在相关的电路中,且获得必需的额定差分电流,那么所述断路器在所有极点处关断所述电路。
现有技术中描述用于评估故障电流对人类和材料的潜在风险的各种各样的方法。举例来说,专利说明书DE 196 34 438 A1描述一种用于防护危险的触电电流的故障电流防护装置或差分电流防护装置。用于防护故障电流的防护装置意在其跳闸特性中以可变频率相对于频率因子F且相对于低于根据给定图表的阈值曲线的故障电流的频率(f)调谐到跳闸值,所述频率因子F作为从故障电流的可变频率下人类的可允许触电电流和50Hz或60Hz下的可允许触电电流得出的商。
从DE 102007027727 A1已知用于检测机器中的电路中的故障电流的装置,其中机器中的至少一个电路包括电磁滤波器,且其中所述电磁滤波器连接到用于检测故障电流的测量装置。
当使用电子换向DC机器时,适当FI断路器的使用出现问题。FI断路器的选择本质上取决于潜在发生的故障电流的当前形式。存在不同类型的故障电流断路器,其与取决于能够检测的故障电流类型的特定类型相关联。
在德国,根据当前适用的VDE 0100-530,AC类型的故障电流断路器仅检测纯正弦曲线故障电流,且不再被允许作为故障电流防护装置。
A类型的故障电流断路器包括对脉动电流敏感的市售故障电流防护装置。这种类型可检测纯正弦曲线AC电流以及脉动DC故障电流两者。借助于用于环形铁芯的特殊磁性材料以及用于影响频率响应的谐振电路来实现所需的敏感性。对脉动电流敏感的故障电流防护装置独立于电源电压而操作。
F类型的故障电流断路器是对混合频率敏感的故障电流防护装置,且因此还像A类型的情况下那样检测所有的故障电流类型。它们也对检测由频率的频率混合物组成的故障电流有用。因此,有可能检测单相连接频率转换器的输出侧上的故障电流形式。
B类型的故障电流断路器为对所有电流敏感的故障电流断路器,且能够检测平稳的DC故障电流以及AC故障电流。这些故障电流防护装置包括第二总和电流互感器和集成电子单元。然而,使用B类型的故障电流防护装置来监视DC故障电流需要独立的电流供应。因此,操作和使用独立于电源电压。如在类型A的情况下,AC和脉动电流敏感的开关组件独立于电源电压,且独立于电源电压而操作。
B类型的使用是常见的,尤其是结合逆变器和频率转换器,其在具有整流器的中间电路的区域中操作。
在此情况下,故障电流断路器的重要元件是所谓的总和电流互感器,通过总和电流互感器,所有带电导体,包括中性导体,均被一起引导在相同方向上。正常且适当的操作电流对此总和电流互感器不具有影响,因为总和并不导致差分电流。
然而,故障电流一从闭路流向接地电位,互感器的电磁平衡就被流向接地的故障电流的量值打破。因此,互感器被磁化,且经由高度敏感的跳闸瞬时导致故障电流断路器的全体去活。
因此,A类型的故障电流断路器测量故障电流的AC电流部分,其中不检测且因此也无法评估故障电流的DC电流部分。
目前,结合电子换向装置的使用,仅已知B类型的FI断路器。除具有无源PFC级的装置之外,具有有源PFC级的装置最近才变得在市场上常见。A类型的FI断路器主要集成在建筑物安装中。事实是,在此情况下,这些FI断路器无法检测具有有源PFC规范的装置中的故障电流,且因此可能不跳闸,这是不利或危险的。
然而,现有技术中已知的方法无法结合具有有源PFC规范和升高的中间电路电压同时符合安装技术有关标准和规范的电子换向DC机器使用。在此类装置中,不可能使用A类型的故障校正断路器(FI-断路器)。在故障事件中(例如在有缺陷的绝缘的情况下),由于升高的电压,DC电流流动,A类型的FI断路器(如上文所阐释)无法关断所述流动。
至此,代替于常规且更加有利的A类型FI断路器,有可能仅使用昂贵许多倍的B类型FI断路器,这是不利的。
本发明的目标是克服前面所提到的不利,且为具有有源PFC规范和升高的电压的中间电路提供解决方案,仍可使用A类型的FI断路器来可靠且安全地操作所述电路的故障电流。
本发明的另一目标是提供一种解决方案,其确保用于根据相关的VDE安装标准和装配说明来使FI开关跳闸的可靠最大关断时间。
此目标由根据如权利要求1所述的特征的装置且由根据如权利要求8所述的特征的方法来实现。
本发明的基本概念在此是当与电流信号成比例的差信号的量值指示系统中存在高于最大可允许限制的故障电流时,为从馈送和返回导体(即,带电导体)中的电流信号到换向电路的有源功率因子校正产生关断条件。这导致故障电流的波形以及A类型FI开关所检测到的形状的变化。
因此,根据本发明,提供一种用于检测具有有源功率因子校正(PFC)的经调节DC中间电路中的故障电流的装置,其包括以下:
-检测装置,其用于检测电流S1、S2(电流信号),其流经输入侧上的两个带电导体(馈送和返回导体),
-互感器,其用于在每一情况下,从分别检测到的信号S1、S2产生模拟信号S1'、S2',
-差分放大器,其用于从信号S1'、S2'放大和/或准备信号SDIFF作为差信号,其中对应于检测到的故障电流的差信号超过信号SDIFF的最大可允许阈值(切换PFC,从而减少UIC),以及
-电路配置,其用于(有源)降低中间电路电压,使得A类型FI断路器可利用信号SDIFF用于关断。
因此,从具有有源功率因子校正以及(任选地)升高的电压的DC电压中间电路馈送的换向电路也可用用于检测故障电流的A类型FI断路器以本发明的方式成功地操作。
在本发明的特别优选实施方案中,假定通过关断有源功率因子校正来引起中间电路电压的降低。因此,UIC+与接地电位(或保护接地)之间的中间电路电压以及故障电流曲线的波形改变为A类型FI可检测的波形,其为对应于具有无源功率因子校正的换向电子器件的故障电流曲线的轮廓。这意味着归因于电压的电压曲线的变化,故障电流的轮廓也因此改变,这接着由A类型FI断路器检测,且可安全地关断故障电流。
优选的是,假定检测装置包括用于分接信号(明确地说,电流信号(I馈送、I返回))的两个带电导体的每一个中的电组件。两个电组件(3a、3b)成对构成电阻、电感或磁场传感器的配置尤其优选。
在本发明的另一有利实施方案中,假定差分放大器包括例如信号准备模块,其被设计成准备差信号SDIFF,使得其可由微控制器、ASIC、集成电路等进一步处理。在此方面中,如果电路配置包括用于处理信号SDIFF的微控制器、ASIC或集成电路,那么是有利的。
本发明的另一方面涉及一种用于根据如先前所描述的装置来检测故障电流的方法,其中
-通过检测装置来检测两个信号S1、S2,其各自与在装置的操作期间流经输入侧上的两个带电导体(即,穿过馈送线和返回线)的电流成比例,
-在每一情况下,从检测到的信号S1、S2产生优选模拟信号S1'、S2',
-从对应于检测到的故障电流的信号S1'、S2'准备信号SDIFF作为差信号,以及如果故障电流超过最大可允许阈值,那么降低中间电路电压,使得信号SDIFF可由A类型FI断路器用来关断。
如果在中间电路电压的有源降低的辅助下,中间电路电压与接地电位之间的电压曲线使得PFC的关断发生,那么所述方法的实施方式尤其有利。这可有利地发生,因为通过关断有源功率因子校正,中间电路电压得以降低。
如上文所指示,这优选仅在故障电流超过所定义阈值时发生。因此,如果差信号显示高于阈值的量值,那么关断或桥接有源功率因子校正。
本发明的其它有利细化的特征在于附属权利要求,且在下文连同参考图式的本发明的优选实施方案的描述一起更详细地描述,其中:
图1示出具有无源PFC的用于3链EC电动机的已知换向电子器件的基本电路图;
图2示出具有有源PFC的用于3链EC电动机的已知换向电子器件的基本电路图;
图3在CH4中示出具有无源PFC的逆变器中的中间电路电压与保护接地电位之间的电压曲线,CH2示出电源输入电压;
图4在CH4中示出具有有源PFC的逆变器中的中间电路电压与保护接地电位之间的电压曲线,CH2示出电源输入电压;
图5在CH4中示出具有无源PFC的换向电路的中间电路中的中间电路电压与保护接地电位之间的电压曲线,且CH3示出故障电流,CH2示出输入电压;
图6在CH4中示出具有有源PFC的换向电路的中间电路中的中间电路电压与保护接地电位之间的电压曲线,且CH3示出故障电流,CH2示出输入电压,以及
图7示出用于具有有源PFC的EC电动机的换向电子器件的本发明的示例性实施方案的基本电路图。
在以下描述中,基于图1到图7,相同参考标号指代相同结构或功能特征。图1示出用于3链EC电动机20的具有无源PFC 21的换向电子器件的基本电路图,其在输入侧上经由由L-C组合组成的EMV滤波器24连接到AC电压源23。在此情况下,无源功率因子校正21仅由中间扼流电路25组成。
图2描绘具有有源功率因子校正22的换向电子器件。在根据图1的具有无源PFC的电子器件中,电容器C1上存在的中间电路电压具有值Uc1=√2*Uac,其中Uac为馈送AC电压。在具有有源PFC的换向电路中,如图2中所描绘,电容器C1上的电压可设定为值UIC>√2*Uac,rms。EC装置中所使用的典型值处于在380VDC到440VDC的范围内的电压下。
因此,电容器的正端子(阳极)与PE电位(保护接地电位)之间存在电压,其本质取决于拓扑学,如下文所描述的图中所示。
图3示出具有无源PFC的逆变器中的中间电路电压与保护接地电位之间的电压曲线,且图4示出具有有源PFC的逆变器中的中间电路电压与保护接地电位之间的电压曲线。
示出测得曲线,其与对应的测得信道相关联。信道Ch2上下部曲线中描绘AC电压源的正弦曲线输入电压。用于具有无源PFC的逆变器的信道Ch4中示出中间电路电压与保护接地电位之间的电压曲线。很明显的是,中间电路电压与保护接地电位之间的电位,即电压UIC相对于保护接地电位(PE电位),在值0V与Umax,ac,rms之间交替。
作为比较,图4示出具有有源PFC的逆变器中的中间电路电压与保护接地电位之间的电压曲线。在此情况下,电容器的阳极与保护接地电位之间的电压电位总是大于0V。最小值处于Umin=UIC-ac,rms
如果前面提到的实例中存在绝缘故障,那么这在拓扑上对应于其中引入正中间电路电位与保护接地(PE)电位之间的电阻的状态。故障电流接着也根据电压曲线来表现。在根据图1的逆变器中,电流将周期性地减弱为0A,且在根据图2的逆变器中,减弱到最小值,其表示最小故障电流,后者由商(UIC-√2*Uac,rms)/R故障确定。与根据图1的逆变器对比,DC部分总是在根据图2的逆变器中流动。
图5和图6的每一者中描绘的是以下情形:在两个电路拓扑的情况下,3KΩ的电阻R故障在每一情况下已整合在中间电路电压与保护接地电位(在此情况下,电动机的导电外壳)之间。
图5表示具有无源PFC的换向电子器件中的测量结果。在上部曲线(CH4)中,在故障电阻R故障上方标绘电压降。下部曲线(CH3)中描绘对应的故障电流,其经由电阻流到外壳。
图6示出使用具有有源PFC的换向电子器件的情况的对应测量的测得曲线。在这些图中,中间正弦曲线测得曲线(信道Ch2)表示正弦曲线输入电压。UIC+与保护接地电位之间的电压由上部曲线(Ch4)反映,且电阻R故障的测得故障电流由中间曲线形状表示。
图7示出具有有源PFC的用于EC电动机的换向电子器件的本发明的示例性实施方案的示意图。用于检测经调节DC中间电路2中的故障电流的装置1被示出为具有有源功率因子校正22,且具有用于检测电流信号S1、S2的检测装置3,所述电流信号S1、S2流经输入侧上的两个带电导体4a、4b。
检测装置3包括用于分接电流信号S1=I馈送和S2=I返回,因此分接穿过馈送线和返回线的电流的两个带电导体4a、4b的每一个中的电组件3a、3b。通过下文所述的探测选项,将从馈送线和返回线检测到的电流值转换成对应的模拟电压信号。这些电压信号优选作为输入信号馈送到差分放大器6。
提供:互感器5,用于在每一情况下从分别检测到的信号S1、S2产生模拟信号S1'、S2';以及差分放大器6,用于准备信号SDIFF,作为对应于检测到的故障电流的信号S1'、S2'之间的差信号,明确地说,在故障电流超过信号SDIFF的最大可允许阈值的事件中。
为了降低中间电路电压,提供电路配置7,使得借助于信号SDIFF来起始关断过程。电路配置7被设计成使得通过关断有源功率因子校正来降低中间电路电压。
本发明在其实施方式方面不限于前面所提到的优选示例性实施方案。相反,可想到若干变化,其甚至在从根本上不同类型的实施方案的情况下使用所呈现的解决方案。因此,检测装置3、互感器4和/或电路配置7也可被设计为共享电路。

Claims (10)

1.一种用于检测具有有源功率因子校正的经调节DC中间电路(2)中的故障电流的装置(1),其包括以下:
a.检测装置(3),其用于检测信号(S1、S2),所述信号各自与流经输入侧上的两个带电导体(4a、4b)的电流成比例,
b.互感器(5),其用于在每一情况下从分别检测到的信号(S1、S2)产生模拟信号(S1'、S2'),
c.差分放大器(6),其用于放大以准备信号SDIFF作为对应于检测到的故障电流的所述信号(S1'、S2')之间的差信号,
d.电路配置(7),其用于降低所述中间电路电压,使得A类型FI断路器(8)可检测到所述信号SDIFF,以便关断。
2.根据权利要求1所述的装置(1),其特征在于所述电路配置(7)被设计成使得通过关断所述有源功率因子校正来降低所述中间电路电压。
3.根据权利要求1或2所述的装置(1),其特征在于所述DC中间电路(2)被设计成用于产生升高的中间电路电压。
4.根据先前权利要求中的一个权利要求所述的装置(1),其特征在于所述检测装置(3)包括用于分接电流信号(I馈送、I返回)的所述两个带电导体(4a、4b)的每一个中的一个电组件(3a、3b)。
5.根据权利要求4所述的装置(1),其特征在于所述两个电组件(3a、3b)成对表示电阻、电感或磁场传感器。
6.根据先前权利要求中的一个权利要求所述的装置(1),其特征在于所述差分放大器(6)包括信号准备模块,以便准备所述信号SDIFF,使得其可由微控制器、ASIC或集成电路进一步处理。
7.根据先前权利要求中的一个权利要求所述的装置(1),其特征在于所述电路配置(7)包括用于处理所述信号SDIFF的微控制器、ASIC或集成电路。
8.一种用于根据权利要求1到7中的一个权利要求所述的装置检测故障电流的方法,其中
a.通过检测装置(3)来检测两个信号(S1、S2),其各自与在所述装置的操作期间流经输入侧上的两个带电导体(4a、4b)的电流成比例,
b.在每一情况下,从所述检测到的信号(S1、S2)产生优选模拟信号(S1'、S2'),
c.准备信号SDIFF作为对应于检测到的故障电流的所述信号(S1'S2')之间的差信号,以及
d.如果故障电流超过最大可允许阈值,那么降低中间电路电压,使得所述信号SDIFF经历可检测到或由A类型FI断路器(8)检测作为故障电流的波形。
9.根据权利要求8所述的方法,其特征在于通过关断有源功率因子校正来降低所述中间电路电压,使得所述信号SDIFF起始关断过程或可由A类型FI断路器(8)检测。
10.根据权利要求8或9所述的方法,其中借助于所述中间电路电压的有源降低,所述中间电路电压与接地电位之间的电压曲线经历产生故障电流曲线的波形,所述波形可被检测到或由A类型FI断路器(8)检测作为故障电流。
CN202110340783.8A 2015-02-20 2015-09-28 用于故障电流检测的装置和方法 Active CN113161995B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102015102485.3 2015-02-20
DE102015102485.3A DE102015102485A1 (de) 2015-02-20 2015-02-20 Vorrichtung und Verfahren zur Fehlerstromdetektion
CN201510626920.9A CN105914712A (zh) 2015-02-20 2015-09-28 用于故障电流检测的装置和方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201510626920.9A Division CN105914712A (zh) 2015-02-20 2015-09-28 用于故障电流检测的装置和方法

Publications (2)

Publication Number Publication Date
CN113161995A true CN113161995A (zh) 2021-07-23
CN113161995B CN113161995B (zh) 2024-06-25

Family

ID=

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103001175A (zh) * 2011-09-19 2013-03-27 本德尔有限两合公司 保障a型剩余电流装置的保护功能的电气监控装置及方法
US20130128396A1 (en) * 2011-11-23 2013-05-23 Metroic Limited Current measurement
CN103476628A (zh) * 2011-04-08 2013-12-25 奥迪股份公司 用于机动车高压电池的充电装置、充电系统和充电系统的运行方法
CN103997199A (zh) * 2014-05-28 2014-08-20 合肥华耀电子工业有限公司 一种带故障检测功能的有源功率因数校正电路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103476628A (zh) * 2011-04-08 2013-12-25 奥迪股份公司 用于机动车高压电池的充电装置、充电系统和充电系统的运行方法
CN103001175A (zh) * 2011-09-19 2013-03-27 本德尔有限两合公司 保障a型剩余电流装置的保护功能的电气监控装置及方法
US20130128396A1 (en) * 2011-11-23 2013-05-23 Metroic Limited Current measurement
CN103997199A (zh) * 2014-05-28 2014-08-20 合肥华耀电子工业有限公司 一种带故障检测功能的有源功率因数校正电路

Also Published As

Publication number Publication date
EP3059828A1 (de) 2016-08-24
CN105914712A (zh) 2016-08-31
EP3059828B1 (de) 2021-08-04
US10345347B2 (en) 2019-07-09
US20160245847A1 (en) 2016-08-25
DE102015102485A1 (de) 2016-08-25

Similar Documents

Publication Publication Date Title
US10345347B2 (en) Device and method for fault current detection
US7667941B2 (en) Power supply circuit protecting method and apparatus for the same
US7697248B2 (en) Electrical arc fault circuit interrupter apparatus and method
EP2867985B1 (en) System for measuring soft starter current and method of making same
AU2004200271B2 (en) Earth leakage protection device and electrical switchgear unit comprising such a device
US9692314B2 (en) Detection circuit and three-phase AC-to-AC power converting apparatus incorporating the same
CN103001187A (zh) 变频器和用于识别和阻断变频器中故障电流的方法
WO2013056751A1 (en) Method and system for detecting a failed rectifier in an ac/dc convertor
MX2013007921A (es) Sistema y metodo para monitorizar la corriente extraida por una carga protegida en un dispositivo electronico de proteccion autoalimentado.
US10014679B2 (en) Electrical switching apparatus including alternating current electronic trip circuit with arc fault detection circuit and power supply
JP2007533289A (ja) 地絡回路のための方法および安全装置
CN108474819B (zh) 用于三相负载的短路监测的方法和装置
US11283256B2 (en) Power interruption method and device based on phase measurement and arc detection of power level
KR102069615B1 (ko) 영상고조파필터를 내장한 배전반
CN103069287B (zh) 用于寄生电流检测的方法和设备
RU2676529C2 (ru) Устройство дифференциальной защиты для прибора отключения и электрический прибор отключения, содержащий такое устройство
CN110088871B (zh) 电气路径故障检测器和包括该故障检测器的断路器
US11320494B2 (en) Compensation device for compensating for leakage currents
CN113161995B (zh) 用于故障电流检测的装置和方法
KR102036578B1 (ko) 인버터 출력결상 검출장치
KR101287727B1 (ko) 접지를 이용한 전기기기와 전자기기의 동작차단기능이 부가된 안전장치
KR102551607B1 (ko) 누전 차단기
JP2020180787A (ja) 検出装置および電源装置
RU2498322C1 (ru) Счетчик электрической энергии с защитным отключением
RU2242829C2 (ru) Устройство контроля сопротивления изоляции и защиты электрических машин и аппаратов (варианты)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant